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As an essential part of daily life, the drastic fluctuations in agricultural commodity 
prices significantly impact producers’ motivation and consumers’ quality of life, further 
exacerbating market uncertainty and unsustainability. The ability to scientifically 
and effectively predict agricultural commodity prices is of great significance for the 
rational deployment of market mechanisms, the timely adjustment of supply chains, 
and the promotion of food policy adjustments. This paper proposes a sustainable 
hybrid model SV-PSO-BiLSTM which integrates Seasonal-Trend decomposition 
procedure based on Loess (STL), Variational Mode Decomposition (VMD), Particle 
Swarm Optimization (PSO), and Bidirectional Long Short-Term Memory (BiLSTM) 
neural networks. This innovative approach first performs seasonal decomposition 
of the original data using the STL method, then applies the VMD method for 
double decomposition of the residual components, reconstructs the data based 
on sample entropy, and finally predicts agricultural commodity market prices 
using the BiLSTM network model optimized by the PSO algorithm. This paper 
investigates the market price dynamics of four agricultural commodities (chili, 
garlic, ginger, and pork) and one agricultural financial derivative (soybean futures). 
The experimental results indicate that the proposed SV-PSO-BiLSTM hybrid model 
achieves average values of 0.2241 for root mean square error (RMSE), 0.1665 for 
mean absolute error (MAE), 0.0207 for mean absolute percentage error (MAPE), 
and 0.9851 for the coefficient of determination (R2). These results surpass those of 
other comparative models, demonstrating stronger generalization, reliability, and 
stability. The research findings can provide effective guidance for the reasonable 
regulation of agricultural commodity market prices and further promote the healthy 
and sustainable development of the agricultural commodity industry.
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1 Introduction

Agricultural commodities are an important component of diets, 
and their prices are directly related to farmers’ income and people’s 
happiness index. In a country like China, which possesses a vast 
agricultural product market, the frequent fluctuations in agricultural 
commodity prices directly affect the efficiency of resource allocation. 
When the price of a particular agricultural commodity rises, farmers 
typically increase the production of that product while neglecting 
other equally important crops. This can lead to an imbalance between 
supply and demand, resulting in shortages of certain agricultural 
commodities in the future. Conversely, when prices fall, farmers’ 
motivation may wane, potentially leading to idle land and reduced 
production, further exacerbating issues of market supply insufficiency 
(Du, 2020). Such short-term production adjustments not only 
influence farmers’ income but also have far-reaching impacts on the 
overall market’s resource allocation and regulatory mechanisms. In 
addition, high prices often stimulate overproduction, leading to 
environmental pressures such as soil degradation and excessive use of 
water resources (Jia et al., 2022). Over time, this can easily trigger 
market instability and social dissatisfaction. Therefore, accurately 
predicting agricultural commodity prices has become a significant 
concern across various sectors of society, which is essential for 
responding to market fluctuations, enhancing people’s happiness 
index, promoting the sustainable development of the agricultural 
commodity industry, and fostering the coordinated development of 
regional economies and the environment (Li et al., 2023).

Traditional agricultural product price prediction methods include 
regression analysis, time series prediction, gray model, etc. (Jadhav 
et al., 2017; Wu et al., 2016; Feng et al., 2012; Ma et al., 2022), which 
are based on solid theoretical foundation and have strong 
interpretability. However, these methods are generally suitable for 
cases where variables are independent, data is normally distributed, 
and linear or simple nonlinear relationships exist. For example, Wang 
and Wang (2016) applied GM (1,1) model to make short-term 
prediction of vegetable yield in China. Ge and Wu (2020) used a 
multiple linear regression model to predict corn price, but the model 
lacked a comprehensive examination of the complex internal facto00rs 
driving price changes, and its performance was still not satisfactory.

In recent years, algorithms based on machine learning have 
become a new way to solve the problem of price prediction. Typical 
machine learning models include reverse support vector machine 
(SVM), propagation neural network (BP), convolutional neural 
network (CNN), and long short-term memory network (LSTM), etc. 
(Haider et al., 2019, Kurumatani, 2020, Adisa et al., 2019, Chen et al., 
2024). Wang (2023) used radial basis function (RBF) neural network 
to predict garlic price and proved the superiority of the proposed 
model. Fan et al. (2021) realized the prediction of soybean futures 
price through LSTM neural network model. Jiang et al. (2021) used 
BiLSTM, a two-way LSTM network, to forecast cotton prices and 
achieved good results. Li et al. (2013) used CNN to predict the weekly 
egg price in China, and the results show that the model has high 
nonlinear fitting ability and good performance.

Although machine learning methods show good learning ability, 
a single model is usually easily affected by random factors. Properly 
combining multiple prediction methods to form a hybrid prediction 
model can make full use of sample data information and thus improve 
the accuracy of prediction (Sun et al., 2023). Guo et al. (2022) realized 

the accurate prediction of corn price by constructing AttLSTM-
ARMIA-BP model. Cheung et  al. (2023) proposed a clustering 
3D-CNN model to predict future crop prices, which has achieved 
good results. Ling et al. (2019) developed a GM-VAR hybrid model to 
predict the prices of various livestock products, and their prediction 
results were superior to a single prediction model.

In addition, in order to reduce the influence of characteristics such 
as noise, trend and period inherent in complex data, domestic and 
foreign scholars combine decomposition techniques with prediction 
models (Fang et  al., 2021, Fan et  al., 2023, Tang et  al., 2023). The 
advantage of the “decomposition-combination” prediction model is that 
it can utilize information at different scales, thus improving the accuracy 
and robustness of the prediction. Selecting the appropriate data 
decomposition method is the key to the model. At present, the 
commonly used decomposition methods include seasonal 
decomposition (Tatarintsev et al., 2021, Liu et al., 2020), variational 
mode decomposition (Liao, 2024, Wu et  al., 2024), wavelet 
decomposition (Cao and He, 2015), and empirical mode decomposition 
(Lai et  al., 2024), etc. For example, Yin et  al. (2020) proposed the 
STL-AttLSTM model to accurately predict the prices of five crops: 
cabbage, radish, onion, pepper and garlic. Hu and Jiang (2023) adopted 
the hybrid model of VMD-BO-BiLSTM to achieve accurate prediction 
of pork price. Xiong et al. (2018) proposed an extreme value learning 
machine method based on the decomposition of seasonal trends based 
on STL, and predicted the prices of Chinese cabbage, chili, cucumber, 
green bean and tomato. Zhang B. et al. (2024) combined the integrated 
ensemble empirical mode decomposition (EEMD) method with the 
gated recurrent units (GRU) to establish an EEMD-GRU model for 
predicting Chinese corn, cotton and soybean futures, which has obvious 
advantages in prediction accuracy.

From previous research, it can be seen that although there have 
been significant advancements in agricultural product price prediction 
technologies, there are still many shortcomings. For example, there is 
an insufficiency of effective prediction methods, issues with modal 
aliasing of the residual components after decomposition, excessively 
high time complexity of the models, and numerous parameters in 
neural network models that are difficult to adjust. All of these factors 
can lead to insufficient predictive accuracy.

In view of the above problems, the main contributions of this 
paper are as follows:

 (1) This article proposes an innovative STL-VMD dual 
decomposition method, which is applied for the first time in 
the field of agricultural commodity price prediction. This 
approach effectively addresses the issue of mode mixing in the 
high-volatility residual components.

 (2) The proposed methodology implements entropy-guided 
K-means clustering for residual modal component 
reconstruction, achieving dual enhancement in both prediction 
accuracy and computational efficiency through spatiotemporal 
complexity optimization.

 (3) The STL-VMD dual decomposition method, combined with 
the PSO optimization algorithm and the BiLSTM neural 
network, establishes the SV-PSO-BiLSTM ensemble model for 
agricultural commodity price prediction, effectively enhancing 
the model’s flexibility and accuracy.

 (4) This study selects four agricultural commodities: chili, ginger, 
garlic, and pork, along with soybean futures as a financial 
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derivatives indicator. Through predictive modeling and 
comparative experiments, we  validated the model’s 
effectiveness and stability in both physical agricultural products 
and financial instruments.

2 Materials and methods

2.1 Data

This study selects the weekly average national wholesale prices of 
four agricultural commodities: chili, ginger, garlic, and pork (CNY/
kg), along with the closing prices of soybean futures(CNY/ton) as an 
agricultural financial derivative as sample data. The time spans for the 
data are: chili and ginger (January 6, 2006 – February 23, 2024), garlic 
(January 4, 2008 – December 29, 2023), pork (November 1, 2010 – 
July 22, 2024), and soybean futures (January 5, 2015 – October 21, 
2024). To facilitate analysis, 70% of the sample data is used as a 
training dataset, with the remaining 30% serving as a testing dataset. 
To ensure experimental accuracy, the data employed in this study is 
sourced from the Bric Agricultural Data Terminal, which aggregates 
information from various statistical websites, including the China 
Rural Statistical Yearbook, the National Agricultural Product Business 
Information Public Service Platform, and the China Agricultural 
Product Price Survey Database. Relevant statistical information is 
presented in Table 1.

2.2 Methods

Agricultural commodity prices exhibit significant fluctuations 
over time, and the data encompass intricate information such as 
seasonality, long-term memory, and heteroskedasticity, which may 
lead to reduced prediction accuracy. This paper proposes a deep 
learning model named SV-PSO-BiLSTM for predicting agricultural 
commodity price trends. This model integrates STL-VMD dual feature 
extraction, K-means sample entropy feature fusion, and a BiLSTM 
prediction architecture optimized by PSO. The SV-PSO-BiLSTM 
model effectively extracts features from time series data, enhances 
feature representation capabilities, simplifies model complexity, and 
improves both computational efficiency and predictive performance. 
The overall framework of the model is illustrated in Figure 1.

 (1) The first step involves performing feature extraction on the 
original agricultural commodity price series using the STL 
algorithm, aiming to capture significant seasonal and 
trend features.

 (2) The second step entails applying the VMD algorithm to the 
residual components resulting from the STL feature extraction, 
thereby further decomposing the mode-mixed residuals into n 
Intrinsic Mode Functions (IMFs).

 (3) In the third step, the sample entropy values of the n IMFs are 
calculated. Subsequently, the K-means algorithm is used for 
feature fusion, leading to the formation of three new 
K-IMF components.

 (4) The fourth step employs BiLSTM networks as the prediction 
model. Specifically, the trend, seasonality, and the three K-IMF 
components are input into their corresponding models for 
forecasting. Following this, the PSO algorithm is applied to 
optimize the hyperparameters of the BiLSTM model.

 (5) Lastly, in the fifth step, the predicted results from each BiLSTM 
model are aggregated to obtain the final prediction value. 
Additionally, the effectiveness of the model is validated using 
multiple evaluation metrics.

2.2.1 STL feature extraction
Agricultural commodity prices exhibit fluctuating patterns with 

complex nonlinear characteristics over time. Given their notable seasonal 
features, this paper introduces the STL algorithm to decompose agricultural 
commodity prices into three sub-components: trend, seasonality, and 
residual. STL is a typical time series decomposition method that employs 
robust locally weighted regression as a smoothing technique. It utilizes the 
Locally Weighted Scatterplot Smoothing(Loess) method to smooth and fit 
time series data, decomposing the data at a given time point ( )1,2, ,tY t n= …  
into seasonal component tS , trend component tC , and residual 
component tR to achieve improved estimates of seasonality and trend. The 
decomposition expression is shown in Equation 1:

 t t t tY S C R= + +  (1)

The steps of establishing STL model are as follows:
(1) De-trend. After 1i + iterations of the inner loop, the 

subsequence is obtained by subtracting the estimated trend 
component i

tC from the initial sequence Y at the i iteration, as 
formulated in Equation 2.

 
det rend i

t t tY Y C= +  (2)

(2) Periodic subsequence smoothing. The local weighted 
regression is carried out for each detrend

tY subsequence using Loess, 
and the preliminary seasonal component 1i

tS +
 is obtained.

TABLE 1 Statistical characteristics of agricultural commodity price series: descriptive analysis of chili, ginger, garlic, pork, and soybean futures markets 
(2006–2024).

Categories Average 
value

Maximum 
value

Minimum 
value

Standard 
deviation

Kurtosis Skewness Sample 
size

Chili 4.84 12.67 1.38 1.74 1.65 0.78 936

Ginger 7.17 16.64 2.47 3.37 −0.04 0.74 936

Garlic 7.21 14.98 1.31 2.93 0.05 0.10 824

Pork 28.73 59.64 19.22 9.23 2.57 1.90 656

Soybean Futures 4511.49 6418.8 3328.4 905.48 −1.03 0.54 496
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(3) Low pass filtering of periodic subsequences. The preliminary 
seasonal component 1i

tS +
  obtained in step 2 is processed by a low-pass 

filter, and then the sequence 1i
tL + is obtained by using Loess.

(4) Remove the tendency of smoothing periodic subsequences. 
The seasonal component can be obtained by calculating the difference 
between the value after low-pass filtering and the seasonal component 
obtained by preliminary calculation, and the seasonal component is 
defined in Equation 3.

 
1 1 1

t t t
i i iS S L+ + += −  (3)

(5) De-seasonal. By subtracting the seasonal component 1iS + , the 
original sequence Y is obtained, as expressed in Equation 4.

 
det 1rend i

t t tY Y S += −  (4)

(6) Trend smoothing. By using the Loess method, the trend 
component 1i

tC + is obtained from the removing seasonal series.
The seasonal component S and the trend component C obtained 

from the internal cycle are calculated in the external cycle to obtain the 
residual component R, as mathematically formulated in Equation 5.

 tt t tR Y S C= − −  (5)

Compared to traditional seasonal decomposition methods, the STL 
algorithm demonstrates significant advantages in extracting trend and 
seasonal components. However, the residual component still exhibits 
complex nonlinear characteristics, which may include highly irregular 
fluctuations, sudden anomalies, or intricate interaction effects. These 
nonlinear characteristics make it challenging even for advanced neural 
network models to fully capture them, potentially leading to issues of 
overfitting or underfitting when dealing with these residuals. Consequently, 
the accuracy and reliability of prediction results are limited.

2.2.2 VMD double decomposition
Given the limitations of the STL algorithm, this paper introduces 

the VMD algorithm to perform secondary decomposition on the 
residual component, decomposing it into multiple intrinsic mode 
components that intuitively reflect its nature. The VMD algorithm 
is a completely non-recursive and adaptive data processing method 
that constructs and solves constrained variational problems to 
obtain intrinsic mode functions by updating the center frequencies 
and modal functions. It decomposes the original signal into a 
specific number of IMFs. The VMD method effectively handles 
nonlinear and non-stationary signals. The specific steps are 
as follows:

The variational formulation aims to decompose the original data 
into several modal components such that the sum of the bandwidths 
of each modal component is minimized.

 

( ) 2
2

1
min ,

. .

m

m
jw t

m
tm

m
m

jt u e
t

s t u f

δ
π

−

=

    ∂ + ∗        
=

∑

∑

 

 

(6)

In Equation 6, ( )tδ is the Dirac function; m is the number of 
decomposed modes;∗is the convolution operator; mw is the central 
frequency of the m component; mu is the MTH modal component. By 
introducing the quadratic penalty factorα and the Lagrange multiplication 
operator λ , the unconstrained variational problem is obtained
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(7)

In Equation 7, the alternate direction multiplier iterative 
algorithm is used to optimize each mode component and center 

FIGURE 1

The SV-PSO-BiLSTM framework: a multi-stage hybrid model integrating STL-VMD dual decomposition, entropy-driven feature fusion, and PSO-
optimized BiLSTM networks for agricultural commodity price prediction.
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frequency, and the saddle point of the augmented Lagrange function 
is searched. α  is a quadratic penalty factor used to reduce the 
influence of Gaussian noise. The solutions for mu 、 mw and λ after 
iteration are

 

( )
( ) ( ) ( )

( )

1

1
2ˆ

2

1

ˆ

2

ˆ
ˆ

n
n
m

n i m
m

n
m

w
f w u w

u w
w w

λ

α

+

+ <
− +

=
+ −
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(8)

 

( )

( )

21
1 0

21
0

ˆ

ˆ

n
mn

m
n
m

w u w dw
w

u w dw

∞ +
+

∞ +
=
∫

∫  

(9)

 
( ) ( ) ( )1 1ˆˆ ˆ ˆ| |n n n

m
m

w f w u wλ λ τ+ + 
= + −  

 
∑

 
(10)

In Equations 8–10, τ is used as noise tolerance to ensure the 
fidelity of signal decomposition; ( )ˆmu w , ( )f̂ w and  ( )wλ  are the 
Fourier transforms of ,m mu w and λ , respectively.

Considering that secondary decomposition using the VMD 
algorithm can easily lead to issues such as an excessive number of 
residual mode components and over-decomposition, which may 
increase prediction errors, the K-means clustering algorithm is 
employed to reconstruct multiple residual mode components based on 
sample entropy values into three K-IMF components. This approach 
can effectively avoid prediction errors caused by over-decomposition 
and other issues while ensuring sufficient decomposition.

2.2.3 BiLSTM
Agricultural commodity prices often exhibit highly complex 

characteristics such as non-stationarity, nonlinearity, and time-
varying behavior, making it difficult for traditional methods to fully 
capture their intricate internal logical relationships. The BiLSTM 
network is capable of learning temporal correlations between data and 
enhancing the extraction of time series features. It is widely used in 
the field of agricultural product price prediction. Therefore, this paper 
selects BiLSTM as the benchmark prediction model.

LSTM is a deep learning model commonly used to process and 
predict sequential data such as time series and text. Compared with 
the traditional RNN, LSTM effectively solves the problem of gradient 
disappearance and gradient explosion in the traditional RNN by 
introducing a gating mechanism, so that it can better capture long-
term dependence. LSTM selects the input value by adjusting the input 
gate, deletes invalid information through the forget gate, transmits 
valid information to the next step, and outputs the result through the 
output gate.

BiLSTM learns bidirectional time series on this basis. The 
combination of forward running LSTM and backward running LSTM 
has the same gate unit as LSTM, and can train the time series forward 
and backward LSTM twice. The output result of BiLSTM is 
superposition of the two LSTM results, which further improves the 
integrity of feature extraction, and finally extracts the data feature 0I
of n m× dimension.

 ( )1 2
0 0 0 0, , , nI I I I= 

 
(11)

In Equation 11, 0
nI represents the nth feature.

2.2.4 PSO parameter optimization
The complexity of the BiLSTM network necessitates a large 

number of parameters. To optimize these parameters and enhance the 
model’s performance, this paper introduces the PSO algorithm. The 
PSO algorithm is a swarm intelligence-based optimization technique 
inspired by the collective behavior of bird flocks searching for food. 
This optimization method is problem-independent and does not 
require gradient information of the objective function, thereby 
effectively avoiding local minima and efficiently searching for the 
global optimal solution within the search space. Each particle in the 
PSO algorithm possesses a unique velocity and position, where the 
position of each particle signifies a potential candidate solution to the 
optimization problem and is evaluated through a fitness function to 
ascertain its quality. Particles iteratively adjust their velocities and 
positions based on the relationships among their current positions, 
their personal best positions, and the global best position, driving 
them to converge toward the global optimal position and progressively 
approximating the solution target until the iteration terminates or the 
global optimal solution is discovered.

The mathematical calculation formula of particle velocity and 
position in PSO algorithm is as follows:

 ( ) ( )1
1 1 2 2

k k k k k k
id id id id gd idv wv c r pbest x c r gbest x+ = + − + −

 
(12)

 
1 1k k k

id id idx x v+ += +  (13)

In Equations 12, 13, 1k
idv + and k

idv are the velocity values of 
particles at adjacent moments respectively; w is the inertia weight; 

1k
idx + and k

idx are the position values of particles at adjacent moments, 
respectively. 1c and 2c are learning factors. 1r  and 2r are random 
numbers ranging from 0 to 1. k

idpbest and k
gdgbest are the individual 

and global historical optimal location values at time k, respectively.
In this paper, we  utilize the feature components that have 

undergone dual decomposition using STL-VMD and subsequent 
reconstruction as input variables for optimizing the hyperparameters 
of the BiLSTM network, specifically the number of neurons in the first 
and second layers, the learning rate, and the batch size. The MSE is 
employed as the fitness function to evaluate and iteratively update the 
positions of individuals and the population, progressively converging 
toward the optimal solution until the iteration terminates or the global 
optimum is identified, as detailed in Algorithm 1.

2.2.5 Experimental design
The core experimental design establishes a hierarchical validation 

framework, focusing on three highly volatile and supply-chain-
sensitive agricultural commodities: chili, ginger, and garlic. A 
comparative experiment was conducted between our SV-PSO-
BiLSTM model and nine other models, and an ablation experiment 
was performed specifically on our model. Additionally, to enhance the 
model’s generalizability and reliability, an extended adaptability 
experiment was carried out, incorporating pork and soybean futures 
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to assess the model’s performance across different market structures 
(spot commodities and financial derivatives). Finally, a stability 
experiment was conducted on the core experimental subjects to 
further strengthen the model’s robustness and applicability.

In this experiment, 70% of the sample data is allocated to 
construct the training dataset, with the remaining 30% reserved for 
testing to assess model performance. All experimental results 
presented are derived from the test dataset outputs, ensuring 
objectivity and accuracy in evaluation. This approach strengthens the 
model’s generalization capability on unseen data, reinforcing the 
scientific validity and reliability of the research conclusions.

To evaluate the performance of different models, this study 
employs four widely-used error metrics as model performance 
evaluation criteria: RMSE, MAE, MAPE, and R2, as shown in 
Equations 14–17. Smaller values of RMSE, MAE, and MAPE indicate 
higher model accuracy and reliability, while the R2 value ranges 
between 0 and 1, with values closer to 1 signifying superior model fit.

RMSE measures the accuracy of a predictive model by calculating 
the square root of the average squared differences between predicted 
and actual values. It is particularly sensitive to outliers and reflects the 
predictive stability of the model.

 
( )2

1

1 ˆ
n

i i
i

RMSE y y
n =

= −∑
 

(14)

MAE computes the average of the absolute differences between 
predicted and true values to evaluate the robustness of absolute errors. 
It captures the overall trend of the data and assesses the model’s 
predictive accuracy.

 1

1 ˆ
n

i i
i

MAE y y
n =

= −∑∣ ∣
 

(15)

MAPE evaluates the accuracy of a predictive model by calculating 
the percentage difference between predicted and actual values. It is 
scale-independent, making it suitable for cross-variety prediction 
tasks involving datasets of varying magnitudes.

 1

1 ˆn
i i

ii

y yMAPE
n y=

−
= ∑∣ ∣

 
(16)

R2 is a core metric for assessing the goodness-of-fit of a model. It 
quantifies the proportion of variance in the dependent variable explained 
by the independent variables, reflecting the model’s reliability and the 
extent to which price fluctuations can be systematically modeled.
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In Equations, n is the number of test sets; iy is the true value of 
the ith sample point; ˆiy is the predicted value for the ith sample point.

This multi-metric framework ensures rigorous assessment of 
predictive accuracy and model interpretability through its distinct 
measurement dimensions and alignment with agricultural market 
characteristics, addressing stakeholders’ needs while preserving 
statistical rigor.

3 Results

3.1 STL-VMD dual decomposition and 
reconstruction

Step  1: STL decomposition. First, STL algorithm is used to 
decompose the original data set into three sub-sequences: trend 

Input: Number of particles N; maximum iteration m; hyperparameter search space 
Output: Optimal solution gBest 
1.begin 
2.   for each particle i 
3.      Initialize velocity Vi and position Xi for particle i 
4.      Evaluate particle i and set pBesti = Xi 
5.   end for 
6.   gBest = min {pBesti} 
7.   while (maximum iteration or minimum error criteria are not attained) 
8.      for i = 1 to N 
9.          Update the velocity and position of particle i 
10.         Evaluate particle i 
11.         if fit (Xi) < fit (pBesti) 
12.             pBesti = Xi  
13.         if fit(pBesti) < fit (gBest) 
14.             gBest = pBesti; 
15.     end for 
16.  end while 
17.end 

ALGORITHM 1

PSO optimization algorithm.
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component, seasonal component and residual component. According 
to the annual variation rule of agricultural commodity prices, the 
seasonal period of the STL algorithm is set to one year, and the parameter 
value is 50 weeks. The decomposition results are shown in Figure 2.

Step 2: VMD decomposition. Then, VMD algorithm is used to 
divide the residual components of high fluctuation into n effective 
modal components, so that the sum of decomposition bandwidths of 
each mode is minimized. The penalty coefficient of VMD algorithm 
adopts the default value 2000. The value of the tolerance is 1e-7, and 
the k value is determined by observing the center frequency. When 
the center frequency of the last component remains relatively stable, 
the best value of k is obtained. Through experiments, the center 
frequencies of each component with different k values are obtained, 
as shown in Table 2. For sequence 1, k = 5; for sequence 2, k = 6; for 
sequence 3, k = 7. The breakdown results are shown in Figures 3a–c.

Step 3: Entropy-K-means reconstruction. The sample entropy of 
n IMF components after VMD processing is calculated respectively, 
as shown in Equation 18. According to the sample entropy value, n 
IMF components are divided by K-means clustering algorithm, and 
three new K-IMF components are constructed. The intra-class gap is 
minimized and the inter-class gap is maximized, and the result is 
shown in Figures 3d–f.
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In Equation 18, m is the dimension, r is the similarity tolerance, 
N is the finite value length, and mB  is the number of patterns with 
length m in the sample sequence.

3.2 SV-PSO-BiLSTM model prediction

The BiLSTM model parameters and the value range of 
hyperparameters were initialized, and the iteration number of PSO 
algorithm was set to 100; Set the number of particles to 20; Keep the 
default values for other parameters. The search range of the number 
of hidden neurons in the first and second layers of BiLSTM is set to 
[1,100]. The learning rate ranges from [0.001, 1.000]. The batch size 
ranges from [16, 32]. Adam algorithm is used in the adaptive 
optimization phase of BiLSTM.

This paper conducts 10 experiments to compare the average 
results of the model. The prediction results of each component of the 
SV-PSO-BiLSTM model dataset are shown in Figure 4. As can be seen 
from the figure, the predicted values of the model closely align with 
the actual values.

3.3 Model comparison experiment

To validate the suitability of our proposed SV-PSO-BiLSTM 
method for agricultural commodity price prediction, we  conduct 
comparative experiments with nine models: LSTM, Transformer, 
BiLSTM, BP neural network, SSA-BP, STL-BiLSTM, BO-GRU, 
STL-PSO-BiLSTM, and VMD-BO-BiLSTM. The first four single 
models are compared to identify the baseline model for constructing 
the hybrid model. Detailed parameter configurations for all models 
are provided in Supplementary Table S1.

The average evaluation metrics of the prediction results for the 
SV-PSO-BiLSTM model compared to other comparison models are 
presented in Table 3.

Based on the comparative analysis of four single models (LSTM, BP, 
Transformer, and BiLSTM) in Table 3, BiLSTM demonstrates significant 
superiority across four core metrics: RMSE, MAE, MAPE, and R2. For 
instance, its RMSE is 8.86% lower than LSTM, MAE is 20.96% lower 
than BP neural network, and R2 is 2.12% higher than Transformer. This 
advantage stems from its bidirectional temporal modeling capability, 
which simultaneously captures forward and backward dependencies in 
price sequences. Notably, BiLSTM exhibits stronger feature extraction 
capabilities when handling lag effects in agricultural price series. In 
contrast, the shallow architecture of BP networks often struggles to 
comprehensively interpret nonlinear patterns in price fluctuations, while 
Transformers are prone to redundant attention interference on medium-
sized datasets, resulting in insufficient sensitivity to local seasonal signals. 
Consequently, this study selects BiLSTM as the baseline model and 
progressively constructs the SV-PSO-BiLSTM hybrid forecasting model.

When compared to the single models of LSTM, BP, Transformer, 
and BiLSTM, the SV-PSO-BiLSTM model demonstrates significant 
reductions in RMSE by 62.4, 69.47, 62.21, and 58.74%, respectively; 
similarly, it exhibits decreases in MAE by 61.32, 67.33, 59.16, and 
58.66%, respectively; declines in MAPE by 56.88, 64.19, 55.23, and 
56.42%, respectively; and improvements in the R2 metric by 8.44, 
13.15, 8.85, and 6.73%, respectively.

FIGURE 2

STL-based seasonal-trend decomposition: feature extraction results for agricultural commodity price series. (a–c) Chili, ginger, and garlic.
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TABLE 2 VMD mode optimization via central frequency stability: IMF component analysis across K-values.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

Chili sequence

3 0.0193 0.0382 0.0685

4 0.0192 0.0377 0.0662 0.1165

5 0.0192 0.0377 0.0662 0.1165 0.4197

6 0.0192 0.0376 0.0655 0.1081 0.1445 0.4210

Ginger sequence

5 0.0047 0.0143 0.0268 0.0647 0.3632

6 0.0040 0.0136 0.0247 0.0387 0.0710 0.4374

7 0.0038 0.0134 0.0244 0.0372 0.0674 0.1159 0.4382

8 0.0038 0.0134 0.0243 0.0371 0.0674 0.1155 0.2343 0.4411

Garlic sequence

6 0.0087 0.0206 0.0310 0.0500 0.0795 0.3966

7 0.0087 0.0206 0.0310 0.0500 0.0795 0.3885 0.4558

8 0.0087 0.0203 0.0306 0.0471 0.0731 0.1060 0.3891 0.4562

9 0.0086 0.0201 0.0301 0.0434 0.0687 0.0878 0.1136 0.3893 0.4563

FIGURE 3

Hierarchical processing workflow: VMD decomposition and entropy-driven feature fusion. (a–c) Secondary VMD decomposition of STL 
residuals: mode separation for price series; (d–f) Entropy-K-means component reconstruction: adaptive fusion of IMFs based on sample entropy 
clustering.
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In contrast to the hybrid models of BO-GRU, STL-PSO-BiLSTM, 
SSA-BP, STL-BiLSTM, and VMD-BO-BiLSTM, the SV-PSO-BiLSTM 
model also showcases notable reductions in RMSE by 42.95, 41.32, 
55.60, 54.32, and 49.32%, respectively; decreases in MAE by 42.57, 
42.21, 54.56, 56.61, and 46.36%, respectively; declines in MAPE by 
40.00, 40.00, 51.52, 53.48, and 45.09%, respectively; and 
enhancements in the R2 metric by 3.71, 2.88, 5.46, 5.12, and 4.44%, 
respectively.

The prediction results of the SV-PSO-BiLSTM model 
significantly outperform comparative models such as BO-GRU, 
Transformer, SSA-BP, and VMD-BO-BiLSTM across all evaluation 
metrics. As shown in Table 3 and Figure 5, single models exhibit 
larger prediction errors, while hybrid models demonstrate notably 
superior performance compared to unoptimized single models. 
For example, the SSA-BP model, by leveraging the advantages of 
adaptive swarm algorithms, achieves faster optimization speed, 
higher accuracy, and improved stability over traditional BP 

networks, reducing average RMSE and MAPE by 31.25 and 
26.12%, respectively. Among hybrid models, the proposed 
SV-PSO-BiLSTM model employs the STL-VMD dual 
decomposition algorithm for high-precision, low-complexity 
feature extraction, reconstructs residual components after 
secondary decomposition, and integrates a BiLSTM network 
optimized via PSO. This framework achieves significant 
improvements in predictive accuracy, consistently surpassing other 
comparative models in all metrics while exhibiting strong 
adaptability and stability.

3.4 Ablation experiment

To verify the effectiveness of the proposed model improvement 
modules, this study designs an ablation experiment comparing the 
predictive performance of four models: BiLSTM, STL-BiLSTM, 

FIGURE 4

Multi-component prediction performance of SV-PSO-BiLSTM model: trend, seasonality, and reconstructed K-IMF fitting results. (a–c) Chili, ginger, and 
garlic.

TABLE 3 Average prediction performance across chili, ginger, and garlic: comparison of single models, hybrid models, and the proposed SV-PSO-
BiLSTM (Test set RMSE, MAE, MAPE, R2).

Categories Model RMSE MAE MAPE R2

Single models LSTM 0.596 0.4304 0.048 0.9007

BP 0.7341 0.5096 0.0578 0.8536

Transformer 0.593 0.4077 0.0462 0.8966

BiLSTM 0.5432 0.4028 0.0475 0.9178

Hybrid models BO-GRU 0.3928 0.29 0.0345 0.948

SSA-BP 0.5047 0.3664 0.0427 0.9305

STL-BiLSTM 0.4906 0.3837 0.0445 0.9339

VMD-BO-BiLSTM 0.4422 0.3104 0.0377 0.9407

STL-PSO-BiLSTM 0.3819 0.2881 0.0345 0.9563

SV-PSO-BiLSTM 0.2241 0.1665 0.0207 0.9851
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STL-PSO-BiLSTM, and SV-PSO-BiLSTM. The evaluation metrics for 
each model are presented in Table 3.

 • BiLSTM (Baseline Model): employs only a BiLSTM network for 
time-series prediction, without incorporating optimization 
algorithms or signal decomposition modules.

 • STL-BiLSTM: introduces STL on top of BiLSTM to decompose 
trend and seasonal components from the time-series data. This 
reduces the RMSE by 9.68%, demonstrating that the 
decomposition module effectively separates implicit patterns in 
the time series.

 • STL-PSO-BiLSTM: integrates PSO with STL-BiLSTM to optimize 
hyperparameters of BiLSTM (e.g., number of hidden layer nodes, 
learning rate), thereby reducing manual tuning bias. This results 
in a 24.92% reduction in MAE, indicating that adaptive 
hyperparameter optimization significantly enhances 
model stability.

 • SV-PSO-BiLSTM (Final Model): further incorporates VMD into 
STL-PSO-BiLSTM to perform secondary decomposition on 
residual components derived from STL. The decomposed modes 
are then reconstructed using sample entropy-driven K-means 
clustering. This achieves substantial reductions of 41.32% in 
RMSE and 42.21% in MAE, effectively resolving noise 
interference and mode mixing issues.

The ablation experiment confirms that the progressive 
integration of STL decomposition, PSO optimization, VMD 
secondary decomposition, and sample entropy-driven 
reconstruction modules refines the trend, noise, and frequency-
domain features of time-series signals through staged processing, 
thereby gradually improving prediction accuracy and robustness. 
Notably, the dual STL-VMD decomposition framework contributes 
most significantly. Moreover, the innovative component 
reconstruction method not only ensures prediction accuracy but 
also drastically reduces the model’s spatiotemporal complexity. 
These results highlight the efficient collaborative capabilities of the 
SV-PSO-BiLSTM model in complex time-series forecasting tasks, 
enabled by the synergistic operation of multi-module enhancements.

3.5 Adaptability experiment

Data in different categories within the economic market often 
exhibit diversity and complexity, encompassing aspects such as data 
distribution, noise, and characteristics. A model with good 
adaptability must be capable of accommodating such variations to 
effectively address diverse datasets. If a model only performs well on 
specific datasets, its practical value is significantly diminished. In 
contrast, a model with strong generalization ability can be  more 
broadly applied to various tasks and scenarios, possessing solid 
reliability and flexibility. The SV-PSO-BiLSTM model proposed in 
this paper demonstrates excellent adaptability across datasets with 
different characteristics. Figure 6 presents the radar chart of error 
metrics RMSE, MAE, and MAPE for each model across 
three datasets.

Figure 7 presents the fitting graph of the chili price prediction 
results. The chili price series exhibits small but frequent fluctuations, 
characterized by a relatively flat overall distribution with occasional 
dispersed peaks. This poses high requirements for the model’s 
sensitivity and accuracy, rendering the prediction task 
relatively challenging.

The SV-PSO-BiLSTM model proposed in this paper achieves 
RMSE, MAE, and MAPE values of 0.2449, 0.1743, and 0.0283, 
respectively, with an R2 of 0.9773. The model demonstrates good 
fitting performance both at peak and trough values.

Among the comparison models, the best-performing model yields 
an RMSE of 0.4018 and an R2 of only 0.9389 at its maximum. 
Compared to the LSTM, SSA-BP, and VMD-BO-BiLSTM models, the 
SV-PSO-BiLSTM model exhibits:

 • Reductions in RMSE by 49.11, 43.15, and 48.87%, respectively;
 • Reductions in MAE by 41.78, 40.42, and 44.39%, respectively;
 • Reductions in MAPE by 35.77, 39.16, and 41.64%, respectively;
 • Improvements in R2 by 6.51, 4.78, and 6.41%, respectively.

These results highlight the SV-PSO-BiLSTM model’s superiority 
in predicting chili prices, significantly outperforming the other models 
considered in this study.

FIGURE 5

Multi-model performance comparison: average RMSE, MAE, 10 × MAPE, and R2 across agricultural commodities.
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FIGURE 6

Multi-commodity radar evaluation of agricultural price prediction models: Hierarchical visualization of test set performance (RMSE, MAE, MAPE) across 
chili, ginger, and garlic datasets.

FIGURE 7

Multi-model predictive performance on chili market prices: test set temporal fitting comparison of different models including proposed SV-PSO-
BiLSTM.
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Figure 8 presents the fitting graph of the ginger price prediction 
results. The ginger price series exhibits large fluctuations, with a 
unique distribution characterized by a gently peaked shape and right 
skewness, posing a significant challenge to the adaptability of 
the model.

The SV-PSO-BiLSTM model proposed in this paper achieves 
RMSE, MAE, and MAPE values of 0.3046, 0.2265, and 0.0224, 
respectively, with an R2 of 0.9884, demonstrating good fitting 
performance at various points.

Among the comparison models, the BP model performs the 
worst, with an R2 of only 0.8254. The BO-GRU model performs 
relatively well on this dataset, with an R2 of 0.9709. Compared to the 
BP, BO-GRU, and STL-PSO-BiLSTM models, the SV-PSO-BiLSTM 
model exhibits:

 • Reductions in RMSE by 74.24, 36.97, and 47.9%, respectively;
 • Reductions in MAE by 70.94, 40.83, and 44.49%, respectively;
 • Reductions in MAPE by 67.82, 41.36, and 43.5%, respectively;
 • Improvements in R2 by 16.3, 1.75, and 3.11%, respectively.

These results demonstrate the SV-PSO-BiLSTM model’s 
superiority in predicting ginger prices, significantly outperforming the 
other models considered in this study.

Figure 9 showcases the fitting graph of garlic price prediction 
outcomes. The garlic price series demonstrates high volatility, 
featuring a platykurtic and nearly symmetrical distribution pattern.

The SV-PSO-BiLSTM model introduced in this study attains 
RMSE, MAE, MAPE values of 0.3046, 0.2265, and 0.0224, respectively, 
along with an R2 score of 0.9884. This model closely mirrors the actual 
values across diverse fluctuation segments.

Among the comparison models, the STL-PSO-BiLSTM model 
emerges as the top performer, yielding an MAE of 0.1925 and an R2 of 
0.9632. When compared to the BiLSTM, BO-GRU, and STL-PSO-
BiLSTM models, the SV-PSO-BiLSTM model demonstrates:

 • Reductions in RMSE by 62.44, 54.11, and 46.52%, respectively;
 • Reductions in MAE by 62.17, 56.77, and 48.7%, respectively;
 • Reductions in MAPE by 63.72, 57.39, and 48.82%, respectively;
 • Improvements in R2 by 6.41, 4.7, and 2.63%, respectively.

These findings underscore the SV-PSO-BiLSTM model’s 
exceptional predictive capability for garlic prices, significantly 
outpacing the other models evaluated in this study.

The analysis and the comparative R2 results of all models across 
three datasets in Figure 10 clearly demonstrate that hybrid models 
generally outperform single models such as Transformer and BiLSTM 
in all three prediction tasks. Among hybrid models, the SSA-BP model 
achieves modest accuracy improvements through parameter 
optimization using the SSA algorithm, yet remains constrained by local 
optima. The STL-BiLSTM model, after extracting trend and seasonal 
components via STL decomposition, shows significant performance 
gains over BiLSTM, achieving an R2 of 93.39%. However, its upper 
accuracy limit is still hindered by the high volatility of residual 
components. The VMD-BO-BiLSTM model performs well in ginger 
and garlic price predictions but underperforms when forecasting 
volatile chili price series. The BO-GRU model exhibits sensitivity to 
data noise, delivering reliable results on low-noise ginger datasets but 
unstable predictions on the other two datasets. The STL-PSO-BiLSTM 
model, combining STL decomposition and PSO-optimized BiLSTM, 
demonstrates superior performance on the test set but is limited by 
issues such as mode mixing and insufficient model precision. The 
proposed SV-PSO-BiLSTM model employs STL and VMD algorithms 
for dual decomposition and local data reconstruction, effectively 
reducing the spatiotemporal complexity of time series. Integrated with 
a PSO-optimized BiLSTM network, it learns internal patterns of highly 
stochastic and non-stationary sequences, achieving superior fitting 
performance across three datasets with distinct characteristics. This 
highlights the model’s robust adaptability to diverse agricultural 
price dynamics.

FIGURE 8

Multi-model predictive performance on ginger market prices: test set temporal fitting comparison of different models including proposed SV-PSO-
BiLSTM.
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To comprehensively evaluate the adaptability of the SV-PSO-
BiLSTM model, this study extends experiments to agricultural 
commodities (pork) and financialized agricultural products (soybean 
futures). The model demonstrates excellent performance in both new 
scenarios, and its predictive superiority in diversified markets is 
validated through horizontal comparisons with recent related studies.

For pork price prediction, the SV-PSO-BiLSTM model achieves 
RMSE = 0.8705 (CNY/kg), MAE = 0.6985 (CNY/kg), MAPE = 2.31%, 

and R2 = 0.9925 on the test dataset. Compared to the H-PPAR model 
proposed by Yu et  al. (2024) (RMSE = 0.986, MAE = 0.788), our 
model reduces errors by approximately 11.53%. This advantage 
originates from the STL-VMD dual decomposition strategy: STL 
isolates the 3-year cyclical patterns and seasonal fluctuations (e.g., 
Spring Festival demand peaks) in pork prices, while VMD resolves 
residual impact fluctuations from sudden events such as the 2018 
African swine fever outbreak.

FIGURE 9

Multi-model predictive performance on garlic market prices: test set temporal fitting comparison of different models including proposed SV-PSO-BiLSTM.

FIGURE 10

Cross-commodity explanatory power comparison: R2 performance of different agricultural price prediction models (including SV-PSO-BiLSTM) on 
chili, ginger, and garlic test datasets.
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For soybean futures closing price prediction, the SV-PSO-BiLSTM 
model achieves RMSE = 78.47 (CNY/ton), MAE = 62.89 (CNY/ton), 
MAPE = 1.21%, and R2 = 0.9846. Compared to the EEMD-GRU 
model proposed by Zhang B. et  al. (2024) (RMSE = 105.87, 
MAE = 88.18), our model reduces errors by approximately 27.28%, 
demonstrating the significant superiority of the STL-VMD dual 
decomposition strategy over single decomposition methods such as 
EEMD. Additionally, the PSO-optimized BiLSTM exhibits enhanced 
filtering efficiency for high-frequency noise (e.g., speculative trading 
signals), while effectively capturing both short- and long-term impacts 
of policy interventions.

The SV-PSO-BiLSTM model demonstrates outstanding 
performance in forecasting prices for four agricultural commodities and 
one agricultural financial derivative. Its core strengths lie in explicitly 
modeling the multi-scale volatility characteristics of agricultural 
economic systems through the dual decomposition strategy. 
Furthermore, the efficient “dual decomposition-clustering-optimization-
prediction” mechanism exhibits technical generalizability, extending 
from physical agricultural commodities to heterogeneous markets such 
as agricultural financial futures. These results further confirm the robust 
adaptability of its architectural design to diversified agricultural markets.

3.6 Stability experiment

In practical production, agricultural commodity prices often 
require multi-step-ahead predictions. When using a mix of actual and 
predicted values as input data for the next step of prediction, there will 
inevitably be an accumulative effect of errors, leading to potentially 
significant discrepancies between the predicted and actual results. 
Therefore, it is necessary to discuss the accuracy of models in the 
context of multi-step predictions.

This paper conducts a stability test for multi-step predictions of 
selected models based on the above three sample datasets, using the R2 
as the stability evaluation metric. The results are shown in Figure 11. 
Among them, due to the higher frequency of fluctuations in the chili 
price series, data with closer time spans have higher weight values. When 
replacing these data with predicted values, the model’s prediction 
accuracy decreases relatively faster. In contrast, the prediction accuracy 
for ginger and garlic price series decreases more gradually. As the 
prediction time span gradually increases, the error between the predicted 
and actual values will continue to accumulate. At the same weekly 

interval, the SV-PSO-BiLSTM model proposed in this paper has a higher 
R2 value and the difference with other models gradually increases. The 
model’s prediction effectiveness remains better, with a slower declining 
trend in its value, demonstrating excellent stability.

4 Discussions

4.1 Analysis of models and results

4.1.1 Compared with single models, the 
“decomposition-combination” hybrid models 
demonstrate superior prediction accuracy

In this study, hybrid models exhibited universally enhanced 
performance over single models. For instance, the STL-BiLSTM 
model reduced average RMSE and MAE metrics by 9.68 and 4.74%, 
respectively, compared to the single BiLSTM model. The VMD-BO-
BiLSTM model achieved even greater improvements, with average 
RMSE and MAPE reductions of 18.59 and 20.63%. These results 
indicate that hybrid models, which integrate time series decomposition 
with deep learning methodologies, can more effectively capture 
complex features and trends within the data, thereby enhancing 
prediction accuracy (Sun et al., 2023).

The performance disparity stems from the hybrid models’ ability to 
synergistically leverage the strengths of distinct approaches. 
Decomposition techniques such as STL and VMD disentangle time 
series into multiple interpretable components. This preprocessing 
facilitates the model’s identification of intrinsic data structures (Yin et al., 
2020). Subsequent processing by BiLSTM or other models focuses on 
simplified, clarified signals, ensuring optimal prediction outcomes across 
diverse temporal scales. This dual-stage strategy mitigates the risks of 
overfitting or underfitting that single models may encounter when 
handling complex data patterns, further validating the critical role of 
“decomposition-combination” techniques in predictive modeling.

4.1.2 STL-VMD dual decomposition enables 
in-depth mining of implicit modal features in 
multi-scale nonlinear time series

The superior performance of the SV-PSO-BiLSTM model in this 
study primarily stems from the STL-VMD dual decomposition 
methodology. For instance, compared to the STL-PSO-BiLSTM 
model, the SV-PSO-BiLSTM model reduced average RMSE and MAE 

FIGURE 11

Comparison of multi-step prediction results across different models. (a–c) Chili, ginger, and garlic.
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metrics by 41.32 and 42.21%, respectively. When evaluated against 
the VMD-BO-BiLSTM model (Hu and Jiang 2023), the SV-PSO-
BiLSTM model demonstrated further reductions of 46.36% in MAE 
and 45.09% in MAPE. These results underscore the exceptional 
capability of the STL-VMD dual decomposition approach in 
capturing the complexity of agricultural product price data (e.g., chili, 
pork) characterized by multi-scale nonlinear dynamics.

The performance enhancement achieved by the STL-VMD dual 
decomposition arises from its comprehensive processing of time 
series data. STL extracts trend and seasonal components, 
simplifying the inherent structure of the data. However, the residual 
component retains intricate nonlinear features, including highly 
irregular fluctuations, sudden outliers, and complex interaction 
effects, which challenge even advanced neural networks in 
achieving holistic modeling, thereby limiting prediction accuracy 
and reliability. To address this, we  apply VMD for secondary 
decomposition of the residual component, breaking it into multiple 
intrinsic mode functions (IMFs) that explicitly represent latent 
patterns. This hierarchical decomposition strategy refines and 
captures complex modes potentially overlooked by single-method 
approaches. By enabling deeper data understanding, the dual 
decomposition framework empowers subsequent deep learning 
models to generate more precise predictions. Consequently, the 
STL-VMD technique not only significantly reduces prediction 
errors but also enhances model stability and reliability when 
handling complex signal patterns.

4.1.3 Entropy-driven balanced subspace K-means 
for modal component reconstruction

Building upon the STL-VMD dual decomposition framework, the 
SV-PSO-BiLSTM model employs sample entropy-driven K-means 
clustering to optimize the reconstruction of secondary-decomposed 
modal components. This approach effectively reduces the model’s 
temporal and spatial complexity while enhancing computational 
efficiency and analytical capabilities. For instance, in this study, the 
ginger price sequence was compressed from eight sub-models to five 
sub-models, reducing redundant components while preserving the 
integrity of critical information. This refinement renders the modal 
components more concise, improving data interpretability and 
optimizing computational resource utilization.

For specific optimization strategies, the method introduces a 
dynamic equilibrium mechanism integrated with multi-objective 
entropy design, addressing category partitioning biases caused by 
imbalanced data distribution in traditional K-means clustering (Liu 
et al., 2024). This ensures that the reconstructed modal components 
are more representative. Additionally, the incorporation of a subspace 
feature fusion strategy enables the model to comprehensively exploit 
multi-scale features of nonlinear time series, particularly improving 
the resolution of high-frequency components (Zheng and Tang 2023). 
This advancement ensures more precise and stable screening and 
reconstruction of modal components. Furthermore, the method 
optimizes cluster center initialization via an entropy-weighted strategy 
(Zhang J. et al., 2024), mitigating mode mixing artifacts caused by 
poor initial center selection in conventional approaches. This enhances 
the independence and stability of reconstructed modal components, 
improving their purity and reconstruction accuracy. These refinements 
provide higher-quality input data for subsequent deep learning 
models, thereby boosting prediction accuracy and robustness.

4.1.4 SV-PSO-BiLSTM hybrid model achieves 
optimal predictive performance and 
cross-scenario generalizability

The test period in this study encompasses multiple disruptive 
events, including the COVID-19 pandemic, the 2020 African swine 
fever outbreak, and flood disasters in major ginger-producing regions 
(e.g., Shandong and Guangxi), all of which exerted varying degrees of 
impact on agricultural prices. Amid these disturbances, the SV-PSO-
BiLSTM hybrid model demonstrates faster adaptation compared to 
other models, effectively minimizing the escalation of localized 
prediction errors. This highlights its superior predictive capabilities 
under complex and volatile market conditions. In chili price 
forecasting, compared to the BO-GRU model, SV-PSO-BiLSTM 
reduces RMSE by 42.77%, MAE by 32.62%, and improves R2 by 4.68%. 
This indicates that the model accurately fits real-world data and adapts 
to rapid fluctuations in chili markets through high-precision sequence 
decomposition and smoothing techniques, increasing high-frequency 
signal capture rate by 37% and enhancing prediction stability and 
reliability. For garlic price prediction, SV-PSO-BiLSTM achieves a 
MAPE of 1.15%, representing a relative reduction of 81.21% (absolute 
reduction: 4.97%) compared to the EEMD-GRU model proposed by 
Feng (2021) (MAPE = 6.12%). While EEMD is also used for price 
sequence decomposition, it may suffer from mode mixing when 
handling complex volatility patterns, leading to partial key information 
loss or noise interference, thereby compromising prediction accuracy. 
In contrast, SV-PSO-BiLSTM extracts trend and volatility features of 
time series more precisely, improving forecasting performance. In 
pork price prediction, the EMD-GNN algorithm proposed by Lai et al. 
(2024), which leverages the graph structural properties of GNNs, 
achieves a MAPE of 2.465%. The SV-PSO-BiLSTM model further 
reduces MAPE by 6.28%, demonstrating superior accuracy. This 
advantage likely stems from the STL-VMD dual decomposition 
strategy’s effective noise suppression and the PSO-optimized BiLSTM 
architecture’s ability to capture both long-term trends and short-term 
dynamics in price fluctuations. For soybean futures price forecasting, 
the SDFE-DALSTM (CEEMDAN) model proposed by Fan et  al. 
(2023) achieves R2 = 0.9723, indicating its capability to capture price 
patterns. However, SV-PSO-BiLSTM attains R2 = 0.9846, a 1.23% 
improvement, confirming its enhanced ability to fit price trends and 
improve accuracy under complex market volatility.

In summary, the SV-PSO-BiLSTM model demonstrates superior 
predictive performance across multiple agricultural price forecasting 
tasks. The synergistic collaboration of its sub-modules enhances the 
overall predictive capability of the model, enabling it to achieve higher 
accuracy and stronger generalization capability in the field of 
agricultural price prediction.

4.2 Limitations and future research

While the SV-PSO-BiLSTM model achieves certain success in 
agricultural price forecasting, this study acknowledges that certain 
limitations still exist. Data and application constraints include reliance 
on historical price sequences without integrating external factors such as 
import/export trade volumes, weather, policies, supply chains, market 
supply–demand dynamics, substitute prices, or news sentiment. This 
omission may lead to increased localized prediction errors under 
extreme shocks from black swan events (e.g., typhoons, COVID-19). 
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Additionally, while experiments cover diverse agricultural commodities 
(chili, ginger, garlic, pork, and soybean futures), the model excludes 
perishable fruits (e.g., strawberries) and staple grains (e.g., wheat, corn), 
limiting its generalization capability. Furthermore, the model is trained 
on Chinese wholesale market data and has not been validated for 
international or small-scale regional markets, restricting its practical 
utility. Model limitations involve the gradient vanishing problem in 
BiLSTM during long-term predictions, which causes memory decay of 
early price patterns and compromises long-term trend stability.

Future research will focus on optimizing data integration and 
application strategies by incorporating multi-factor and multi-modal 
information to enhance prediction accuracy and generalization. For 
instance, market supply and demand, policy impacts, substitute prices, and 
news sentiment will be integrated, while Graph Neural Networks (GNNs) 
will be  employed to model price linkages across regional markets. 
Additionally, transfer learning will be  utilized to improve the model’s 
predictive performance on previously unseen commodity categories, 
thereby strengthening its cross-market applicability. Furthermore, 
reinforcement learning and Bayesian neural networks will be introduced 
to enhance the model’s responsiveness to black swan events and improve 
its robustness. At the model level, BiLSTM still suffers from the vanishing 
gradient problem in long-term forecasting, leading to the degradation of 
memory for early price patterns. Future advancements will incorporate 
residual skip connections, attention mechanisms, or alternative 
architectures to strengthen long-term dependency modeling and improve 
prediction accuracy. Overall, optimization efforts will focus on three key 
areas: multi-factor integration, disturbance-resistant modeling, and cross-
market transferability, facilitating the transition from theoretical research 
to practical industrial applications.

5 Conclusion

The drastic fluctuations in agricultural commodity prices exert 
profound and complex multifaceted impacts on the economy, society, 
and consumers. Firstly, the surge in prices directly elevates household 
living costs, with particularly severe consequences for low-income 
families, who may have to adjust their dietary structures, potentially 
leading to reduced nutritional intake and compromising health. 
Secondly, producers confront income instability, with frequent 
fluctuations in profit expectations potentially destabilizing their 
planting decisions. Over time, this may undermine their long-term 
production enthusiasm and willingness to invest. Furthermore, 
fluctuations in agricultural commodity prices exacerbate market 
uncertainty and become one of the significant drivers of overall 
inflation. This may not only spark widespread societal dissatisfaction 
but even provoke protest activities, posing a threat to social stability. 
To address this severe situation, governments often need to adopt a 
series of intervention measures, such as implementing price control 
policies or providing financial subsidies, to stabilize market order and 
safeguard people’s livelihoods.

In this context, accurately predicting agricultural commodity 
prices is particularly crucial and holds far-reaching significance. 
Through scientific and effective price prediction, governments and 
relevant institutions can more promptly grasp market dynamics and 
formulate more precise and effective policy measures to address the 
various challenges posed by price fluctuations. Simultaneously, price 
prediction provides important decision-making references for 

producers and consumers, helping them better plan production and 
consumption activities, thereby mitigating the adverse effects of price 
fluctuations to a certain extent. Therefore, fluctuations in agricultural 
commodity prices are not only concerned with the economic interests 
of individual households and farmers but are also closely linked to 
social stability, policy formulation, and sustainable economic 
development. Price prediction serves as a vital tool in addressing this 
challenge and achieving harmonious economic and social development.

The SV-PSO-BiLSTM hybrid model innovatively integrates the 
STL-VMD dual decomposition algorithm, K-means clustering, and a 
PSO-optimized BiLSTM network to enhance the accuracy and 
stability of agricultural price forecasting. The STL-VMD dual 
decomposition algorithm decomposes price sequences into multiple 
stationary sub-components, reducing data complexity and mitigating 
the impact of nonlinear fluctuations on prediction accuracy while 
resolving mode mixing issues. Sample entropy-driven K-means 
clustering reconstructs decomposed components, effectively avoiding 
over-decomposition of residual data, minimizing test error noise 
interference, and lowering spatiotemporal complexity. Additionally, 
PSO optimizes hyperparameters of the BiLSTM network, enabling 
intelligent model architecture and training, accelerating convergence, 
and ensuring more stable and precise predictions. This integrated 
strategy not only enhances temporal feature learning capabilities but 
also optimizes computational efficiency, granting the model strong 
generalization power in complex time-series forecasting tasks.

Empirical studies demonstrate that the SV-PSO-BiLSTM model 
achieves superior prediction accuracy and lowest error rates across 
four agricultural commodities (chili, ginger, garlic, and pork) and an 
agricultural financial derivative (soybean futures), outperforming all 
benchmark models. By combining noise reduction, hyperparameter 
optimization, and deep learning, the model maintains consistent 
performance across diverse data types, lengths, and forecasting 
scenarios, highlighting its robust adaptability and multi-step 
prediction stability. As a high-precision agricultural price prediction 
tool, SV-PSO-BiLSTM effectively addresses market volatility, provides 
scientific decision-making support for agricultural sectors, optimizes 
supply chain management, and promotes market stability. Its 
architecture also exhibits broad cross-industry application potential.
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