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The development of distributed photovoltaic (PV) on rural rooftops plays an important 
role in realizing China’s carbon peaking and carbon neutrality goals. Based on a 
total of 321 rural residents’ electricity consumption panel data containing 28 periods 
from January 2020 to April 2022, this paper uses a difference-in-difference model 
to quantitatively analyze the carbon emission reduction effect and changes in rural 
residents’ electricity consumption behavior before and after the installation of 
distributed PV. The results show that: the installation of rural residential distributed 
PV reduces the electricity purchased from the grid by 32.06kWh per month. It 
brings carbon emission reduction by about 20.97 2kgCO  per month. After installing 
the PV, there is a significant rebound on the gross electricity consumption of the 
rural residents which increases by 78.46 kWh. The rebound effect inhibits carbon 
emission reduction to some extent. There is a short-term sudden increase in the 
self-consumption of electricity by rural residents after installing PV, and then it 
gradually decreases. Finally, the proportion of solar power in the gross electricity 
consumption stabilizes at about 38.4%, which suggests that there is still a lot of 
room for improvement in rooftop PV utilization rates. The heterogeneity analysis 
reveals that the rebound effect of installing high-capacity PV users (>20 kVA) is 
significantly higher than that of low-capacity PV users (<8 kVA).
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1 Introduction

Environmental issues have raised significant concerns worldwide, and excessive carbon 
emissions are a key factor contributing to these environmental issues (Li et al., 2020; Bai and 
Rub, 2024). According to China’s carbon emission structure, 26% of energy consumption is 
directly used for residential living, which contributes more than 30% of the total carbon 
emissions. Therefore, controlling carbon emissions from residential life is an important 
pathway to achieve carbon peak and carbon neutrality. Residential rooftop distributed 
photovoltaics (RDPVs) utilize the roof space of residential homes to install photovoltaic (PV) 
panels for solar power generation. As a clean energy source, solar energy can reduce residential 
carbon emissions and contribute to the promotion of energy transition. In the field of power 
grids, the development of distributed PV is also an important way to achieve peak shaving and 
zero-carbon electricity.

Rural areas have abundant rooftop resources, which provide convenient conditions for the 
development of distributed PV. From 2021 to 2022, the application of RDPVs in rural areas 
expanded rapidly, with the annual installation of household PVs exceeding 20 million kilowatts 
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for two consecutive years, surpassing the development scale of 
commercial and industrial distributed PVs. RDPVs not only provide 
electricity for rural production and living, but also facilitate the 
construction of a new rural energy systems based on rooftop PV, 
aiming to achieve comprehensive electrification and low-carbon 
development in rural areas. Additionally, rural RDPVs can provide a 
stable source of income for rural residents, as they can save on 
electricity bills and earn money by selling electricity. Therefore, the 
development of rural RDPVs can bring both economic and 
environmental benefits.

Assessing the economic and environmental benefits of rural 
RDPVs is crucial for the formulation of government policies, and it 
significantly influences the electricity consumption behavior of rural 
residents. Existing literature has analyzed the economic benefits of 
RDPVs. For example, Zhang L. et al. (2023) analyzed economic profits 
of RDPVs in country and found that the self-consumption ratio of 
power generation and use area of roofs are important factors 
influencing the benefits. Zhang C. et al. (2023) built an economic 
efficiency model and showed that the whole-county RDPVs project is 
economically viable. Furthermore, they found that engaging in the 
green power trading market significantly shortens the dynamic 
payback period. Zhu et al. (2024) developed an empirical model that 
took socio-economic factors into account and their results showed 
that RDPVs are more popular in low-income rural residents. Zhang 
et al. (2020) found that RDPVs installation could increase per-capita 
disposable income by 7–8% of rural residents in China. The above 
studies examine the factors influencing the economic benefits of 
RDPVs and validate the economic benefits of RDPVs.

However, the research on assessing the environmental benefits 
brought by the installation of rural RDPVs in China is little. In the 
limited existing research, He et al. (2024) found that developing PVs 
based on suitability can yield emission reduction of approximately 
one-third of Anhui Province’s carbon emissions in 2021. Although 
their study provides a quantitative analysis of the environmental 
benefits of PVs, the carbon reduction benefits are assessed through the 
estimation of potential PV power generation, which significantly 
overestimates the actual carbon reduction effects, as not all PV 
electricity generated would be used. Zhang Z. et al. (2023) utilized 
multi-source geospatial data and machine learning regression to 
estimate carbon mitigation potential of RDPVs at the city level. They 
estimated that the total carbon emission reduction potential from 
RDPVs in 354 cities reaches 4 billion tons in 2020 under ideal 
assumptions. However, as with previous studies, their assessment of 
the environmental benefits of RDPVs is based on idea estimation and 
theoretical calculation, not practical PV power generation data. 
Different from those studies, our study quantitatively assesses the 
carbon emission reduction of RDPVs by using the practical and 
updated PV electricity generation and consumption data of residents, 
providing a more realistic and reliable assessment of the environmental 
benefits of RDPVs in China.

Overall, there is a lack of research and empirical evidence on how 
much residential carbon emission reduction can be brought about by 
the installation of RDPVs in rural areas of China, and how it affects 
the electricity consumption behavior of rural residents. In addition, 
questions such as whether the installation of rural RDPVs would lead 
to a rebound in rural residents’ electricity consumption and whether 
it would inhibit the carbon emission reduction effectiveness need to 
be addressed. Therefore, in this paper, we aim to analyze the effect of 

rural RDPVs installation on rural residents’ carbon emission 
reduction and electricity consumption behavior through the 
difference-in-differences (DID) method based on recent real-world 
data. We  use household level monthly electricity meter data and 
monthly PV power generation data from 95 RDPVs homes and 226 
non-RDPVs homes from January 2020 to April 2022 which includes 
8,988 samples in Nanjing of Jiangsu Province to provide empirical 
evidence. Employing a DID method, we assess the changes in solar 
and grid electricity usage behavior of residents before and after the 
installation of RDPV. After obtaining the basic regression results, 
we perform a parallel trend test and a placebo test to examine the 
causality and robustness of our results. Our models pass all the tests, 
suggesting that our results could be causal and reliable. Finally, we take 
a step further to analyze household self-consumption of PV users and 
the PV installation capacity heterogeneity, through which we  can 
obtain more insights about rural residents’ power consumption 
behavior. Our study intends to provide critical insights for the 
formulation of RDPVs policies and electricity pricing policies to 
support carbon emission reduction and energy transition.

This paper contributes to the field in four main aspects. First, our 
study adds insights to the research on the PV rebound effect and rural 
residents’ power consumption behavior in developing countries 
context, which is significantly different from developed countries. 
Second, using a distinctive, real-world, and updated panel dataset, 
we  quantitatively investigate the impacts of installing RDPVs on 
carbon emission reduction and rural residents’ electricity consumption 
behavior, which can provide a more realistic and reliable assessment 
of the environmental benefits of RDPVs in China. Third, we reveal 
that the rebound effect of installing RDPVs does also exist in China, 
which inhibits the carbon emission reduction to some extent. Fourth, 
through a heterogeneity analysis on the RDPVs installation capacity, 
we find that the rebound effect of installing high-capacity PV users is 
significantly higher than that of low-capacity PV users, and that 
installing medium-capacity PV equipment is the optimal choice for 
both carbon emission reduction effectiveness and investment returns.

The remainder of this paper is organized as follows. Section 2 
reviews related literature. Section 3 introduces the policy background 
about PV electricity in China and the dataset. Section 4 shows the 
empirical model and the carbon emission model. Section 5 presents 
the empirical results, examines the robustness of the model, and 
analyzes household self-consumption of PV users and the PV 
installation capacity heterogeneity. Section 6 summarizes the main 
conclusions of this paper.

2 Literature review

The rebound effect in energy consumption refers to the 
phenomenon where improvements in energy efficiency do not lead to 
the expected reduction in energy use due to various behavioral and 
economic responses. It is first proposed by Jevons in 1865, who 
observed that technological improvements leading to more efficient 
use of coal also resulted in increased coal consumption (Alcott et al., 
2012). Researchers mainly focus on exploring its theoretical 
underpinnings (Lange et al., 2021; Reimers et al., 2021), empirical 
evidence (Belaïd et al., 2018; Brockway et al., 2021; Berner et al., 2022; 
Miao and Zhen, 2023), influencing factors (Yang et al., 2023; Yin et al., 
2024), and mitigation strategies (Meng and Li, 2022). Since this paper 
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is mostly related to empirical evidence of rebound effect, we mainly 
review this stream of research. For the research on empirical evidence, 
Belaïd et al. (2018) used the standard OLS to estimate the rebound 
effect for residential gas consumption in France and found that the 
rebound effect in gas demand is around 60% in the long-run. Miao 
and Zhen (2023) confirmed the existence of an energy rebound effect 
through dynamic econometric modeling, and found that energy 
efficiency improvements in Chinese urban dwellings leads to an 
increase in carbon dioxide emissions. Berner et al. (2022) utilized a 
structural FAVAR model to estimate the energy rebound effects 
resulting from enhanced energy efficiency and discovered that the 
economy-wide rebound effects range from 78 to 101%.

For the research on the effect of PV installation on residential 
electricity demand, there still exists debate. Some studies found that 
the use of PV power generation does not necessarily bring about a 
decline in electricity consumption, but may lead to a rebound in 
electricity consumption due to the decrease in unit electricity prices. 
For example, Qiu et  al. (2019) showed that when solar power 
generation increases by 1  kWh, the total electricity consumption 
increases by 0.18 kWh, with the solar rebound effect estimated at 18%. 
Deng and Newton (2017) grouped users with different feed-in tariffs 
(FIT) and found that the average rebound effect of the group with a 
FIT of 20 cents/kWh is approximately 16.7% during the study period. 
Toroghi and Oliver (2019) evaluated the rebound effect for two 
installation scenarios in the U.S., and found that the average rebound 
effect for PV customers with 20% roof coverage and 40% roof coverage 
are 5.8 and 2.9%, respectively. La Nauze (2019) examined the scenario 
of self-consumption and selling surplus electricity to the grid. They 
found that solar energy consumers indeed increase their electricity 
expenditures. For every one-dollar electricity income, the electricity 
expenditure would increase by 23 cents. Beppler et al. (2023) found 
that PV installation reduces the average monthly grid electricity 
consumption of households by about 400 kWh, but increases the total 
electricity consumption by 157 kWh. The point estimate revealed a 
rebound effect of 28.5%. However, some studies have found that the 
environmental awareness of PV users can suppress their electricity 
consumption behavior, leading to a decrease in electricity 
consumption, which is known as the negative rebound effect. For 
example, Li et al. (2020) found that the marginal rebound effect for 
college-educated producers is statistically significant and negative. The 
above studies did well and provided empirical evidence for the effect 
of PV installation on residential electricity demand in most developed 
countries. But there is a lack of research focusing on Chinese 
environments and policies, which are apparently different from the 
developed countries. It still remains unclear that whether RDPV in 
rural China will bring about a rebound in rural energy consumption 
demand and our study aim to fill this research gap.

For the research on the interaction between PV installations and 
the electricity consumption behavior of Chinese residents, Zhang et al. 
(2022) investigated the factors influencing residents’ intention to use 
household PV systems. Qiu et al. (2021) established a model based on 
discounted cash flow, using internal rate of return and payback period 
as economic indicators, and found that even without incentives, 
residential PV investments across China achieve break-even. Meng 
and Li (2022) evaluated the rebound effect of electricity consumption 
at the provincial level in China and revealed that the rebound effect is 
not related to the efficiency of electricity consumption, but is 
significantly affected by the intervention tariffs of local governments 

and the level of socio-economic development. Du et  al. (2021) 
investigated the extent and determinants of energy demand and the 
energy rebound effects among urban residents in China. The results 
indicated that residents’ income levels, energy prices, and temperature 
deviations are important factors influencing residential energy 
consumption. Overall, the above studies on PV in China have mainly 
focused on impact factors analysis and investment returns, but the 
research on the impact of PV installations on the carbon emission 
reduction and electricity consumption behavior of rural residents is 
seriously lacking.

3 Policy, data and variables

3.1 Policy background

In June 2021, the National Development and Reform Commission 
(NDRC) of China issued “Notice on Matters Related to the Renewable 
Electricity Feed-in Tariff (FIT) Policy in 2021.” The notice indicates 
that the FIT for new projects in 2021 will be  based on the local 
benchmark price for coal-fired power generation. This means that 
distributed PV officially entered the phase of grid parity after June 
2021. Therefore, in order to exclude the impact of subsidy policy on 
electricity consumption behavior, we select PV users who installed PV 
systems after June 2021.

In this study, all PV users adopt a self-consumption model. That 
is, during the period of PV power generation, users prioritize using 
the electricity generated by the PV system. If the generated electricity 
is less than the power consumption, the shortfall needs to be purchased 
from the power grid. If the generated electricity exceeds the power 
consumption, the surplus electricity generation can be sold to the 
power grid company. In addition, Jiangsu Electric Power Company 
has implemented a time-of-use (TOU) tariff mechanism: it stipulates 
that 8:00–21:00 is the peak period for residential electricity use, and 
the rest of the time is the valley period. The electricity price during the 
peak period is 0.2 yuan/kWh higher than that during the valley 
period. This mechanism is intended to encourage electricity users to 
actively avoid peaks, which is usually called peak shaving and valley 
filling in the electricity industry, thereby enhancing the overall 
efficiency of the power system, and promoting green and low-carbon 
energy development.

3.2 Date source

This paper selects electricity usage data from distributed PV users 
in Nanjing, Jiangsu Province. Jiangsu is a major economic province in 
China and is relatively advanced in green development. It ranked 
second in terms of new installed capacity of distributed PV in 2023 in 
China, reaching as high as 12.2GW, of which the new installed 
capacity of residential photovoltaics accounted for 5.5GW. The data 
were obtained from the Marketing Service Center of State Grid 
Jiangsu Electric Power Company. To avoid the impact of the PV FIT 
subsidy policy implemented before June 2021, we select users who 
installed PV after June 2021. The installation time of these users is 
after the release of the policy, indicating that the behavior of these 
users is not affected by the PV FIT subsidy. The dataset, comprising a 
total of 95 PV users and 226 non-PV users, was collected over the 
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period from January 2020 to April 2022. It spans 28 periods and 
encompasses a total of 8,988 samples. The dataset contains basic 
information such as the user’s PV installation date, installation 
capacity, the county they belong to, and the user’s electricity 
information. The electricity-related information includes rural 
residents’ household electricity consumption (HEC) from the power 
grid (divided into peak-time and valley-time electricity consumption 
according to the time of use), solar power generation output exported 
to the power grid, and PV power generation. We choose monthly data 
in this study, because the electricity power company has to count the 
electricity consumption every month to collect the electricity bill and 
the accuracy of monthly data is very high.

3.3 Description of variables

This study focuses on five dependent variables: _f gridHEC , 
_ _f grid pHEC , _ _f grid vHEC , grossHEC , and selfHEC  respectively. The 

specific definitions of these variables are detailed in Table 1. Among 
them, the electricity consumption purchased by households from the 
grid, and the electricity consumption purchased during peak and 
valley hours are obtained directly from the meter, while the gross 
household electricity consumption and household self-consumption 
of electricity are calculated and processed, and the specific formulas 
are shown in Table 1.

4 Research models

4.1 DID model

We employ a two-way fixed effects panel regression model. Due 
to the varying installation times of the selected PV users, a multi-time 
point DID model is used, and the basic model is shown in Equation 1.

 α β µ λ ε′= + + + + +it it it i t itHEC DID X γ  (1)

where α  is a constant term. itDID  is the dummy for the treatment 
variable, which is equal to 1 if the sample is in treatment group after 
the date of the PV installation. In all other cases, the value of this 
dummy variable is 0. β  is the impact coefficient of solar installation 

on the household electricity consumption. µi represents an individual 
fixed effect that captures unobservable and time-invariant factors 
potentially impacting electricity consumption. λt  is a time-fixed effect, 
which explains the time-variant factors affecting household electricity 
consumption. εit  is the residual. itHEC  is the outcome variable for the 
rural resident i at time t. There are five outcomes in this difference-in-
differences model, namely grossHEC , _f gridHEC , _ _f grid pHEC , 

_ _f grid vHEC , and selfHEC , respectively.
itX  is a control variable, and there are many factors that affect 

electricity consumption, among which temperature and holidays have 
a significant impact (Kang and Reiner, 2022; Khan et  al., 2021). 
Therefore, we  choose temperature and holidays as the control 
variables. We mainly focus on rural residents in this study. One of the 
important characteristics of them is that they usually do not have a 
fixed working pattern (workday system) like urban residents. Rural 
residents usually go out to work for a period of time and then take a 
break at home for a period of time. When they go out to work, their 
houses are generally in a vacant state, which has a significant impact 
on electricity consumption. Hence, instead of using holidays as a 
control variable, we use the state of the houses (vacant or not) as a 
control variable in the model. Existing studies widely agree the 
principle that households are vacant if its annual electricity 
consumption is less than 30 kWh (Li et al., 2019), and we also adopt 
this principle in this study. For temperatures, we  obtain the 
temperature data from the China Weather Station website. Referring 
to the existing literature (Liang et  al., 2022; Qiu et  al., 2022), 
we measure the effect of temperature through heating degree days 
(HDD) and cooling degree days (CDD). Rural residents need to cool 
down when the temperature is above the reference temperature and 
warm up when the temperature is below the reference temperature. 
The specific definitions are provided in Equations 2 and 3.

 
( )

=
= −∑

1
18.3

n
i
mean
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HDD T
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=
= −∑
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18.3

n
i
mean

i
CDD T
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where i
meanT  is the average temperature of the day i, that is, the 

average of the day’s maximum and minimum temperatures. Therefore, 

TABLE 1 Description of variables.

Variables Description Sources

_HECf grid
Household electricity consumption imported from grid From bidirectional meter

_ _HECf grid p
Household electricity consumption imported from grid during peak hours From bidirectional meter

_ _HECf grid v
Household electricity consumption imported from grid during valley hours From bidirectional meter

HECgross
Rural residents’ gross electricity demand from grid and solar

− +_ _HEC HEC HECf grid t grid solar

HECself
Rural residents’ electricity demand from solar only

− _HEC HECsolar t grid

_HECt grid
Solar output exported to grid From bidirectional meter

HECsolar
Power of solar generation From bidirectional meter
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the covariates itX  include vacant, HDD and CDD. The reference 
temperature varies with different regions and climatic conditions 
around the world. In this study, the reference temperature was set at 
18.3°C according to the international standard recommended by the 
American Society of Heating, Refrigerating and Air-Conditioning 
Engineers (ASHRAE). Thus, we  can interpret the nonlinear 
relationship of temperature through spline functions of HDD 
and CDD.

4.2 Carbon emission model

To better investigate the carbon emissions from rural 
residential electricity consumption, it is necessary to account for 
the carbon dioxide emissions from electricity consumption. 
Currently, there are many methods to study the emissions related 
to the power system, which can be broadly divided into direct 
carbon emission accounting methods and indirect carbon 
emission accounting methods (Li et al., 2024). The emission factor 
method is a representative approach that is widely used worldwide 
at present (Hu et al., 2022). This method can reflect the carbon 
emissions released during fuel combustion process, that is, the 
carbon emissions during the power generation process. In this 
paper, the emission factor method is used to estimate rural 
residential carbon emissions. We refer to the official document 
released by the Ministry of Ecology and Environment of China: 
“Announcement on the Release of the Carbon Dioxide Emission 
Factor for Electricity in 2021.” It provides the average carbon 

dioxide emission factors for electricity at the national, regional and 
provincial levels, with the following formulas:

 ( ) ( )= ×2 2 /CO DE kWh EF kgCO kWh  (4)

where 2CO  is the carbon dioxide emissions. DE  is the electricity 
consumption. EF  is the average carbon dioxide emission factor, with 
different values for different regions. In this paper, the value of EF for 
Jiangsu provincial power grid is 0.65. Thus, the electricity consumption 
from the power grid by residents in the Jiangsu Province can 
be transformed into carbon emissions through Equation 4.

5 Empirical results

5.1 Basic regression analysis

To establish a foundational understanding of the dataset, 
we conduct a descriptive statistical analysis. Table 2 summarizes the 
descriptive statistics of the dataset, including measures of central 
tendency (mean, median) and dispersion (standard deviation, range). 
These statistics provide a detailed overview of the sample and serve as 
a foundation for subsequent analysis. The basic model results of 
Equation 1 are shown in Table 3.

The odd-numbered columns are results without considering 
control variables. Comparing the results with even-numbered 

TABLE 2 Descriptive statistics of the dataset before and after the installation of RDPV.

Variable Mean Std. Dev. Min Median Max Number

Before installation (from January 2020 to May 2021)

_HECf grid
253.9 240.3 0 186 2,815 5,457

_ _HECf grid p
150.5 143.4 0 112 1,795 5,457

_ _HECf grid v
103.4 107.4 0 72 1,025 5,457

HECsolar
0 0 0 0 0 5,457

_HECt grid
0 0 0 0 0 5,457

HECgross
253.9 240.3 0 186 2,815 5,457

HECself
0 0 0 0 0 5,457

After installation (from June 2021 to May 2022)

_HECf grid
269.4 241.4 0 204 2,321 3,531

_ _HECf grid p
147.0 138.7 0 111 1,551 3,531

_ _HECf grid v
122.5 118.4 0 87 1,213 3,531

HECsolar
220.6 409.4 0 0 3,710 3,531

_HECt grid
190.5 363.5 0 0 3,557 3,531

HECgross
299.6 267.2 0 223 2,426 3,531

HECself
30.14 67.23 0 0 743 3,531
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columns with added control variables, there are only minor differences 
in the estimates of different models, indicating the robustness of the 
conclusions. From model (4), it can be seen that the installation of 
RDPV can bring about a reduction of 32.06kWh in the total amount 
of electricity purchased by residents from the power grid. Through the 
carbon emission model, it shows that installing solar PV can reduce 
emissions by 20.97 2kgCO  per month, suggesting that the installation 
of RDPV indeed reduces the carbon emissions of rural residents. 
However, the reduced electricity consumption purchased from the 
power grid is much lower than total household electricity 
consumption, which is 299.6kWh. The model (10) shows that the 
installation of RDPV by rural residents brings 110.5kWh of self-
consumption. Consequently, the proportion of solar power in the total 
household electricity consumption is calculated to be  36.9%. It is 
evident that the carbon reduction potential of RDPV has not been 
fully exploited. The main reason is the low utilization rate of PV 
because of the difference between the PV generation load and the 
electricity consumption load, and the lack of energy storage equipment 
among rural residents.

From model (2), we find that there is a significant rebound in 
the gross household electricity demand of the rural residents after 
the installation of PV, with an increase of 78.46 kWh in monthly 
electricity consumption. The reason may be  the decrease in the 
perceived electricity price for customers after the adoption of solar 
PV power generation. It has been found that fluctuations in 
electricity prices have a significant impact on residents’ electricity 
usage habits (Fraija et al., 2022; Wang et al., 2021), which would 
lead to an increase in electricity consumption behavior among 
users. However, this increased electricity consumption is not 
essential for residents’ daily life. From model (10), we find that there 
are 110.5kWh solar power consumed by rural residents. However, 
due to a rebound in electricity consumption of 78.46 kWh, only 
32.04  kWh of solar electricity is available to offset the rural 
residents’ electricity demand from the power grid, which is 
consistent with the results of model (4). Therefore, if policymakers 
can formulate electricity pricing policies that make users perceive 
the electricity price as stable, it can reduce the rebound effect of 

electricity consumption among PV users, thereby further increasing 
the carbon reduction effects brought by PV.

From model (5) and (6), we can further find the change of rural 
residents’ electricity demand from the power grid in different time 
periods after the installation of PV. The demand for electricity 
purchased from the power grid decreases by 50.61kWh during peak 
period and increases by 20.03kWh during valley period. This 
indicates that the installation of RDPV has a good peak-shaving 
effect. This is because the PV power generation time highly 
coincides with the peak electricity usage times of residents (8:00–
21:00). Residents can use PV power to replace electricity purchased 
from the power grid during peak period, achieving a better peak 
shaving effect. While in the valley period, there is almost no PV 
power generation for residents to use, thus the increased electricity 
demand from the power grid at this period can be  inferred to 
be  caused by the rebound effect, and in fact this part of the 
electricity consumption can be avoided. The rebound effect cannot 
be  directly estimated during peak hours due to the PV power 
generation has partly covered the growth in electricity demand 
from the power grid. If the rebound effect of electricity consumption 
by users is reduced through the pricing mechanism, the carbon 
emission reduction can be increased to 34.07 2kgCO  by considering 
only the reduction of the rebound effect during valley period, and 
the carbon emission reduction effect can be enhanced by 62.48%.

5.2 Robust analysis

5.2.1 Parallel trend test
The reasonableness of the DID model is based on the parallel 

trend assumption, which means the treatment and control groups 
have the same trend before the treatment. Otherwise, the DID model 
would not be applicable. This assumption requires that the differences 
between the control and treatment groups is constant over time before 
treatment. This study draws on the event study approach (Gu et al., 
2021; Huang and Zhang, 2021) to test the parallel trend hypothesis. 
The specific model is shown in Equation 5.

TABLE 3 Results of the basic model.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

DID 81.98*** 78.46*** −28.61* −32.06** −48.64*** −50.61*** 20.03** 18.55** 110.6*** 110.5***

(15.68) (14.98) (14.77) (14.11) (8.251) (7.960) (8.079) (7.750) (7.299) (7.301)

Constant 263.9*** 97.21*** 262.8*** 99.01*** 153.8*** 60.46*** 109.0*** 38.55** 1.112 −1.801

(1.521) (29.09) (1.433) (26.71) (0.800) (13.32) (0.784) (16.01) (0.708) (3.557)

Control 

variable

NO YES NO YES NO YES NO YES NO YES

Time fixed YES YES YES YES YES YES YES YES YES YES

Individual 

fixed

YES YES YES YES YES YES YES YES YES YES

Cluster YES YES YES YES YES YES YES YES YES YES

N 8,988 8,988 8,988 8,988 8,988 8,988 8,988 8,988 8,988 8,988

R2 0.685 0.690 0.670 0.676 0.672 0.678 0.608 0.613 0.690 0.690

The dependent variable in models (1) and (2) is HECgross; the dependent variable in models (3) and (4) is _HECf grid ; the dependent variable in models (5) and (6) is _ _HECf grid p; 
the dependent variable in models (7) and (8) is _ _HECf grid v ; the dependent variable in models (9) and (10) is HECself . Values in parentheses represent standard errors. Cluster indicates 
that the standard errors are clustered at the household level; *p < 0.1, **p < 0.05, ***p < 0.01.
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The above model structure is similar to Equation 1 and the 
difference is that the above model has 29 dummy variables itDID  and 
29 corresponding coefficients βt . < 0t  indicates the time before the 
installation of PV and > 0t  indicates the time after the installation of 
PV. = 0t  represents the PV installation time. Parallel trends in the 
control and treatment groups can be  observed through the core 
coefficients βt . Firstly, if none of the coefficients βt  are statistically 
significant before the installation of the PV, then it indicates that there 
is no difference between the treatment and control groups in their 
electricity consumption behavior before the installation of the 
PV. Secondly, if the coefficients βt  are statistically significantly 
different from 0 after the installation of the PV system, it indicates that 
the installation of the PV would bring about a significant impact. 
When the above conditions occur simultaneously, it indicates that the 
model passes the parallel trend test.

The parallel trend test results of grossHEC  and _f gridHEC  are 
shown in Figures 1, 2 respectively and the red dashed reference line 
indicates RDPV installation time. The horizontal axis “pre_x” is the 
month x before the installation of the PV, “current” indicates the 
RDPV installation time, and “post_x” is the month x after the 
installation of the PV system. The vertical axis shows the coefficients 

βt  and confidence intervals at the 95% level, where βt  represents the 
impact of installing PV on rural residential electricity consumption. 
Before the installation of the PV system, the coefficients βt  of both the 

grossHEC  and _f gridHEC  fluctuate around 0 and are not statistically 
significant, which indicates that there is no significant difference 
between the control and treatment groups in terms of both gross 
electricity consumption and electricity consumption from the power 
grid before the installation of the PV system. However, after the 
installation of the PV system, the coefficient βt  of the grossHEC  
increases rapidly, while the coefficient βt  of the _f gridHEC  decreases, 
and both are statistically significant. This indicates that both the gross 
electricity consumption and electricity consumption from the power 
grid of the rural residents passes the parallel trend test.

5.2.2 Placebo test
To better illustrate the reliability of the conclusions, a placebo test is 

applied on the model. Ideally, if the policy is exogenous and unaffected by 
unobservable factors, it is possible to directly obtain a consistent estimate 
β̂  of the coefficient β  through OLS estimation. However, in real-world 
situations, policies are influenced by various observable and unobservable 
factors, resulting in estimates as shown in Equation 6.

 

( )
( )

ε
β β ρ= +

cov , |ˆ
var |

it it

it

D W

D W  
(6)

FIGURE 1

Parallel trend of gross electricity consumption.
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where W is the fixed effect and ρ  is the effect of unobservables 
factors on the independent variable. If ρ= 0, indicating that 
unobservable factors have no effect on the estimation results, then β  
is an unbiased estimate. However, it is difficult to directly verify 
whether ρ  is equal to zero because it is inherently unobservable. 
Therefore, it can only be verified whether it is zero through indirect 
means. Following the approach of Chetty et al. (2009), we can obtain 
the randomly set estimated coefficients by repeatedly randomizing all 
users into treatment and control groups. Then, based on the 
distribution of the randomly set estimated coefficients, we  judge 
whether there is an influence from unobservable factors. 
We randomly generate a dummy variable that theoretically does not 
affect the dependent variable to replace itDID . β  is zero since this 
variable is randomly generated. Under this condition, if the estimate 
β̂  is still equal to 0, it can be deduced to ρ  = 0. We set the simulation 
process to 1,000 times and perform the placebo test on the 
explanatory variables grossHEC  and _f gridHEC  respectively. Then 
we  can obtain the distribution of the randomly set 
estimated coefficients.

In Figures 3, 4, the dashed lines indicate the actual estimated 
coefficients of the independent variables. The distribution curves 
indicate the randomly set estimated coefficients distributions. From 
Figures 3, 4, we can find that the actual estimated coefficients of the 
independent variables deviate significantly from the randomly set 
estimated coefficients distributions. Specifically, the randomly set 
estimated coefficients are normally distributed with zero as the mean, 

from which we can deduce that ρ  = 0 which means that the policy in 
our study is exogenous. It also verifies that the parameter estimates of 
the model are valid.

5.3 Self-consumption analysis

Self-consumption in households refers to the electricity generated 
by the solar PV being consumed within the household. Analyzing the 
self-consumption of solar PV is significantly important for grid stability. 
With the continuous increase of distributed PV, the grid’s capacity to 
accommodate distributed PV power is insufficient. The improvement 
of self-consumption level can alleviate the impact of PV power 
generation uncertainty on the stability of the grid and improve the 
stability of the grid. We perform a marginal dynamic effects test on self-
consumption to analyze the change of self-consumption level by users 
over time after the installation of PV. The dynamic effects of self-
consumption are analyzed according to Equation 7. The coefficients of 
the interaction terms βk after the installation of PV indicate the dynamic 
effects from the installation of solar PV. The differences from the basic 
model (i.e., Equation 1) lie in the following aspects. First, the dependent 
variable has only one type, that is self-consumption. Second, the 
independent variables have 11 dummy variables. Third, the coefficients 
reflect the effect of installing solar PV on self-consumption in the 
current period (the installation period) and in the next 10 months. The 
results of the analysis are shown in Figure 5.

FIGURE 2

Parallel trend of electricity consumption imported from the power grid.
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Figure  5 indicates that the installation of solar PV has a 
continuously significant impact on the self-consumption level by 

rural residents over time. After the installation of PV, there is a 
short-term sharp increase in self-consumed electricity, which then 
gradually decreases and eventually stabilizes around 115  kWh. 
Based on the benchmark of the average monthly total household 
electricity consumption of PV users, which is 299.6kWh, it can 
be  inferred that the proportion of solar electricity in the total 

FIGURE 3

Placebo test result on HECgross.

FIGURE 4

Placebo test result on _HECf grid.
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household electricity consumption is stable at around 38.4%. 
Therefore, there is still a lot of room for improvement of rooftop PV 
utilization rate.

5.4 Heterogeneity analysis

For rural residents, choosing the installed capacity of the PV 
system is an important decision when installing PV systems. Because 
the installed capacity of PV is closely related to their revenues and 
costs. In our study, the installed capacity of PV ranges from 3 kVA to 
50.42 kVA. In order to analyze the differences in electricity 
consumption behavior before and after the installation of PV for rural 
residents with different installed capacities, the rural residents are 
divided into three categories according to their different installed 
capacities of PV. Specifically, the users whose installed capacity is less 
than 8 kVA are divided into low-installed-capacity users, the users 
whose installed capacity is between 8 kVA and 20 kVA are divided into 
medium-installed-capacity users, and the users whose installed 
capacity is large than 20 kVA are divided into high-installed-capacity 
users. Therefore, we  have three types of PV users, low-installed-
capacity users (<8 kVA), medium-installed-capacity users (8–20 kVA), 
and high-installed-capacity users (>20 kVA), respectively. Using 
Equation 1, we  analyze grossHEC , _f gridHEC , _ _f grid pHEC , and 

_ _f grid vHEC  for PV users with different installed capacities, and the 
results are shown in Figures 6, 7, respectively.

Figure 6 shows the differences of the rural residents’ gross HEC 
and HEC imported from power grid of PV users with different 
installed capacities. From Figure 6, we can see that the rebound effect 
of high-installed-capacity users is more significant. Figure 7 shows the 

differences of HEC of PV users with different installed capacities from 
power grid during peak and valley period. We can conduct further 
analysis about the rebound effect by using Figure 7. We find that the 
rebound effect of high-installed-capacity users mainly stems from the 
increased electricity consumption during the valley period, reflecting 
the PV users’ behavioral change after the installation of PV. Note that 
there is no PV power generation in the valley period, and the increased 
electricity consumption during the valley period cannot be offset by 
PV power generation. Therefore, the higher the increase in electricity 
consumption during the valley period, the greater the rebound effect. 
Since high-installed-capacity users have the largest increase in 
electricity consumption during the valley period, the rebound effect 
of high-installed-capacity users is greater than other two types of 
users. The reason is that the larger the installed PV capacity, the 
greater the amount of electricity generated, resulting in a lower 
perceived cost tariff of electricity for users. After installing PV, changes 
in electricity consumption behavior may result in users generating 
larger electricity demand even when the PV has no power generation 
in the valley period, which leading to the increase of the rebound 
effect and carbon emissions. Therefore, increasing rural residents’ 
knowledge about PV generation, sources of electricity consumption 
at different times, as well as different electricity prices at different 
times can mitigate the rebound effect of users to a certain extent and 
increase the carbon emission reduction.

6 Conclusion

RDPV is beneficial for both carbon emission reduction and 
energy transition. For rural residents, RDPV can bring both 

FIGURE 5

The self-consumption dynamics effect.
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economic and environmental benefits. Assessing those benefits is 
crucial for government policy-making and the development of PVs. 
However, there is little research on assessing the environmental 
benefits and investigating the changes of rural residents’ electricity 
consumption behavior brought by the installation of RDPV in 

China. Therefore, in this paper, we  analyze the effect of RDPV 
installation on rural residents’ carbon emission reduction and 
electricity consumption behavior through the DID method. 
We select rural residential PV users in Nanjing, Jiangsu Province as 
samples, and our models are subjected to a parallel trend test and a 

FIGURE 6

Analysis of HECgross and _HECf grid for PV users with different capacities.

FIGURE 7

Analysis of _ _HECf grid p and _ _HECf grid v  for PV users with different capacities.
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robustness test. The results show that the models pass all the tests, 
showing the reliability of the conclusions of this paper. After 
obtaining the basic regression results, we analyze the rebound effect 
and emission reduction effect of RDPV in China. Furthermore, 
we take a step further to analyze household self-consumption of PV 
users and the heterogeneity analysis considering the installed PV 
capacity. Overall, this study provides empirical evidence on carbon 
emission reduction and the changes of rural residents’ electricity 
consumption behavior brought by the installation of RDPV in 
China. We find that there is a rebound effect in electricity demand 
among Chinese rural PV users, which inevitably inhibits carbon 
emission reduction effects. The main conclusions of this paper are 
as follows:

 (1) The installation of RDPV can reduce the total electricity 
purchased from the grid by 32.06kWh/month. Specifically, 
from the perspective of peak period and valley period, 
we  find that the electricity purchased from the grid 
decreases by 50.61kWh/month at peak period and increases 
by 20.03kWh/month at valley period, bringing about a 
reduction of carbon emissions by residents by 20.97 2kgCO
/month. The installation of RDPV brings 110.5kWh/month 
of solar energy self-consumption by residents, and the 
share of solar electricity in total household electricity 
consumption is 36.9%. Through the analysis of the dynamic 
effect of self-consumption, it is found that there will be a 
short-term sudden increase in residents’ self-consumption 
of electricity after the installation of PV, followed by a 
gradual decline, and the proportion of solar electricity in 
the total household electricity consumption stabilizes at 
about 38.4% ultimately. Therefore, we can get the insights 
that the promotion of RDPV installation is conducive to 
achieving the goals of residential carbon emission reduction 
and grid peak shaving and valley filling.

 (2) Under the existing residential electricity pricing policies in 
China, there is a significant rebound effect of rural residents’ 
total electricity demand after installing RDPV, with monthly 
electricity consumption increasing by 78.46  kWh. The 
perceived decrease in electricity prices due to PV generation 
may be  the reason for changes in users’ electricity 
consumption behavior.

 (3) Since the PV systems do not work during the valley period, the 
increase of household electricity consumption imported from 
grid during the valley period is mainly caused by the rebound 
effect. Therefore, when making electricity pricing policies, it is 
preferable that the set of purchase and sale electricity prices can 
mitigate the perceived electricity price changes for PV users. 
This can help lower the rebound effect among PV users and 
enhance the carbon reduction benefits brought by PV. We find 
that merely reducing the rebound effect during the valley 
period can increase the carbon emission reduction to 34.07 

2kgCO /month, representing that the carbon emission 
reduction effectiveness can be improved by 62.48%.

 (4) The rebound effect of installing high-capacity PV users is 
significantly higher than that of low-capacity PV users. The 
rebound effect mainly comes from the increased electricity 
consumption during the valley period. The higher the 

installed PV capacity, the greater the amount of electricity 
generated, resulting in a lower perceived cost tariff of 
electricity for users, which brings the increase of electricity 
demand. It implies that rural residents’ electricity 
consumption behavior would be  changed after the 
installation of RDPV, and the installed capacity of RDPV 
has an important influence on the change of electricity 
consumption behavior.
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