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Introduction: Agroecological wellbeing performance (AWP) plays a crucial role 
in fostering sustainable agricultural development and improving overall human 
welfare. The enhancement of rural human capital is a key factor in bolstering 
AWP, offering substantial support for its improvement.

Methods: This study utilizes data from 30 provincial regions in China over the 
period from 2011 to 2022 to assess AWP using the super-efficient SBM model. 
The spatial Durbin model is employed to analyze the spatial spillover effects of 
rural human capital on AWP and to explore the underlying mechanisms of its 
influence.

Results and discussion: The findings indicate that improvements in rural human 
capital have a significant positive impact on AWP, with notable spatial spillover 
effects. Heterogeneity analysis show that rural human capital significantly 
enhances AWP in regions with steep topography. In contrast, in Main Grain-
Producing Areas (MGPAs), the contribution of rural human capital to AWP is 
more localized, with limited cross-regional spillover effects. Mechanism 
analysis further suggests that the development of digital inclusive finance 
effectively supports high human capital groups in enhancing AWP, while 
resource mismatches act as a barrier to the full potential of rural human capital 
in improving AWP. These insights provide valuable guidance for advancing AWP 
across regions.
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1 Introduction

Environmental pollution and climate change pose unprecedented threats to global 
ecological security and public health. Rapid industrialization, heavy reliance on fossil fuels, 
and inefficient resource management have accelerated deforestation, soil erosion, and water 
contamination, significantly endangering food and water security (Shah et al., 2022) and 
aggravating health risks worldwide (Münzel et  al., 2023). As a vital interface between 
ecosystems and human wellbeing, agriculture is both a victim of and a contributor to these 
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environmental pressures. Unsustainable agricultural practices have 
intensified biodiversity loss, greenhouse gas emissions, and land 
degradation, while climate impacts such as extreme weather 
increasingly jeopardize farming livelihoods and food systems (Lippert 
et  al., 2009; Liu et  al., 2023). In this context, enhancing the 
sustainability of agriculture has become a global imperative. 
Agroecological wellbeing performance (AWP) has emerges as a 
critical framework to address this need, defined as the optimization of 
resource utilization to enhance human welfare while minimizing 
ecological depletion in agricultural production (Costanza et al., 2016; 
Feng et  al., 2019). AWP advocates a paradigm shift from output-
centric models toward agricultural systems that balance productivity, 
environmental stewardship, and farmer wellbeing.

Transitioning agriculture to a low-carbon system presents unique 
complexities. Unlike industrial sectors, farming systems hinges on the 
ecological awareness and practical skills of farmers, who are key actors 
in decentralized rural economies. Practices such as reducing chemical 
inputs and adopting straw-returning techniques require not only 
policy incentives, exemplified by China’s “dual carbon goals” aimed at 
achieving carbon peak by 2030 and carbon neutrality by 2060 (Elahi 
et al., 2022), but also the capacity of farmers to absorb new knowledge 
and apply innovative techniques (Benhabib and Spiegel, 2005; 
Shahbaz et  al., 2022). Consequently, rural human capital, which 
encompasses education, skills, and adaptive capabilities (Luo et al., 
2023), emerges as a decisive factor enabling green technology 
adoption, precision agriculture, and efficient resource use (Hong et al., 
2023; Li X. et  al., 2024; Zou and Mishra, 2024). Moreover, rural 
human capital generates spatial spillover effects: improvements in 
education and skills in one locality often diffuse through labor 
mobility and social networks, boosting the adoption of sustainable 
practices and enhancing agroecological welfare performance in 
neighboring regions (Chen et al., 2023; Hou et al., 2024). Therefore, 
strengthening rural human capital is essential both to supply the talent 
support and to catalyze innovations needed for sustainable 
agricultural transformation.

Although the concept of AWP has gained attention, few studies 
have directly examined its determinants. Instead, existing research has 
typically explored factors related to agricultural sustainability or rural 
wellbeing, thereby addressing AWP only tangentially. These studies 
have focused on isolated drivers such as technological advancement 
(Guo et al., 2024), institutional frameworks (Contesse et al., 2018; 
Abbasi and Zhang, 2024), agricultural infrastructure (Jordan et al., 
2021), and resource allocation (Doucet and Requejo, 2022; Li and 
Gao, 2024). While these factors are undeniably critical, they often 
overshadow the integrative role of rural human capital, which limits 
holistic strategies for AWP enhancement. This divergence in focus has 
left the theoretical underpinnings of AWP underdeveloped, 
particularly in terms of how cross-cutting factors such as human 
capital shape agroecological outcomes.

Despite these insights, existing studies remain fragmented, 
reducing human capital to a unidimensional educational metric while 
neglecting its cultural and skill-based dimensions. This 
oversimplification obscures critical mechanisms underlying the 
relationship between human capital and environmental outcomes. 
Additionally, spatial analyses investigating the role of human capital 
in AWP are limited, particularly regarding how regional resource 
mismatches and digital financial inclusion moderate these 
relationships. These gaps hinder the development of spatially adaptive 

policies that could synergize ecological sustainability and farmer 
welfare across decentralized agricultural systems.

This study makes several significant contributions. First, unlike 
previous studies that primarily focused on education as a single 
indicator, this study expands the concept of rural human capital by 
examining both “cultural human capital” and “skill human capital,” 
offering a dual-dimensional framework to capture its sustainability 
impacts. Second, this research employs the super-efficient SBM model, 
which incorporates welfare factors, to assess AWP, providing a more 
accurate measure of agroecological wellbeing. Finally, it explores 
spatial spillover mechanisms and the moderating role of factors such 
as digital financial inclusion and resource mismatch, enriching the 
spatial dimension of AWP research, which has been underexplored in 
previous studies. Through these innovations, this study contributes to 
both the theoretical and empirical understanding of enhancing AWP 
through the development of rural human capital in 
developing countries.

2 Theoretical basis and research 
hypothesis

2.1 Rural human capital and AWP

Human capital theory emphasizes the importance of education 
and training in human capital accumulation. In the context of 
agricultural production, enhancing rural human capital plays a 
significant role in improving social welfare, facilitating the adoption 
of green production technologies, and raising farmers’ environmental 
awareness, thus enhancing AWP.

Firstly, welfare economics posits that the primary aim of economic 
activity is to enhance the wellbeing. The accumulation of rural human 
capital improves farmers’ agricultural proficiency and market 
competitiveness, ultimately leading to higher incomes (De Brauw, 
2019). Higher incomes and improved living conditions enable farmers 
to invest in sustainable agricultural practices, such as straw utilization, 
further advancing AWP.

Second, the development of rural human capital supports the 
diffusion and adoption of innovative green technologies, fostering 
knowledge spillovers and promoting sustainable practices. With 
enhanced human capital, farmers can more quickly adopt and 
implement new technologies, such as facility-based agriculture and 
green practices like straw return. These practices are further 
disseminated through demonstrations and training courses, driving 
technological innovation and green development in the agricultural 
sector (Ciccone and Papaioannou, 2009; Luo et al., 2023). As a result, 
these efforts accelerate the overall enhancement of regional AWP.

Finally, education and training enhance farmers’ production 
knowledge, skills, and environmental awareness, leading to a greater 
focus on health and quality of life (Zhu et al., 2023). Rural residents 
with strong environmental awareness are more attuned to recognize 
the ecological impacts of agricultural activities and prioritize 
ecological benefits. This shift in mindset drives the adoption of water-
efficient technologies, such as drip and sprinkler irrigation, reducing 
water wastage and contributing to the enhancement of AWP. This shift 
in mindset drives the adoption of water-efficient technologies, such as 
drip and sprinkler irrigation, reducing water wastage and contributing 
to the enhancement of AWP.
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Based on this, we propose that:

Hypothesis 1: Rural human capital enhancement contributes to AWP.

2.2 Rural human capital, digital inclusive 
finance and AWP

Digital inclusive finance, combining inclusive finance and the 
digital economy, leverages technologies such as the Internet and big data 
to provide efficient, low-cost financial support to underserved regions 
and groups that traditional financial services often overlook (Yue et al., 
2022). This innovative financing model is increasingly recognized as a 
vital support of rural revitalization. With its broad coverage, depth, and 
digitalization, digital inclusive finance plays a crucial role in enhancing 
the optimization of rural human capital for AWP.

First, digital inclusive finance uses internet technologies to extend 
financial services to remote rural areas previously inaccessible to 
traditional finance systems (Jünger and Mietzner, 2019; Yue et al., 2022). 
This extension of financial support alleviates the long-standing issues of 
financial exclusion. In regions where digital inclusive finance is well-
developed, farmers with higher education and training tend to be more 
innovative and motivated to transform their agricultural production 
(Guo et al., 2024). These farmers are able to leverage digital finance tools 
to adopt green agricultural technologies (Rastogi et al., 2021), facilitating 
a green transformation in agricultural production practices and thereby 
effectively enhancing AWP.

Second, digital inclusive finance has expanded not only in 
coverage but also in the depth of its services. In regions where 
digital inclusive finance is well established, the use of big data 
analytics and tailored services has facilitated the provision of 
diverse financial products—such as microcredit, digital insurance, 
and savings products—catering to the varied financial needs of 
farmers (Mushtaq and Bruneau, 2019). Farmers with higher human 
capital are better equipped to assess and select the financial products 
that best meet their specific needs, securing ongoing support for 
capital and risk management. This enhances resilience in 
agricultural production, particularly in mitigating risks such as 
natural disasters (Beck et al., 2018), and contributes to the rural 
economy’s vitality, spurring technological innovation, fostering 
green agricultural practices, and stabilizing income growth, all of 
which improve AWP.

Third, digital inclusive finance addresses information asymmetry 
through the use of technologies like big data, blockchain, and artificial 
intelligence, promoting rapid knowledge dissemination and 
information sharing (Hasan et  al., 2021). Educated and trained 
farmers can access the latest agricultural technologies and market 
information through internet platforms, reducing information 
acquisition costs (Mushtaq and Bruneau, 2019). This access enables 
them to quickly recognize the advantages of green production 
technologies, and increase their willingness and ability to adopt green 
practices such as Integrated Pest Management (IPM) technologies 
(Altıntaş and Kassouri, 2020), thus improving eco-efficiency in 
agricultural production and enhancing AWP.

Therefore, we propose the following hypothesis:

Hypothesis 2: Digital inclusive finance as a positive moderator in 
the relationship between rural human capital and AWP.

2.3 Rural human capital, resource 
mismatch and AWP

According to resource allocation efficiency theory, a necessary 
condition for achieving Pareto optimality is the allocation of resources 
to the most efficient sectors. Resource mismatch, which includes both 
capital and labor mismatches, represents a deviation from this 
optimal allocation (Hsieh and Klenow, 2009). The misalignment 
between capital and labor can significantly impacts rural human 
capital upgrading, potentially leading to a loss in AWP. Resource 
mismatch negatively moderates the relationship between rural human 
capital and AWP, mainly in lenses of capital mismatch and 
labor mismatch.

Firstly, from the perspective of capital mismatch, this issue 
arises when capital is concentrated in inefficient sectors, preventing 
its efficient allocation to high-productivity areas with technological 
innovation capacity. According to the new economic growth 
theory, human capital possesses an “allocative capacity” that 
optimizes the flow of production factors such as capital. Highly 
qualified rural laborers have the potential to enhance resource 
allocation by engaging in large-scale operations through land 
leasing and the rational deployment of production inputs, such as 
fertilizers and seedlings, so as to enhance agricultural efficiency. 
However, financing constraints and “credit exclusion” in capital 
markets often hinder agricultural development. In regions with 
significant capital mismatch, laborers with substantial human 
capital may struggle to identify and select eco-friendly agricultural 
technologies or models due to a lack of capital, limiting their 
capacity to invest in the means of agricultural production (Wu 
et al., 2021). Eco-agriculture typically requires substantial upfront 
capital investment, and capital mismatch often results in the 
diversion resources to traditional agriculture or other 
non-agricultural industries with short-term gains (Li and Gao, 
2024). The advancement of ecological agriculture is consequently 
hindered, slowing the contribution of rural human capital to 
AWP. Moreover, the mismatch between capital allocation and 
demand can diminish the productivity of rural labor. In regions 
with a high resource mismatch, capital does not flow efficiently to 
productive farmers, leading to wasted resources and inefficiencies 
(Zhou et  al., 2023). While highly qualified labor can optimize 
resource allocation, substantial improvements in AWP remain 
challenging due to capital inefficiencies.

Second, from the perspective of labor mismatch, the urbanization-
driven siphoning effect attracts skilled labor away from rural areas, 
leaving a surplus of low-skilled workers (Zhou et  al., 2023). This 
shortage of high-skilled labor directly hinders the contributions of the 
high-human-capital groups in agriculture. Low-skilled laborers are 
less inclined to adopt modern production techniques and often rely 
on traditional practices, resulting in inefficient resource utilization 
and overexploitation. For example, over-fertilization and pesticide 
misuse increase production costs and damage agroecological systems 
(Houghton et  al., 2012). While highly skilled laborers have the 
potential to optimize resource allocation, labor mismatch limits their 
effectiveness (Gao and He, 2024), ultimately hindering AWP.

Hence, we propose the following research hypothesis:

Hypothesis 3: Resource mismatch negatively moderates the 
relationship between rural human capital and AWP.
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2.4 Spatial spillover effects of rural human 
capital

The theory of spatial interaction holds that economic activities 
across regions are spatially correlated through the movement of people, 
material exchanges and information sharing. Significant resource flows 
and technology diffusion occur between rural areas, and overlooking 
spatial factors can lead to estimation biases. The enhancement of rural 
human capital not only directly improves local AWP, but may also 
indirectly affect neighboring areas through knowledge sharing and 
experience transfer. Regions with higher rural human capital serve as 
benchmarks for agroecological development, with skilled farmers’ 
green production technologies and low-carbon models spreading to 
neighboring areas through collaboration and experience exchange. 
This diffusion can lead to broader emission reduction effects, which 
may subsequently enhance AWP in other regions.

Existing studies have also analyzed the spatial interactions in 
agriculture-related environmental performance, uncovering 
significant spatial correlations (Hou et al., 2024). Pan et al. (2015) 
found notable spatial spillover effects in energy consumption, while 
Li and Wang (2022) identified that the inverted U-shaped relationship 
between the digital economy and agricultural carbon emissions, 
exhibiting spatial spillover characteristics.

In summary, we propose the following hypothesis:

Hypothesis 4: Rural human capital not only positively influences 
local AWP, but also affects AWP in spatially linked areas.

The theoretical framework of this study is shown in Figure 1.

3 Methodology and data

3.1 Variable selection and measurement

3.1.1 The measurement of AWP
This study utilizes the super-efficient SBM model to measure AWP 

of 30 provinces, municipalities, and autonomous regions in China 
(excluding Tibet, Hong Kong, Macao, and Taiwan) from 2011 to 2022. 
Traditional SBM models can produce varying performance values due 
to input and output slack, potentially introducing errors in performance 
assessment. In contrast, the non-radial super-efficient SBM model 
improves upon the traditional approach by adopting a non-parametric 
method that accounts for non-radial deviations in both inputs and 
outputs. This model directly utilizes data relationships to derive the 
efficiency of decision-making units, enhancing the accuracy and 
scientific rigor of efficiency evaluations (Tone and Tsutsui, 2014). The 
formulae for the super-efficient SBM model are specified as follows:
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In Equation 1, δ  represents the AWP, while andx y  denote the 
input and output variables, respectively. The symbols m , s indicate the 
number of input and output variables, respectively. Additionally, − +,s s  
represent the slack variables for the input and output factors. The 
larger the value of δ, the higher the AWP.

The AWP evaluation index system incorporates rural resource 
consumption and environmental pollution as input elements, with the 
Human Development Index (HDI) as the desired output. The primary 
goal of eco-welfare performance is to maximize local welfare and 
improve individuals’ quality of life while optimizing the use of limited 
resources. Building on methodologies from previous studies (Feng 
et al., 2019; Bian et al., 2020; Long et al., 2020), this study identifies 
resource consumption and environmental pollution as key input 
indicators. Rural resource consumption is measured through indicators 
such as electricity, energy, and land resources. Environmental pollution 
inputs are further categorized into agricultural surface pollution and 
agricultural carbon emission indicators, reflecting the unique 
characteristics of rural environmental challenges.

Drawing upon the study of Hou et al. (2024), the measurement 
index for agricultural surface pollution utilizes a unit survey method 
to measure pollution levels across regions. This measurement 
encompasses four survey units: fertilizer pollution, pollution from 
livestock and poultry, farmland solid waste and pollution from rural 
households. The specific pollutants assessed are total nitrogen (TN), 
total phosphorus (TP), and chemical oxygen demand (COD), which 
are recognized as the most significant pollutants in agricultural surface 
pollution. The calculation formula is as follows:

 
γ γ γ

γ
= × ×∑ 1 2

t
c c t c cPollution Po factor factor

 
(2)

In Equation (2), t
cPollution  represents the emissions of pollutants 

from agricultural sources in year t within province c, encompassing 
TN, TP, and COD. The symbol γ  denotes the various types of survey 
modules. γc tPo  indicates the number of each survey unit in year t for 
area c. The γ1cfactor  represents the attrition coefficient of each survey 
unit, while γ 2cfactor  signifies the pollution coefficient of each 
investigation unit.

Carbon emissions are a significant contributor to climate change, 
with agriculture serving as both a major source of carbon emissions 
and a critical area for carbon sequestration. As such, total agricultural 
carbon emissions are incorporated into the rural environmental 
pollution indicator system. The Total Agricultural Carbon Emissions 
indicator assesses carbon emissions arising from the utilization of 
agricultural inputs, typically measured in kilograms of carbon 
equivalent from different agricultural operations. Emission factors are 
primarily sourced from the United Nations Intergovernmental Panel 
on Climate Change (IPCC) and the Oak Ridge National Laboratory 
(ORNL). These factors are as follows: fertilizer (0.8956 kg/kg), 
pesticide (4.9341 kg/kg), agricultural film (5.18 kg/kg), diesel fuel 
(0.5927 kg/kg), ploughing (312.6 kg/km2), and agricultural irrigation 
(20.476 kg/Cha).

The output indicator for AWP is wellbeing. Welfare is a crucial 
element that distinguishes AWP from other environmental 
performance indicators, such as eco-efficiency and carbon emission 
performance. While AWP emphasizes environmental quality and 
economic development, it also prioritizes the health and satisfaction 
of rural residents. This comprehensive approach reflects the 
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synergistic development of economic, environmental and social 
wellbeing in a more comprehensive way, aligning closely with the 
global objective of realizing the harmonious coexistence between 
human beings and nature. This study utilizes the Human 
Development Index (HDI), a widely recognized metric from the 
United Nations Development Programme (UNDP). The HDI 
provides an objective and comprehensive quantitative assessment 
across three dimensions—economic development, health care, and 
education—while ensuring accessibility of data. The HDI is 
calculated as the average of these three dimensions for each 
province, municipality, and autonomous region. Economic 
development is assessed using per capita disposable income in rural 
areas, while healthcare is characterized by the number of beds in 
rural medical institutions per 10,000 people. Educational 
development is measured by the average number of years of 
schooling per capita in rural areas. This assessment follows the 
methodology outlined in the United Nations Development 
Programme (UNDP) Human Development Report 2020, which is 
expressed in the following Equation (3):

 

× + × +
× + ×

=
+ +

+

   

   

   

i   

6 9
12 16

Schooling years

Primary school Junior High school

High school College or above

Primary school Junior High school

H gh school College or above

P P
P P
P P
P P

 

(3)

Table 1 lists  the input and output variables for AWP.

3.1.2 The measurement of rural human capital 
measurement

Existing studies are more likely to measure rural human capital 
primarily through years of rural education (Shahbaz et al., 2022). 
However, this study adopts a composite measure of rural human 
capital that encompasses two dimensions: knowledge-based and skill-
based human capital. Given the generally low levels of education 
development among rural residents, we measure knowledge-based 

human capital using the ratio of the rural labor force with at least a 
high school education to the total rural population in each province. 
Skill-based human capital is characterized by the number of graduates 
from rural adult cultural and technical training schools.

The entropy value method is employed to provide a comprehensive 
and objective evaluation of indicators across two dimensions of rural 
human capital, ensuring the objectivity and accuracy of the assessment 
results. Higher levels of educational attainment among rural residents 
are associated with enhanced abilities in literacy, cognitive ability, and 
technological application. These competencies are critical for driving 
technological advancements in agriculture, which, in turn, may 
positively influence AWP. Moreover, targeted skills training for farmers 
can mitigate capacity constraints stemming from limited formal 
education, enhancing their competence in areas such as eco-agriculture 
construction, ultimately contributing to increased AWP.

3.1.3 Mechanism variables
Resource mismatch. Building on the framework established by 

Wu et al. (2021), resource mismatch is divided into two dimensions: 
capital mismatch and labor mismatch, The indices for capital 
mismatch and labor mismatch are as follows. First, the output variable 
is represented by the gross value of agricultural, forestry, livestock and 
fisheries production across provinces, adjusted for real output using 
constant 2011 prices. Second, labor input is measured by the number 
of people employed in the primary sector within each province. Third, 
capital inputs are characterized by the stock of agricultural capital 
within each province, estimated via the perpetual inventory method. 
Resource mismatch is quantified as a coefficient of relative price 
distortion, as defined by the following formula:

 

β βγ γ
β β

      = =      
      

/ ,ˆ /ˆi i Ki i i Li
Ki Li

K L

K s L s
K L  

(4)

In Equation (4), γ̂Ki represents the capital mismatch index and iK
K

 
denotes the actual proportion of capital utilized by region i relative to 

FIGURE 1

Theoretical framework diagram.
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the total capital stock. The term β
β
i Ki

K

s  indicates the theoretical 
proportion of capital that should be  allocated to region i under 
efficient capital utilized. Similarly, γ̂ Li denotes the labor mismatch 
index, with iL

L
 representing the actual ratio of agricultural labor to 

the total labor force population in region i. The expression β
β
i Li

L

s  

reflects the theoretical proportion of labor that should be allocated to 
region i under efficient labor utilization. If the ratio of γ̂Ki or γ̂ Li 
exceeds 1, it suggests that the cost of using capital or labor is relatively 
low, indicating an over-allocation of resources in that region. 
Conversely, if the ratio is less than 1, it implies that the region is under-
allocating capital or labor relative to the theoretical level, signaling 
inefficiency in resource allocation.

Digital inclusive finance. As a key component of the digital 
transformation, digital inclusive finance transcends traditional 
geographical boundaries by advanced technologies such as the Internet, 
big data and artificial intelligence. This innovation has the potential to 
influence AWP in other regions. To assess the extent of digital inclusive 
finance across different regions, this study employs the Peking 
University Digital Inclusive Finance Index. The index is composed of 
three primary dimensions: the breadth of coverage, the depth of use, 
and the degree of digitization. Higher index scores on the index 
indicate a more advanced state of digital inclusive finance development.

3.1.4 Control variables
To mitigate potential bias from omitted variables, this study draws 

upon existing literature (Shi et al., 2024; Sui et al., 2024) to identify 
relevant control variables that may influence AWP. Specifically, 
environmental regulation (ER) is represented by per capita investment 
in environmental pollution control. Agricultural mechanization (AM) 
is measured by the ratio of total machinery power to cultivated area. 
Agricultural infrastructure (AI) is measured by the ratio of effective 
irrigated area to total sown area. Rural entrepreneurial activity (REA) 
is assessed using the ratio of the rural private sector employment and 
self-employment to the total rural population, with a higher ratio 
indicating greater entrepreneurial activity within the rural economy. 
Rural aging (RA) is quantified by the proportion of the rural 
population aged 65 and over.

3.2 Methodology

3.2.1 Spatial econometric model
The influence of rural human capital on AWP extends beyond 

individual regions, exhibiting spatial dependencies. Given the 
geographical proximity of rural areas and the interconnectedness of 
agricultural markets, there is frequent exchange of information, 
technology and production factors between neighboring regions. 
Consequently, improvements in one region may affect AWP in spatially 
adjacent areas. Ignoring the spatial correlations may lead to biased 
regression results. The Spatial Durbin Model (SDM), a generalized 
model, is well-suited to account for spatial correlations arising from 
various factors, including causal relationships, independent variables, 
or error terms, and provides a more accurate measure of spillover 
effects on AWP. By adjusting the model’s coefficients, the SDM can 
be transformed into either a Spatial Error Model (SEM) or a Spatial Lag 

Model (SLM). Therefore, this study constructs a generalized SDM as a 
benchmark model, which is formulated as follows:

 

α ρ α θ
α ϕ δ λ ε

= + × + + × +
+ × + + +

0 1
2

it it it it
it it i t it

AWP W AWP HR W HR
X W X  (5)

Where i and t denote the data for province i in year t, respectively, and 
W denotes the spatial weight matrix. × itW AEWP  represents the spatial 
lag term of AWP, × itW HR  is the spatial lag term of rural human capital, 
and × itW X  denotes the spatial lag term of control variables. δi, λt, and εit  
denote province fixed effects, year fixed effects, and random error terms, 
respectively. The regression coefficients of the independent variables 
capture both direct and indirect effects. In this study, the direct effect 
refers to the impact of rural human capital in the region on AWP, while 
the indirect effect refers to the impact of rural human capital in spatially 
adjacent regions on AWP, reflecting the spatial spillover effect.

3.2.2 Moderated effects model
Building upon Equation 5, in order to examine the moderating 

effects of digital inclusive finance, labor mismatch, and capital 
mismatch, this study adds the interaction terms between rural human 
capital and the each of the three moderating variables respectively, 
leading to the construction of the following model:

 

α ρ α θ
α σ α τ

α ϕ δ λ ε

= + × + + × +
+ × + × + ×
× + + × + + +

0 1
2 3

4

it it it it
it it it it
it it it it i t it

AEWP W AEWP HR W HR
Z W Z HR Z W

HR Z X W X  

(6)

In Equation (6), itZ  denotes the moderating variables, including 
digital inclusive finance, labor mismatch and capital mismatch. × itW Z  
denotes the spatial lag term of the moderating variable. ×it itHR Z  is the 
interaction term between the human capital and the moderating 
variables. × ×it itW HR Z  represents the spatial lag term of the interaction.

3.3 Data sources

Given that the Digital Inclusion Index data begins in 2011, and 
considering the incomplete disclosure of city- and county-level data on 
agricultural surface pollution and agricultural carbon emissions, as well as 
the methodological differences in statistics for Tibet, Hong Kong, Macao, 
and Taiwan, which hinder comparability with other provinces, this study 
ensures the completeness and authenticity of the data by using sample data 
from 30 provinces (including autonomous regions and municipalities) in 
mainland China, excluding Tibet, Hong Kong, Macao, and Taiwan, for the 
period from 2011 to 2022. To address large discrepancies in certain 
indicators, values were log-transformed for consistency.

The raw data used this study were mainly sourced from the China 
Statistical Yearbook, China Rural Statistical Yearbook, China 
Education Statistical Yearbook, China Energy Statistical Yearbook, 
and the provincial statistical yearbooks for each year. Data on the 
digital inclusive finance are derived from the Peking University Digital 
Inclusive Finance Index. Price indices have been adjusted using 2011 
as the base period, and missing data points were filled using the 
moving average method. The definitions of the variables and 
descriptive statistics are shown in Table 2.
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4 Empirical results

4.1 Spatial weight matrix setting

To more accurately capture the mechanism through which rural 
human capital affects AWP and to ensure the robustness of the empirical 
results, this study adopts the approach proposed by Parent and LeSage 
(2008), which integrates spatial effects derived from both geographic and 
economic distance. A spatial weight matrix based on economic 
geography is utilized to assess whether spatial spillover effects are present 
in the relationship between rural human capital and AWP. The following 
economic geography-based spatial weight matrix is constructed:

 ( )ω ω= + −1 21W W W  (7)

In Equation (7), 1W  represents the spatial weight matrix for 
economic distance, defined as the absolute inverse of the difference in 
GDP per capita between provinces. 2W  denotes the spatial weight 
matrix for geographic distance, calculated as the reciprocal of the 
straight-line Euclidean distance between capital cities of each 
province. The parameters ω and ( )ω−1  denote the weight values 
assigned to each matrix, with a value of 0.5 applied in this study. Prior 
to parameter estimation, both weight matrices were normalized.

4.2 Spatial correlation analysis

Before estimating the model, the presence of spatial correlation in 
AWP was tested using the global Moran’s index. The results of the 
analysis are shown in Table  3. The Moran index for AWP is 
significantly positive in most years, indicating a positive spatial 
correlation in AWP. This finding supports the validity of the spatial 
econometric model employed in this study.

4.3 Benchmark regression

To determine the specific form of the spatial econometric regression 
model, this study conducts LM, LR, and Hausman tests. The results of 
the test show that the LM test rejects the null hypothesis at the 1% level 
of statistical significance, indicating the presence of both spatial error 
and spatial lag effects. Moreover, the LR test rejects the null hypothesis 

at the 1% level, suggesting that the spatial Durbin model (SDM) cannot 
be reduced to either a spatial error model (SEM) or a spatial lag model 
(SLM). The Hausman test also rejects the null hypothesis, supporting the 
use of the fixed-effects model over the random effects model. 
Consequently, this study employs a fixed-effects spatial Durbin model 
to analyze the spatial spillover effects of rural human capital on AWP.

This study examines the impact of rural human capital on AWP 
by estimating the SDM and compares the results with those obtained 
from Ordinary Least Squares (OLS) estimation. The results of the 
benchmark model are shown in Table 4. The coefficients of HR are 
higher in the SDM compared to the OLS regression, indicating that 
the SDM provide a more applicable for analysis. Both the coefficients 
of HR and the interaction term (W*HR) are significantly positive, 
indicating that rural human capital significantly enhances AWP and 
also demonstrates positive spatial spillover effects.

This study further substantiates the relationship between rural 
human capital and AWP by analyzing direct, indirect and total effects. 
The partial differentiation method in spatial modeling, as proposed by 
LeSage and Pace (2009), is employed to decompose the effects of rural 
human capital and related control variables on AWP. The results are 
presented in Table 5. Both the direct and indirect effects of rural human 
capital are significantly positive, indicating substantial positive spatial 
externalities associated with rural human capital. Specifically, the 
higher the degree of rural human capital is associated with improved 
AWP not only within the region but also in spatially related regions.

This can be attributed to two primary factors. On the one hand, 
well-educated and well-trained farmers are better equipped to 
advocate for green production technologies, such as facility-based 
agriculture, precision farming techniques, and waste recycling 
practices, through participation in cross-regional eco-agricultural 
cooperation projects and agricultural science and technology 
exchanges. For example, Shouguang City, known as the “hometown 
of vegetables” in China, has established vegetable farmers’ cooperatives 
to promote the resource utilization of vegetable straw. This initiative 
has not only enhanced resource efficiency in surrounding areas but 
has also contributed to the improvement of AWP.

On the other hand, a highly skilled labor force facilitates the cross-
regional extension of the eco-agricultural value chain. A Costa Rican 
coffee cooperative, certified by the Rainforest Alliance, has assisted 
Honduran producers in implementing shade-growing practices to 
develop a Central American “sustainable coffee belt,” which promotes 
sustainable agriculture and contributes to biodiversity and worker 

TABLE 1 Input and output variables for the measure of AWP.

Category Variable Segmentation variables Explanation Units

Input Rural resource 

consumption

Electricity Rural electricity consumption per capita M3

Energy Agricultural energy consumption per capita Million tons of standard coal

Land resources Sown area per capita 1,000 m2

Agricultural surface 

pollution

COD Chemical oxygen demand Million tons of standard coal

Nitrogen Nitrogen fertilizer intensity 104 tons

Phosphorus Intensity of phosphate fertilizer production 104 tons

Carbon emissions CO2 Total agricultural carbon emissions 104 tons

Output HDI Economic Rural disposable income per capita 104 yuan RMB

Healthcare Number of beds in medical institutions per 10,000 persons /

Education Years of schooling per capita Year
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wellbeing (Snider et al., 2017). Moreover, digital sharing platforms 
accelerate the flow of knowledge and help overcome geographical 
barriers. Utilizing digital tools such as WeChat public platforms and 
TikTok broadcasts, skilled farmers are able to build cross-regional 
technical exchange networks, disseminating advanced agricultural 
technologies and ecological concepts to other regions and forming 
collaborative networks. For instance, tea farmers in Anji, China, 
demonstrate ecological management techniques for tea gardens 
through live streaming on Douyin, attracting tens of thousands of 
farmers from other tea-producing regions to learn and replicate these 
practices. This initiative has led to a reduction in pesticide usage 
intensity in the associated areas, thereby improving overall AWP.

4.4 Robustness tests

In analyzing the impact of rural human capital on AWP, a 
bidirectional causal relationship may exist, which could lead to 
endogeneity issues that bias the findings. To ensure the robustness of 
the empirical results, this study conducts three robustness tests: 
replacing the dependent variable, altering the spatial weight matrix, 
and changing the parameter estimation method.

4.4.1 Replacement of dependent variable
The previous study has measured AWP using the super-efficient 

SBM model, which effectively evaluates AWP by integrating both 
inputs and outputs. To assess the sensitivity of the empirical results to 
different measures of AWP, this study applies principal component 
analysis to re-measure AWP prior to parameter estimation. The results 
corresponding to this approach are presented in column (1) of Table 6. 
The consistent findings regarding the spatial spillover effects of rural 
human capital on AWP further validate the reliability and robustness 
of the empirical results.

4.4.2 Different spatial weight matrices
In addition to employing the economic-geographical nested 

spatial weight matrix, we also apply the economic distance weight 
matrix (W1) and inverse distance weight matrix (W2) for robustness 
testing. As shown in columns (2) and (3) of Table 6, the coefficients 
for rural human capital and its spatial lag term remain significantly 
positive, indicating that the positive spatial spillover effects of rural 
human capital on AWP are both stable and significant. The use of 
different spatial weight matrices does not change the primary 
conclusion of this study. Enhancing rural human capital is an effective 
approach for improving AWP in both local and spatially 
connected areas.

4.4.3 Changing parameter estimates
To address the potential endogeneity bias of the model, this study 

employs the generalized spatial panel autoregressive two-stage least 
squares regression (GS2SLSAR) method. The volume of book 
collections in township cultural stations is used as an instrumental 
variable. On the one hand, the volume of these collections serves as an 
effective indicator of the intensity of regional educational resource 
allocation and can be considered an endogenous variable for rural 
human capital. On the other hand, the number of books held in 
township cultural stations, is less likely to have a direct correlation with 
AWP, making it a suitable exogenous variable for AWP. Column (4) of 
Table 6 presents the estimation results from the instrumental variables 
approach, where the first-stage F-statistic exceeds 10, rejecting the null 
hypothesis of weak instruments. The estimated coefficients for both 
w1y_ AWP and rural human capital remain significantly positive, 
consistent with the benchmark model and maintaining a stable level of 
significance. These results reinforce the conclusion that the positive 
spatial spillover effect of rural human capital on AWP is highly robust.

4.5 Heterogeneity analysis

4.5.1 Heterogeneity of planting structure
Food is a strategic resource essential for human survival, and 

ensuring food security is crucial for national stability. Due to China’s 
diverse and complex geography, regional disparities in food 
production are inevitable. Previous studies have also highlighted that 

TABLE 2 Descriptive statistics of the selected variables.

Variable Obs Mean Minimum Maximum Standard deviation

AWP 360 1.011 0.652 1.583 0.126

HR 360 0.191 0.003 0.859 0.193

ER 360 6.088 0.248 31.027 4.492

AI 360 0.441 0.172 1.234 0.179

RA 360 0.133 0.05 0.275 0.045

MI 360 0.652 0.252 1.387 0.235

REA 360 0.276 0.018 2.846 0.441

TABLE 3 Global Moran’s I calculation results from 2012 to 2022.

Year I Z

2012 0.123* 1.79

2013 0.104 1.45

2014 −0.028 0.074

2015 0.054 0.968

2016 0.097 1.444

2017 0.113 1.646

2018 0.126** 1.748

2019 0.179*** 2.247

2020 0.261*** 3.058

2021 0.271*** 3.145

2022 0.271*** 3.158

*, **, and *** represent the significant level at 10, 5, and 1%, respectively.
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agricultural carbon emissions are higher in China’s Main Grain-
Producing Areas (MGPAs) (Zhang et al., 2019; Sui et al., 2024). To 
further assess the effect of rural human capital upgrading on AWP 

across different regions, the study area was divided into MGPAs and 
non-grain-producing areas (including non-grain production cropland 
and production and sales balance areas). Separate regressions were 
conducted for each group. The results, presented in Table 7, column 
(1) and column (2), indicate that enhancement of rural human capital 
significantly contributes to AWP in the MGPAs. However, no spatial 
spillover effect is observed. In contrast, the impact of rural human 
capital on AWP in non-grain-producing areas is not statistically 
significant, as the spatially lagged term (Rho) fails to attain significance.

The phenomenon may be attributed to the concentrated and 
large-scale nature of grain cultivation in MGPAs, where farmers 
possess a long history of farming and extensive experience, 
enabling them to master production skills more proficiently. This 
promotes continued specialization and organization within 
MGPAs. High-standard agricultural practices can reduce the 
fertilizer use intensity and optimize resource allocation (Li 
Q. et al., 2024), thereby improving AWP. However, subsidy policies 
in MGPAs often prioritize yield stability over rigorous assessments 
of ecological indicators. This approach weakens incentives for 
farmers to share technology, resulting in a local lock-in effect. 
Consequently, spatial spillovers in AWP are less pronounced. 
While in non-grain-producing areas, where cash crops or other 
economic activities are more common, the enhancement of 
farmers’ skills is primarily focused on other sectors such as 
horticulture and forestry. These skills have a more indirect impact 
on AWP, and the returns on human capital in these regions may 
take longer to materialize, resulting in a more limited 
influence on AWP.

4.5.2 Topographic heterogeneity
The steepness and gentleness of terrain significantly influence 

agricultural production, resource utilization efficiency, and the 
sustainability of the agroecological environment. Complex terrain 
conditions can considerably limit agricultural development and 
wealth accumulation (Zhou and Xiong, 2018). The impact of rural 
human capital on AWP may differ depending on the topographical 
characteristics of the area. To further explore this, the 30 sample 
provinces (including cities and districts) were categorized into areas 
with gentle terrain (absolute relief ≤1,000 m) and areas with steep 
terrain (absolute relief >1,000 m), based on terrain relief. This 
classification enables the examination of the spatial spillover effects of 
rural human capital on AWP across different topographical conditions.

As indicated by the data in columns (3) and (4) of Table 7, the 
enhancement of rural human capital significantly improves AWP in 
areas with steep terrain, exhibiting notable spatial spillover effects. 
In contrast, it does not show a significant contribution to AWP in 

TABLE 5 Spatial spillover effects variables.

HR ER AI RA MI REA

Direct effect 0.075** −0.002 0.078 1.210*** 0.043 0.080***

(0.030) (0.002) (0.049) (0.199) (0.027) (0.023)

Indirect effect 0.276*** −0.005* −0.088 −1.029** −0.125** 0.054

(0.070) (0.003) (0.082) (0.439) (0.050) (0.070)

Total effect 0.351*** −0.007** −0.010 0.181 −0.082 0.134**

(0.073) (0.003) (0.070) (0.426) (0.055) (0.054)

*, **, and *** represent the significant level at 10, 5, and 1%, respectively. In addition, there is standard error clustered at province-level in the parentheses.

TABLE 4 Regression results of panel data.

Variables OLS SDM

(1) (2)

HR 0.065*** 0.095***

(0.023) (0.030)

ER −0.002* −0.002

(0.001) (0.002)

AI 0.012 0.066

(0.044) (0.047)

RA 0.821*** 1.126***

(0.170) (0.190)

AM 0.113*** 0.035

(0.026) (0.030)

REA 0.094*** 0.083***

(0.013) (0.019)

W*HR 0.390***

(0.084)

W*ER −0.007**

(0.003)

W*AI −0.089

(0.102)

W*RA −0.900

(0.561)

W*MI −0.145**

(0.065)

W*REA 0.105

(0.088)

Constant 0.982***

(0.009)

Rho −0.383***

(0.107)

N 360 360

R2 0.328 0.385

*, **, and *** represent the significant level at 10, 5, and 1%, respectively. In addition, there 
is standard error clustered at province-level in the parentheses.
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regions with gentle terrain. This disparity may be attributed to the 
fragmented nature of cropland in areas with steep topography, 
where larger slopes result in less favorable conditions for vegetation 
growth. Soil and nutrients in these regions are more prone to 
erosion, resulting in heightened ecological vulnerability. 
Mechanization is also more challenging and less conducive to 
agricultural development, necessitating a greater reliance on 
advanced technology and skilled labor to boost agricultural 
production (Liu et al., 2022).

Highly qualified rural laborers are better equipped to adapt to 
complex terrain conditions, promoting the adoption of flexible green 
production techniques, such as terrace farming, conservation tillage, 
and ecological restoration. The use of precision farming technologies, 
such as drone spraying and soil sensors, helps reduce soil erosion and 
the over-application of fertilizers and pesticides, ultimately enhancing 
AWP. The improvement of rural human capital not only boosts local 
AWP but also drives surrounding farmers to adopt advanced practices 
and technologies through information sharing, technology diffusion, 
and cross-regional labor mobility. This collaborative learning leads to 
increased AWP across the entire region.

Highly skilled farmers have utilized precision agriculture 
equipment to achieve water and fertilizer conservation, as well as 
precise pest control. These practices have been rapidly adopted by 
neighboring farmers through agronomic extension meetings, training 
courses, and demonstration plots in regions with similar geographic 
conditions. This has resulted in the formation of regional 
eco-agriculture clusters, contributing to the overall improvement of 
AWP in adjacent regions.

4.6 Mechanism analysis

Based on the previous theoretical analysis, digital financial 
inclusion and resource mismatch may influence the effect of rural 
human capital on AWP. Therefore, this study constructs interaction 
terms between digital financial inclusion, resource mismatch, and 
rural human capital to further test the moderating effects.

4.6.1 The moderating role of digital inclusive 
finance

The interaction term between digital inclusive finance and rural 
human capital (DIFI*HR) is constructed and incorporated into the 
spatial Durbin model for testing. As shown in columns (1) and (2) of 
Table 8, the spatial lag term of the interaction between digital inclusive 
finance and rural human capital (W*DIFI*HR) is significantly 
positive, indicating that digital inclusive finance plays a positive 
moderating role in enhancing contribution of rural human capital to 
AWP in other regions. This result aligns with the conclusions of Lee 
and Wang (2022). One possible explanation for this phenomenon is 
the dual role of digital inclusive finance in facilitating both knowledge 
spillovers and improved financial accessibility.

On the one hand, regions with advanced digital inclusive finance 
systems tend to exhibit a higher degree of digital infrastructure 
development. The establishment of cross-regional digital registration 
systems and integrated information management platforms 
significantly reduces spatial barriers to the dissemination of knowledge 
and the transfer of green agricultural technologies. As a result, the 
technical expertise and sustainable production practices of highly 
skilled laborers can diffuse more efficiently to adjacent regions, 
contributing to the broader enhancement of AWP beyond 
local boundaries.

On the other hand, digital inclusive finance improves the 
accessibility and efficiency of financial services, especially in 
geographically dispersed rural areas. By mitigating the challenges of 
financial exclusion, digital inclusive finance enables educated and 
trained farmers to obtain green production capital at lower costs 
through digital payment systems and online credit services. Moreover, 

TABLE 7 Results of heterogeneity analysis.

Variables MGPAs Non-grain-
producing 

areas

Steep 
regions

Gentle 
regions

(1) (2) (3) (4)

HR 0.109* 0.0524 0.220*** 0.0297

(0.059) (0.037) (0.074) (0.055)

W*HR −0.315 −0.183* 0.441*** −0.193

(0.293) (0.105) (0.155) (0.145)

Rho −0.565*** −0.0313 −0.348** −0.749***

(0.104) (0.147) (0.165) (0.141)

Control variables Yes Yes Yes Yes

N 156 204 132 228

R2 0.353 0.555 0.026 0.296

*, **, and *** represent the significant level at 10, 5, and 1%, respectively. In addition, there 
is standard error clustered at province-level in the parentheses.

TABLE 6 Results of robustness test.

Variables Replacement 
of dependent 

variable

Different 
spatial weight 

Matrices

Changing 
parameter 
estimates

(1) (2) (3) (4)

W3 W1 W2 W3

w1y_ AWP 0.001***

(0.000)

HR 0.157*** 0.096*** 0.067** 0.508***

(0.051) (0.030) (0.032) (0.106)

W*HR 0.477*** 0.389*** 0.106

(0.147) (0.084) (0.241)

Rho −0.431*** −0.382*** −0.608**

(0.104) (0.107) (0.242)

The first-stage 

F-statistic

17.17

The second-

stage F-statistic

706.97

Control 

variables

Yes Yes Yes Yes

N 360 330 360 360

R2 0.368 0.385 0.261 0.171

*, **, and *** represent the significant level at 10, 5, and 1%, respectively. In addition, there 
is standard error clustered at province-level in the parentheses.
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digital platforms enable farmers to participate in agricultural 
cooperative networks, promoting the sharing of green development 
resources across regions. This interconnectedness allows farmers in 
neighboring areas to access essential inputs, knowledge, and services 
for sustainable agricultural practices, thereby further promoting 
improvements in AWP at a regional scale.

4.6.2 The moderating role of resource 
mismatches

This study explores the moderating effects of resource mismatches 
on the relationship between rural human capital and AWP from two 
distinct dimensions: labor misallocation and capital misallocation.

4.6.2.1 Moderating effect test of capital mismatch
As shown in columns (3) and (4) of Table 8, the spatial lag 

coefficients of the interaction terms between capital misallocation 
and rural human capital (W*CM*HR) are significantly negative. 
This indicates that capital misallocation weakens the positive 
impact of rural human capital on AWP, acting as a negative 
moderator. The findings also highlight the presence of spatial 
spillover effects, suggesting that inefficiencies in capital allocation 
can hinder the cross-regional transmission of human 
capital benefits.

The underlying causes of this negative moderating effect may 
be attributed to several key factors. First, capital misallocation 

TABLE 8 Regulatory mechanism test.

Variables (1) (2) (3) (4) (5) (6)

HR 0.107*** 0.100*** 0.113*** 0.176*** 0.117*** 0.141***

(0.030) (0.030) (0.030) (0.036) (0.031) (0.041)

DIFI −0.060 −0.059

(0.050) (0.048)

DIFI*HR 0.063

(0.051)

CM −0.001 0.039***

(0.008) (0.014)

CM*HR −0.155***

(0.048)

LM −0.002 0.006

(0.002) (0.005)

LM*HR −0.016

(0.011)

W*HR 0.426*** 0.321*** 0.368*** 0.450*** 0.412*** 0.729***

(0.086) (0.088) (0.085) (0.106) (0.088) (0.129)

W*DIFI −0.111 −0.011

(0.112) (0.112)

W*DIFI*HR 0.617***

(0.152)

W*CM −0.063** −0.005

(0.025) (0.035)

W*CM*HR −0.220*

(0.124)

W*LM −0.016** 0.024*

(0.007) (0.014)

W*LM*HR −0.107***

(0.032)

Rho −0.407*** −0.450*** −0.385*** −0.425*** −0.399*** −0.461***

(0.107) (0.106) (0.107) (0.107) (0.107) (0.106)

Control variables Yes Yes Yes Yes Yes Yes

N 360 360 360 360 360 360

R2 0.172 0.377 0.392 0.403 0.396 0.395

*, **, and *** represent the significant level at 10, 5, and 1%, respectively. In addition, there is standard error clustered at province-level in the parentheses.
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constrains both the accumulation and effective utilization of rural 
human capital, thereby diminishing its potential contribution to 
AWP. In rural areas, capital mismatches limit agricultural 
producers’ access to necessary financial resources, which are 
critical for upgrading production technologies and advancing 
ecological transformation. Insufficient capital availability poses 
barriers for rural laborers seeking to enhance their education or 
technical skills, restricting human capital development at its 
source. These constraints create a cycle of underinvestment and 
inefficiency in agricultural production, ultimately impeding the 
improvements in AWP.

Second, capital misallocation can lead to an uneven distribution 
of resources across regions, thereby reinforcing spatial disparities in 
AWP. Local agricultural production patterns and market dynamics 
can affect the adoption and dissemination of ecological production 
methods in neighboring regions. When capital is concentrated in 
specific areas, neighboring areas may struggle to access the financial 
resources needed to invest in human capital development. This 
imbalance limits the capacity of these regions to improve their labor 
force and adopt sustainable agricultural practices, ultimately 
perpetuating regional inequalities in AWP.

Third, capital misallocation also undermines the role of rural 
human capital in facilitating information spillovers. In areas with 
significant capital inequality, optimizing resource allocation within 
the agricultural sector becomes increasingly difficult. As a result, local 
farmers often lack the means to acquire and effectively apply 
advanced knowledge and green technologies. The limitation hampers 
the speed and breadth of information dissemination, thereby 
reducing the potential for knowledge spillovers to neighboring areas. 
Consequently, the broader regional improvements in AWP are 
further constrained.

4.6.2.2 Moderating effect test of labor mismatch
The coefficient of the interaction term between labor 

mismatch and rural human capital (LM*HR) is initially not 
significant. However, when spatial correlation is accounted for, 
the coefficient becomes significantly negative. This suggests that 
a higher degree of labor mismatch restricts the positive 
contribution of rural human capital to AWP, primarily through 
spatial spillover effects.

One possible explanation for this finding lies in the labor market 
distortions caused by labor mismatch. When labor mismatch is 
pronounced, highly educated famers are often compelled to migrate 
to urban areas due to a lack of suitable employment opportunities in 
their local communities. This results in a “brain drain” effect, leaving 
rural areas with a labor force that is predominantly lower-skilled and 
less capable of acquiring or applying advanced green production 
techniques and eco-agricultural technologies. As a result, local 
agricultural production tends to remain locked in traditional high-
input, high-emission modes, making it difficult to achieve significant 
improvements in AWP.

Also, the limited capacity of local middle- and low-skilled laborers 
to adopt and implement advanced green production techniques 
further constrains the establishment of local demonstration effect-key 
channels through which sustainable practices gain visibility and 
credibility. In the absence of such exemplars, opportunities for peer-
to-peer learning, knowledge exchange, and cross-regional technology 
transfer are significantly diminished. This, in turn, restricts the 

potential for information spillovers, thereby hindering AWP 
improvements in neighboring regions.

Furthermore, rural areas characterized by a high degree of 
labor mismatch often lack the economic resources necessary to 
support a transition toward sustainable agricultural practices, 
largely due to their overall low incomes. This financial constraint 
hampers the local adoption of green production methods and may 
also create competitive pressures on shared ecological resources in 
neighboring regions. For instance, economically disadvantaged 
rural communities may be  more inclined to adopt resource-
intensive and environmentally harmful agricultural strategies as a 
means of economic survival. Such practices not only undermine 
their own AWP but also set a negative precedent for adjacent 
areas, further obstructing the regional diffusion of ecological 
production models and hindering collective progress toward 
sustainable agriculture.

5 Conclusions and discussion

5.1 Research findings

Rural human capital plays a crucial role in enabling the 
low-carbon transition of agriculture and serves as a key driver of 
sustainable rural development. Drawing on panel data from 30 
provinces, municipalities directly under the central government, and 
autonomous regions in China from 2011 to 2022, this study employs 
the super-efficient SBM model to evaluate AWP. It empirically 
examines the spatial spillover effect and the mechanisms through 
which rural human capital influences AWP. The main findings from 
the analysis are as follows.

 (1) Rural human capital positively contributes to AWP with 
significant spatial spillover effects. Specifically, a highly 
skilled labor force enhances AWP within its own region and 
positively influences the AWP of neighboring regions 
through knowledge diffusion and technology spillovers. 
Multiple robustness tests confirm the reliability of 
these findings.

 (2) Heterogeneity analysis reveals that the spatial spillover effect 
of rural human capital on AWP is more pronounced in regions 
characterized by steep topography. In contrast, in MGPAs, the 
contribution of rural human capital to AWP is largely confined 
to the local region, with limited cross-regional influence. This 
pattern may be attributed to the complex natural conditions 
in mountainous regions, which require more adaptive and 
knowledge-intensive farming practices. Skilled farmers in 
these regions are more likely to share green technologies 
across neighboring regions, thereby enhancing spatial 
spillovers. In contrast, MGPAs rely more on conventional, 
large-scale production systems, where the role of human 
capital is more localized and less likely to generate cross-
regional effects.

 (3) Mechanism tests reveal that digital inclusive finance 
significantly enhances the impact of rural human capital on 
AWP by promoting the adoption of green production 
methods among skilled labor groups. In contrast, capital and 
labor mismatches weaken the relationship between rural 
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human capital and AWP, highlighting the adverse effects of 
inefficient resource allocation. These findings underscore the 
importance of advancing digital financial inclusion and 
improving the coordination of capital and labor resources—
both within and across regions—to fully harness rural 
human capital for sustainable agricultural development and 
broader improvements in AWP.

5.2 Theoretical implications

Rural human capital, encompassing the skills and capabilities of 
farmers, is crucial for advancing agricultural development and 
enhancing ecological sustainability. This study introduces the concept 
of spatial spillover effects, examining how rural human capital 
influences AWP across regions and the moderating roles of digital 
financial inclusion and resource mismatches. While previous research 
has acknowledged the negative impacts of resource mismatches on 
ecological performance (Wu et al., 2021; Gao et al., 2022), this study 
introduces the novel idea of spatial spillover effects in the context of 
resource mismatches. It argues that capital and labor mismatches can 
undermine AWP, even in regions with strong human capital. By 
addressing spatial dynamics, the study enriches both theoretical and 
empirical perspectives on the role of rural human capital in improving 
AWP, particularly in developing countries.

5.3 Practical implications

To successfully enhance AWP, it is essential to strengthen rural 
human capital, efficiently allocate resources, and facilitate the 
advancement of digital financial inclusion, while considering 
regional diversification. First, efforts should be made to attract 
talent to enhance rural human capital and foster regional 
synergies. Modern training models integrating online and offline 
approaches can boost farmers’ environmental awareness and 
participation in sustainable practices. Additionally, optimized 
talent recruitment policies, such as tax incentives and startup 
support, can attract professionals and high-quality farmers back 
to rural areas, fostering local innovation and regional 
knowledge spillovers.

Second, innovate rural digital inclusive financial service products 
and enhance the rural digital inclusive financial service system. 
Tailored financial products, such as seasonal repayment schemes and 
integrated microfinance services, should be developed to meet the 
diverse needs of eco-agriculture. Improving digital infrastructure and 
encouraging financial institutions to provide green credit and 
insurance will empower farmers to more easily adopt sustainable 
technologies and practices.

Third, a more efficient, market-oriented allocation of 
agricultural production factors should be promoted. This includes 
building transparent information platforms for pricing and 
supply–demand matching, strengthening financial support 
systems, and encouraging integrated development across the 
agricultural value chain. Models like “industrial park + farmers” 
can help optimize regional resource allocation and enhance the 
economic and ecological benefits of resource circulation, 
promoting circular agriculture.

Finally, green agricultural transformation should be tailored to 
the geographic characteristics and agricultural functions of 
different regions. In MGPAs, the focus should be on funding large 
agricultural cooperatives, technical training, and green agriculture 
demonstration projects. In regions with steep terrain, priority 
should be given to developing human capital in terrain-specific 
green technologies, such as conservation tillage and precision 
irrigation, to improve resource efficiency and resilience. Promoting 
technology transfer and the inter-regional diffusion of 
eco-agriculture through enhanced regional cooperation, 
information exchange and resource integration will further increase 
AWP across regions.
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