
Frontiers in Sustainable Food Systems 01 frontiersin.org

Toward low-carbon agriculture: 
measurement and driver analysis 
of agricultural carbon emissions 
in Sichuan province, China
Wenxiu Zhang 1 and Yang Shen 2*
1 School of Marxism, Xiamen University, Xiamen, China, 2 Institute of Quantitative Economics and 
Statistics, Huaqiao University, Xiamen, China

Introduction: Agricultural carbon emission reduction is the meaning of realizing 
the goal of double carbon, and Sichuan province, as one of the main grain 
producing areas in China, it is urgent to realize agricultural carbon reduction.

Methods: Based on the data of 18 cities in Sichuan province from 2000 to 2022, 
this paper calculates the total agricultural carbon emission and carbon emission 
intensity in Sichuan province by using IPCC guidelines, and measures its 
temporal, spatial evolution trend and regional differences, and further evaluates 
the driving factors by using fixed effect model.

Results: The results show that: (1) The total quantity of agricultural carbon emissions 
in Sichuan province has increased, but the carbon intensity has decreased, 
among which agricultural carbon emissions caused by agricultural land planting 
and residents’ life are the main carbon sources; (2) The regional differences of 
agricultural carbon emissions in Sichuan province are narrowing, among which the 
gap between groups is the root of the regional differences of agricultural carbon 
emissions, which shows that the agricultural carbon emissions in eastern Sichuan 
and western Sichuan, eastern Sichuan and southern Sichuan, western Sichuan and 
southern Sichuan, are quite different; (3) Agricultural carbon emissions in Sichuan 
province are characterized by agglomeration and spatial spillover, mainly showing a 
High-High agglomeration mode, but a few cities have changed their agglomeration 
modes; (4) The agricultural carbon intensity in Sichuan province is influenced by 
multiple factors. Population density, industrial structure, social wealth, agricultural 
mechanization and technological progress have negative effects on agricultural 
carbon intensity, while macro-control has increased agricultural carbon intensity.

Discussion: In this study, a complete accounting system for agricultural carbon 
emissions was established, and a series of statistical methods were used to analyze 
and obtain insightful results. It is a useful exploration of low-carbon agricultural 
models in the context of climate change. The results of this paper have important 
implications for the green development of agriculture in Sichuan province.
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1 Introduction

Halfway through the 2030 Agenda for Sustainable Development process, climate change 
remains one of the global challenges that transcends national boundaries. Agriculture has the dual 
attributes of carbon sink and carbon source. From the perspective of carbon source, at present, in 
addition to the energy sector, agricultural carbon emissions (ACE) have become another major 
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source of greenhouse gas (GHG) in China. This stems from the fact that 
in the pre-development period of the agriculture, production mainly 
relied on large-scale inputs of agricultural production materials, and the 
total quantity and intensity were high. Although in recent years, due to 
the improved level of agricultural technology and agricultural 
intensification has improved the efficiency of inputs of production 
materials and also reduced the agricultural carbon intensity (ACI), but 
as of 2020, the ACI is still around 1 ton / 10,000 yuan. Moreover, China’s 
agricultural emission reduction and carbon sequestration foundation is 
relatively weak due to the constraints of agricultural production 
conditions, such as the high proportion of medium- and low-yield fields 
and the still low degree of production scale intensification. According to 
the estimation of the Food and Agriculture Organization of the United 
Nations (FAO) on GHG, in 2005, China’s ACI were 780 million tons, and 
by 2020, the ACI will grow to 1.192 billion tons, and the total amount of 
China’s ACE will be on an upward trend from 2005 to 2020 (Figure 1). 
However, this data also shows that the annual ACE growth rate is on a 
downward trend, especially after 2012.

Existing studies have mainly focused on the different sources of 
ACE and the characteristics of temporal and spatial changes. In terms 
of emission source, the Kyoto Protocol adopted in 1997 specifies the 
selection of ACE sources, which mainly include animal husbandry 
(animal manure and enteric fermentation), plowing of agricultural 
land, rice cultivation, and burning of crop residues. As a complex 
ecosystem, the production and operation activities of agriculture are 
closely related to the climate environment. West and Marland (2002) 
studied ACE from a single point of view, choosing fertilizers, pesticides, 
agricultural irrigation, and the energy consumed by seed cultivation as 
the main sources of carbon emissions, while Johnson et al. (2007) 
showed that the generation of agricultural waste, the consumption of 
agricultural energy, rice cultivation, and straw cultivation are the main 
sources. Hillier et al. (2009) found that as much as 75% of carbon 
emissions came from nitrogen fertilizer use across all farm types 
studied. Zou et al. (2015) used 2010 statistics and market survey data 
to estimate GHG from irrigated agriculture in China, and the results 
showed that carbon emissions increased from 36.72 to 54.16 mt, and 
emissions from energy activities in irrigation accounted for 60%, also 
indicating that energy consumption in agricultural irrigation is an 

important source of carbon. Wiśniewski and Kistowski (2018) selected 
48 representative rural, urban–rural, and municipal communities in 
Poland for the calculation of the carbon footprint of agriculture, and 
the study found that soil management in agriculture is an important 
greenhouse gas emission source, accounting for about 48.2% of the 
total, especially direct emissions from organic soil cultivation and the 
use of mineral fertilizers, as well as indirect emissions from leaching of 
nitrogen compounds from the soil. A collaborative study by FAO 
shows that the world’s food system is responsible for one third of global 
anthropogenic GHG. Due to the differences in the production process 
and growth cycle of different food crops, and the differences in the 
requirements for inputs of production factors such as land, fertilizers, 
pesticides, etc., theoretically, there are differences in the carbon 
emissions and emission intensity of different food crops. Zhang et al. 
(2017) have estimated the carbon emissions of the major food crops in 
China, and their study found that in 2013, China’s corn, wheat, rice 
production process carbon footprints were at a high level. In particular, 
the carbon footprint of producing 1 kg of corn was 0.48 kg of CO2, 
wheat was 0.75, and rice was 1.6 kg.

Many scholars have also studied the regional differences in China’s 
ACE. Tian et al. (2014) found through a study of 31 provinces and 
municipalities in China that different carbon emission sources have 
different contributions to total ACE, with obvious differences between 
regions, and the western region has the highest intensity of ACE. Liu 
et al. (2021) analyzed the spatial distribution of ACE in 30 provinces 
in China from 2009 to 2019 and found that the performance of ACE 
in China follows the spatial layout pattern of east > west > central. Wu 
et al. (2021) studied the efficiency of agricultural carbon emissions in 
30 provinces in China and found that there is a large potential for 
emission reduction in most regions, and the efficiency of agricultural 
carbon emissions in different provinces and explored the factors 
affecting ACE efficiency and its spatial spillover effect. Han and Zhong 
(2023) also estimated the differences in ACE among the three major 
grain functional areas in China, and the study showed that, both in 
terms of total and mean indicators, carbon emissions from the 
agricultural production process in the main grain-producing areas 
were higher than those in the main marketing areas and the areas of 
balanced production and marketing.

FIGURE 1

ACE and its growth trend in China from 2005 to 2020.
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In terms of research on drivers, existing literature has shown that 
there are numerous factors influencing ACE, such as production 
efficiency, agricultural production structure, rural population, 
agricultural industrial structure, agricultural economic development 
level, rural education level, agricultural mechanization, agricultural 
development level, industrial agglomeration level, and urbanization level 
(Song and Lu, 2009; Tian et al., 2023; Xiaong et al., 2020; Ji et al., 2024; 
Su et al., 2013; Deng et al., 2015). Tunç et al. (2009) used four types of 
energy consumption of solid fuel, oil, gas and electricity in three major 
industries, namely, agriculture, industry and service, as an indicator to 
measure the carbon emissions of Turkey in 1970–2006, and applied the 
logarithmic mean divisia index (LMDI) decomposition model energy 
carbon emission influencing factors, and pointed out that the biggest 
influencing factor of carbon emission is economic activities, and 
structural effects negatively affect carbon emission. González et al. (2014) 
also used LMDI decomposition model to analyze the carbon emission 
influencing factors of EU countries, and the results showed that energy 
efficiency investment negatively affects carbon emission. According to 
Tian et al. (2014), carbon sources were classified in detail from three 
main levels: planting, livestock and poultry industry, and land use. By 
using multiple linear regression, it was found that the urbanization rate 
and nitrogen fertilizer application rate were the two main factors 
affecting carbon emissions of planting, while per capita agricultural 
output value and the ratio of beef production to total output of animal 
husbandry were the important factor influencing carbon emissions of 
animal husbandry. Jiang et al. (2021) analyzed the factors of ACE at the 
provincial level in China, and concluded that ACE were mainly affected 
by per capita arable land area and rural population.

Generally speaking, the research scales of the existing literature is 
relatively macro. China has a vast territory, different resource 
endowments in different region, and the agricultural production 
layouts and production methods are quite different. Firstly, there are 
regional differences in ACE in Sichuan province compared with other 
regions. Secondly, in different perspectives of ACE research, most of 
the existing studies are conducted from the national level, and the 
research on a single region is mainly concentrated in Heilongjiang, 
Hubei, Shandong and other agricultural provinces, while the related 
research on ACE in Sichuan province is few and scattered. As an 
important grain production base, Sichuan province’s accounts for 
about 10% of China’s total grain production. The number of pigs in 
Sichuan province ranks first in China, and the output of cash crops 
such as rapeseed and tea ranks first. Sichuan province is a key region 
to ensure national food security and the stability of agricultural supply 
chain. From the perspective of industrial structure, the country is 
actively promoting industrialization and urbanization, and the 
agricultural economy of a considerable number of cities accounts for 
less than 10% of GDP, while the agricultural sector in Sichuan province 
still accounts for a considerable share. From the internal perspective of 
the agricultural industrial structure, in 2023, the proportion of planting 
and animal husbandry in the agricultural sector is 47 and 38%, 
respectively. Food crops (rice, wheat, corn) and cash crops (rapeseed, 
tea, fruits) are developing simultaneously. In 2023, 66.5 million pigs 
will be sold, accounting for 10.8% of the country’s total, and production 
capacity continues to recover. Cattle and sheep breeding to large-scale 
transformation, beef cattle stock increased by 5.3%. The forest coverage 
rate of Sichuan province exceeds 40%. If the ecological balance is 
damaged by agricultural activities (such as slope farmland 
development), soil erosion will be aggravated, forest and soil carbon 

sink capacity will be weakened, and ecological security in the middle 
and lower reaches of the Yangtze River will be threatened. However, the 
research on agricultural carbon emissions in Sichuan province is still 
insufficient. The most important is that, global methane emissions 
from agriculture account for 40% of man-made emissions. Sichuan 
province is the largest pig farming region in China, and its livestock 
methane reduction (through manure recycling) is a benchmark for 
achieving the Global Methane Commitment. So it is necessary to 
systematically study agricultural carbon emission in Sichuan province 
from the aspects of the total amount, spatial and temporal 
characteristics and the influencing factors. Finally, in terms of methods, 
many studies focus on quantitative analysis, lacking in-depth 
explanation of the spatio-temporal characteristics of ACE and the 
socio-economic driving factors behind the influencing factors. The 
main contributions are as follows:

 (1) The importance of the object of study. As an important grain 
production base in China, Sichuan province is located in the 
ecologically fragile area of the upper reaches of the Yangtze 
River. Existing studies have mainly analyzed carbon emissions 
from industry, transportation, service industries and energy (Li 
et  al., 2022; Zeng et  al., 2022; Zhang et  al., 2025), but few 
literatures have focused on ACE. In addition, there are few 
studies on long time series of GHG emissions from regional 
agricultural sector. According to the particularity of agricultural 
economy and agricultural structure, this paper innovatively 
takes Sichuan province of China as the research object and 
analyzes the ACE change status of various cities in the past 
20 years. This study collected the long-panel data from 18 cities 
in Sichuan province from 2000 to 2022, and the results based 
on long-time series data can fully display the changing trends 
and regional evolution of ACE in Sichuan province. The results 
of this study can provide empirical support for agricultural 
carbon reduction in major grain production bases in China.

 (2) Innovation of evaluation system. This study enriches the system 
for measuring carbon emissions from agriculture. Compared 
with the existing literature that measures ACE from the narrow 
sense of planting, this study measures ACE from four 
dimensions of land use, farmland cultivation, rural life and 
animal husbandry, starting from the broad concept of 
agriculture. The measurement system of this study includes 
carbon emissions from most aspects of the agricultural sector 
as far as possible. In addition, we  measured methane and 
nitrous oxide emissions on the basis of existing literature and 
converted them to CO2 to make the results more comprehensive. 
In particular, we include rural energy consumption in our ACE 
calculations. It is mainly calculated by using urban and rural 
power consumption data and based on annual power carbon 
dioxide emission factors. This index has not been fully reflected 
in previous studies (Zhang et al., 2019; Guo et al., 2023; Wei 
et al., 2023). ACE has the characteristics of multiple sources and 
subjects, and the construction of a specialized carbon emission 
accounting inventory will make the results closer to the real 
value of agricultural economic development.

 (3) Innovation of research methods. This paper innovatively uses 
statistical methods to analyze the current situation, main 
sources and regional differences of ACE in Sichuan province. 
From the perspective of regional differences, this study analyzes 
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the regional differences, convergence and agglomeration of 
ACE in 18 cities in Sichuan province by using visualization 
tools and a series of statistical methods. Specifically, based on 
geographical location, this study divides the cities into 
sub-samples of northern Sichuan, eastern Sichuan, western 
Sichuan and southern Sichuan, analyzes the gap within and 
between groups by Gini coefficient, then tests whether cities 
with higher ACE per unit output have higher emission 
reduction rates by using the conditional convergence method, 
and confirms the convergence trend of the ACE reduction. It 
tests whether ACE reduction in the 18 cities in Sichuan 
province is more effective than other cities in the province by 
using the spatial autocorrelation method. Spatial 
autocorrelation method was used to study the spatial 
correlation and spatial agglomeration mode of ACE. We also 
improved the STIRPAT model when analyzing the external 
factors driving the reduction of ACE (York et al., 2003).

2 Methodology, sample and data 
sources

2.1 Methods

2.1.1 Methods and indicators for ACE
The multi-source, multi-variable and multi-subject characteristics 

of ACE make it necessary to cover a large number of carbon sources 
for its measurement. Currently, there is no authoritative organization 
to disclose the total amount of ACE in Chinese cities. The methods 
used in the existing literature to measure ACE include the input–
output method, the life cycle method, the field measurement method, 
the model optimization method, and the carbon emission coefficient 
method (Wen et al., 2024; Li et al., 2024). Among them, the coefficient 
method recommended by IPCC has been adopted by a large number 
of studies due to its advantages of concise formula, wide range of 
applicability, and convenient calculation (Du et al., 2023; Wang et al., 
2020; Shen et al., 2023). According to IPCC, the process of measuring 
ACE is as follows:

 
( )

1 1

n n
i i i

i i
TE E AD EF

= =
= = ×∑ ∑

 
(1)

In Equation 1, TE is the total amount of ACE, Ei is the carbon 
emissions from each type of carbon source, AD is the specific carbon 
source, EFi is the emission factor of the carbon source, and n is the 
number of carbon sources. A large number of literatures have only 
considered the carbon emissions from agricultural cultivation when 
measuring ACE (Huan et al., 2025; Jin M. et al., 2024; Hou et al., 2024). 
However, cultivation is only a narrow concept of agriculture, which does 
not fully encompass all production activities in rural areas. From the 
broad concept of agriculture, it also includes indicators of rural life, 
animal husbandry, forestry and aquaculture. Combined with the actual 
situation of agricultural production in Sichuan province, this paper 
selects 14 indicators for comprehensive measurement from four aspects: 
land use, farmland cultivation, livestock breeding and rural life. 
Common greenhouse gasses are methane (CH4), nitrous oxide (N2O) 
and carbon dioxide (CO2). In order to quantitatively and conveniently 

measure the ACE, this paper refers to the methodology of existing 
literature (Tian and Zhang, 2013), which converts the greenhouse effect 
produced by CH4 and N2O to CO2. Their conversion processes are 1 t 
CH4 = 6.82 t C = 25 t CO2 and 1 t N2 O = 81.27 t C = 298 t CO2, 
respectively. CH4’s source is mainly biological action in anaerobic 
environment, so it is mainly sourced from various types of shallower 
water bodies, wetlands such as swamps and rice fields. Combined with 
the availability of agricultural data in Sichuan province, only the GHG 
from dryland crops in cultivation are considered in this paper. In dryland 
ecosystems, the anaerobic respiration process is relatively weak, CH4 
bacteria are inactive, and dryland soils have an absorptive effect on CH4, 
so the CH4 emission from dryland ecosystems is very small, while the 
N2O emission is quite large. Therefore, only N2O emissions were 
calculated in this study when calculating GHG emissions from 
cultivation. The GHG emissions from large livestock and poultry 
farming can be  divided into enteric fermentation and manure 
management. CH4 emissions are mainly generated from the enteric 
fermentation process of animals and the anaerobic environment formed 
by manure in the process of stacking. N2O emissions are mainly 
generated from the management of livestock manure. In this paper, the 
two sources of carbon in animal husbandry are accounted for separately. 
Energy consumption is the main component of agricultural carbon 
emissions. Because data on fossil energy consumption for agricultural 
production, such as farm machinery, are not available, this paper uses 
rural electricity consumption to measure energy consumption.

In summary, integrating the availability of agricultural 
economic data in Sichuan province and the characteristics of 
multiple subjects and sources of ACE, this paper constructs the 
carbon emission accounting inventory in Table 1. For the indicators, 

TABLE 1 Indicators and conversion factors for ACE accounting.

Carbon 
emission 
type

Specific 
projects

Carbon 
emission 

coefficient

Type of 
GHG

Land use

Fertilizer 0.8956 kg /kg CO2

Field irrigation 20.476 kg /hm2 CO2

Plow 312.6 kg /hm2 CO2

Farm planting

Soybean 0.77 kg /hm2 N2O

Rice 0.24 kg /hm2 N2O

Corn 2.532 kg /hm2 N2O

Vegetables 4.944 kg/hm2 N2O

Oil, sugar, rapeseed 0.95 kg /hm2 N2O

Fecal 

management

Cattle 8.75 kg/(Head−1·a−1) 

1.183 kg/

(Head−1·a−1)

CH4、N2O

Pig 3.5 kg/(Head−1·a−1) 

0.53 kg/(Head −1·a−1)

CH4、N2O

Poultry 0.02 kg/(Head−1·a−1) 

0.02 kg/(Head−1·a-1)

CH4、N2O

Animal intestinal 

fermentation

Cattle 59.7 kg/(Head−1·a−1) CH4

Pig 1 kg/(Head−1·a−1) CH4

Poultry 0.02 kg/(Head−1·a−1) CH4

Country life Electricity 

consumption

0.1255 (kgCO2/

kWh)

CO2
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GHG categories and carbon emission factors in the inventory, this 
study also referred to a large number of literature (Feng et al., 2025; 
Wu et al., 2024; Xie et al., 2024; Han et al., 2024; Xia et al., 2023). 
The carbon emission coefficients of some indicators of agricultural 
land use, agricultural land cultivation and animal husbandry also 
refer to the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories. The carbon emission conversion factors for electricity 
in Sichuan province were obtained from the CO2 Emission Factors 
for Electricity in 2021, jointly published by the Ministry of Ecology 
and Environment of China and the National Bureau of Statistics.

2.1.2 Convergence analysis
The theory of convergence is condensed from the theory of 

convergence in classical economics. Convergence of economic 
variables implies that over time, the backward regions will show a 
tendency to catch up with the relatively developed regions because 
they have higher growth rates, and the differences between regions 
will become smaller and smaller. This study mainly applies 
convergence to analyze the convergence trend of ACE reduction in 
Sichuan province. Depending on whether external factors affecting 
the growth rate are included in the model, β convergence can 
be divided into absolute β convergence and conditional β convergence. 
Different regions have different economic development patterns, 
resource endowments and natural conditions, and ACE are also 
affected by the economic system, so it is necessary to incorporate 
control variables to control the effects of individual differences. The 
expression for convergence is:

 ( ), 1 0 1ln / lni t t it i t itY Y a Yβ µ ν ε+ = + + + +  (2)

 ( ), 1 , 0 1 , 2ln / lni t i t i t it i t itY Y a Y a CVβ µ ν ε+ = + + + + +  (3)

Equations 2, 3 are absolute β convergence and conditional β 
convergence, respectively. α 0 is a constant term, β1 and α 2 are 
regressions, μi is an individual fixed effect, νt is a time-fixed effect, εit is 
a randomized perturbation term, and CV are control variables. The 
STIRPAT model improved on the IPAT model overcomes the 
shortcomings of the unit elasticity of the effects of external factors on 
environmental pressures and gives the model more stochasticity, and 
is now widely used to test the influencing factors that drive the 
indicators of carbon emissions, carbon reduction, and ecological 
footprints (Yu et  al., 2023; Huang et  al., 2021; Zuo et  al., 2020; 
Lohwasser et al., 2025). Based on the existing literature, this paper 
extends and optimizes the STIRPAT model, and selects seven variables 
as control variables from the economic system and natural causal 
conditions (Huan et al., 2025; Jin et al., 2024). The control variables are 
shown in Table 2. According to the results, if β is significantly negative, 
it indicates that the ACE in Sichuan province shows a converging trend, 
and vice versa, it is considered that there is a diverging trend. It should 
be noted that, because the ACE is a negative indicator, if it is substituted 
into the model the measured results reflect the growth rate of carbon 
emissions in each region, which is not in line with the era of carbon 
emission reduction. Therefore, the meaning of Y in Equations 2, 3 is 
the carbon emission intensity per unit of GDP (ACI).

2.1.3 Dagum Gini coefficient
The convergence analysis reflects the fact that the growth rate 

of carbon emission reduction in backward regions is higher than 
that in developed regions, which is a holistic analysis. Compared 
with the traditional Gini coefficient, coefficient of variation and Tel 
index, the Gini coefficient method proposed by Dagum (1997) has 
good spatial decomposition function. It can not only identify the 
source and composition of regional differences, but also effectively 
overcome the problem of repeated overlapping between sample 
data. In general, the overall regional Gini coefficient (G) can 
be divided into three parts: intra-group disparity (Gw), inter-group 
disparity (Gnb) and hyper variance density (Gt). Among them, the 
results of Gw measure the within-region gap, the results of Gnb 
measure the between-region gap, and the results of Gt measure the 
phenomenon of cross-overlapping of sample data between groups. 
The inequality in ACE due to overlap between groups of sample 
data is known as hyper variance density. The equation to calculate 
the Dagum Gini coefficient is:

 

1 1 1 1
22

j kn nk k
ji hr

j h i r
y y

G
n y

= = = =
−

=
∑∑∑∑

 
(4)

In Equation 4, G is the Dagum Gini coefficient, and the larger its 
value means the larger the overall difference. k is the number of 
sub-regions, which is divided into four regions according to the 
geographic location of the cities in Sichuan province. The list of cities 
within the base period of the specific region list is shown in Table 3. nj 
and nk are the number of cities within each of region j and region h, 
respectively. yji and yhr are the ACE of city i in region j and city r in 
region h, respectively. y is the mean value of the ACE in Sichuan 
province. According to the three constituent sources that make up the 
overall variance G, it can be categorized as:

 

1 1
22

j jn n

ji jr
i r

jj
j j

y y
G

n γ
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−

=
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( )( )

1

2 1
1

jk
t jh j h h j jh

j h
G G p s p s D

−

= =
= + −∑∑

 
(9)

In Equations 5–9, Gjj is the Gini coefficient of region j, and 
Gjh is the Gini coefficient between region j and region h. The Gini 
coefficient of region j is the Gini coefficient of region h. 

/j jp n n= , /j j js p γ γ= . /jh jh jh jh jhD d p d p= − + is the degree 
of interaction of ACE between region j and region h, and djh is the 
difference in ACE between region j and region h. pjh is the 
hypervariable first-order moment. It is the mathematical 
expectation of the sum of all 0ji hry y− > sample values. djh and 
pjh are calculated as shown in Equations 10, 11.

 ( ) ( ) ( )0 0
y

jh j hd dF y y x dF x
∞

= −∫ ∫  
(10)

 ( ) ( ) ( )0 0
y

jh h jp dF y y x dF x
∞

= −∫ ∫  
(11)

In both equations, ( )·F  is the cumulative probability density 
distribution function.

2.1.4 Analysis of spatial autocorrelation
The spatial autocorrelation aims to test the spatial correlation and 

agglomeration status of the sample data, and the commonly used 
metrics are Moran’s I and Geary’s C. Moran’s I is widely used for its 
distributional characteristics, standardized statistics, and fewer 
application conditions. Referring to existing literature, this study uses 
Moran’s I to measure the spatial correlation of 18 cities in Sichuan 

province (Cheruiyot, 2022; Ding and Liu, 2024; Xiag et al., 2024). It is 
expressed as:
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(12)

In Equation 12, S2 is the sample variance, n is the number of cities, 
GI is Global Moran’s I, and Wij is the spatial weight matrix, which was 
used to measure the spatial linkages between cities. Regarding the 
setting of the spatial weight matrix, the matrix constructed on the 
basis of geographic information was also made the most exogenous 
weight matrix due to geographic proximity and the fact that 
geographic distances are naturally occurring. Since this study does 
not include data from autonomous regions, it leaves Panzhihua with 
no bordering cities. Therefore, this paper constructs the spatial weight 
matrix based on the spherical distance between cities. In general, the 
value range of Moran index is [−1,1]. If GI > 0, it means that there is 
a spatial positive correlation of ACE in cities, that is, similar values 
tend to cluster. The larger its value is, the more obvious the spatial 
clustering phenomenon is. If GI < 0, it means that there is a spatial 
negative correlation of ACE in cities, that is, similar values tend to 
disperse. The larger its value, the greater the degree of spatial 
dispersion. If GI = 0, it means that the ACE of the cities are randomly 
wandering at the spatial level without any spatial correlation. The tool 
to determine whether the Moran’s I coefficient is positive or not is the 
Z-test, which is expressed as ( ) ( )Z I E I / var I= − , with 
( )E I 1 / n 1= − . However, GI can only report on the presence or 

absence of agglomeration states or outliers at the spatial level of the 
study object, not quite ignoring the potential problem of uncertainty 
in the spatial process, and also rather than being able to report on 
more details. The results contained in the GL are inadequate if the 
researcher is to further analyze observations for high or low values of 
local clustering, discern the contribution of regional units to global 
spatial autocorrelation, and the extent to which the global assessment 
masks anomalous local conditions or small-scale instabilities. Local 
Moran’s I (LI) is the first of a number of ways in which the GL can 
be used to further complement and development of the technical 
details. It measures the local spatial correlation around each 
individual in the dataset, and can provide researchers with 
information on which areas of high value clustering exist and which 
areas of low value exist, thus explaining more complex spatial 
distribution patterns. Overall, the GI results answer the question of 
“Yes” or “No,” while the LI results answer the question of “Where,” 
and the LI expression is:
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(13)

In Equation 13, LI is local Moran’s I. The meaning of the rest of 
the symbols is consistent with Equation 15. In order for the 
observations to be clearly presented, this study used the visualization 
tool of scatterplot for analysis. Existing literature states that the Moran 
scatterplot is divided into four quadrants (Xu, 2017). The first 

TABLE 3 List of cities in the four regions of Sichuan province.

Code Region City

1 Eastern Sichuan Dazhou, Nanchong, Bazhong, Suining

2 Western Sichuan Chengdu, Deyang, Ya ‘an, ziyang.

3 Southern Sichuan
Zigong, Panzhihua, Luzhou, Leshan, 

Meishan, Yibin

4 Northern Sichuan Mianyang, Guang ‘an, Guangyuan

TABLE 2 Control variable and its measurement.

Variable Description of variable

Social wealth Per capita GDP of the city

Macro-control Ratio of public budget fiscal expenditure to GDP

Industrial structure Ratio of added value of tertiary industry to added 

value of secondary industry

Population density Population per square kilometer of jurisdiction 

area

Agricultural mechanization Ratio of total power of agricultural machinery to 

sown area of crops

Technological progress Agricultural total factor productivity

Temperature Average annual temperature

Rainfall Average annual rainfall
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quadrant represents the form of spatial linkage in which regional units 
with high observations are surrounded by other regions with high 
observations, that is, the High(H)-High(H) clustering pattern. The 
second quadrant represents the form of spatial association in which 
regional units with low observations are surrounded by other regions 
with high observations, i.e., the Low (L)-High (H) pattern of 
agglomeration. The third quadrant represents the L-L pattern of 
agglomeration and the fourth quadrant the H-L pattern 
of agglomeration.

2.1.5 Econometric model
The IPAT model incorporates the environment (I), population 

(P), economy (A), and technology (T) into a unified framework, and 
attempts to describe the relationship between each factor and 
environmental change through mathematical modeling. The STIRPAT 
model, which was improved from the IPAT model, has the 
characteristic of flexibility and is now widely used in studies related to 
analyzing abatement factors and scenario projections of carbon 
emissions (Cooray and Özmen, 2024; Niu et al., 2024). In order to 
examine the external factors driving ACE, this paper optimizes and 
improves the IPAT model using the principles of the STIRPAT model. 
The basic expression of IPAT is:

 1 2 3a a aI a P A T e= × × × ×  (14)

In Equation 14, the I denotes environmental pressure, which in a 
generalized context can be replaced by any indicator of environmental 
pollution and load. In this paper, it refers to ACI. e is the error term. 
The Equation 14 could be transformed to Equation 15:

 1 2 3ln ln ln ln ln lnI a a P a A a T e= + + + +  (15)

The STIRPAT model has a strong openness. Most of the existing 
studies are adjusted according to the research topic when utilizing the 
STIRPAT model for analysis. Existing literature suggests that other 
external factors can be included in the STIRPAT model as long as 
there is rationality in the theoretical dimension (York et al., 2003). In 
this paper, the model is expanded on the three existing factors, which 
leads to the following panel data model:

 0 1ln it i t itACI a a CV ν ν ε= + + + +  (16)

In Equation 16, ACI is the carbon intensity, which is measured by 
the ratio of the absolute quantity ACE to the value added of the 
primary industry. CV is the external factor that drives ACE. It contains 
population density, industrial structure, social wealth, macro-control, 
agricultural technology progress, agricultural mechanization, rainfall 
and temperature. The calculation process of external factors driving 
ACE is shown in Table 4.

2.2 Location

Located in the southwest of China and the upper reaches of the 
Yangtze River, Sichuan province is known as the “Land of Abundance,” 
covering an area of 486,000 square kilometers, accounting for 5.1% of 
the total land area of the country, ranking fifth in the country. Sichuan 
province has jurisdiction over 21 cities and 183 counties, connecting 

Chongqing in the east, Yunnan and Guizhou in the south, Xizang 
Autonomous Region in the west and Qinghai, Gansu and Shaanxi in 
the north. In agricultural production, Sichuan is one of the 13 major 
grain-producing provinces in China, and its grain output has 
maintained steady growth for many years. In 2023, Sichuan’s grain 
output reached 35.938 million tons, ranking ninth in China. According 
to the distribution of crop, the sown area of cash crops in Sichuan 
province reached 3.861 million hectare, accounting for 37.6% of the 
total sown area of crops. Among them, the output of rapeseed ranks 
first in the country for 14 consecutive years, the output of tea ranks 
fourth in the country, and the output of citrus ranks third in the 
country. From the perspective of animal husbandry, the output of live 
pigs steadily ranked first in the country. In 2022, the added value of 
the primary industry in Sichuan province was 596.43 billion CNY, and 
the contribution rate to economic growth was 10.5%, respectively. It 
can be seen that the green development of agriculture is crucial to the 
high-quality development of Sichuan province.

As one of the important agricultural bases in the western region 
of China, Sichuan province is facing severe pressure to reduce ACE 
under the policy overweight of the western development strategy and 
the construction plan of Chengdu-Chongqing double-city economic 
circle. ACE in Sichuan province has shown a year-on-year growth 
trend over the past decade, especially in the planting and animal 
husbandry sectors, where the growth in carbon emissions has been 
more significant. At the same time, Sichuan province is located in a 
high altitude area (the average elevation is 2,598 meters, and the 
largest elevation difference between cities is 3,836 meters), with 
complex terrain and changeable climate. These geographical features 
affect the temporal and spatial distribution of ACE, making the 
characteristics of ACE in this area different from those in the eastern 
region. This study focuses on the main grain-producing areas in 
western China, and takes Sichuan province as the sample of the study, 
with ACE as the theme. The results will help to narrow the gap of 
agricultural economic development between China, and provide data 
support and reference for China’s agricultural provinces and other 
countries with similar conditions in the world to achieve 
low-carbon agriculture.

2.3 Data source

The data for 18 cities from 2000 to 2022 was selected as a sample 
based on the principles of availability of indicators and comparability 
in Sichuan province. Since China’s administrative divisions are divided 

TABLE 4 Descriptive statistics.

Variable Mean Variance N

ACI −4.993 1.355 414

Social wealth 9.572 0.866 414

Temperature 2.890 0.060 414

Rainfall 0.899 0.259 414

Macro-control 7.386 0.442 414

Industrial structure −0.283 0.433 414

Population density 5.934 0.0.602 414

Agricultural mechanization 4.982 0.518 414
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into five levels, including provinces, cities and counties, three 
autonomous prefectures exist within the jurisdiction of Sichuan 
province. They do not belong to the same level as prefecture-level 
cities, making their results not directly comparable. Therefore, this 
study did not consider the samples of Ganzi Tibetan Autonomous 
Prefecture, Aba Qiang Tibetan Autonomous Prefecture and Liangshan 
Yi Autonomous Prefecture. The sources of data are Statistical Yearbook 
of Sichuan, Statistical Yearbook of China, Urban Statistics Bureau and 
the EPS database. For a few missing values, this paper uses 
interpolation method to fill the blanks.

3 Results

3.1 Analysis of overall ACE

In order to analyze more deeply the ACE caused by the 
development of the agricultural economy in Sichuan province, this 
study also measured the carbon intensity (ACI) on top of the 
ACE. Among them, ACI is measured by the ratio of ACE to the value 
added of primary industry, which reflects the carbon emissions per 
unit of GDP. Figure 2 shows the trend of ACE and ACI in Sichuan 
from 2000 to 2022, calculated based on the inventory in Table 1. In 
Figure 2, the vertical axis is measured in ten thousand tons.

Figure 2 shows that, from 2000 to 2022, the ACE show a general 
trend of rising in fluctuation, growing from 15,654,300 tons in 2000 
to 17,666,300 tons in 2022, with an average annual growth rate of 
0.61%. This trend can be subdivided into three stages: The first stage 
is from 2000 to 2013, and the ACE in this stage increased from 15.6543 
million tons to 18.8115 million tons; The second stage is 2014–2020, 
in which the ACE is reduced from 18.8115 million tons to 16.4557 
million tons; After 2020, the ACE show a rising trend again. The 
change trend of total carbon emissions in Sichuan province calculated 
in this paper is consistent with that calculated at the provincial level 
in China (Jiang et al., 2021), which is also consistent with the data on 
ACE in China disclosed by FAO.

However, ACI in Figure 2 shows that although the ACE in Sichuan 
province fluctuated and rising from 2000 to 2022, due to technological 
progress, agricultural transformation and upgrading and the country’s 
emphasis on the development of green agriculture, the ACI showed 
an obvious downward trend, from 160 million yuan per 10,000 tons 
in 2000 to 0.3 billion yuan per 10,000 tons in 2022. This shows that the 
relationship between agricultural growth and carbon emissions in 
Sichuan province has reached a decoupling state, that is, ACE per unit 
of agricultural GDP have been declining. The trend of ACE reduction 
is highlighted, which means that Sichuan is expected to achieve the 
dual-carbon target for agriculture as scheduled.

3.2 Decomposition analysis of ACE

In Figure 3a, the vertical axis is measured in ten thousand tons. 
As can be seen from Figure 3, in 2000, 2010 and 2015, the ratio of 
carbon emissions and ACE produced by animal husbandry was 
39,48,37.41 and 33.94%, indicating that during 2000–2015, animal 
husbandry contributed one-third of the ACE, which is the main 
source of carbon emissions in agricultural ecosystems in Sichuan 
province. This may be  due to farmers’ lack of awareness of 

agricultural green development at this stage, the frequent 
phenomena of free-range and disorderly breeding, the low scale of 
aquaculture, the unscientific division of aquaculture area and the 
insufficient supporting facilities and equipment for the resource 
utilization of livestock and poultry manure. The proportion of 
livestock carbon emissions to ACE has declined after 2015, and will 
account for 27.34% by 2022. ACE from land use showed a 
fluctuating upward trend before and after 2015, and also showed a 
downward trend after 2015. This may be  due to the intensive 
planning and management of land, the improvement of land use 
efficiency, such as the construction of high-standard farmland and 
other policies, and the reduction of land use emissions. From 2000 
to 2022, carbon emissions from agricultural land cultivation show 
a fluctuating upward trend, and its proportion in the agricultural 
ecosystem rose from 24.69% in 2000 to 31.48% in 2022, indicating 
that agricultural production urgently needed to adopt green and 
clean technologies to improve the level of intensification and 
greening. The carbon emissions caused by farmers’ lives, however, 
always show an upward trend, growing from 6.30 to 14.79% from 
2000 to 2022, with an average annual growth rate of 4.54%, much 
higher than the overall growth rate of ACE. This reflects the 
improvement of Sichuan residents’ living standards and its 
increasing impact on the environment, which leads to the 
rise of ACE.

3.3 Analysis of the spatial and temporal 
evolution trend of ACE

From a to d in Figure 4, it can be found that, from 2000 to 2022, 
the ACE of all cities shows an upward trend. Figures 4e,f also show 
this. However, Figures 4a–d also show at the same time that there are 
obvious regional differences in ACE. As shown in Figure 4a, in 2000, 
Ya’an, Panzhihua and Zigong had lower levels of ACE, while Chengdu, 
Nanchong and Dazhou had higher levels, that is, there was an obvious 
gap in ACE between cities. And Figure  4b shows that in 2010, 
Chengdu, Nanchong and Dazhou still had higher levels of ACE, while 
Panzhihua still had lower levels. And by 2015 (Figure 4c), Ya’an’s ACE 

FIGURE 2

Results of ACE in Sichuan province from 2000 to 2022.
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grew significantly, but it was still much lower than the levels of 
Chengdu, Nanchong and Dazhou. And Figure 4d shows that this 
inter-city difference in ACE still exists by 2022.

So, is this regional gap widening or narrowing? At what level 
exactly? Does this gap exist within cities? To answer these questions, 
a detailed analysis of the regional gap follows.

3.4 Convergence analysis

According to the method proposed in section 2.4, this study 
considers the absolute convergence and conditional convergence 
of ACE in Sichuan province, respectively. As can be seen from 
column (1) of Table 5, the β coefficient of ACE is negative at the 
significance level of 5%, indicating that the regional gap in ACE 
is gradually narrowing and there is absolute β convergence. Using 
a fixed-effect model, population density, macro-control, industrial 
structure, social wealth, agricultural mechanization, agricultural 
technological progress, temperature and rainfall are taken as 
control variables, and conditional β convergence is further 
considered. The results in column (2) of Table 5 show that the β 
coefficient of conditional convergence of ACE in Sichuan province 
is negatively significant at the statistical level of 1%, which 
indicates that there is conditional β convergence, but the factors 
affecting β convergence are different.

Macro-control and mechanization have a significant positive 
effect on ACE, showing that the increase in government financial 
inputs and the increase in the level of agricultural mechanization will 
make ACE higher. This may be due to the increase in government 
financial input, which leads to an increase of social investment, thus 
expanding agricultural production and increasing carbon emissions. 
The level of mechanization has improved the efficiency of agricultural 
production, and the improvement of agricultural production efficiency 
has promoted the increase of ACE through the expansion of 
production scale. Agricultural technology progress has a significant 

negative impact on ACE, which shows that agricultural technology 
progress is beneficial to reducing ACE. On the one hand, the progress 
of agricultural technology has a direct emission reduction effect, 
which will reduce the waste of production factors such as pesticides 
by promoting the intensive and clean channels of agricultural 
production, therefore producing emission reduction effect. On the 
other hand, agricultural technological progress has a spillover effect. 
Through the diffusion and integration of technology, it will lead to 
green-biased technological progress, thus producing emission 
reduction effect. Population density, industrial structure, social wealth, 
temperature and rainfall have no influence on the convergence of ACE 
in Sichuan province.

3.5 Regional differences and 
decomposition analysis in ACE

To further observe the regional disparity, as described in section 
2.5, this paper uses the Datum Gini coefficient and its decomposition 
method to analyze the regional differences in ACE.

As can be  seen from Table 6, the Gini coefficient of ACE has 
experienced an inverted U-shaped trend of first rising and then falling. 
Taking 2014 as the cut-off point, the regional differences of ACE in 
Sichuan province gradually expanded from 2000 to 2014, which 
showed that Gini coefficient rose from 0.221 in 2000 to 0.235 in 2014. 
However, the overall regional differences of ACE remained at a low 
level in this period. From 2014 to 2022, the Gini coefficient dropped 
from 0.235 to 0.212, indicating that the regional gap in ACE is 
gradually narrowing. Decomposition of the Gini coefficient shows that 
the intra-group gap in ACE remains stable from 2000 to 2022, and the 
inter-group gap constitutes the root of the regional gap in ACE. From 
2000 to 2012, the contribution of the inter group gap grew from 47.94 
to 63.42%, with an average growth rate of 4.79%. However, after 2014, 
the contribution rate of the gap between groups fluctuated, from 
61.46% in 2014 to 43.95% in 2022, with an average annual decline of 

FIGURE 3

Decomposition of carbon emission sources in Sichuan province. (a) Absolute quantity of carbon sources. (b) Proportion of different carbon sources.
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FIGURE 4

Temporal and spatial evolution of agricultural carbon emissions in Sichuan province. (a) ACE in 2001. (b) ACE in 2010. (c) ACE in 2015. (d) ACE in 2022. 
(e) Average value of ACE from 2000 to 2022. (f) Total ACE from 2000 to 2022.
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7.46%. This shows that the regional gap is narrowing, which is 
consistent with the previous convergence analysis.

Analyzing the reasons, on the one hand, Sichuan province issued key 
energy-saving and emission-reduction projects, focusing on and treating 
some cities with high ACE level, high pollution and high energy 
consumption, such as implementing pilot demonstration of 
comprehensive utilization of straw in the whole region, promoting the 
construction of industrial-agricultural composite circular economy 
demonstration zones and the collaborative treatment of solid waste, and 
the task of rural environmental improvement projects in established 
villages issued by the state, which reduce the ACE with high pollution 
and high energy consumption. On the other hand, the establishment of 
river basin ecological compensation and carbon trading platform 
mechanism also narrowed the regional gap of ACE. However, Table 5 
also shows that the contribution rate of hyper variable density fluctuates 
and increases from 2012, growing from 17.14 to 32.72% in 2022. This 
shows that the importance of the gap caused by the overlap and cross 
between the samples is increasing, which means that there are also 
serious high-carbon emission in some cities with low ACE level. If the 
high-carbon emission in these cities with low overall ACE level are 
ignored in the government’s carbon emission reduction strategic 
planning, this may aggravate the intra-group gap of ACE.

Further, taking into account the situation of Sichuan province, 
this paper observes the intra-group gap of ACE according to four 
regions of eastern Sichuan, western Sichuan, southern Sichuan and 
northern Sichuan. As shown in Table 7, the Gini coefficients of 
ACE in the four regions in the sample period are, in descending 
order of mean value, 0.091, 0.171, 0.194, and 0.227 for northern 
Sichuan, eastern Sichuan, southern Sichuan, and western Sichuan, 
respectively, indicating that there are gaps in carbon emissions to 
varying degrees in the four regions, with the smallest intra-group 
gaps in ACE in northern Sichuan and the largest intra-group gaps 
in western Sichuan. intra-group gap is the largest. Further 
observation of the time trend of the within-group coefficients 

reveals that the Gini coefficients of eastern and northern Sichuan 
are fluctuating upward, while western and southern Sichuan show 
a fluctuating downward trend.

As can be seen from Table 8, the gap between eastern Sichuan and 
western Sichuan, eastern Sichuan and southern Sichuan, and western 
Sichuan and southern Sichuan is an important part of the gap in 
ACE. The average Gini coefficients between groups during the sample 
period being 0.232, 0.296 and 0.269, respectively. Among them, the 
ACE gap between eastern and southern Sichuan is the biggest, 
followed by western Sichuan and southern Sichuan.

3.6 Analysis of spatial correlation 
characteristics

Although in the previous section this paper analyzed the regional 
disparity in ACE through convergence and the Gini coefficient, and 
found that this disparity is mainly contributed by inter-group 
disparity. However, this assumes that regions have clear boundaries. 
However, the fact is that cities or regions are correlated, and ACE are 
also characterized by spatial correlations and spatial spillovers. In 
order to examine the spatial correlation characteristics of ACE in 
Sichuan province, this paper calculates the Moran’s I coefficient of 
ACE in Sichuan province from 2000 to 2022 according to the method 
proposed in section 2.6, and the results are shown in Table 9.

As can be  seen from Table  9, since 2003, although Moran’ 
I coefficient fluctuates and rises, it shows a positive spatial correlation, 
and ACE between cities has the characteristics of spatial correlation 
and spatial spillover. To a certain extent, this also shows that the 
formulation of ACE reduction policy plan needs the concerted efforts 
of all cities.

The global Moran’s I can be used to evaluate the overall spatial 
aggregation characteristics of ACI, but it cannot adequately reflect its 
localized agglomeration in different geographical locations. Therefore, 
this paper also calculated the local Moran’s I of 18 cities and visualized 
the agglomeration using STATA 16.0, and the results are shown in 
Figure 5.

TABLE 5 Results of convergence analysis.

Variable (1) (2)

Absolute 
convergence

Conditional 
convergence

β −0.0590** (−2.26) −0.14716*** (−3.19)

Population density 0.0931 (1.35)

Macro-control 0.0387* (1.74)

Industrial structure −0.0148 (−1.05)

Social wealth 0.1276 (1.63)

Agricultural 

mechanization
0.0294** (2.14)

Technological progress −0.2519** (−2.11)

Rainfall −0.0003 (−0.01)

Temperature −0.0311 (−0.88)

City-fixed effect Yes Yes

Time-fixed effect Yes Yes

R2 0.4615 0.5212

***, **, and * are significant at the 1, 5, and 10% levels, respectively, and the t statistic is 
reported in parentheses.

TABLE 6 Results of Dagum Gini coefficient and contribution rate.

Year Overall Gini coefficient Contribution 
rate(%)

Gw Gnb Gt Gw Gnb Gt

2000 0.221 0.049 0.106 0.067 21.99 47.94 30.07

2002 0.227 0.049 0.116 0.062 21.69 51.17 27.15

2004 0.227 0.049 0.121 0.057 21.76 53.14 25.10

2006 0.228 0.048 0.131 0.049 21.00 57.39 21.61

2008 0.230 0.047 0.138 0.045 20.39 59.95 19.67

2010 0.233 0.047 0.142 0.044 20.20 61.11 18.69

2012 0.235 0.046 0.149 0.040 19.45 63.42 17.14

2014 0.235 0.045 0.145 0.045 19.33 61.46 19.21

2016 0.225 0.050 0.109 0.067 21.99 48.47 29.54

2018 0.216 0.050 0.093 0.074 23.07 42.91 34.02

2020 0.214 0.051 0.088 0.075 23.79 40.94 35.27

2022 0.212 0.050 0.093 0.070 23.33 43.95 32.72
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As can be  seen from Figures  5a-d, most of the cities in the 
sample period are in the High-High agglomeration module, that is, 
the cities with high levels of ACE and high while agglomerate and 
interact with each other. Among them, eight cities, including 
Bazhong, Guang’an, Dazhou, Deyang, Guangyuan, Mianyang, 
Nanchong and Ziyang, were located in the High-High agglomeration 
module in 2003, which indicates that there are spatial agglomeration 
characteristics in these cities with relatively high levels of ACE. In 
the same year, Zigong, Ya’an, Neijiang, Meishan, Leshan, and 
Panzhihua are located in the Low-Low agglomeration module, 
indicating that spatial agglomeration exists in these cities with 
relatively low levels of ACE. In 2022, in the High-High agglomeration 
module, there are 10 cities, including Bazhong, Guang’an, Dazhou, 
Deyang, Guangyuan, Mianyang, Nanchong, Ziyang, Luzhou, and 
Zigong. Two of these cities have completed the leap to High-High 
agglomeration. Specifically, from 2003 to 2022, Luzhou shifts from 
High-Low agglomeration mode to High-High agglomeration, while 
Zigong shifts from Low-Low agglomeration mode to High-High 
agglomeration mode. This also shows that the level of ACE in these 
two cities is rising. However, on the whole, the cities with lower 

levels of ACE still have spatial agglomeration characteristics with the 
cities with higher levels of ACE.

3.7 Driver analysis of ACE

Table  10 reports the driver factors affecting ACE in Sichuan 
province estimated by Equation 16, where column (1) is the mixed 
regression result, column (2) is the result of random effects, and 
column (3) is the result using a two-way fixed effects model. Hausman 
tests for columns (2) and (3) show support for estimation using a 
panel fixed effects model.

Table 10 shows that population density has a negative effect on 
ACE, which is inconsistent with the findings of Zarco-Periñán et al. 
(2021) on the relationship between urban population density and 
carbon emissions. This may stem from the fact that Sichuan province 
is still in the process of urbanization and the population density in rural 
areas is gradually decreasing, which makes the impact on ACE decrease. 
Macro-control increases ACE. The reason for this is that the increase 
in the level of government financial expenditure may have increased 
factor inputs to agriculture in the form of agricultural machinery 
capital subsidies, which in turn has led to an emissions-enhancing 
effect from the expansion of agricultural production. Industrial 
structure, social wealth, agricultural mechanization and technological 
progress have all contributed to ACE reduction. From the viewpoint of 
industrial structure, industrial structure upgrading on the one hand 
makes the industrial structure develop in the direction of advanced 
development, makes the proportion of agricultural added value in GDP 
gradually decline, and that part of high energy-consuming agriculture 
is gradually replaced. On the other hand, industrial structure upgrading 
has industrial ripple effects, such as the green transformation of the 
secondary and tertiary industries will lead to the green transformation 
of the primary industry, for example, agriculture-related enterprises 
engaged in the manufacture of agricultural machinery will promote the 
adoption of energy-efficient technologies in agricultural production, 
and the development of the tourism industry will improve the added 
value of agricultural production through the integration of agriculture 
and tourism, thus reducing ACE. Social wealth, represented by GDP 

TABLE 7 Results of Gini coefficient within the group.

Year Eastern 
Sichuan

Western 
Sichuan

Southern 
Sichuan

Northern 
Sichuan

2000 0.170 0.263 0.185 0.074

2002 0.178 0.253 0.189 0.080

2004 0.185 0.234 0.198 0.075

2006 0.172 0.223 0.196 0.090

2008 0.168 0.213 0.193 0.097

2010 0.166 0.205 0.201 0.098

2012 0.165 0.186 0.198 0.104

2014 0.185 0.165 0.193 0.096

2016 0.169 0.260 0.188 0.103

2018 0.166 0.255 0.189 0.098

2020 0.164 0.242 0.205 0.095

2022 0.164 0.230 0.203 0.087

TABLE 8 Results of Gini coefficient between groups.

Year 1—2 1—3 1—4 2—3 2—4 3—4

2000 0.243 0.270 0.171 0.274 0.208 0.179

2002 0.240 0.289 0.192 0.277 0.205 0.177

2004 0.229 0.300 0.197 0.272 0.190 0.182

2006 0.221 0.312 0.198 0.271 0.191 0.191

2008 0.222 0.322 0.207 0.270 0.189 0.191

2010 0.226 0.334 0.210 0.268 0.183 0.197

2012 0.231 0.346 0.223 0.270 0.177 0.196

2014 0.246 0.337 0.230 0.277 0.169 0.186

2016 0.239 0.275 0.180 0.280 0.215 0.184

2018 0.230 0.252 0.185 0.273 0.216 0.157

2020 0.227 0.255 0.184 0.256 0.198 0.166

2022 0.235 0.264 0.182 0.244 0.187 0.168

TABLE 9 Results of the Moran’s I.

Year I Z-value Year I Z-value

2000 0.1482 1.48 2012 0.3093*** 2.73

2001 0.1520 1.52 2013 0.3195*** 2.81

2002 0.1652 1.60 2014 0.2975*** 2.66

2003 0.1866* 1.73 2015 0.2589** 2.40

2004 0.1894* 1.80 2016 0.2162** 2.07

2005 0.1958* 1.86 2017 0.2487** 2.36

2006 0.2476** 2.24 2018 0.2590** 2.41

2007 0.2584** 2.32 2019 0.2845*** 2.59

2008 0.2744** 2.42 2020 0.2829*** 2.61

2009 0.2819** 2.53 2021 0.2857*** 2.66

2010 0.2879*** 2.58 2022 0.2956*** 2.73

2011 0.2983*** 2.66

***, **, and * are significant at the 1, 5, and 10% levels, respectively.
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per capita, has a negative impact on ACE, showing that economic 
growth promotes ACE reduction in Sichuan province. Agricultural 
mechanization and technological progress also have a significant 
negative impact on ACE. This stems from the fact that both agricultural 
mechanization and technological progress help to improve the 
efficiency of agricultural production and increase the scale and 
intensification of agricultural production, which reduces ACE due to 
factors such as production fragmentation and waste. However, in this 
sample, rainfall and temperature do not demonstrate a significant effect 
on ACE in Sichuan province.

Since the statistical sample used in this paper is the panel data of 18 
cities in Sichuan province from 2000 to 2022, the number of observation 
years is significantly larger than the number of cities. In other words, this 
study uses long panel data. In order to eliminate the effects of 

heteroskedasticity and autocorrelation on the accuracy of the results, this 
paper also conducts a robustness test using the full feasible generalized 
least squares method (GLS). This method incorporates the residual 
vectors of each cross-section individual into the covariance matrix of 
heteroskedasticity, and utilizes the GLS method, and finally, it applies the 
GLS for the estimation. It is able to revise the heteroskedasticity and 
autocorrelation defects in the long panel data model. As can be seen 
from column (4) in Table 9, the results of FGLS are similar to those of 
the two-way fixed effects model, with no significant change in the 
direction of sign and significance of the coefficients of each variable. This 
result shows that the results of TWFE have robustness.

Overall, ACE in Sichuan province are significantly affected by 
population density, macro-control, industrial structure, social wealth, 
agricultural mechanization, and technological progress, among which 

FIGURE 5

Moran scatter chart of representative years. (a) LI in 2003. (b) LI in 2010. (c) LI in 2016. (d) LI in 2022.
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population density, industrial structure, social wealth, agricultural 
mechanization, and technological progress have a negative effect on 
ACE, while macro-control increases ACE.

4 Conclusion

When estimating carbon emissions from China’s agricultural 
sector, the existing literature tends to focus on the narrow agricultural 
scope, where agricultural carbon sources only include agricultural 
materials, crop seeding, irrigation and farmland plowing (Huang 
X. et al., 2024; Huang Y. et al., 2024; Zhang et al., 2024; Huan et al., 2025; 
Feng et al., 2025). However, the main sources of carbon emissions from 
the agricultural sector are not only agricultural land use, but also rural 
energy consumption, survivable emissions from crop growtht (Wei 
et al., 2024; Zhang and Li, 2022; Yu et al., 2025). Therefore, it is necessary 
to construct a reasonable evaluation system and measure ACE from the 
perspective of a broad concept. This paper uses data of 18 cities in 
Sichuan province from 2000 to 2022, selects 12 carbon sources from 
two perspectives of planting and breeding according to the concept of 
agriculture in the broad sense, and measures the ACE by applying the 
IPCC guidelines. After the measurement, this paper analyzes the spatial 
and temporal evolution trend of the ACE as well as the carbon 
emissions of each prefectural city in Sichuan province, followed by the 
convergence analysis, regional inequality, agglomeration status and 
center of gravity shifting trend of the prefectural cities’ ACE using 
convergence analysis, the Gini coefficient and spatial correlation 
analysis. Finally, this paper examines the driving factors of ACE by 
using the fixed-effects model. The results of the study found as follow:

 (1) Basic status and contribution sources of agricultural carbon 
emissions. From 2000 to 2022, the overall level of ACE in 
Sichuan province rises, but the ACI declines. The existing study 
analyzed ACE in Sichuan province 30 years ago and concluded 
that ACE showed a rapid growth trend (Li and Zheng, 2011). 
This paper updates its data and draws new conclusions. The 

existing literature holds that the decoupling between ACE and 
economic growth in Sichuan province is unstable (Meng et al., 
2024). The results of this paper show that ACE has experienced 
a change trend of first increasing and then decreasing, and is 
now at the right end of the inverted U-shaped curve. Thanks to 
the low-carbon transition and the rapid growth of the 
agricultural economy, the carbon emissions of the agricultural 
sector and economic growth are in a good decoupling state. 
The results of this study again confirm the findings of Liang 
et  al., 2019. The agricultural sector in Sichuan province is 
expected to achieve a carbon peak. The decomposition of the 
carbon sources found that manure management and animal 
intestinal fermentation in aquaculture, farming and land use 
are major sources of agricultural carbon emissions. Before 
2015, the main source of carbon was fecal management and 
intestinal fermentation, and after 2015, it was farm planting.

 (2) Convergence and regional differences of carbon emissions. The 
results of convergence theory and panel data model show that 
there is both absolute convergence and conditional convergence 
of agricultural carbon emission intensity in Sichuan province 
during the sample observation period. This means that regions 
with high carbon intensity have a faster rate of carbon reduction. 
Gini coefficient results show that the regional gap in ACE 
fluctuates and decreases, and the inter-group gap is the root cause 
of the existence of regional gaps in ACE in Sichuan province. 
And the gaps between eastern Sichuan and eastern Sichuan, 
eastern Sichuan and southern Sichuan, and western Sichuan and 
southern Sichuan contribute more to the regional gaps.

 (3) The results of spatial correlation show that there are spatial 
agglomeration and spatial spillover characteristics of ACE, 
which mainly show a high-high agglomeration pattern, but 
there are also a few cities that have undergone changes in the 
agglomeration pattern.

 (4) Analysis of driving factors. The extended STIRPAT model 
indicates that the ACE in Sichuan province is influenced by 
multiple factors. Specifically, population density, macro-control, 

TABLE 10 Results of driver analysis.

Variable (1) (2) (3) (4)

OLS RE FE FGLS

Population density −0.0231 (−0.74) −0.1065 (−1.21) −0.3129*** (−3.02) −0.4630*** (−13.60)

Macro-control −0.0041 (−0.11) 0.2431*** (3.56) 0.2131*** (3.09) 0.1156*** (8.10)

Industrial structure −0.0379 (−1.50) −0.1461*** (−5.52) −0.1666*** (−10.10) −0.1229*** (−5.11)

Social wealth −0.3151*** (−16.63) −0.1118*** (−2.92) −0.2686* (−1.96) −0.0676** (−2.42)

Agricultural mechanization −0.1781*** (−5.33) 0.0399 (1.01) −0.0364* (−1.96) −0.8662*** (−29.8)

Technological progress −1.3390*** (−16.55) −0.8722*** (−4.15) −0.8677*** (−4.54) −1.3096** (−27.20)

Rainfall 0.0355 (0.84) 0.0751 (1.57) 0.0752 (1.24) −0.0002 (−0.20)

Temperature 0.9691*** (4.84) 0.3052 (0.85) 0.0801 (0.19) 0.1898 (1.33)

City-fixed effect No No Yes Yes

Time-fixed effect No No Yes Yes

F test 124.25***

Hausman test 18.54**

R2 0.9076 0.9409 0.9598

Note: ***, ** and * are significant at 1%, 5% and 10% levels, respectively. The t statistic is reported in parentheses.
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industrial structure, social wealth, agricultural mechanization, 
and technological progress significantly affect ACE, of which 
population density, industrial structure, social wealth, 
agricultural mechanization, and technological progress have a 
negative effect on ACE while macro-control increases ACE.

4.1 Limitation and future research

Based on the panel data of 18 cities in Sichuan province from 2000 
to 2022, this study used a series of statistical and econometric methods 
to make a detailed analysis of the current situation, spatio-temporal 
evolution trends and influencing factors of ACE in Sichuan, but this 
paper has the following limitations. The observations are affected by the 
fact that the results for autonomous regions are not comparable with 
cities. The unique feature of administrative differentiation in Sichuan 
province makes Panzhihua has no neighboring prefecture-level cities, 
which limits the potential of this paper on the reverse side of spatial 
analysis. In future studies, the authors strongly recommend focusing 
observations on the county dimension. Using a sample of counties 
offers advantages in expanding the sample size and improving the 
feasibility of spatial analysis. On the basis of spatial autocorrelation, the 
use of the center of gravity migration model, the quadratic cardboard 
procedure, and the standard elliptic difference technique can clearly 
demonstrate the spatial trends of ACE and the spatial linkages among 
cities in Sichuan province. In the part of influencing factors analysis, 
this study selected external variables with theoretical and practical 
rationality based on the STIRPAT model, but the factors related to 
agricultural policies have not been thoroughly discussed. In future 
studies, the authors suggest that the impacts of agricultural policies, 
including the zero-growth strategy of fertilizers and pesticides, the 
construction of high-standard farmland, and the assumption of a digital 
countryside, on the intensity of ACE in Sichuan should be fully explored.
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