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Detecting forest and linear woody 
feature change between 1954 
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Effectively mapping and detecting changes in forests and linear woody features 
(LWFs) is crucial for assessing their impact on biodiversity and ecosystem services. 
This study investigated this capability using heterogeneous, high-resolution aerial 
imagery, in terms of spectral and spatial properties. Mitigating the influence of 
these factors, arising from differences in sensor specifications and acquisition 
conditions, is essential for robust detection and analysis of temporal change across 
historical image datasets. The deep learning model developed here successfully 
mapped forests and LWFs between 1954 and 2019 using just a single image band, 
enabling reliable change estimation. Assessment at the pixel scale showed forest 
mapping achieved an accuracy of 90%, while LWF accuracy was lower at 69%, 
primarily due to their narrow widths and boundary errors in both the reference 
and predicted results. For LWFs an object-based assessment was undertaken to 
reduce the effect of precise delineation achieving a higher accuracy of 77%. As a 
final assessment, comparison of area within 200 by 200 m extents showed good 
agreement, with a mean absolute error of 1.3% for LWFs. For forests this was 2.7%. 
In terms of change detection, the accuracy was greater than 81% for both forests 
and LWFs. Change analysis indicated an 8.5% net increase in forests since 1954, 
along with a small net loss of less than 1% in LWFs. LWF loss was mainly attributed 
to forest gains. In areas without significant forest gain, LWFs slightly increased. 
These changes are generally seen as beneficial for biodiversity and ecosystem 
services in the region. However, other factors such as urban development and 
larger agricultural field sizes need to be considered in future studies.
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1 Introduction

Hedgerows or linear woody features (LWFs) are defined as linear strips of managed or 
unmanaged woody vegetation (shrubs and/or trees) on agricultural landscapes between and along 
cropped fields or roadways, rail corridors and watercourses (Pasher et al., 2016; Dover, 2019). 
According to the UK Countryside Survey a hedgerow should have a minimum length of 20 m 
and minimum width of 5 m, and if composed of trees, it should be one tree wide (Maskell et al., 
2008). Statistics Canada (2021) considers shelterbelts, windbreaks, hedgerows, field margins, 
woodlots, riparian buffers and pivot corners with a width of less than 10 m as LWFs. The Small 
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Woody Features product developed by the Copernicus Land Monitoring 
Service defines linear features as having a width less than 30 m and 
length greater than 30 m (EU, CLMS, EEA, 2021).

LWFs are considered a nature-based solution (Collier, 2021) and 
contribute various ecosystem services such as providing shelter from 
winds, reducing soil erosion, improving soil drainage (Benhamou 
et  al., 2013); limiting evapotranspiration, preventing snowdrifts 
(Pasher et al., 2016; Collier, 2021); enhancing carbon storage (Axe 
et al., 2017; Biffi et al., 2022); increasing nitrogen retention (Benhamou 
et al., 2013); providing some pest control (Morandin et al., 2014; Long 
et al., 2017); and pollination services (Garratt et al., 2017; Long et al., 
2017; Bishop et al., 2023; Boinot et al., 2023). In addition, they enhance 
biodiversity by providing food (Staley et al., 2012), shelter (Lecq et al., 
2017), movement corridors (Fahrig et al., 2015; Dondina et al., 2016; 
Aviron et al., 2018; Clausen et al., 2022), and microclimates (Aviron 
et al., 2018; Lecq et al., 2018; Dover, 2019; Collier, 2021). They also 
provide human co-benefits such as foraging and hunting, and shading 
or sheltering buildings (Cole, 1955; Collier, 2021).

The diversity and abundance of species in agroecosystems is 
known to be influenced by LWFs including non-crop plants (McCann 
et al., 2017; Sybertz et al., 2017; Boinot et al., 2023; Staley et al., 2023); 
birds (Ludwig et al., 2012; Morelli, 2013; Heath et al., 2017; Sullivan 
et al., 2017; Dadam and Siriwardena, 2019; Tschumi et al., 2020; Vallé 
et al., 2023); insects, pollinators and natural pest enemies (Morandin 
et al., 2014; Lacoeuilhe et al., 2016; Garratt et al., 2017; Sullivan et al., 
2017; Sybertz et al., 2017; Aviron et al., 2018; Bishop et al., 2023; Vallé 
et al., 2023); and mammals (Dondina et al., 2016; Lacoeuilhe et al., 
2016; Vallé et al., 2023). The effect of LWFs on biodiversity is not just 
associated with area, but to other properties such as width (Dondina 
et al., 2016; Sybertz et al., 2017; Boinot et al., 2023), length (Sybertz 
et al., 2017), connectivity (Dondina et al., 2016; Aviron et al., 2018), 
density and productivity of woody species (Lacoeuilhe et al., 2016; 
Garratt et  al., 2017; Sybertz et  al., 2017), amount of flower cover 
(Bishop et al., 2023; Boinot et al., 2023), and structural complexity 
(Lacoeuilhe et al., 2016; Garratt et al., 2017; Lecq et al., 2017; Sybertz 
et al., 2017; Boinot et al., 2023; Staley et al., 2023).

Specifically for the Eastern Ontario Canada region, many 
important wildlife species, some of which are classified as Species at 
Risk have been shown to be sensitive to LWFs and forest amount. For 
instance, Wilson et al. (2017) studied the effects of woody structures 
on avian diversity and abundance. The results demonstrated that 
higher LWF densities had positive effects on the diversity of forest and 
shrub bird communities. de Zwaan et al. (2022) studied the local and 
regional effects of LWFs on the abundance of 45 bird species within 
the agricultural region of Eastern Ontario. At the local scale, the 
results showed more birds species had a positive relation (44%) 
between abundance and LWFs compared to those with a negative 
relation (11%). At the regional scale, LWFs predicted benefits on the 
total abundance of 69% of the species considered. Warren et al. (in 
press) studied the effects of LWF height and width, as well as forest 
amount, minimum distance to forest and mean field size on bat 
species richness and activity at the individual and community level 
along drainage ditches in the agricultural region of Eastern Ontario. 
The results showed a positive effect of LWF height and variation in 
height as well as forest amount on bat richness and activity. Field sizes 
and LWFs have also been shown to effect milkweed cover, which is 
important for monarch butterflies in Martin et al. (2021). Related to 
forest cover, Wilson et al. (2020) investigated the effects of natural 

ecosystems on avion species abundance and diversity in two Canadian 
agroecosystems including the Eastern Hardwood-Boreal region and 
the Prairie Pothole region. The results demonstrated that in the 
eastern region, avian abundance and diversity initially increased with 
agriculture-forest mix, peaking earlier and at lower levels of agriculture 
compared to the Prairie region agriculture-grassland mix. This 
underscores the importance of ecosystem context, particularly when 
there is less similarity between natural and agricultural land covers. In 
a similar study in Eastern Ontario and Western Quebec region, de 
Zwaan et  al. (2022) used a multi-scale approach to assess habitat 
suitability for eight threatened grassland and forest bird species and 
the diversity of the full avian community. The results indicated that 
40–50% forest or natural grassland cover in an agricultural landscape 
was required to maximize diversity and to protect the species at risk.

Mapping and quantifying landscape structure especially natural 
and semi-natural land covers and LWFs is important to assess the 
effects on biodiversity. LWFs have historically been mapped through 
field surveys or manual interpretation from high spatial resolution 
imagery (Pirbasti et al., 2024). In the Eastern Ontario region, previous 
attempts for mapping and estimating the amount of LWFs were made 
using a manual interpretation approach. For instance, Pasher et al. 
(2016) used a line intercept sampling method to estimate the length 
and density of LWFs across selected sample plots in the agricultural 
region of Eastern Ontario and Western Quebec. This method was 
shown to be highly accurate, efficient and repeatable over a larger 
region, although heavily dependent on manual interpretation. In 
another effort, LWFs and forest patches across the entire Eastern 
Ontario region were manually digitized based on high resolution 
imagery by the Geomatics and Landscape Ecology Lab (GLEL) at 
Carleton University, Ottawa, Canada (Daly, 2022; Gabriel, 2022; 
Hajdasz, 2023). This process was extremely time consuming, labor 
intensive and contained errors related to the timing of the imagery, 
scale, and subjectivity of the interpreters. An operational, automated 
and robust process would reduce subjectivity, potentially improve 
accuracy, and more importantly significantly reduce the effort 
required to map different time periods enabling change assessment.

Advancements in image processing and availability of high-
resolution aerial or satellite imagery has led to the development of 
automated techniques for mapping LWFs. Most LWF mapping from 
high resolution imagery have used object-based image segmentation 
techniques (Tansey et  al., 2009; Betbeder et  al., 2014; Vannier and 
Hubert-Moy, 2014; Dowell, 2020; Thompson et  al., 2023). Machine 
learning and spectral-spatial feature engineering approaches have also 
been examined in several studies (Aksoy et al., 2010; Lucas et al., 2019; 
Álvarez et al., 2021; Smigaj and Gaulton, 2021). Many of the existing 
studies are limited in scope, typically involving small-extent, initial 
investigation with varied sensors and landscapes. As a result, they often 
lack the spatial generalizability needed to draw robust conclusions 
regarding methodological performance at regional scales. As Pirbasti 
et  al. (2024) discuss, the transferability of object-based or feature-
engineered approaches are often constrained by the site-specific nature 
of the input features used in model training. More recently, deep learning 
techniques have been suggested or evaluated as an alternative for LWF 
mapping that could outperform previous methods (Ahlswede et al., 
2021; Muro et al., 2024; Pirbasti et al., 2024). Advantages of deep learning 
include state of the art performance for many vision tasks, automated 
and hierarchical feature extraction, transfer learning and domain 
adaption (Adegun et al., 2023; Pirbasti et al., 2024). Numerous deep 
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learning approaches could be applied for LWF detection. However, the 
U-Net architecture (Ronneberger et  al., 2015) has been shown to 
perform well for many remote sensing segmentation applications (Cao 
and Zhang, 2020; Solórzano et al., 2021; Singh et al., 2022; Liu et al., 
2024). Most research to date has focused on mapping LWFs, with few 
examining the potential for monitoring change (Dowell, 2020; Álvarez 
et al., 2021).

The research undertaken here had two main objectives: (1) to 
evaluate the use of deep learning for detecting and delineating LWFs 
and forest patches, enabling efficient large-extent mapping and 
repeatability; and (2) to examine changes in these features over time 
to better understand their potential influence on regional biodiversity 
and ecosystem services.

2 Methods

2.1 Overview

For this analysis, image data from 2019 and 1954 were pooled to 
develop a deep learning classification model applicable to both 
datasets. This model was used to generate forest and LWF maps for 
2019 and 1954. Only a single spectral band was used to be consistent 
with the 1954 images. Changes in forests and LWFs were detected by 
using class probability and uncertainty estimates as input features to a 
random forests model. The classification and change detection 
accuracy for both forest and LWFs were assessed using spatially 
independent samples. Figure  1 provides an overview of the main 
processing steps.

2.2 Study site

The study site is a ~9,000 km2 area in the agricultural region 
of Eastern Ontario. It is located southeast of Ottawa in the 

Mixedwood Plains ecozone. The region is characterized by 
complex landscape structure, varied crop types (compositional 
heterogeneity), diverse land cover spatial pattern (configurational 
heterogeneity), presence of non-crop land cover patches including 
wetland, grassland and forest, and woody and herbaceous field 
edges. These characteristics are more evident in this region 
compared to other agricultural regions of Canada such as the 
Prairies with more homogeneous landscape structure generally 
related to larger field sizes.

2.3 Image data

Two sources of imagery were used in the analysis. The more 
recent, circa 2019, was from the Digital Raster Acquisition Project 
Eastern Ontario (DRAPE, acquired through Ontario GeoHub, 
2019). DRAPE data was acquired in the spring of 2019/2020 (April 
25th, 2019, to May 22nd, 2020) under the best cloud free, snow 
free, ice free, and in some cases leaf off conditions. The spatial 
resolution was 16 cm. Digital cameras used to acquire the data 
were the Vexcel UltraCam X and Vexcel UltraCam Eagle. The 
acquired data was orthorectified using an elevation dataset 
generated through image correlation. DRAPE orthorectified tiles 
are 1 km by 1 km and contain visible and near-infrared 
(NIR) bands.

The historical imagery was from 1954. These black and white air 
photos were and produced by Energy Mine and Resources Canada. 
The spatial resolution is 5.5 m. The images were scanned and 
georeferenced by Magda Biesiada, Data, Map, and Government 
Information Services, Data & GIS Services, and acquired through the 
Map and Data Library, University of Toronto (n.d.). Georeferencing 
used a spline transformation with ground control points. Visual 
inspection showed that results were generally quite good, but in some 
areas spatial misregistration with the 2019 imagery was evident. In 
these areas additional ground control points were collected to improve 

FIGURE 1

Overview of analysis steps.
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FIGURE 2

Train and test samples used for forest and LWF classification. The 1954 sample clusters overlap the 2019. For the test data only one area overlaps 
between 2019 and 1954 towards the top-left shown in orange. Background land cover is the Sentinel-2 10 m land cover time series of the world. 
Produced by Impact Observatory, Microsoft, and Esri.

the geolocation accuracy. The root mean squared error across the 
study area was 3 m based on an independent random sample of 35 
ground control points.

2.4 Reference data

2.4.1 Image classification
Training and test samples were extracted from a manually 

digitized vector map of all woody features (forest patches and LWFs) 
of Eastern Ontario, previously created by GLEL at Carleton University 
based on high resolution images (Daly, 2022; Gabriel, 2022; Hajdasz, 
2023). In order to correct major differences, this dataset was overlayed 
on the 2019 DRAPE images. Missing or falsely included LWFs and 
forest patches were added or removed. Errors for labeled features were 
also corrected. Using these data three classes were defined as:

 1. LWF: wooded hedgerows and riparian strips with a minimum 
length of 20 m and width less than the length similar to the 
definition used in Pasher et al. (2016).

 2. Forest: non-linear wooded patches of various size and shape.
 3. Other classes: all other land covers including crop fields, urban 

area, wetlands, bodies of water, etc.

Training and test data was extracted as 624 by 624 image subsets 
for each sample location and included the image data as the input 
and associated labeled raster as the training target. The spatial 
resolution was 32 cm, where the modified GLEL vector map was 
rasterized at this resolution. For the 2019 image data, it was 
downsampled using averaging. For the 1954 data it was upsampled 
using nearest neighbor to maintain the original image values and 
spatial structure. After initial runs the results were checked and 
additional training samples were added to correct errors. These 
additional samples were generally collected for low density forests, 
unique leaf-off conditions, some water bodies, urban areas, and 
boundaries of forests and LWFs.

Only a single image band was used as input to the model. This was 
done to be consistent with the 1954 imagery. For the 2019 data all bands 
were extracted to be used in the data augmentation during model 
training. This allowed the model to be trained using both the 2019 and 
1954 image data providing a single model to map both periods.

Test samples (624 by 624 image subsets) were extracted for four 
locations in 2019 and 1954. Samples were acquired from different 
locations to better capture landscape variability, except for one 
sample area which was included to examine change potential. The 
spatial distribution of training and test samples are shown in 
Figure 2.
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2.4.2 Change detection
For change detection, samples were interpreted from the 2019 and 

1954 image sources. Figure 3 shows the spatial distribution of the 
samples used for forest and LWF change. Spatially independent and 
randomly selected test samples were used for the change validation. 
These were generated by sampling gain, loss and no change objects. 
For each object, samples were systematically selected at approximately 
20 m intervals. For LWFs, samples of no change were added along the 
object edges to incorporate the object boundaries.

2.5 Deep learning model for image 
classification

The U-Net architecture was used for the deep learning 
classification model. A U-Net in this context is known as segmentation 
approach, where an input image is used to predict an output 
segmented and labelled raster image. The specific U-Net used in this 
study is shown in Figure 4 with a depth of four. For the encoder part 
of the network residual blocks were used along with max pooling for 
each depth. For the decoder, spatial attention was included along with 
upsampling and residual blocks. Spatial attention helps the network 
focus on more informative spatial regions. The output of the network 
included softmax activation for the three classes.

The network was implemented in Tensorflow with the Adam 
optimizer and learning rate set at 0.0001. Categorical focal loss was used 

with the focal loss set at two. This loss helps the network focus on hard 
to predict samples during training. Batch size was set at 5. Early stopping 
criteria was applied, monitoring the accuracy, where training ended if 
there was no improvement in 15 epochs. Standard data augmentation 
was applied to help the network avoid overtraining. Augmentations 
included random noise, bias, and flipping for the vertical and horizontal 
axes. To be consistent with the 1954 single band imagery, for 2019, data 
augmentation randomly sampled the red, green, blue or computed the 
average to represent a single image band in 2019.

A deep ensemble approach was used, where five U-Net models 
were developed with a separate random initialization for each model. 
Total epochs varied with each model and ranged from 70–90 epochs 
for the initial training. Then another 30–50 epochs with additional 
training data included to address errors from the initial models. The 
class probabilities were averaged across the five models and the 
standard deviation used as an indicator of prediction uncertainty.

Accuracy for LWFs was assessed at the pixel, object, and area 
scales using the test sample set. Forest accuracy was evaluated only at 
the pixel and area scales. Object-level assessment was included for 
LWFs to reveal detection accuracy, in contrast to the pixel-based 
analysis, which reflects a combination of detection and delineation 
accuracy. The area-based comparison was included for both LWFs and 
forests, as this reflects how the data are commonly applied in 
ecological studies.

For the pixel assessment the F1 score, precision and recall 
accuracy statistics were computed for each class and separately for 

FIGURE 3

Train and test samples used for forest and LWF change detection. Background land cover is the Sentinel-2 10 m land cover time series of the world. 
Produced by Impact Observatory, Microsoft, and Esri.
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FIGURE 4

(A) U-Net architecture; (B) residual block; (C) attention block.

2019 and 1954. For the area assessment, the class area (as percent) 
from the samples (624 by 624 image subsets) was compared between 
the test data and predicted estimates. Comparison included the 
coefficient of determination and the mean absolute error.

The LWF object detection assessment was performed using 
scikit-image (van der Walt et al., 2014). Spatially distinct LWFs were 
identified with the connected components labeling algorithm. The 
skeleton of each detected LWF was computed, and its width was 
estimated by dividing the area by the length of its skeleton. Objects 
contained within 90% of the 50 pixel edges of the reference or 
predicted images were removed to avoid edge effects. Reference 
objects were considered detected if they overlapped with a prediction 
by at least 40%. This threshold was chosen as it represents the 
minimum overlap required to account for acceptable deviations in 
object boundaries. Reference objects with less than 40% overlap were 
classified as omissions (missed detections), while predicted objects 
with less than 40% overlap were considered commissions (false 
detections). A minimum length of 20 m was applied following from 
the LWF definition and minimum area of 15 m2. Precision, recall, and 
F1 scores were calculated for width thresholds ranging from 5 to 
35 m, where only objects with widths less than or equal to each 
threshold were included.

2.6 Change detection

To detect changes, a more straightforward approach was sought, 
primarily motivated by efficiency and training data requirements 
compared to the deep learning method used for classification. The 

random forest classification algorithm was employed, using the 
results from the deep learning as input features. This approach aimed 
to leverage the high-quality outputs from the deep learning 
classification while minimizing the training and input feature 
requirements of the random forest model. One key advantage of 
random forest is its fast training and application, making it well-
suited for a distributed processing approach. Alternatively, a deep 
learning model could have been developed directly from the imagery 
to detect change, but given general requirements for deep learning 
model development and variability in the data related to phenological 
timing, a much larger training sample would have likely been needed. 
Simple thresholding of class probability differences was also tested, 
but more consistent results were obtained using random forest to 
separate changes by incorporating uncertainty and spatial consistency.

The change analysis was performed at 1.28 m spatial resolution 
by average downsampling of the 32 cm forest and LWF results. This 
spatial resolution was selected as it did not compromise the quality 
of the results and reduced the output size by a factor of four. The 
inputs to the random forest model were the U-Net class probabilities 
and uncertainties for each period. For each sample this included the 
class probability and uncertainty for the pixel and mean of the 5 by 
5, 15 by 15, and 25 by 25 local neighborhoods. Thus, for a given 
sample there were 16 inputs including the class probabilities plus 
uncertainties for a pixel for each time period and the local 
neighborhoods. The number of trees used was 100 and all other 
parameters were set as default. Results of the change analysis were 
filtered to remove change objects smaller than 49 m2. Change classes 
included gain, loss, or no change for forests or LWFs. F1, precision, 
and recall statistics were computed to assess accuracy. To better 
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visualize and summarize the results, net change was computed for a 
1 km grid across the study area.

3 Results

3.1 Forest and LWF classification

Example results for the forest and LWF classification in each 
period are shown in Figure 5 for a large spatial extent. These results 
show good agreement in terms of the general pattern detected as forest 
or LWF in both periods.

Example results for a more detailed, zoomed-in extent are 
presented in Figure 6. It reveals that the forests and LWFs were well 
detected, but that the LWF predictions tend to be  larger than the 
reference in some cases. The reference data is not a prefect delineation 
of the LWF and is often larger and has a generalized shape compared 
to what is evident from the image. This error in the training data was 
the primary reason for the LWF prediction errors. Refinement of the 
LWF objects in the GLEL dataset was not undertaken as it would have 
been a significant effort. Only missing objects or false objects were 
corrected in the training data used.

Error matrices and accuracy statistics for each class are given in 
Table 1 for 1954 and 2019 based on the test data. The forest and other 
classes have very high accuracy 90% or higher for both periods based on 

the F1 score. LWF accuracy is lower and is 70% in 2019 and 66% in 1954. 
This is partially attributable to limitations in LWF delineation accuracy 
in both the predicted and reference data, where narrow linear features, 
shape complexity, and intersections coupled with the generalized nature 
of the reference data and geolocation error introduces ambiguity in 
object boundaries and reduces delineation precision. However, as can 
be seen in in Figures 5, 6, LWF detection accuracy is good. That is LWFs 
are well detected, but differences in the exact shape between the reference 
and predicted LWF objects are evident.

Figure 7 shows the results of the LWF object detection analysis for 
the different width thresholds for 2019 and 1954. Few objects were 
detected for widths less than or equal to 5 m and these results are not 
reliable. For the 10 m threshold, the F1 score is ~50%, but in terms of 
the total area this was less than 4% of the sample. For the 15 m 
threshold, the F1 score approaches 70% and for all data was 77%. This 
supports the visual conclusion of good detection accuracy. The 2019 
results (F1 score = 83%) are better than 1954 (F1 score = 73%) as 
expected due to the lower image quality for 1954.

For the area-based assessment, results indicate strong correlation 
and low mean absolute errors supporting again strong detection 
accuracy and averaging out of delineation errors in particular for the 
LWFs (Figure 8). The mean absolute error for forests was 2.73 and 
1.26% for LWFs. The range of forest area was greater in the sample 
with a relatively equal distribution from 0 to 100%. For LWFs the 
majority of the data was less than 30%.

FIGURE 5

Example results for a 4 km extent. (A) 1954 image; (B) 2019 image; (C) 1954 forest and LWF classification results (red = LWF, green = forest); (D) 2019 
forest and LWF classification results (red = LWF, green = forest); (E) Forest change results (dark red = loss, dark green = gain); (F) LWF change results 
(dark red = loss, dark green = gain). Circles indicate different changes: yellow—forest loss; light blue—forest gain; dark blue—LWF loss; orange—LWF 
loss to forest gain.
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3.2 Forest and LWF change

Example results for the change between 2019 and 1954 are 
shown in Figure 5 for a large extent highlighting areas of gain and 
loss. At this scale changes appear well captured. Change accuracy 
based on the spatial holdout are given Table 2 and show that the 
accuracies were all above 81%. Careful visual examination of the 
results confirmed high accuracy, except for ambiguous areas related 
to lower density forest in the lower quality 1954 imagery or sparsely 

treed LWFs and wetlands. Low density forest wetlands were more 
ambiguous in the 1954 imagery in particular. Urban areas were also 
sometimes captured as forest loss, because these areas were not well 
trained in the 1954 imagery and were falsely identified as forest. 
However, in the 2019 imagery urban areas were well trained and not 
identified as forest. For this reason, all urban areas were checked 
and corrected in the final results. Change objects were often well 
detected, but boundaries were in some instances over 
or underestimated.

FIGURE 6

Example prediction results for (A,B) 2019; (C,D) 1954.
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Figures 9, 10 show the net change and mean class probabilities from 
1954 to 2019 for a 1 km grid. Forest area has increased in the region by 
12.3% and decreased by 3.8% resulting in a net gain of forest of 8.5%. The 
gain in forest largely occurred in previous agricultural fields. Decreases 
occur more locally and for a smaller magnitude related to agriculture, 
urban development, or conversion to wetland conditions. LWF change 
was more balanced, increasing by 1.55% and decreasing by 2.08% for a 
net loss of 0.53%. Loss in LWFs occurred mostly in areas of forest gain. 
Some loss was also due to urban development. Removing LWF loss due 
to forest gain, the net change in LWFs showed a small gain of 0.15% 
suggesting that LWFs have been stable in the region.

4 Discussion

The ability to accurately map and assess changes in forests and 
LWFs is critical for evaluating biodiversity and other ecosystem 
services such as carbon storage. This study demonstrates the capability 
to map forests and LWFs using spatially and spectrally heterogeneous 
high-spatial resolution image datasets. The deep learning model 
developed here was effective utilizing a single image band to 
consistently map forests and LWFs over the period from 1954 to 2019. 
Outputs from the model were subsequently employed to assess changes 
across the study area. Accuracy of the change results were largely 
constrained by the quality of the 1954 image data. While the 
incorporation of higher-quality historical imagery with additional 
spectral content could potentially improve the accuracy of the findings, 
it would reduce the temporal extent of the analysis. The primary 
objective of examining changes over the longest possible period was to 
better understand how biodiversity and ecosystem services in the 
region have been influenced by shifts in forest and LWF distributions.

Another challenge in this analysis was the use of early spring 
imagery with various degrees of leaf development conditions in 2019. 
This increased the variability for which the deep learning model was 
required to account for and led to errors in some cases. Much of this 
error was addressed through collection of additional training samples 
to improve the model. However, with a more consistent image data 
source, reduced training data and more accurate results are possible.

Geolocation quality is a crucial factor in change analysis. 
Improving geolocation accuracy would enhance results, particularly 
for LWFs, which are narrow objects and prone to misalignment. 
Significant effort was made to refine geolocation accuracy to enable 
change detection at the pixel scale. The object and area-based analysis 
were incorporated to minimize geolocation error on the results. In the 
object-based approach, the overlap criteria were applied to account for 
minor misalignments, ensuring that slight shifts did not falsely 
indicate change in addition to accounting for boundary errors. In the 
area-based assessment, a misaligned LWF is not counted as a change, 
as the total area remains consistent despite positional inaccuracies. 
However, there could be some potential error along the boundaries of 

TABLE 1 Error matrix and accuracy statistics for A) 1954 and B) 2019 test 
samples.

A) 1954

Reference

Pr
ed

ic
te

d

Forest LWF Other

Forest 1,925,708 4,391 189,770

LWF 1770 167,099 53,314

Other 179,580 108,889 6,713,070

F1 score 0.91 0.66 0.96

Precision 0.91 0.75 0.96

Recall 0.91 0.60 0.97

B) 2019

Reference

Pr
ed

ic
te

d

Forest LWF Other

Forest 4,362,881 18,439 381,920

LWF 48,805 674,577 297,498

Other 498,978 225,670 17,196,164

F1 score 0.90 0.70 0.96

Precision 0.92 0.66 0.96

Recall 0.89 0.73 0.96

FIGURE 7

LWF object accuracy for width thresholds. At each threshold objects with widths less than or equal to the threshold were included.
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the sampled area (624 by 624 pixels in this study), which would 
depend on factors such as the spatial configuration, the occurrence of 
LWFs near edges, and the size of the area being analyzed. Additionally, 
to evaluate changes in spatial configuration, such as local connectivity, 
an area-based approach is inherently required.

In addition to improving image data, enhancing the quality of 
training data is expected to improve the delineation of both forests 
and more importantly LWFs. The accuracy of the delineation can 
be  influenced by several factors, including the scale at which the 
delineation is made, image properties like sensor-viewing geometry, 
and the skill of the interpreter among others. For large-extent 
production efforts, such as the GLEL initiative, a balance between 
accuracy and efficiency is required. Ultimately, refining and adjusting 

the interpretations to the source image would improve the results. In 
this analysis, the model’s tendency to delineate LWFs slightly wider 
than the reference data introduced a small bias. Fortunately, this bias 
was fairly consistent between 1954 and 2019, so it is not expected to 
significantly affect the change results. Additionally, the training data 
for change detection included edge samples specifically chosen to 
help account for potential bias.

From this analysis between 1954 and 2019 there has been a 
reduction in the agriculture area and associated increase in forests in 
this region. As a generalized guideline Arroyo-Rodrıguez et al. (2020, 
2021) recommend that 40% forest cover be maintained to support 
biodiversity. Forest area in 2019 was 36%, including the area of LWFs 
this increases to 39% very close to this recommendation. However, 

FIGURE 8

Comparison of predicted and reference data as percent area (pooled 200 by 200 m extents for 2019 and 1954) for (A) forests and (B) LWFs. Black line is 
the regression line and the red dashed represents the 1:1 line.

FIGURE 9

Net change in forest area per 1 km grid cell across the study area (left), and mean forest probability from 2019 and 1954 U-Net model outputs (right). 
Grid cells with less than 1% forest cover have been set as no data in the mean forest probability layer. Water and built-up areas are from the Sentinel-2 
10 m land cover time series of the world. Produced by Impact Observatory, Microsoft, and Esri.
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analysis for the period beginning around the late 2000s, indicates a 
reversal of this trend, with forest cover declining across the region 
(Mesman, 2016; Fyson et al., 2024).

Although LWFs declined slightly due to forest gains, forests may 
offer greater biodiversity benefits (Slade et al., 2013). However, a global 

meta-analysis by García de León et  al. (2021) found no significant 
increase in biodiversity in forests compared to LWFs, though ecosystem 
services were enhanced. Not considering areas of forest gain, a very small 
increase in LWFs was observed. In the central region that was mostly 
agriculture cover in 2019 and 1954 shows a general increase in LWFs 
(Figure 2 crop area and Figure 10 LWF change). This increase is likely to 
have a positive effect on bird biodiversity (Wilson et al., 2017; de Zwaan 
et al., 2024). However, other factors, not examined, affecting biodiversity 
in the region such as urban expansion and larger field sizes are expected 
to negatively impact biodiversity. Since the 1950s, industrial development 
and urban expansion resulting from various industries including 
manufacturing, education, and technology have been important drivers 
of change. Agriculture has remained a key component of the regional 
economy since 1954 (Minnes and Douglas, 2013). Although the total 
area of cropped land in Eastern Ontario has remained relatively stable 
over the past few decades (Smith, 2015; Caldwell et al., 2022), farming 
practices have shifted. There has been a move away from low-intensity 
perennial crops, such as hay and pasture, toward more intensive annual 
crops like corn, soybeans, and wheat. Additionally, average field sizes 
have increased due to the consolidation of adjacent fields and the 
removal of LWFs (Smith, 2015; Ontario’s Agricultural Soil Health and 
Conservation Strategy Report, 2022). Visual inspection of the image data 
used here suggests that field sizes have increased from 1954 to 2019, 
leading to a reduction in field margins of different types including LWFs, 
which are important for supporting biodiversity across various 
taxonomic groups (Fahrig et al., 2015). Additionally, field sizes and LWFs 
have been shown to affect the availability of milkweed, which is vital for 
supporting monarch butterflies (Martin et al., 2021).

Future work will focus on improving accuracy, incorporating 
additional time periods, extending to additional study areas, and 

TABLE 2 Error matrix and accuracy statistics for change detection.

A) Forest

Reference

Pr
ed

ic
te

d

Gain Loss No Change

Gain 699 0 37

Loss 0 874 29

No Change 68 223 1,336

F1 score 0.93 0.87 0.88

Precision 0.95 0.96 0.82

Recall 0.91 0.80 0.95

B) LWF

Reference

Pr
ed

ic
te

d

Gain Loss No Change

Gain 420 0 148

Loss 0 515 167

No Change 52 58 1,578

F1 score 0.81 0.82 0.88

Precision 0.74 0.76 0.93

Recall 0.89 0.90 0.83

FIGURE 10

Net change in LWF area per 1 km grid cell across the study area (left), and mean LWF probability from 2019 and 1954 U-Net model outputs (right). Grid 
cells with less than 1% LWF cover have been set as no data in the mean LWF probability layer. Water and built-up areas are from the Sentinel-2 10 m 
land cover time series of the world. Produced by Impact Observatory, Microsoft, and Esri.
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expanding the characterization of linear features to include non-woody 
field margins. Additionally, wetlands and urban areas need to 
be considered, as both have undergone significant change in the region. 
These improvements are crucial for gaining a deeper understanding of 
the current state and the changes impacting biodiversity and carbon 
storage in the region, which is essential for supporting policies that 
effectively balance economic with conservation objectives.
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