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Unlocking the environmental 
potential of biochar: production, 
applications, and limitations
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Biochar is a solid, alkaline, and porous material characterized by a high specific 
surface area, low bulk density, and strong adsorption capacity, produced through 
the pyrolysis of biomass under limited oxygen conditions. Due to its favourable 
physicochemical properties, biochar has gained attention as a potential renewable 
resource for managing soil fertility and improving crop yield. Numerous studies 
have shown that biochar application improves the soil fertility, increases the dry 
matter content of various crops and enhances crop yields, particularly when used 
in combination with inorganic or organic fertilizers. Biochar has been widely 
recognized as a promising tool for addressing various environmental challenges, 
including soil degradation, carbon sequestration, and remediation of organic 
pollutants and heavy metals. It is important to recognize specific limitations 
linked with biochar utilization, such as its variable effects across different soil 
types and the high cost and scalability challenges associated with its production 
and application. These concerns must be carefully considered when integrating 
biochar into soil and agricultural management practices. This review examines 
the production methods, physiochemical properties, and the agronomic potential 
of biochar, with a particular focus on its role in enhancing soil fertility and crop 
productivity. In addition, it explores the environmental benefits, the feasibility of 
biochar production in developing countries, and the potential limitations associated 
with its application.
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1 Introduction

Soil degradation poses a significant threat to global agriculture, leading to reduced fertility 
and increased erosion (Prăvălie et al., 2021). Prolonged cultivation often results in adverse 
effects such as acidification, severe erosion, and the depletion of organic matter. Additionally, 
the injudicious use of chemical fertilizers has been linked to declining soil health, particularly 
in arid and semi-arid regions (Hassan and Rashid, 2023; Gnanaprakasam and Vanisree, 2022). 
The Green Revolution significantly improved crop yields through increased use of chemical 
fertilizer; however, it also contributed to a decline in soil fertility and quality, ultimately 
disrupting the sustainability of soil ecosystems (Gnanaprakasam and Vanisree, 2022). The 
depletion of organic matter reduces overall soil stability (Li et al., 2023). Soil degradation 
driven by intensive agricultural practices and climate change poses a serious threat to global 
food security, thereby encouraging the adoption of innovative and eco-friendly strategies to 
improve soil health (Wijerathna-Yapa and Pathirana, 2022; Saleem et al., 2024). Several studies 
have shown that organic amendments can enhance soil quality and boost agricultural 
productivity across various regions (Ramzani et al., 2017). Biochar, being a renewable resource, 
is a potential tool for managing soil fertility with several other economic and environmental 
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benefits. It is seen as an important tool for addressing issues such as 
soil degradation, greenhouse gas emissions, waste management, and 
crop water productivity (Allohverdi et al., 2021; Kundu and Kumar, 
2024). According to the International Biochar Initiative (IBI), biochar 
is a carbon-rich, stable, and porous solid produced through the 
thermochemical conversion of biomass under limited or no oxygen 
conditions, typically referred to as pyrolysis. Updated IBI guidelines 
(2021) emphasize that biochar is intended primarily for use as a soil 
amendment to enhance soil health, sequester carbon, and mitigate 
environmental pollution. It must meet specific quality standards 
including thresholds for organic carbon content, heavy metals, ash, 
and potential contaminants, ensuring its safety and effectiveness in 
agricultural and environmental applications. (IBI Biochar Standards, 
2015). It is a permeable, alkaline substance with a high specific surface 
area, low bulk density, and strong adsorption potential (Qiu et al., 
2021). Adding biochar to soil can enhance soil structure by promoting 
aggregation and water retention (Kang et al., 2022; Jia et al., 2024). 
Moreover, a mixture of biochar with ammonium, nitrate, and 
phosphate has been recommended as a slow-release fertilizer to 
improve soil fertility (Wang et al., 2022). Biochar has been shown to 
enhance not only the physicochemical properties of soil but also its 
microbial characteristics. Specifically, it improves the soil microbial 
community structure and enzymatic activity (Zhou et  al., 2019). 
Furthermore, biochar enhances the microbial biomass of C, N, and P 
(Manirakiza et al., 2019), and promotes the growth of soil bacteria, 
particularly certain microbial guilds (e.g., diazotrophs) (Liu et al., 
2020). It has also been shown to boost the overall composition of the 
soil biological community (Amoakwah et al., 2022). In addition to 
enhancing microbial biomass and enzymatic activity, biochar also 
supports the proliferation of beneficial fungi such as arbuscular 
mycorrhizal fungi (AMF). Its porous structure and large surface area 
create protective microhabitats that facilitate fungal colonization and 
root symbiosis, further contributing to nutrient uptake and plant 
health (Zhou et  al., 2019; Videgain-Marco et  al., 2021; Javeed 
et al., 2023).

Sustainable soil management and climate change are two major 
global concerns, and the application of biochar to soil may serve as an 
effective tool to address both issues (Abbas et al., 2018). Biochar can 
persist in soil for centuries (Lehmann et al., 2006) and contributes to 
C sequestration; therefore, it has the potential to mitigate the challenge 
of greenhouse gas emissions (Yin et al., 2022). As biochar contains a 
high amount of organic carbon, it has the potential to rapidly increase 
soil-organic C content (Zhang et al., 2022). In addition to its significant 
role in soil C sequestration and quality improvement, studies have 
shown that biochar can enhance hydro-physical properties of soil, 
such as water holding capacity (Alghamdi et al., 2022), by improving 
physical attributes like structure, texture, porosity, and aggregate 
stability (Das and Ghosh, 2022).

Several researchers have reported that the addition of biochar to 
soil improves net primary crop production, grain yield, and dry matter 
accumulation (Sarwar et al., 2023; Yang et al., 2023; Pinnamaneni 
et al., 2023). When applied in combination with inorganic or organic 
fertilizers, biochar can further enhance crop productivity, particularly 
in tropical soils (Bai et  al., 2022). It has been shown that crop 
productivity increased by 10% after adding biochar to the soil (Melo 
et  al., 2022). Depending on the features of biochar, methods of 
application, and background soil conditions, a negative to positive 
crop response has been found (Chen et  al., 2019). For example, 

biochar has been shown to significantly enhance crop yields in 
degraded, acidic, or nutrient-poor soils, where its ability to improve 
pH, cation exchange capacity (CEC), and water retention can address 
critical fertility constraints. However, in nutrient-rich or well-
structured soils, its benefits are often limited or even negative. 
El-Naggar et al. (2019) reported that in high-fertility soils, biochar 
amendments produced negligible yield gains, and in some cases, 
caused nutrient imbalances by immobilizing nitrogen and 
micronutrients. Similarly, Rajkovich et  al. (2012) found that corn 
grown in fertile soils with high organic matter showed a decrease in 
nitrogen uptake and growth after biochar addition, likely due to its 
strong adsorption capacity. These findings highlight the need for site-
specific assessments before recommending biochar applications, 
especially in systems that are already performing well under 
conventional management. Studies have revealed that adding biochar 
with other farm management approaches, could perform better under 
changing climatic scenarios, especially in water-stressed areas (Fischer 
et al., 2019).

Furthermore, the potential of biochar to absorb chemicals and 
other contaminants that are used in agriculture is a crucial process 
that has direct impacts on the agronomic efficacy of these agricultural 
chemicals (e.g., insecticides, herbicides, and supplements) as well as 
on their environmental fate and ecotoxicological effects. However, 
there are certain drawbacks associated with biochar that need to 
be addressed during its application to soils. This review article offers 
a novel and region-specific synthesis by focusing on the potential and 
challenges of biochar application in developing countries, particularly 
India and East Africa—areas often overlooked in previous reviews. In 
addition, it incorporates recent advances in feedstock selection, 
microbial interactions, and biochar-soil dynamics. Unlike earlier 
literature, this review emphasizes practical limitations, such as soil-
specific responses and environmental safety concerns, offering a 
critical and holistic view that aims to inform both policy and practice. 
By synthesing current knowledge, the review seeks to inform 
researchers, policy-makers, and practitioners about the opportunities 
and limitations of integrating biochar into sustainable soil and 
environmental management practices.

2 Production process of biochar

Biochar is produced as a solid material through pyrolysis of 
biomass. Figure  1 illustrates the step-by-step process of biochar 
production via pyrolysis, during which biomass is thermochemically 
decomposed at high temperatures in a limited-oxygen environment. 
During this process, the biomass is first dried. The dried material is 
then heated to elevated temperatures, resulting in the release of 
volatile substances from the solid matter. The volatile substances 
produced may be  either permanent gases like carbon monoxide, 
carbon dioxide, methane, and hydrogen, or condensable organic 
compounds, like acetic acid and methanol. Subsquent reactions in 
the gaseous phase, including cracking and polymerization, can alter 
the overall product structure. Three types of products can 
be generated; permanent gases, one or more liquid forms (such as 
water and tar), and a solid residue. The differentiation of these 
products depends on process temperature and residence time (RT). 
Moreover, the reaction pathways leading to the formation of these 
products are to some extent, competing. In order to generate a 
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desired product from the process, several general procedures can 
be applied to maximum yield of that specific product (Weber and 
Quicker, 2018). Biochar can be produced as a co-product of various 
processes, such as fast pyrolysis (FP), slow pyrolysis (SP), and 
gasification (Table 1). Various factors affect the pyrolysis process, 
including temperature, pressure, moisture content, and RT 
(Al-Rumaihi et al., 2022).

The transformation process and the properties of the resulting 
product are also influenced by the characteristics of the biomass 
feedstock used in the biochar production. Biochar typically contains 
three major types of organic compounds—hemicellulose, cellulose, 
and lignin. During the pyrolysis process, these compounds behave 
differently, and thus, the composition of biomass directly affects both 
the properties and yield of the final product. Hemi-cellulose is a group 
of branched chain polysaccharides. Among the three major organic 
compounds in biomass, hemicellulose is the most reactive and least 
thermally stable, decomposing at temperatures ranging from 220 to 
315°C (Huang et  al., 2023). Cellulose, being the most abundant 
organic compound on earth, has been extensively studied; however its 
thermal disintegration is still not fully understood. In contrast, lignin 
processes a complex three dimensional structure with a variety of 
chemical bonds, which results in its breakdown occuring over a broad 
temperature—unlike the more defined decomposition ranges of 
hemi-cellulose and cellulose. Lignin contains a large number of 
functional groups with varying thermal stabilities. As a result, it 
decomposes over a broad temperature range. Its thermal degradation 
begins around 200°C and may require temperatures as high as 900°C 
for complete decomposition, depending on the residence time (Yang 
et  al., 2007). Animal wastes and sewage residual biomass contain 
negligible amount of these compounds due to their different origins; 
therefore, they require distinct processing methods (Weber and 
Quicker, 2018).

3 Pyrolysis conditions and feedstock 
type influence the biochar 
physio-chemical properties

Pyrolysis processes and various feedstock sources considerably 
influence the properties of biochar, like pH, CEC, particle size, pore 
size, surface area, biochar yield, and charge. Biochar properties can 
vary widely depending on the feedstock and pyrolysis conditions, and 
they act differently in different soil types. For instance, manure-
derived biochar, which has a higher cation exchange capacity (CEC) 
and nutrient content, is particularly effective at enhancing nutrient 
retention and water-holding capacity in sandy soils, whereas woody 
biochars may be better suited for improving aeration and pH in acidic 
or compacted clay soils. (Ighalo et al., 2023; Balmuk et al., 2023). 
Downie et  al. (2012) discussed in detail the properties of newly 
produced biochars as determined by production processes and the 
type of feedstock used. Various feedstock, like forest wastes, rice husks, 
sugar beet tailings, empty fruit bunches and other crop wastes, wood 
bark, and different types of manure, are used in biochar production 
(Amalina et al., 2022). The ash content of biochar, which consists 
mainly of mineral elements such as calcium, magnesium, potassium, 
and phosphorus, contributes significantly to its alkaline nature 
(Whalen et al., 2024). Biochars with high ash content, especially those 
derived from manure or agricultural residues can exhibit pH values 
ranging from 8 to 11, making them effective liming agents in acidic 
soils. For example, Yuan and Xu (2011) reported that adding poultry 
litter biochar raised soil pH by up to 1.2 units within a single growing 
season. Similarly, Van Zwieten et  al. (2010) found that applying 
sugarcane bagasse biochar to acidic soils significantly increased pH 
and enhanced base saturation. This pH-modifying effect not only 
improves nutrient availability but also reduces aluminum toxicity and 
creates more favorable conditions for microbial activity and root 

FIGURE 1

Steps in biochar production.
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development. Biochar produced from animal residues typically has a 
lower specific pore surface compared to biochar produced from plant 
materials under similar pyrolysis conditions and RT. This is due to the 
higher ash content and increased inorganic concentrations found in 
biochars produced from animal dung (Ok et al., 2015). Consequently, 
biochar from animal manure has a greater potential as a nutrient 
source, enhancing crop production in the agricultural sector (Hou 
et al., 2022).

In fine-textured soils, the addition of wood and animal-based 
biochar improves soil aggregation (Yang et al., 2024), soil aeration, and 
overall physical structure. This enhances the moisture ratio creating a 
better environment for root growth and development. During 
pyrolysis, the concentration of the macronutrients in biochar 
increases, whereas volatile compounds and water are removed from 
its structure. Organic acids like acetic acid, formic acid, propionic acid 
and butyric acid are some of the volatile compounds that are present 
in biochar, and the discharge of these substances and the deposition 
of important elements like Ca and Mg as a result of an increase in the 
temperature of pyrolysis processes lead to high pH values in different 
biochars. These characteristics of biochar justify its use as a tool for 
soil improvement, a source of nutrition, and a liming factor in soils 
(Pandian et al., 2024).

4 Biochar improves soil fertility and 
crop yield

The fertility of soil decreases either from erosion and depletion or 
from an imbalance in organic matter, thereby affecting agricultural 
productivity worldwide. Modern agricultural practices have been 
successful in increasing food production in the short run, but in the 
long run, they cause damage to agricultural productivity (Ramzan 
et  al., 2022). Modern agricultural land use practices include the 
everlasting excessive use of inorganic fertilizers, which may increase 
soil acidification, which in turn affects the soil biota and 
biogeochemical processes, thus creating an environmental risk and a 
decrease in crop yield. In this regard, organic remediation such as 
biochar is a useful tool to feasibly balance soil organic matter, preserve 
and improve soil fertility, and increase crop production (Jatav et al., 
2021). Biochar has been proven to increase soil water holding capacity 
(WHC) as well as have significant impacts on soil nitrogen retention 
capacity and nutrient cycling via indirect effects on numerous 
biogeochemical processes in the soil (Nkoh et al., 2021; Yin et al., 

2022). The specific surface area, highly porous character, and total 
pore size of biochar define the WHC of biochar, but its effectiveness 
varies significantly with soil texture. In sandy soils, which are typically 
low in organic matter and have large pores, biochar improves WHC 
by increasing microporosity and adding a high surface area structure 
that slows water drainage and enhances moisture retention. In 
contrast, clay soils, which already retain water efficiently due to their 
fine particles and small pores, may experience minimal or even 
negative effects. In some cases, the addition of biochar can clog soil 
pores or disrupt aggregate structure, reducing infiltration and 
aeration. Therefore, while biochar application generally benefits 
coarse-textured soils, its use in fine-textured or compacted soils 
requires careful assessment of particle size, application rate, and 
pyrolysis temperature to avoid undesirable impacts on soil hydrology 
(Jia et al., 2024). Moreover, biochar, when added to soils, modifies or 
improves soil quality by amending various properties of soil (Figure 2). 
It may augment the microbial population of the soil and modify the 
profile of soil microbial communities by selectively enriching some 
specific microbial populations, such as eubacteria, archaebacteria, and 
fungal communities, and reducing the diversity of some other 
communities (Dong et  al., 2024). These changes in soil microbial 
populations are ascribed to an extra nutrient supply coming from the 
readily breakable carbon source of biochar. Biochar favours the living 
environment of microbes and consequently guards them against the 
grazers or adversaries in biochar pores (Janardhan and Krishna, 2021). 
This microbial augmentation may promote the degradation of organic 
pollutants in soils (Sun et al., 2024). Biochar contains minerals, some 
volatile organic compounds, and free radicals that can further 
restructure the soil microbial communities, affect their activities, and 
alter the soil enzymatic activity (Rasul et al., 2022). Enzymes in soil 
catalyze different biogeochemical pathways comprising elemental (N, 
P, and S) cycles and soil organic matter production (Daunoras et al., 
2024). Hence, biochar influences the various soil processes in a 
prospective way.

Applying various forms of compost or biochar combined with 
fertilizers to fields can boost crop productivity. Nutrients are stored in 
biochar because of its specific properties like pore structure and 
functional groups. Surplus nutrients, for example, nitrate, phosphate, 
and ammonium, could be deposited on the surface of biochar. Biochar 
improves nutrient cycling and lessens the chance of nutrient leaching 
in soils, which has a favourable effect on crop yields (Siedt et al., 2021). 
Furthermore, biochar has the potential to reduce NO and NO2 
emissions, resulting in increased soil fertility. Several positive results 

TABLE 1 Comparison of pyrolysis methods, conditions, and resulting product yields.

Methods of 
pyrolysis

The key reaction parameters Solid 
product 
(Biochar)

Liquid 
product 

(Tar)

Gas 
product 
(H2, CO, 

CH4)

Reference(s)

Temperature Gas/Vapour 
residence 

time

Heating 
rate: (°C/s)

Slow 400–660°C 5–30 min Not rising heating 

rate (0.1–1°C/S)

25–25% 20–50% 20–50% Shareef and Zhao 

(2016), Uzun et al. 

(2016)Intermediate 500–700°C 10–20 s 1–10 25–40% 35–50% 20–30%

Fast About 500°C Less than 2 s Fast heating rate 

(10–200°C/S)

10–25% 60–75% 10–30%

Gasification More than 800°C Less than 1 s Fast heating rate 

(1,000°C/S)

About 10% 60% About 80%
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have been observed in a variety of crops after amending soils using 
biochar (Table  2). At higher pyrolyzing temperatures, the pH of 
biochar increases, and crop productivity is remarkably increased by 
biochar produced at higher temperatures (Rajkovich et al., 2012).

5 Environmental benefits of biochar

Biochar improve environmental quality by aiding in the mitigation 
of various pollutants. Its porous structure and high surface area make 
it an effective sorbent for contaminants like heavy metals and organic 
chemicals in soil systems (Khan et al., 2021).

5.1 Carbon sequestration

The process of absorbing and retaining carbon to stop it from 
being released into the atmosphere is known as carbon sequestration 
(Hu et al., 2021). Biochar has been essential for improving carbon 
sequestration in soil for hundreds to thousands of years (Graber, 2009; 
Das and Ghosh, 2020). A 250-hectare farm could sequester around 
1900 metric tonnes of CO2 per year (Sisay and Girma, 2021). When 
biochar in the soil gets mineralized, a portion of it persists in a 
relatively stable state, which makes biochar a significant carbon sink 
(Luo et  al., 2023; Li and Tasnady, 2023). Carbon sequestration in 
biochar improves storage duration compared to other terrestrial 
sequestration technologies such as afforestation or reforestation 
(Jeswani et al., 2022; Yadav et al., 2023). The carbon content of biochar 
is usually inversely proportional to the ash content of the feedstock 
(Windeatt et al., 2014). Nan et al. (2018), investigated how natural 
minerals affect the pyrolysis of peanut husk, barley grass, sewage 
sludge, and cow dung. During pyrolysis, eliminating natural minerals 
may limit emissions of low-molecular-weight organic compounds and 
allow more carbon (3.5–30.1%) to be preserved in biochar (Nan et al., 
2018). Biochar may be  labile and recalcitrant depending on the 
concentration of carbon (Zheng et al., 2019). Soil microorganisms 
might readily use labile carbon in biochar applications, and carbon 
mineralization could be resumed. Recalcitrant carbon, on the other 
hand, is more difficult to degrade and may remain in the soil for 
longer periods (Chen and Frank, 2020). Soil organic carbon (SOC) 

may influence soil microbial activity, resulting in enhanced organic 
matter breakdown and CO2 generation (Liu et al., 2020). In biochar 
applications, both increased and decreased carbon emissions were 
reported. Biochar applied in acidic settings, in particular, resulted in 
higher CO2 emissions owing to biochar decomposition, but overall 
CO2 emissions were lower in alkaline conditions (Sheng and Zhu, 
2018). Biochar, on the other hand, when applied to the soil, helps in a 
dramatic decrease of CO2, N2O, and CH4 emissions (Yang et al., 2020). 
The importance of biochar in reducing the consequences of climate 
change on a global scale has been scientifically validated (Lehmann 
et al., 2021). Biochar, according to the IBI, has the ability to reduce 
global warming by absorbing roughly 3.67 gigatonnes (Gt) of CO2 
each year.

5.2 Reduction in the emission of 
greenhouse gases (N2O and CH4 emissions)

The rise in emissions of greenhouse gases (GHGs) is one of the 
major causes of global warming and, ultimately, climate change. The 
application of biochar to soil has been suggested as a sustainable 
approach to mitigate GHG emissions from soil and contribute to 
efforts to combat climate change (Das et  al., 2020). Biochar can 
sequester about 12% of GHGs from soils (Kaushik et al., 2024). At 
present, studies have demonstrated that biochar has the potential to 
reduce GHG emissions from soil, such as CH4 and N2O emissions, 
which are the potent gases for global warming that lead to climate 
change. For example, nitrous oxide emissions from an acidic ferrosol 
were reduced by biochar made from paper mill wastes, biosolids, 
green waste, and poultry remnants. The type of feedstock used for 
biochar synthesis, the temperature of the production process, and the 
amount of water available in the soil all influence the potential of 
biochar to reduce GHG emissions (Purakayastha et al., 2016). The 
soils of agricultural fields and pasturelands are one of the major 
sources of nitrous oxide emissions (Basheer et al., 2024). Biochar is 
able to reduce GHG emissions in agricultural soils by significantly 
decreasing N2O emissions (Van Zwieten et al., 2024), and the lowering 
of N2O and CH4 emissions because of biochar usage in the soils is 
being viewed as an effective strategy to combat global warming as 
these gases have a much higher potential to cause global warming than 
CO2. The basic mechanisms involved in the reduction of N2O in 
biochar-added soils are that the application of biochar accelerates the 
action of microbes that are capable of reducing nitrous oxide into 
nitrogen, and the reason for this is the biochar alkalinity (Novak et al., 
2010). Studies have shown that biochar has a large surface area and 
hence provides an immense number of sites for the adsorption of 
nitrous oxide and other GHGs (Ullah et al., 2024).

5.3 Mitigation of persistent organic 
pollutants from soil

Organic contaminants originating from a broad range of 
agricultural and industrial operations, as well as poor management 
and disposal of waste, are the prime factors leading to soil 
degradation. Various organic pollutants are non-degradable, and 
several are cancerous and mutagenic (Kishor et al., 2021). There are 
two major types of organic pollutants: persistent organic pollutants 

FIGURE 2

Biochar improves soil quality by improving various features of soil.
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(POPs) and emerging organic pollutants (EOPs). Most of the organic 
pollutants were, in the past or at present, used as pesticides. Many of 
them are used in industrial activities for the manufacturing of 
various products like additives, solvents, and pharmaceuticals. 
Biochar has been found to be  very capable of taking various 
man-made as well as natural organic compounds (Table 3). This 
ability of biochar to adsorb various organic compounds such as 
pesticides, PAHs, and emerging pollutants like steroid hormones has 
been found to be attributed to the large surface area, highly aromatic 
character, micropore size, and the existence of plenty of polar 
functional groups in biochar (Kookana et al., 2011). It has also been 
found that the higher organic carbon content in the biochar 
contributes to the higher uptake capacity of biochar for POPs 
(Taherymoosavi et al., 2018). The processes of absorption of POPs by 
biochar chiefly comprise division, surface adsorption, and pore 
impediment (Zheng et al., 2017). The major pathway for mineralizing 
and eliminating POPs from the soil is microbial degradation 
(Krithiga et al., 2022). Biochar produced at high temperatures has 
powerful sorption capability for POPs, but it can hamper the 
biodegradation of POPs in soils. Decreased accessibility of POPs to 
microbes may be the reason for reducing their biodegradation in 
soils amended with biochar produced at higher temperatures 
(Anyika et al., 2015). It has been demonstrated that 98% of the added 
acetochlor disappeared from the soil not amended with biochar, 
whereas 56% or 82% of the acetochlor got degraded in the soil mixed 
with biochar produced from rice hull or crofton weed at 600°C, 
respectively (Li et al., 2018). It was found that the soil, when mixed 
with wood biochar produced at a temperature of 800°C, decreased 
the availability of monoaromatic hydrocarbons and led to their 
biodegradation (Bushnaf et  al., 2011). Biochars prepared at low 
temperatures have been detected to be capable of promoting POP 
degradation in the soil (Dong et al., 2019).

5.4 Toxic metal remediation

In ecosystems, pollutants (heavy metals) are being released by 
processes like mineral resource mining and smelting, solid waste 
disposal, sewage irrigation, and the use of pesticides and fertilizers. 
These pollutants are difficult to decompose in soil and lead to major 
health and environmental risks. In recent years, biochar has emerged 
as a viable remediation material. It offers minimal costs, great 
remediation efficiency, environmental friendliness, and soil 
enhancement (Wang et  al., 2019). According to Mehmood et  al. 
(2018), biochar derived from a variety of feedstocks, such as manure, 
agricultural waste, woody plants, or animal corpses, has the ability 
to immobilise heavy metals (such as Cd, Pb, Cr, Cu, and Zn) in soils 
and thereby reduce the accumulation of heavy metals in plants. 
However, not all heavy metals have responded well to the addition 
of biochar to the soil. In field studies in Hunan, for example, Zn (II) 
buildup in grains revealed no significant change when biochar was 
added (Chen et al., 2016). Biochar may be modified using techniques 
such as activation, magnetization, oxidation, and digestion to boost 
its heavy metal adsorption considerably (Wang et al., 2019). Biochar 
generated at 300°C improved Pb and Cu mobility in an alkaline 
environment. On the other hand, biochar generated at 700°C 
performed better in reducing Zn and Pb mobility in an acidic 
environment (100%) (Zhang et al., 2020). Moreover, the pH of the 
water may alter as a result of the addition of biochar. Changing the 
pH may aid in the immobilization of heavy metals (Schlögl et al., 
2023). Biochar made from cow dung activates heavy metal-resistant 
bacteria to improve heavy metal immobilization in sheep manure 
compost (Liu et al., 2021). Pb immobilization might be improved by 
aromatic carbon groups. Richness in inorganic minerals (Ca2+, K+, 
Mg2+, and Na+) also aids in increasing metal trapping activity (Yang 
et al., 2018).

TABLE 2 Biochar-induced yield enhancement in various crop plants.

Crop Biochar feedstock Dosage (tonnes/
hactare)

Increase in yield 
compared to control

Reference(s)

Maize/Soybean Rice husk 10 10–40% Duku et al. (2011)

Wheat Paper mill sludge 10 30–40%

Radish Poultry litter 0–50 42% Shareef and Zhao (2016)

Maize Cow manure 15 150% Uzoma et al. (2011)

Radish Green waste 100 266% Chan et al. (2007)

Durum wheat Woodland of beech, hazel, oak and birch 60 30.4% Vaccari et al. (2011)

Grapes Woodchips from fruit trees 22 20% Genesio et al. (2015)

Maize Straw (corn Stover) 30 11.9 Genesio et al. (2015)

Maize Waste wood 10 44.4% Agbede and Adekiya (2020)

Maize Waste wood 20 66.7%

Maize Waste wood 30 88.9%

Rice Wheat straw 40 14 Zhang et al. (2010)

Radish Poultry litter 10 42 Chan et al. (2008)

Rice Wheat straw 40 18.3 Bian et al. (2014)

Rapeseed Wheat straw 40 36.02 Liu et al. (2014)

Rice Peanut Husk 0.45 28.1 Qian et al. (2014)

Rice/sorghum Forest waste 11 22 Steiner et al. (2008)
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6 Potential of biochar production in 
developing countries

Almost every agricultural field or area has the capacity to produce 
adequate amounts of biomass feedstock for the production of biochar. 
In India, a large quantity of crop residues are produced in agricultural 
fields and other land uses, which can be used as a potential biochar 
feedstock. Roughly 500–550 metric tonnes (Mt) of residue from crops 
are generated every year in India (Gatkal et al., 2024). The primary 
sources include wheat, paddy, sugar cane, and maize, accounting for 
63% of India’s total residue output (Khare et al., 2021). Uttar Pradesh 
leads with 72 Mt., followed by Punjab with 45.6 Mt., and Haryana with 
24.7 million tons, as the top crop residue-producing states in India. A 
major problem in rural farm areas as well as in urban areas is the 
inefficient and non-sustainable management of organic waste, and the 
majority of this waste is either destroyed by burning or eventually 
dumped in the land, which leads to environmental pollution and the 
generation of huge quantities of GHGs. The amount of residue burned 
in India ranges from 98.4 Mt. to 131.9 Mt. annually, with the greatest 
proportion coming from the combustion of residue (Khare et  al., 
2021). The application of biochar as a soil amendment tool provides 
an efficient way to combat climate change and build up sustainable 
agricultural systems in India. About 1,300 metric tonnes of bio-oil and 
900 metric tonnes of biogas, which is equivalent to 31 terra joules of 
energy, can be generated if 1% of the biochar production process is 
done using modern instruments. Furthermore, women in rural India 
use wood and charcoal biomass to cook food on highly polluting 
stoves. A number of problems are associated with this custom, like 
deforestation; the collection of fuel wood is time-consuming; back 
pains; and other risks. Moreover, a significant amount of CH4 
emissions are generated in an earth-mound kiln through the 
inefficient production of charcoal. For that reason, the development 
of highly proficient biochar-producing cooking stoves and the 
pyrolysis of farm waste biomass, which is otherwise burned, can lead 
to the control of deforestation, enhanced crop yield, better 
management of crop residues, and the development of a carbon-
negative approach by removing atmospheric carbon to counteract 
global warming (Srinivasarao et al., 2013).

Beyond India, East Africa also holds significant potential for 
biochar implementation, particularly in regions facing soil fertility 

constraints, deforestation, and declining agricultural productivity. 
Agriculture is still a dominant factor that contributes considerably to 
the economic development of East African countries like Burundi, 
Kenya, Uganda, Tanzania, Rwanda, and South Sudan and is a source 
of livelihood for more than 70% of the population of the area (Omulo, 
2020). Maize is the most prominent crop produced in East Africa, as 
it is the staple diet of the people living there. In East Africa, about 8.1 
million hectares of land are under the cultivation of maize, which 
generates a total of 13.5 million metric tonnes of maize, which leads 
to the production of about 33.3 million metric tonnes of crop residues 
annually that are potential feedstock for the production of biochar 
through the process of pyrolysis. Similarly, Ghana, in West Africa, has 
huge potential for producing biochar due to the abundance of biomass 
resources. Crop residues, agricultural by-products, forest litter, wood 
residues, byproducts of municipal solid waste, manures, and industrial 
wastewater are all examples of biomass resources in Ghana.

7 Limitations of biochar

Despite the fact that biochar has been proved to increase soil 
quality, crop production and have good environmental consequences 
by reducing various pollutants; in some cases, the use of biochar can 
be harmful, and it has some possible downsides. Biochar’s positive 
benefits have been demonstrated to be  soil specific. As a result, 
biochar addition may not always be beneficial to all soil types. For 
instance, Ghorbani and Amirahmadi (2024) reported that biochar 
application in certain well-structured soils showed no significant 
improvement in yield and, in some cases, caused nutrient imbalances. 
In clayey soils, Brtnicky et al. (2021) found that biochar may decrease 
water retention over time due to pore clogging and reduced capillary 
flow, eventually leading to adverse effects on plant growth. Conversely, 
sandy soils tend to benefit more due to their initial poor structure and 
low water-holding capacity. Due to the existence of multiple 
macropores in the biochar, adding biochar to soil causes immediate 
and long-term impact on soil water retention ability (Fischer et al., 
2019). And based on particle size and distribution, it may significantly 
influence soil texture on a broad range. However, effect is likely to 
be predominantly transient because biochar seems to disintegrate 
quickly, resulting in tiny sized particles or silt. Impacts of biochar on 

TABLE 3 Biochar-mediated degradation of organic pollutants.

Organic pollutant Biochar feedstock Effect Reference(s)

Carbaryl and Atrazine Pig manure Both the pesticides hydrolyzed faster in the presence of biochar. In 

presence of biochar pyrolyzed at 700°C, carbaryl and atrazine 

decomposition rates reached 71.8 and 27.9%, respectively, within just 12 h

Zhang et al. (2013)

Bisphenol A Sugarcane waste Bisphenol A was effectively degraded at pH of 5–11 and temperatures of 

25–45°C within 1 h.

He et al. (2021)

Acetaminophen, Bisphenol A, 

Phenol and Sulphamethoxazole

Saw dust and organic nitrogen 

conataining compounds

Organic pollutants were effectively oxidized. Xu et al. (2020)

Monoaromatic hydrocarbons Wood Biochar produced at a temperature of 800°C, decreased the availability 

of monoaromatic hydrocarbons and led to their biodegradation.

Bushnaf et al. (2011)

4-nonylphenol Bamboo and Fe3O4 At pH 3, 85% degradation efficiency was achieved for 4-nonylphenol 

with the dosage of 3.33 gL−1 of biochar in river sediments.

Dong et al. (2019)

Oxyfluorfen Rice hull Oxyfluorfen degraded more rapidly in soil treated with biochar 

compared to soil without biochar amendment.

Oni et al. (2019)
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available moisture are insignificant over time or may be potentially 
harmful in clayey soils (Brtnicky et al., 2021). Soil is defined as a 
nonrenewable resource due to its slower rate of formation, and even 
a moderate dose of biochar is anticipated to outpace the normal rate 
of soil formation (Verheijen et al., 2010). Therefore, extreme caution 
must be taken while adding biochar to a field in order to match the 
soil formation rate (Brtnicky et al., 2021). Biochar may release some 
organic pollutants like volatile organic compounds, polycyclic 
aromatic hydrocarbons, dioxins etc. These compounds are either 
normally found in the feedstock used to make biochar or are 
synthesized during the pyrolysis process, which might include faulty 
or partial pyrolysis (Hilber et al., 2017). The range of pollutants in the 
resultant biochar mainly depends on biomass used in its production 
(Krithiga et al., 2022), primarily for certain feedstocks like sludges or 
biomass derived from phytoremediation. The combination of 
potential hazardous compounds with biochar is a big concern in 
relation to soil pollution and health implications (Brtnicky et  al., 
2021). Biochar made at elevated temperatures often contains more ash 
than that made at relatively low temperatures. As a result, it was 
speculated that the negative effects may be  triggered on plants 
cultivated in soils amended with biochar generated at elevated 
temperatures (Butnan et al., 2015). Another disadvantage of biochar 
is its ability to absorb nitrogen and also other important elements like 
Fe, which can be detrimental to plant development (Younas et al., 
2024). Biochars produced at lower pyrolysis temperatures often 
contain more labile organic compounds that promote microbial 
immobilization of nitrogen, while high-temperature biochars tend to 
have a higher surface area and cation exchange capacity (CEC), 
leading to increased ammonium adsorption. Furthermore, fine 
biochar particles offer more adsorption sites and may enhance 
nitrogen retention but also delay its release, which can hinder plant 
uptake. In contrast, larger or coarser biochar particles typically reduce 
this immobilization effect and allow more immediate nitrogen 
availability. Strategic co-application of biochar with compost or 
nitrogen fertilizers can help balance this effect and improve overall 
nutrient use efficiency (Haider et al., 2024; Rajkovich et al., 2012).

8 Conclusion and recommendations

In comparison to chemical fertilizers, biochar has a significantly 
positive impact on soil fertility and crop production while minimizing 
adverse environmental effects. Furthermore, it contributes to 
environmental improvement through carbon sequestration, GHG 
reduction, and the management and mitigation of organic pollutants 
and toxic metals. Biochar fosters the proliferation of beneficial soil 
microbial fauna, enhancing overall soil quality. Notably, it can replace 
chemical fertilizers due to its slow-release nutrient properties and 
cost-effectiveness, making it a sustainable alternative. However, it’s 
essential to acknowledge the potential drawbacks associated with its 
application. Harnessing the full potential of biochar in agriculture, 
particularly in developing countries, requires a multifaceted approach 
encompassing research, education, policy support, and collaboration. 
To begin with, there is a crucial need for investment in research and 
development to enhance biochar production technology. This 
involves improving the efficiency, scalability, and cost-effectiveness 
of production methods to make biochar more accessible to farmers. 
Simultaneously, initiatives to promote and educate farmers about the 

benefits of biochar are essential. Extension services, workshops, and 
demonstration farms can serve as effective platforms for 
disseminating knowledge and showcasing best practices in biochar 
integration. Moreover, integrating biochar production into existing 
organic waste management systems presents an opportunity to utilize 
agricultural and organic residues effectively, reducing waste while 
producing a valuable agricultural input. Collaboration between 
researchers, farmers, policymakers, and industry stakeholders is 
paramount for advancing the adoption of biochar. Research into the 
specific properties of different types of biochar and their effects on 
soil fertility could lead to the development of tailored biochar 
products for different soil types and crops. To ensure biochar benefits 
reach smallholder farmers, it is essential to promote low-cost, 
accessible pyrolysis technologies that convert crop residues into 
biochar on-site. Training through agricultural extension services, 
farmer field schools, and demonstration plots can build local capacity 
for biochar application. Community-based models, such as 
cooperatives or rural entrepreneurs, can facilitate biochar production 
and distribution at the village level. These approaches, combined with 
tailored agronomic guidance, will help integrate biochar into existing 
farming systems, enhancing soil health, reducing input costs, and 
improving resilience to climate variability. Thus, by combining 
scientific insight with grassroots implementation and supportive 
policy environments, biochar can serve as a transformative 
technology for regenerative agriculture. Such efforts will not only 
improve soil health and agricultural productivity but also contribute 
significantly to global goals on climate change mitigation and 
sustainable development.
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