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Introduction: It is important to enhance consumer trust in the product quality of a 
sustainable agricultural supply chain. However, the frequent occurrence of food 
safety problems in practice leads to a lack of public confidence in food safety. 
To tackle the challenge of quality distrust, we harness the synergistic potential of 
“GenAI + blockchain” technology among industry-leading agribusinesses.

Methods: Three distinct models are constructed to explore the impact of various 
technological integrations, with a focus on analyzing inventory management, 
operational efficiency, and precision technology adoption using AnyLogic.

Results: Our study reveals that (1) Integrating AI and blockchain technology 
can modulate minimum safety stock, catalyzing leapfrog revenue growth for 
enterprises. (2) Harnessing artificial intelligence can bolster the agricultural 
supply chain’s overall efficiency, but striving to achieve the highest possible 
accuracy is not feasible. (3) Gauging consumers’ premium for freshness aids 
companies in targeting key demographics and bolstering quality trust, thus 
fostering a stable upward trend in sales.

Discussion: By demystifying the underpinnings of minimum safety stock 
adjustments and the subtle effects of precision technology, our study steers the 
crafting of advanced inventory strategies and astute technology decisions for 
innovative agribusinesses.
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1 Introduction

In the traditional agricultural supply chain, enterprises exhibit substantial dependency on 
unidirectional supply chain relationships. This reliance is compounded by a conspicuous lack of 
consumer trust in the food production process and various facets of the production chain, 
particularly regarding issues such as environmental contamination and food spoilage (Danneels, 
2004). To mitigate these trust deficits, disruptive technologies, notably blockchain (Tan and 
Saraniemi, 2023; Hou et al., 2024), are progressively being integrated into networked supply chains 
to predict changes in the freshness of agricultural products, thereby ensuring product quality, 
traceability, and comprehensive process transparency (Zhu et  al., 2023). While blockchain 
technology holds significant promise in enhancing product traceability and authenticity, it does not 
constitute a panacea for all quality-related concerns. Enterprises may still encounter challenges in 
maintaining product quality, necessitating the implementation of additional quality control 
measures alongside the adoption of blockchain solutions. For example, incidents such as the Andre 
Group’s production of fruit and vegetable juices from rotten fruit in August 2024 and the smoking 
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of wolfberries in Gansu underscore a pervasive lack of trust in product 
quality. Additionally, occurrences of adulterated onions and the presence 
of residual vegetable matter in Changsha, Guizhou, and other locations 
highlight the limitations of relying solely on blockchain technology to 
ensure the security and integrity of food traceability systems. Although 
blockchain technology provides robust assurances regarding the 
protection of digital data, it may not fully address fundamental challenges 
related to the safety and quality of the food items themselves. The 
deceptive appearance of products impairs consumers’ ability to accurately 
assess product quality, leading to uncertainty about their willingness to 
pay and potentially resulting in transaction failures.

To effectively enhance trust in product quality, an increasing 
number of leading agribusinesses are developing intelligent technology 
platforms for agricultural services. Emerging AI platforms, 
represented by Generative Artificial Intelligence (GenAI), are creating 
numerous application scenarios. For instance, the Zhengda Group in 
Thailand collaborated with Huawei Cloud Pangu’s pre-training Graph 
large model in February 2023 to achieve intelligent analysis of durian 
DM structured data, increasing the predictive accuracy of durian 
maturity from 50 to 91%;1 Similarly, Kraft Heinz plans to implement 
an artificial intelligence vision system in October 2024 to ensure 
natural product consistency from farm to tin, maintaining product 
freshness and high quality.2 Agribusiness leaders are leveraging GenAI 
technology to detect product quality and generate automated work 
instructions, aiming to develop high-quality, efficient production lines 
and ensure the sustainability of agricultural supply chains. Indeed, the 
integration of GenAI and blockchain technology facilitates precise and 
contemporaneous inventory data, enhances efficiency, and mitigates 
human error impacts. Blockchain technology offers a transparent, 
auditable view of the supply chain. When combined with GenAI’s 
rigorous product quality testing, it helps enhance consumer trust in 
product quality. For example, Juewei Food employs both GenAI and 
blockchain technology to understand real-time supply chain 
dynamics, facilitate chain-wide information sharing and collaboration, 
and improve food product quality and service levels. Given these 
developments, this study explores the complementary applications of 
blockchain technology for freshness prediction and GenAI technology 
for quality detection. The objective is to optimize the agricultural 
supply chain by ensuring the freshness of agricultural produce, 
thereby strengthening consumer confidence in product quality.

The extant research on blockchain and GenAI technologies in the 
agricultural supply chain is oriented toward assisting farmers in making 
accurate decisions and intelligent optimization in production, marketing, 
and financial matters (Holzinger, 2018; Hagras, 2018; Chen et al., 2023; 
Arora et al., 2025). Nevertheless, existing research has predominantly 
concentrated on the utilization of blockchain technology to enhance the 
comprehensive traceability and transparency of the supply chain 
(Matzembacher et al., 2018; Mangla et al., 2022; Madzík et al., 2025). 
Enhance the precision of blockchain technology in forecasting the 
freshness of products, thereby influencing product inventory and 

1 Huawei. (2023, February 7). Tech that keeps Thai durian at top of market. https://

www.huawei.com/en/media-center/our-value/using-tech-for-better-durian.

2 Linkdood. (2024, October 12). How AI Helps Kraft Heinz Make Better  

Pickles and More. https://linkdood.com/how-ai-helps-kraft-heinz-make 

-better-pickles-and-more/.

revenues in enterprises (Modak et al., 2024), and the deployment of 
GenAI technology for the monitoring of product quality (Ma et al., 2024). 
The impact of consumers’ willingness to pay on their returns as a result of 
using technology has been relatively overlooked. Furthermore, the real-
time observation of changes in inventories and returns across actors in the 
agricultural supply chain remains unrealized. Based on this, we construct 
a baseline model without the use of technology, a Blockchain-coordinated 
model, and a collaborative model based on “GenAI + blockchain” 
technology to simulate the changes of inventory and income of various 
entities in the agricultural supply chain network over time. According to 
the different accuracy of technology use and payment willingness, 
reasonable technology use schemes are analyzed, and technology 
application methods that can accurately describe different demand 
conditions are proposed. AnyLogic software is used to simulate different 
technology integration degrees, and through the real-time changes of each 
main body’s inventory, freshness and income, the relationship between 
various decision-making processes can be better understood, and the 
minimum safety inventory of enterprises can be found more intuitively 
and easily. And analyze how the use of technology and consumers’ 
willingness to pay for products of different quality affect the overall 
benefits of enterprises and even agricultural supply chains.

Our study subdivides the precision degree of technology 
utilization within the agricultural supply chain, facilitating a more 
accurate understanding by enterprises of their technological needs 
under varying circumstances. This segmentation holds practical 
significance for enhancing consumer trust in product quality. 
Furthermore, the integration of “GenAI + blockchain” technology 
presents potential for leading agribusinesses to conduct real-time 
minimum safety inventory planning. It also addresses the 
limitations of blockchain technology in monitoring product quality 
and safety, thereby enabling enterprises to bolster consumer 
confidence in product quality. To address these points, this research 
seeks to answer the following questions: (1) how does the accuracy 
of “GenAI + blockchain” technology application at each stage 
influence the degree of product trust? (2) What are the impacts of 
implementing and integrating different technologies on the security 
stock and earnings of agricultural enterprises? (3) How does the 
integration of GenAI and blockchain technology affect consumers’ 
willingness to pay for freshness, and in what ways can it help 
enterprises improve efficiency?

Our study contributes to the literature by establishing 
technological synergy strategies for leading firms to improve quality 
trust, taking into account firms’ minimum inventory, technological 
precision, and payment sensitivity. The combination of GenAI and 
blockchain technologies offers potential for enhancing the overall 
quality and efficiency of the agricultural supply chain. The application 
of technology synergies can facilitate real-time monitoring of 
inventory and the formulation of minimum safety stock strategies by 
enterprises. Additionally, the integration of enhanced precision 
through technology can assist businesses in accurately targeting 
markets according to varying willingness-to-pay segments, improving 
quality and reliability, and achieving optimal returns.

The remainder of this research is organized as follows: Section 2 
presents a review of the existing literature, offering a comparison to 
this thesis; Section 3 is concerned with the description of problems 
and construction of models; Section 4 conducts the model simulation 
and result analysis. A sensitivity analysis is presented in section 5, with 
a view to discussing the impact of inventory, technical precision, and 
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payment sensitivity. In conclusion, the full text is summarized and 
pertinent recommendations are set forth in Section 6.

2 Relevant research

2.1 Research on product quality trust

Quality trust stands as a critical concern in the management of 
agricultural supply chains, shaping consumer perceptions regarding 
the safety and quality of agricultural products, and impacting the 
overall efficiency and profitability of the supply chain. Scholars have, 
in recent years, embarked on multifaceted research endeavors to 
understand how to establish and sustain quality trust within the 
supply chain. Paramount among these factors is the governance 
structure of the supply chain, which exerts a profound influence on 
the maintenance of agricultural product quality. Empirical research 
has underscored the benefits of robust collaboration among supply 
chain actors in bolstering product quality and reducing information 
disparities. Illustratively, the augmentation of information sharing and 
cooperative efforts can elevate the transparency of the supply chain, 
consequently bolstering consumer confidence in the products (Sun 
et al., 2021). Secondly, price, which is conventionally indicative of 
quality, can be rendered ineffective by information asymmetry. In 
response to this challenge, blockchain technology emerges as a 
novel solution.

The inherent immutability and transparency of blockchain serve 
to authenticate agricultural products (Vazquez Melendez et al., 2024), 
thereby reinstating consumer confidence in price signals, optimizing 
supply chain efficiency, and harmonizing the interests of all supply 
chain stakeholders (Luo et al., 2024). The integration of blockchain 
technology within the realm of supply chain management (SCM) is 
attracting substantial interest, notably for its capacity to bolster 
transparency and foster consumer trust. Specifically, blockchain 
technology enables the traceability and authentication of the quality 
and origin of agricultural products, thereby fundamentally resolving 
concerns regarding the quality and safety of agricultural produce 
(Zhan and Wan, 2024). Beyond the deployment of technology, the 
trust among members within the supply chain plays a pivotal role in 
shaping confidence in organic products (Duong et  al., 2024). 
Furthermore, traceability information is instrumental in bolstering 
consumer trust (Matzembacher et al., 2018). Blockchain-enabled food 
traceability systems offer substantial benefits in enhancing consumers’ 
intentions to select safe food options (Lin et al., 2021). During the 
process of purchasing and consuming food, consumers depend on 
specific information to evaluate food quality (Ladwein and Romero, 
2021). Food certification emerges as a key determinant in building 
trust (Conroy and Lang, 2021), with a pronounced level of confidence 
in certified organic food chains and agricultural products (Murphy 
et  al., 2022). Information sharing and the caliber of information 
significantly influence food quality (Juan Ding et al., 2014), and it is 
upon this trust that chain members operate to forge a secure and 
dependable supply chain (Fischer, 2013). Consumers’ perception and 
assessment of risks, mediated through shared information, directly 
affect their trust in the quality of food (Tan and Saraniemi, 2023). The 
depth of consumer trust is shaped by the intricate dynamics among 
the three pillars of food trust: search, experience, and credence 
attributes. Price reductions can undermine customer trust, whereas 

perceived quality assumes a pivotal mediating function (Bai et al., 
2023). Regarding food safety, the implementation of blockchain 
technology to augment the efficiency, transparency, reliability, and 
traceability of the food supply chain is pivotal in developing a more 
robust and efficient system for ensuring food safety (Akram et al., 
2024). Furthermore, blockchain serves as a tool for tracking goods, 
retrieving data, and managing data, all of which are critical for 
safeguarding food safety (Khan et al., 2022). The technical reliability, 
transparency, consensus standards, and traceability inherent in 
blockchain are acknowledged for their role in fostering sustainable 
development (Mangla et  al., 2022). The advent of sophisticated 
technologies—including the Internet of Things, big data, and artificial 
intelligence—holds the potential to augment the operational efficiency 
and product quality oversight within the supply chain (Alvarez-García 
et al., 2024) to achieve sustainable development of the agricultural 
supply chain.

Scholars have extensively researched the issue of product trust 
within agricultural supply chains, with a primary emphasis on 
validating food authenticity through inter-stakeholder information 
sharing and leveraging blockchain technology for traceability. Yet, the 
dimension of consumer quality trust has remained largely unexplored. 
Scholars have posited that blockchain technology holds the potential 
to predict fluctuations in the freshness of agricultural produce, but its 
implementation in the agricultural supply chain has been 
predominantly directed toward maintaining product freshness and 
quality (Modak et al., 2024). In this study, we propose to evaluate 
product quality trust based on the freshness of products and delve into 
the multifaceted benefits of blockchain and GenAI technologies 
within the agricultural supply chain. Adopting a perspective aimed at 
enhancing trust in quality, our research assesses how these 
technologies can confer overall benefits to both enterprises and 
agricultural supply chains. This analysis aims to establish a rationale 
for the integration of technology within enterprises and among supply 
chain members, and to precisely articulate the influence of blockchain 
technology adoption on the operational performance of enterprises 
within the agricultural supply chain ecosystem.

2.2 Research on generative artificial 
intelligence (AI) in agricultural supply chain

The deployment of generative artificial intelligence (AI) within the 
agricultural supply chain represents a swiftly advancing domain, 
spanning the entire spectrum from cultivation to processing and 
distribution. Research has delved into harnessing generative AI 
technology to bolster the efficiency and effectiveness of agricultural 
supply chains. In this context, Interpretable generative artificial 
intelligence (XAI) stands out for its capacity to resolve issues by 
furnishing precise and comprehensible justifications for decisions 
rendered by AI (Holzinger et al., 2022; Schneider, 2024). Prior studies 
have demonstrated that artificial intelligence is capable of 
understanding and recommending management practices tailored to 
specific crops, taking into account variables such as weather patterns 
and soil moisture. This capability facilitates more enlightened decision-
making and enhances crop productivity (Holzinger, 2018). Within the 
realm of agricultural production, artificial intelligence technology 
plays a pivotal role in aiding farmers to foster crop growth. Specifically, 
AI algorithms scrutinize sensor data, identify early indicators of crop 
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diseases, and proffer targeted action plans to farmers (Hagras, 2018). 
Regarding the maximization of yields, the analysis of soil data and 
meteorological parameters, facilitated by the interpretation of 
foundational models and datasets, enables the formulation of strategies 
aimed at attaining peak yields. This approach aids farmers in making 
more facile and enlightened decisions (Chen et al., 2023). In terms of 
market management, AI and machine learning models predict crop 
yields and prices, aiding managers in making better market decisions, 
optimizing the logistics and distribution of agricultural products, and 
enhancing efficiency by reducing waste through the prediction of 
market demand and analysis of consumer behavior (Mwangakala et al., 
2024). Additionally, GenAI plays a pivotal role in product quality 
control, including the detection of pollutants and risk assessment 
through the use of large language models (LLMs), addressing the 
shortcomings in food quality control (Ma et al., 2024). AI technology 
has already been successful in the fields of product development and 
freeze–thaw meat quality control (Qiao et  al., 2024). Bayer Crop 
Science has developed Climate FieldView, a comprehensive agricultural 
platform that incorporates over 250 layers of data and billions of data 
points. The platform uses AI-powered recommendations to help 
farmers design and monitor their fields, increase crop yields, and 
reduce carbon emissions; thereby enabling more efficient, sustainable, 
and profitable farming practices (Angelov et al., 2021).

Furthermore, the integration of AI with different technologies can 
produce various effects. The combination of AI and big data can 
enhance the ability to resist food safety risks (Mu et  al., 2024). 
Academic inquiry has delved into the combined potential of AI and 
blockchain technologies. The confluence of these technologies not 
only hastens the pace of product design, bolsters collaborative efforts, 
and optimizes manufacturing processes to shield the supply chain 
from counterfeiting and foster ethical consumption practices (Patel 
et al., 2024), but also plays a pivotal role in the early identification and 
mitigation of food safety risks (Chen et al., 2023). From a financial 
standpoint, IBM, in 2017, harnessed Food Trust blockchain 
technology coupled with an AI platform to facilitate swift transactions 
and enhance decision-making capabilities among small-scale coffee 
and cocoa farmers (Barbano, 2017).

Previous studies have shown that current research on AI 
technologies in agricultural supply chains tends to focus on helping 
farmers improve crop yields, make management decisions, or investigate 
single aspects of agricultural supply chain management. Research on 
“GenAI + blockchain” has focused on identifying counterfeit products 
and discovering safety hazards in the agricultural supply chain through 
blockchain traceability and the synergy between GenAI and blockchain 
technologies, but less attention has been paid to the area of quality trust. 
Therefore, based on the accuracy of blockchain technology for fresh 
produce prediction, we consider using the quality detection capabilities 
of GenAI to assist leading agricultural enterprises in achieving 
consumer quality trust, high-quality output in the agricultural supply 
chain, and double-layer safety detection for sustainable development.

3 Problem description and model 
construction

The quandary of quality trust within the agricultural supply chain 
exerts a dual impact: it undermines the operational efficacy of 
individual enterprises on the chain/network and concurrently 

diminishes the collective performance level of the entire chain/
network, attributable to the interdependent nature of its members. The 
emergence of quality trust issues in leading agricultural enterprises is 
not only deleterious to their performance but also triggers oscillations 
in the interests of other chain constituents. To mitigate the occurrence 
of quality issues to the fullest extent possible, enterprises must 
endeavor to secure enhanced quality trust from consumers, thereby 
fortifying the integrity and reliability of the agricultural supply chain. 
We  will delineate three models to facilitate a comprehensive 
comparative analysis, among which two embody technology synergy 
models that share analogous processes (illustrated in Figure 1).

In these models, prominent enterprises in the agricultural sector 
facilitate the integration of technology platforms, which then enable 
members of the supply chain—including enterprises, distributors, 
retailers, and consumers—to utilize these platforms to facilitate the sale 
and transportation of agricultural products. The blockchain technology 
platform primarily provides freshness monitoring technology, and the 
“GenAI + blockchain” platform builds on this by adding quality 
detection capabilities. Supply chain participants engage in the sale of 
goods, enabling consumers to trace and evaluate the quality of their 
purchases, and to convey their willingness to pay. Against this 
backdrop, we construct two models. The first is a conventional supply 
chain model devoid of technological integration, whereas the second 
is a Blockchain-coordinated model. In the latter, enterprises implement 
a blockchain technology platform, facilitating other chain members to 
utilize this technology for offering freshness monitoring services and 
for the sale of products via blockchain technology. Furthermore, there 
is a spectrum of ways in which enterprises harness blockchain 
technology, with technological precision ranging widely, and scenarios 
where blockchain may be  either entirely absent or inconsistently 
integrated within organizational structures. The deficiency of 
consumer trust in blockchain technology, evident in skepticism toward 
both the technology itself and the freshness of products, exerts a 
cascading impact on the effectiveness of its deployment. Even with the 
adoption of blockchain technology, its potential benefits may remain 
unfulfilled due to this pervasive consumer apprehension. In light of 
this, the third model integrates GenAI technology to forge a 
collaborative framework predicated on the “GenAI + blockchain” 
paradigm. This enables enterprises to establish high levels of consumer 
trust through the deployment of GenAI technology, thereby enhancing 
the overall efficiency of the chain.

This section presents an analysis of the impact of blockchain 
technology and AI-blockchain technology on the benefits of 
agricultural supply chains. To this end, we employ three simulation 
models, each corresponding to a specific level of technological 
precision: (1) a baseline model with traditional structure, (2) a 
collaborative supply chain monitoring model based on the freshness 
characteristics of blockchain usage, and (3) a resource-collaborative 
supply chain model based on GenAI + blockchain. given the 
particularities of the agricultural supply chain and considering the 
degree of integration efficiency of blockchain and GenAI + blockchain, 
this problem is addressed by varying the input parameters.

3.1 Parameter assumption

Hypothesis 1: In the simulation, it is set that the improvement of 
technical accuracy and cost increase linearly. This assumption is 
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based on the realistic logic of AI model training. High-precision 
models require more data annotation and computing power 
investment. For example, when Kraft Heinz deployed an AI vision 
system, the cost increased as the accuracy improved.

Hypothesis 2: The model characterizes consumers' willingness to 
pay (WTP) for freshness using a piecewise function: WTP 
experiences a precipitous decline when product freshness falls 
below a threshold, while it increases linearly with freshness above 
the threshold.

Hypothesis 3: A truncated normal distribution is employed in the 
simulation to model retailers' daily demand, under the assumption 
that consumers purchase only a single product and there is no 
negative demand. This assumption aligns with the typical 
"single-day single-customer purchase limit" scenario for 
agricultural fresh products (e.g., vegetable purchase restrictions in 
supermarkets), which is consistent with consumers' real-world 
daily purchasing behaviors.

Hypothesis 4: The (s, S) ordering strategy is adopted, involving 
daily inventory reviews and safety stock maintenance, under the 
premise that enterprises possess real-time inventory monitoring 
capabilities. This assumption implies the real-time synchronization 
support of blockchain technology for inventory data, in line with 
practices with Charoen Pokphand Group, which has achieved 
inventory transparency through blockchain applications.

3.2 Baseline model without technology use

The agricultural supply chain under consideration comprises 
both production and non-production entities. Leading 
agribusinesses supply agricultural products to distributors, who are 

primarily responsible for transportation, delivery of orders, and 
ordering products based on the quantities requested by retailers. 
Retailers receive orders from consumers for stocking and delivering 
products. The daily lead count for each retailer is simulated using a 
truncated normal distribution, thus precluding negative demand. It 
is assumed that each consumer can claim only one item if the 
product is in stock; therefore, consumer waiting time follows a 
Gaussian distribution and is not expected to exceed a certain 
threshold. If the total consumer order amounts to a single unit, the 
retailer has the discretion to fulfill the order completely or not, 
depending on inventory levels. Order fulfillment, influenced by the 
number of potential customers and repeat purchases, may 
be complete or partial, contingent upon the retailer’s stock, allowing 
for partial shipments. Upstream entities in this agricultural supply 
chain do not incur backlog costs for directly shipped goods. Each 
participant can dispatch goods and receive orders from downstream 
entities or end consumers. Delivery times to partners are normally 
distributed, dependent on the total quantity in transit. The 
inventory of leading agricultural enterprises, the principal 
production entities, mainly consists of perishable fresh produce. 
Product pricing is primarily governed by the costs associated with 
agricultural production and consumer market demand. Given the 
importance of product freshness, it serves as the paramount 
criterion by which consumers evaluate products.

In this baseline model, holding costs are incurred on a per-unit 
and per-day basis due to the capital lock-in and inherent warehousing 
costs of the model. Inventory replenishment is conducted through the 
implementation of an order-to-stock strategy (s, S ordering policy), 
where inventory levels are subject to daily review to ensure a consistent 
and uninterrupted flow throughout the entire supply chain. Moreover, 
the determination of order points is calibrated to ensure that each unit 
is ordered on a daily basis under equilibrium conditions. We can 
accurately ascertain the costs associated with fixed and variable orders, 
as well as any preemptive orders that have been placed, taking effect 
instantaneously. Drawing from the research of Yang et al. (2024) and 
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FIGURE 1

The structure of the agricultural supply chain model operating under the auspices of technological synergy. Source(s): author’s own work.
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Wu et al. (2023), in conjunction with other pertinent literature, the 
parameter η  is set to η− 0te , consequently defining the associated 
freshness function, denoted as ( )

ηθ θ ∗ −= 00
t

t e . Herein, ( )θ ∈0 0,1  
denotes the product’s initial freshness level. Considering the product 
under scrutiny is newly produced, the initial freshness is defined, 
denoted by θ =0 1, as follows. The parameter η0 signifies the rate at 
which freshness decays, with η0 being positive and its specific value 
derived from the unique attributes of the produce under consideration. 
The parameter 0,t T∈    denotes the duration of the transportation 
process. Given that the product is being transported with losses, the 
final volume of product sold is represented by the value of variable 

( )θ∗− tb b . The quantity of product in transit is denoted by the variable 
b. A thorough examination of the literature, encompassing 
contributions from Yu et al. (2022), Ketzenberg et al. (2015), and Chen 
et al. (2016), underscores that logistics and freshness costs are pivotal 
determinants of the overall financial burden on supply chains. In 
addition, inventory expenditures account for a notable segment of the 
total costs within traditional agricultural supply chains. The central 
processes modeled in AnyLogic involve the transit of products among 
principal entities and inventory fluctuations, which are crucial for 
ascertaining the related cost implications. The logistics expenditure, 
which encompasses temporal costs, within the supply chain is 
represented by ∗=T TIC C b . Echoing the findings from Yang et  al. 
(2024), the cost associated with freshness preservation stems from the 
endeavors to sustain product freshness, thereby warranting the 
incorporation of an extra freshness retention expense, signified by 

( )θ∗ ∗=F FI tC C b , alongside the previously mentioned costs. Inventory-
related costs are designated as ∗=H L HIC I C . Within the agribusiness 
sector, a specific subset of production expenses is recognized and 
labeled as ∗=M MIC b C . The variables TIC , FIC , HIC , and MIC  
correspond to the per-unit logistics, freshness preservation, inventory, 
and production costs of each item, in that order. The unit selling price 
for each participant in the supply chain is established in accordance 
with market pricing principles, exhibiting incremental increases as the 
product transitions through the supply chain, from the enterprise to 
the distributor, and ultimately to the retailer.

The production process associated with the enterprise is 
characterized by a normally distributed production time. Given that 
the set production capacity is finite, it follows that the number of 
products produced is also finite. The production process commences 
upon the arrival of an order at the receiving warehouse. The associated 
costs can be classified as fixed and variable. On a daily basis, each 
entity within the supply chain monitors and assesses pertinent data, 
including inventory levels, sales figures, and instances of stock 
shortages. Once all executable orders have been placed, the current 
inventory levels held by upstream subjects are compared with the 
expected quantities and the predefined target inventory levels. This 
allows the calculation of the order quantities and the associated 
revenues. Immediate shipment of orders is standard practice. The 
quantity of goods ordered from the upstream supplier is directly 
proportional to the number of orders placed, with a corresponding 
inverse relationship between the arrival of the shipment and the 
quantity of goods received. It is essential to monitor and record the 
relevant fixed and variable costs, production costs and transport costs. 
In consideration of the decline in quality that occurs during the course 
of the transportation process, the products are classified according to 
their level of freshness, with prices adjusted to reflect the differing 
levels of deterioration that occur in products with varying degrees of 

freshness. The selling price of fresh products is set at the highest level, 
designated as IP . Conversely, the price of products that have been 
tested and found to have a high loss of freshness is reduced to the 
second-highest level, designated as 2P . The ultimate daily operational 
phase for each entity is the calculation of profit. The final aggregate 
profit for the agribusiness as Equation 1:
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( )( )
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3.3 Blockchain-coordinated model

Drawing from the baseline model’s framework, this section delves 
into the pivotal parameters underpinning blockchain technology. The 
expense of integrating blockchain technology is predominantly 
contingent upon the accuracy with which it is deployed and the 
operational expenditures required for system monitoring and 
maintenance in real-world applications. The advantages of blockchain-
facilitated orders may arise from enhanced product freshness 
surveillance and predictive analytics offered by a transparent platform, 
potentially elevating the fixed cost per transaction above that of the 
baseline model’s fixed order costs. Herein, we examine the principal 
benefits that blockchain technology confers upon each supply chain 
participant and assimilate these benefits into the tangible simulation 
model. The freshness of each member’s goods is employed as a 
benchmark for pricing, with the corresponding profits for each entity 
being meticulously calculated.

For enterprises, the most significant benefit of blockchain is its 
ability to track quality. The electronic tracking system utilizing 
blockchain technology plays a crucial role in tracing the supply chain 
of organic products and in timely monitoring and predicting product 
freshness through blockchain technology, thereby meeting the high-
quality demands of agricultural products. For distributors, the 
primary role of blockchain is reflected in its ability to enhance 
transportation safety; blockchain technology can help reduce logistics 
costs and the risk of transportation damage, ensuring product quality 
and expanding the potential sales market. For retailers, the greatest 
advantage of blockchain lies in its traceability; through blockchain’s 
traceability capabilities, one can track all aspects of the entire process, 
ensuring product quality throughout.

In this collaborative model, each subject has its own transportation 
cost, inventory overhang cost and out-of-stock cost, but for the leading 
enterprise, the subject bears the technical cost. Each subject of the supply 
chain applies technology according to the blockchain technology 
platform introduced by the enterprise. The process time is normally 
distributed, and waiting time may occur because the transportation time 
may lead to changes in the free capacity between agents.

In this model, blockchain technology is employed primarily for the 
monitoring and prediction of freshness, the establishment of a freshness 

loss rating of 
( )0 1 te η αη − −= , and the subsequent calculation of the 

freshness function ( )
( )0 1

0
t

t e η αθ θ − −∗= . In the context of blockchain 
technology, the level of prediction accuracy indicated by 0,1α∈    
represents the upper limit of the technology’s potential. In contrast, the 
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extreme case of α = 0 corresponds to a scenario where blockchain 
technology is not employed, while the extreme case of α =1 reflects a 
scenario where the technology is highly accurate in monitoring and 
predicting product freshness. The pricing paradigm applied within this 
model mirrors that of the baseline model, categorizing products based 
on the criterion of freshness. Nonetheless, the emergence of blockchain 
technology has precipitated a transformation in consumer preferences, 
particularly in their readiness to pay a premium for freshness. This 
change is most evident post-adoption of the technology. Ultimately, the 
sales performance of fresh products is encapsulated by the variable 

( ) ( )( )θ∗ ∗ ∗= −b bp I F tP P K . This is where ( )
( )θ= tm

FK e , mdenotes the 
strength of the effect of freshness on price (the strength of the 
willingness to pay for freshness on price). It can be seen that higher 
freshness increases the willingness of consumers to pay, thus supporting 
higher prices. b denotes the amount of product being transported. The 
logistics cost in the supply chain is designated as α∗ ∗=T TIC C b , while 
the inventory cost is denoted as ∗=H L HC I C . The cost η∗= −LI I I  is 
attributed to alterations in the freshness of the product, which 
consequently give rise to fluctuations in the quantity of product in 
transit and in inventory. Consequently, the revenue generated by the 
model is represented by ( ) ( )( ) ( )θ θ∗ ∗ ∗ ∗ ∗= − + 2b b P bp I F t tP P K . 
Building upon the insights from Wu et al. (2023) research, it is inferred 
that the assimilation of an enterprise technology platform warrants the 
inclusion of a fixed technology cost, designated as α∗= 2

BL TEC C .
Relative to the baseline model, the post-blockchain technology 

adoption profit for each participant is denoted by the expression 
π = − − − − −p T I H F BLP C C C C C . After incorporating all the relevant 
costs discussed earlier, the profit function can be simplified as 
Equation 2:
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3.4 Collaboration model based on “GenAI + 
blockchain” technology

This section explores the differences between the simulation 
model based on blockchain technology and its key parameters. The 
cost of implementing “GenAI + blockchain” technology primarily 
depends on the precision of the technology and the operational 
expenses for monitoring and maintenance in practical applications. 
The benefits of “GenAI + blockchain” technology likely stem from its 
ability to help enterprises maintain freshness, assess product quality, 
and uphold superior product standards through GenAI, while 
blockchain ensures traceability and security across various chain 
entities. Leading enterprises drive the adoption of “GenAI + 
blockchain” technology, allowing other chain participants to utilize 
the platform to meet their specific application requirements. 
Consequently, a fixed cost per transaction is considered, which 
exceeds the fixed order cost characteristic of the baseline model.

In this section, we examine the primary advantages of “GenAI + 
blockchain’ technology for each member of the supply chain and 
integrate them into the concrete simulation model. Similar to the 
previous section, the freshness of goods for each member of the chain 
serves as a benchmark for price setting, and the related profit for each 
agent is calculated.

Enterprises stand to gain the most from GenAI technology 
through its intelligent detection system, which can automatically 
identify the appearance, size, color, and other attributes of agricultural 
products. This system compares these features against established 
standards to ascertain product quality. Such functionality not only 
enhances the speed and accuracy of agricultural product quality 
inspections but also safeguards the quality and safety of these 
products. Consequently, GenAI technology is poised to enrich 
human-machine interaction, while blockchain technology is well-
suited to bolster transparency and traceability within the supply chain, 
ultimately reinforcing consumer confidence in the quality of the 
enterprise’s offerings. Distributors benefit from real-time data and 
intelligent monitoring provided by the technology platform offered by 
enterprises, which enhances the safety and reliability of transportation. 
This approach helps reduce logistics costs and mitigate risks of damage 
during transit, ensuring the preservation of product freshness and 
maintaining product quality. As a result, it strengthens market trust in 
the freshness of products. Blockchain is effectively utilized for tracking 
physical goods, while GenAI technology aids in data analysis, 
streamlining logistics, and ensuring product authenticity. The 
synergistic application of GenAI and blockchain, supported by real-
time data and monitoring, provides superior tracking and security 
capabilities throughout the supply chain continuum. Retailers can 
leverage GenAI forecasting to more precisely anticipate market 
demand, thereby avoiding overstocking and maintaining superior 
product quality. The implementation of blockchain technology 
facilitates the documentation and monitoring of the product’s lifecycle, 
from production and transportation to sales, ensuring both product 
quality and safety. Concurrently, GenAI technology enhances the 
traceability and transparency within the supply chain. The 
convergence of GenAI and blockchain, with their real-time 
traceability, is crucial in fostering high consumer trust.

In comparison with the blockchain technology synergy model, 
this model incorporates additional factors related to the synergy 
between GenAI technology and other elements, with the aim of 
establishing a precise level of accuracy in GenAI technology 
detection. This is accomplished by adopting the methodology used in 
the freshness prediction model of blockchain technology, which is 
then extended to the GenAI technology quality detection model. The 
resulting model utilizes the symbols ( ) β−= −1Q AI e  and 0,1β ∈    to 
denote the accuracy level of GenAI detection. As in the baseline 
model, the selling price of the fresh product is set to 1P , and the price 
of the detected non-fresh product is subject to a price reduction, 
which is set to 2P . Thus, the total sales revenue for this model of 
technological synergy is denoted by 

( ) ( ) ( )( ) ( ) ( )θ θ∗ ∗ ∗ ∗ ∗ ∗ ∗= +1 2b 1 Pr
p F t tP P e K Q AI b Q AI乚  signifies the 

magnitude of the influence that GenAI quality assessments exert on 
pricing, which corresponds to the consumer’s WTP for the product. 
In contrast, = 1r 乚  encapsulates the level of consumer trust in the 
product’s quality. The consumer’s initial lack of trust in the product 
has a detrimental impact on sales, reducing the overall value of the 
product. Conversely, the development of quality trust in the product, 
indicated by =1r , has a positive effect on sales and the overall value 
of the product. This model analyses the impact of WTP intensity on 
the benefits of agricultural supply chains by influencing product 
pricing through the parameter r . In this synergistic model, the 
enterprise’s use of GenAI technology for quality inspection is 
complemented by the capacity to predict market demand. This 

https://doi.org/10.3389/fsufs.2025.1591350
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Bai et al. 10.3389/fsufs.2025.1591350

Frontiers in Sustainable Food Systems 08 frontiersin.org

enables the timely conversion of demand into goods in transit, which 
represents the primary manifestation of the intelligent order-handling 
system. Furthermore, as a consequence of the implementation of the 
enterprise’s technological platform, the subject is required to integrate 
a fixed technology cost, designated as ( )α β∗= + 2

AB TEC C . 
Consequently, in comparison to the aforementioned two models, the 
profit function, designated as π , of each subject is expressed as 
Equation 3:

 

( )
( ) ( )

p T I L L

H F ABt

P C b b C I I

C C b Q AI C

π α β

θ

∗ ∗ ∗ ∗

∗ ∗ ∗

= − − − −

∗ − −
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4 Model simulation and result analysis

A stochastic discrete distribution is employed to model 
customers who express a desire to purchase a single product on a 
daily basis. These customers are willing to wait for their desired 
item if the corresponding retailer is out of stock. The term “holding 
costs” encompasses both physical storage costs and capital 
commitment costs. For the parameterization of the relevant costs, 
the variable transport cost is set at $0.5 per piece, as proposed by 
Wu et al. (2023), Lohmer et al. (2020) and other researchers. In the 
technology coordination model, additional parameters must 
be defined. In the Blockchain-coordinated model, the fixed cost per 
unit of each transaction between the distributor and the retailer is 
set at 50, while the enterprise, as the technology introducer, is 
responsible for bearing the technology introduction cost. In the 
“GenAI + blockchain” coordination model, it is postulated that the 
fixed cost per transaction is set to 100.

In the simulation study, the following aspects must be specified: 
the input parameters to be changed, the output parameters, the 
waiting time, and the time for the model to run. The predictive 
power of blockchain technology and the degree of efficiency of 
coordinated integration of “GenAI + blockchain” technology 
depends on the degree of willingness of consumers to pay for 
freshness, which includes not only the availability and perfect 
operation of the technology implementation, but also the speed of 
the underlying processes such as shipping, receiving and 
production. Set probabilistic processing times based on the overall 
process. Therefore, according to Charoen Pokphand Group Annual 
Report 2023, in the three models, the main body is divided into 
retailers R , distributors W  and enterprise E, and the order cost per 
unit product is set = 3IC , the inventory cost per unit product per 
day =1HC , logistics cost = 3TC , freshness loss rate = 0.2FRR , 
freshness cost = 5FC , =m 0.7, in this part, it is assumed that the 
acceptance level of freshness by consumers is medium = 0.5r , the 
accuracy of technology use by enterprises is α = 0.5, β = 0.5, And 
the cost of technology use in the “AI+ blockchain” collaborative 
model =1000TEC , in order to facilitate the analysis and comparison 
of the impact of technology use on inventory of the three models, 
the parameters in the three models are set to be the same, and the 
sales price in the three subjects are priced respectively, including 
the sales price per unit of product of the enterprise = 20EP , the 
sales price per unit of product of the distributor = 29WP , and the 
sales price per unit of product of the retailer = 38RP , =10LP . 

Measure the inventory change of each entity and the income 
within a year.

4.1 Inventory comparison and analysis

Set the simulation running time of the simulation model to 1 year, 
and get the inventory changes of each subject in the next year, as 
shown in Figure 2.

Based on the inventory changes observed for each entity, several 
key insights can be derived:

 1. The inventory variations across entities exhibit periodic 
fluctuations that align with the typical cyclical nature of 
agricultural supply chains. Notably, the introduction of 
blockchain technology leads to significant shifts in the 
inventory turnover rates among the three entities.

 2. Blockchain technology plays a pivotal role in enhancing the 
inventory management of leading agricultural enterprises, 
enabling them to maintain minimal safety stock levels through 
collaborative efforts facilitated by this technology. In contrast 
to the baseline model, where enterprise inventories experience 
more pronounced volatility, the blockchain-enhanced model 
stabilizes these levels. This stability is further influenced by 
product freshness monitoring and predictive capabilities, 
resulting in less variable enterprise inventory levels, and 
instances where inventories are entirely depleted. Under the 
integrated “GenAI + blockchain” technology framework, 
retailers nearly achieve a state of “just-in-time” production and 
marketing alignment, anticipating demand and facilitating 
timely sales. Consequently, three distinct peaks in distributor 
inventory are observed, attributed to the seasonal nature of 
consumer demand influencing product availability. GenAI 
technology’s application here offers a clear advantage over 
previous models, revealing more defined patterns in consumer 
behavior. Thus, enterprise inventory analysis enables more 
precise demand forecasting and inventory control, minimizing 
surplus stock while preserving product freshness.

 3. Comparing the baseline and blockchain collaboration models, 
a similar trend in inventory changes across different entities is 
evident. However, the initial inventory levels and reduction 
rates under the blockchain collaborative model differ, 
suggesting varying technological impacts on diverse entities. 
With the integration of “GenAI + blockchain” technology, 
inventory management becomes more efficient, slowing down 
inventory depletion rates. This indicates potential optimizations 
in inventory management and demand forecasting accuracy. 
Overall, the “GenAI + blockchain” model presents enhanced 
prospects for inventory optimization, mitigating excess 
inventory and waste through refined demand prediction and 
inventory strategies.

4.2 Revenue comparison and analysis

Daily profit calculation is made according to the transportation 
relationship between each subject, and the change of each subject’s 
income is obtained, as shown in Figure 3.
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From the analysis of income variations across different models, 
several key insights emerge:

 1. The synergistic application of technological innovations 
notably enhances the revenue profiles of all stakeholders, 
thereby augmenting the aggregate income within the 
agricultural supply chain. This improvement is most 
pronounced for enterprises, suggesting a potential link between 
enhanced product freshness and increased sales revenue. 
Specifically, heightened product freshness, facilitated by 
technology, likely attracts more consumers, driving up both 
sales volumes and revenues. In the context of the “GenAI + 
blockchain” integrated model, the observed revenue growth 
implies that technological interventions effectively guarantee 
product freshness. Should product freshness be  assured, 
enterprises may justify premium pricing, which consumers are 
inclined to accept for fresher offerings. Blockchain’s role in 
enhancing supply chain transparency could bolster consumer 
confidence in product freshness, further augmenting their 
willingness to pay a premium.

 2. Coupled with the preceding inventory assessment, GenAI 
appears instrumental in mitigating excess inventory and 
preventing stockouts. This is achieved through refined 
inventory management and demand forecasting, leading to 
improved product freshness and, consequently, a rise in 
consumer payment propensity. Nonetheless, the data indicates 
that blockchain technology’s primary beneficiary is the 
distributor, with relatively modest impacts on enterprises and 
retailers. This disparity might stem from the intermediary 
distributor’s heightened sensitivity to product freshness levels. 

Consequently, blockchain’s implementation ensures the 
integrity and traceability of inventory and freshness, thereby 
amplifying the operational efficiency of these intermediaries.

4.3 Comparative analysis of enterprise 
income

The three models will be evaluated based on their impact on the 
enterprise’s overall revenue. The results, presented in Figure  4, 
illustrate that the deployment of “GenAI + blockchain” technology has 
led to a substantial enhancement in the enterprise’s revenue, with a 
notable increase observed in the state. In the baseline model, the 
enterprise’s revenues exhibited the greatest initial cost inputs and the 
lowest revenue profile. When blockchain technology was employed, 
the initial costs were diminished, potentially benefiting from the 
blockchain’s capacity to reposition members of the chain promptly to 
facilitate the sale of goods. Although the initial cost of utilizing “GenAI 
+ blockchain” has increased (the majority of this increase is attributable 
to the rise in technology costs compared to the costs associated with 
the first two models), the subsequent growth in revenues indicates that 
the integration of these two technologies significantly fulfills the 
freshness requirements of the marketplace and consumers, enhancing 
the quality and trust associated with the enterprise.

5 Sensitivity analysis

This section conducts a sensitivity analysis to evaluate the 
influence of structural parameters on model output. Sensitivity 

FIGURE 2

Comparative chart of inventory changes. Source(s): author’s own work.
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FIGURE 3

Comparative chart of changes in earnings. Source(s): author’s own work.

FIGURE 4

Comparative analysis of the benefits for the three modelled enterprises. Source(s): author’s own work.
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analysis quantifies how variations in input values impact the model’s 
response, tailored to the specific objectives of the model. Various types 
of sensitivity analyses exist, each aligned with different analytical 
goals. In this study, we prioritize factors to examine the effects of 
distinct model parameters. Identifying key factors is crucial in this 
process; therefore, data on these critical parameters should 
be meticulously collected. To maintain computational feasibility, our 
focus centers on three primary structural parameters: minimum safety 
stock, detection accuracy of GenAI technology, and willingness to 
pay price.

5.1 The impact of safety inventory on 
corporate earnings

In the third technical collaboration model, in order to detect the 
impact of safety inventory on enterprise earnings, inventory float is 
carried out in units of 10 to measure the minimum safety inventory, 
as shown in Figure 5.

The results illustrated in the figure underscore the pivotal role of 
safety inventory in influencing enterprise profitability. Our simulation 
experiment reveals that a safety stock level of 30 facilitates sustained 
earnings growth for enterprises, thereby establishing the lower 
boundary of the optimal safety stock range at (20, 30). This insight 
into the potential scope for minimum safety stockholding informs 
further simulations, which indicate that setting the minimum safety 
stock at 27 triggers a notable leap in corporate earnings, highlighting 

a strategic threshold for maximizing financial performance. This can 
not only avoid the cost increase caused by inventory overstock, but 
also meet the fluctuations in market demand and maintain the 
freshness of products. Enterprises can combine the real-time inventory 
data tracked by blockchain with GenAI’s demand forecasting model 
to dynamically adjust safety stock and balance costs and benefits.

In the durian maturity prediction project jointly carried out by 
Charoen Pokphand Group and Huawei Cloud, the blockchain tracks 
the fruit growth data in real time, and the GenAI model analyzes 
indicators such as sugar content and hardness, reducing safety stock, 
lowering enterprise costs, and increasing enterprise profits. This is 
consistent with our verification results.

5.2 The impact of technical precision on 
earnings

In pursuit of enhancing consumers’ quality trust, enterprises have 
increasingly adopted blockchain technology. To further augment this 
trust, GenAI detection technology has been integrated into the system. 
By manipulating the detection accuracy of both GenAI and blockchain 
technologies, we categorized them into five distinct groups based on 
precision levels: high, medium-high, medium, medium-low, and low. 
This segmentation facilitated an investigation into the impact of varying 
degrees of technological detection accuracy on corporate revenue. The 
findings, depicted in Figure 6, reveal insightful trends regarding the 
relationship between technology precision and financial performance.

FIGURE 5

Safety stock sensitivity analysis. Source(s): author’s own work.
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As the deployment of GenAI technology intensifies, a concomitant 
linear uptrend in enterprise revenue is observed. Notably, when the 
precision of AI detection attains a threshold of 0.2, a multiplicative surge 
in revenue becomes evident. This positive correlation persists as AI 
detection accuracy escalates, propelling further enhancements in 
revenue performance. Nevertheless, beyond a precision level of 0.6, the 
rate of revenue growth experiences a deceleration, suggesting a saturation 
point in the benefits derived from heightened technological accuracy.

This analysis underscores the profound impact of technological 
precision on consumer satisfaction pertaining to product freshness. 
An augmentation in detection accuracy correlates directly with 
elevated consumer contentment regarding this aspect, subsequently 
bolstering consumer trust in quality. Nonetheless, it is imperative to 
acknowledge the inevitable escalation in technological expenditures 
accompanying such advancements. Conversely, deficiencies in 
technological precision precipitate a precipitous erosion of consumer 
confidence, highlighting the delicate balance between investment in 
AI precision and its resultant economic implications.

5.3 The impact of payment sensitivity on 
revenue

In addition, to better judge the impact of technology use on the 
quality trust of enterprises, a specific sensitivity analysis was 
conducted on the impact of consumers’ sensitivity to freshness price 
payment on the earnings of enterprises, and the impact of freshness 

payment sensitivity on the earnings of enterprises was examined with 
a fluctuation of ±20%, as shown in Figure 7.

Figure 7 illustrates that consumers’ WTP for product attributes 
significantly influences enterprise revenue. Notably, when consumer 
WTP for product freshness is low, heightened price sensitivity among 
this demographic ensues, precluding the firm from optimizing its 
revenue within this segment. Conversely, an elevated WTP signifies 
an opportunity for the company to capitalize on high-quality product 
demand, thereby maximizing income from this consumer group. This 
underscores the strategic importance of aligning product quality with 
consumer preferences to enhance profitability.

This result is consistent with the elevation in consumers’ 
willingness to pay a premium for traceable fresh durians subsequent 
to Charoen Pokphand Group’s adoption of “blockchain and GenAI” 
technologies, thereby validating the model’s sensitivity analysis finding 
that “the intensity of freshness-related payment willingness exerts a 
significant impact on revenue.”

6 Conclusions and management 
implications

6.1 Conclusion

This study scrutinizes the prospective applications of 
Generative Artificial Intelligence (GenAI) and blockchain 
technologies within the realm of agricultural supply chain 

FIGURE 6

Sensitivity analysis of the degree of technical precision. Source(s): author’s own work.
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management, elucidating their implications for enterprise revenue 
enhancement. It theoretically explores the transformative potential 
of GenAI and blockchain integrations on agricultural supply 
chains, juxtaposing conventional models against collaborative 
frameworks underpinned by these advanced technologies. The 
central objective is to evaluate the viability of technology 
investments aimed at augmenting quality assurance and trust 
among enterprises.

The research substantiates that GenAI acts as a facilitative force in 
orchestrating blockchain technology, exerting a substantial 
moderating influence on enhancing agricultural supply chain 
efficiency and resolving quality trust dilemmas. The synergistic 
application of GenAI and blockchain empowers enterprises to fine-
tune minimum safety stock levels, precisely target consumer 
demographics, and adapt pricing strategies, thereby maximizing 
returns. Findings suggest that in scenarios where consumer groups 
exhibit heightened price sensitivity or reluctance to pay premium 
prices, product pricing can be strategically adjusted. Conversely, for 
consumer segments characterized by lower price sensitivity or 
stringent demands for product freshness, technological optimization 
can be pursued to enable enterprises to attain optimal profitability. 
This technological convergence enables businesses to minimize safety 
stock requirements for profit maximization.

In terms of inventory dynamics, the implementation of “GenAI + 
blockchain” technology has notably enhanced enterprise inventory 
management efficiency, manifesting as more stable inventory levels 
and more precise fluctuation cycles. By integrating real-time inventory 
tracking via blockchain with GenAI’s demand forecasting models, 
enterprises can dynamically adjust safety stock, mitigating inventory 
backlog costs while accommodating market demand volatility. 
Optimizing the minimum safety stock triggers breakthrough revenue 
growth, evidencing that this technological synergy effectively balances 

costs and benefits, reduces inventory waste, and preserves 
product freshness.

At the revenue stratum, the profit enhancement enabled by 
technological synergy exhibits distinct hierarchical disparities. The 
“GenAI + blockchain” integrated model demonstrates the most 
pronounced enterprise revenue growth. Despite higher initial 
technical costs compared to the single-blockchain model, sustained 
post-implementation revenue growth indicates that this technology 
combination better satisfies market and consumer freshness 
demands, reinforcing quality trust. Here, GenAI’s precise quality 
detection and blockchain’s transparent traceability form a 
complementary mechanism, allowing enterprises to secure higher 
revenues through product freshness premiums. When GenAI 
detection accuracy surpasses a critical threshold, enterprise 
revenue experiences exponential growth, while growth rates 
plateau beyond an optimal accuracy ceiling, revealing an 
equilibrium point between technical precision and 
revenue maximization.

The introduction of GenAI detection methodologies offers novel 
solutions for enterprises. Contrary to prior theoretical assertions and 
discourse in existing literature, excessive predictive precision 
facilitated by blockchain may paradoxically impact enterprise 
profitability. To comprehensively gauge the role of GenAI and 
blockchain integration in agricultural supply chains, further 
theoretical, empirical, and quantitative inquiries are warranted. There 
is a pressing need for rigorous quantitative metrics pertaining to 
technology adoption, real-time empirical analyses, and conceptual 
explorations of factors influencing technology utilization. Future 
endeavors should also contemplate the overarching impact of “GenAI 
+ blockchain” technology costs on enterprise or supply chain efficacy. 
Additionally, both conceptual and experimental examinations of 
GenAI and blockchain implementations in agricultural supply chains 

FIGURE 7

Results of a WTP sensitivity analysis. Source(s): author’s own work.

https://doi.org/10.3389/fsufs.2025.1591350
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Bai et al. 10.3389/fsufs.2025.1591350

Frontiers in Sustainable Food Systems 14 frontiersin.org

and production networks are imperative to unveil potential advantages 
and challenges.

6.2 Management insights

Agricultural supply chains stand apart from conventional supply 
chain frameworks due to their inherent complexity, a complexity 
stemming from the unique characteristics of agricultural products. 
This intricacy complicates the justification of increased technological 
investments for managers. Quantitative models, especially simulation 
models, prove valuable in assessing the effectiveness of dynamic 
strategies and establishing a robust basis for advancing supply chain 
management practices. This research consolidates the outcomes of 
quantitative assessments on diverse technologies and their integration, 
offering a comparative and analytical perspective that sheds light on 
effective management approaches.

The study’s findings underscore that incorporating blockchain 
technology into the supply chain can substantially reduce inventory 
buildup, boost the profitability of all participants, and decrease waiting 
periods. Moreover, the synergy between “GenAI + blockchain” 
technology holds great promise for significantly improving the real-
time alignment of customer demand with production capacity, 
thereby safeguarding product freshness and fulfilling stringent quality 
standards. This dual-technology approach not only ensures product 
freshness and adherence to high-quality benchmarks but also fosters 
sustained profitability growth for leading agricultural enterprises.

The amalgamation of GenAI and blockchain technologies emerges 
as a potent strategy to bolster the resilience of agricultural supply 
chains. Nonetheless, it is imperative to meticulously quantify the costs 
associated with both implementation and operation, necessitating 
each supply chain entity to pinpoint its target customer markets 
precisely. Optimal profitability hinges upon tailoring the technology 
integration strategy to suit varying consumer segments and their 
respective service quality expectations. The efficacy of this solution is 
directly proportional to the accuracy in targeting the customer base 
and the precision of the applied technology.

Before implementation, a thorough process analysis and modeling 
exercise is indispensable, with a keen focus on precise process duration 
estimations. These insights should then inform quantitative decision-
making processes. By integrating GenAI capabilities through 
technology platforms managed by enterprises, barriers to adoption 
within the supply chain are lowered, enhancing collaborative 
efficiency. The programmer’s chief aim revolves around ensuring 
process excellence, while routine audits and inter-chain member 
collaborations further reinforce process quality assurance, significantly 
influencing overall process efficiency.
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