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This study explores climate change’s symmetric and asymmetric impacts on

rice production in Sri Lanka, a crucial sector for food security in the country.

The analysis utilized Autoregressive Distributed Lag (ARDL) and Non-linear

Autoregressive Distributed Lag (NARDL) models. This study analyses annual data

from 1952 to 2022 to capture relationships among the study variables. The

ARDL findings reveal that temperature and cultivated land area have a significant

long-term e�ect on rice production. The NARDL model reveals that positive

and negative changes in climate variables have asymmetrical long-term impacts.

Positive changes in temperature and rainfall lead to a notable decline in rice yields

in the long term. Negative rainfall changes create a significant beneficial e�ect

on rice production in the long term. Cultivated land area shows a significant

positive impact on rice yield in the long term. The results of symmetric and

asymmetric climate change impact are essential for formulating agricultural

climate adaptation policies, such as promoting climate resilience rice varieties,

improving irrigation and water management, developing early warning systems

that promote sustainability and enhance climate adaptation strategies, ensuring

food security in Sri Lanka.
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1 Introduction

Sri Lankan rice production is highly dependent on climate factors, mainly rainfall

patterns and temperature (Ratnasiri et al., 2019). Rice cultivation primarily relies on two

monsoon seasons. Climate change-induced variability in these monsoons, combined with

rising temperature and changing rainfall patterns (Menike andArachchi, 2016; Thevakaran

et al., 2019). It is having significant effects on rice yields, water resources and food

security (Jayasooriya, 2022; Samaraweera et al., 2024). The country faces significant risks

from various hydro-metrological disasters, including floods and droughts. The leading

challenges facing agricultural practices include seasonal rainfall variability, prolonged dry

periods, decrease in rainfall frequency and duration, delayed arrival of the rainy season,

intense rainfall events, drought conditions in dry regions, and sudden flash floods (Aheeyar

et al., 2023; Marambe et al., 2015).
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In the global climate risk index, it was positioned 2nd in 2017

and 6th in 2018, highlighting its vulnerability to climate-related

challenges (Aheeyar et al., 2023). Between 2000 and 2020, climate-

related disasters impacted total of 14,246,769 people (Donatti et al.,

2024). In the Climate Risk Index for 2000–2019, Sri Lanka ranks

35th in annual fatalities among all countries, 42nd in loss of life per

100 000 populations, 28th in average losses in million US dollars,

and 45th in average losses per unit gross domestic product in %

2000–2019. The climate variables play a significant involvement

in determining crop production in the nation. Temperature and

rainfall are the primary climatic parameters that significantly

influence agriculture productivity. As a result, agronomic methods

and farming systems have developed in most of Sri Lanka’s

agricultural regions in close accordance with the local climate in

each separate climate zone (Bang et al., 2019; Marambe et al., 2015).

Agriculture holds a key position in the Sri Lankan economy

and shares around 7.5% of the gross domestic product (Central

Bank of Sri Lanka, 2022). As of 2021, Sri Lanka’s population is

around 22.18 million, with the majority, about 81%, residing in

rural areas. Additionally, the agricultural domain employs about

25.75% of the total workforce in the country (World Bank, 2021).

The International Food Policy Research Institute has indicated a

projected decrease in global rice production by 12–14% by 2050 due

to climate change. The demand for rice consumption is increasing

in the Asian region, but most climate-affected regions are in South

Asia. However, the demand for rice consumption is decreasing in

high andmiddle-income countries (Kassam, 2003). Rice is themain

food of the Sri Lankan population, with an average consumption

per person of around 1,112.3 kilograms annually. It contributes

42% of an individual’s total calories and meets 34% of their

protein requirements (Department of Agriculture Sri Lanka, 2023;

Department of Census and Statistics, Sri Lanka, 2022). An average

consumer spends 12.8% of the total food monthly expenditure on

rice (Central Bank of Sri Lanka, 2022). Total rice crop damages

reported due to floods, drought, pests and diseases, and other

reasons are 20,093 ha out of the total sown extent of 497,113 ha

reported at the end of September 2023 (Department of Agriculture

Sri Lanka, 2023). In addition, accounts for 40% of the country’s

arable land is paddy cultivation (United States Department of

Agriculture Foreign Agricultural Service, 2023).

Irrigated agriculture constitutes the primary method of

cultivation in the country. Around 45% of the total cultivated

area is supported by large-scale irrigation systems, while 25%

relies on smaller irrigation systems, and 30% depends on rainfall

(Suresh et al., 2021). Rice is the first widely consumed staple food,

occupying two-fifths of the cultivated land area in the country

(Ratnayake et al., 2023). Studying the consequences of climate

instability on rice production is crucial for ensuring food security

(Rathnayake et al., 2020). Compared to other crop production, rice

production is a leading form of agricultural practice in the nation.

As a result, and because of their large shares in people’s diets, the

rice crop production sector has received particular attention in

the country. Achieving rice self-sufficiency is a central objective

of the agriculture sector policy framework in Sri Lanka (Food

Agriculture Organization, 2023). Various literature has attempted

to determine how climate variability influences crop yields in

various countries. Chandio et al. (2022) highlighted the long-

term impact of climatic parameters such as relative humidity,

rainfall, temperature, and agronomic factors on rice production in

prominent Asian regions. Amarasingha et al. (2018) explored the

consequences of climate variations on paddy cultivation, depending

on the specific variety and geographical context. Furthermore,

Joseph et al. (2023) reported how temperature shifts and rainfall

variations affect rice yield by modeling production trends in the top

rice-producing countries.

Many studies have highlighted the impact of climatic variables

on crop harvests. Out of these, temperature and rainfall emerge

as the primary influences on agricultural production (Ayanlade

et al., 2018; Dawid and Boka, 2025; Lee et al., 2024; Li, 2023;

Solaymani, 2023). The impacts on the agriculture sector differ

across geographical regions and local environmental conditions

(Mereu et al., 2021). Rice production depends on climatic and non-

climatic variables, exhibiting both symmetrical and asymmetrical

relationships between these factors (Chung et al., 2015; Zhang et al.,

2023). The effects of changes in climate variables differ among

rice varieties (Sarker et al., 2014). For instance, Amarasingha et al.

(2018) discovered that Maha and Yala seasons production of Bg300

and Bg359 rice varieties yields vary in the dry and wet zones

due to impacts of climatic factors. Extreme temperature variations

pose the greatest threat to rice yield (Rayamajhee et al., 2021;

Tan et al., 2021). Abbas et al. (2022) as well as Warsame et al.

(2021) Identifying a connection among rainfall and rice production

highlights positive and negative correlations. Climate variables

impact rice production both in the long and short run in different

countries (Emediegwu et al., 2022; Herath et al., 2020).

Additionally, paddy production is significantly influenced

by technology and agriculture policy (Nasrullah et al., 2021).

Furthermore, Anh et al. (2023), Guo et al. (2022), Kumar et al.

(2021) and Warsame et al. (2021) found that the cultivated area

positively influences crop yield. The study exposed that paddy

production in Southeast Asia will decrease by about 5% by 2030

(Lobell et al., 2008). In Southwest China, rice production will

decrease to 10.5% by 2050 and 47.9% by 2080 due to high

temperatures and CO2 (Wang et al., 2021).

Mainly, Sri Lankan research studies did not adequately focus

on the impact of climate fluctuations on rice production. As per my

knowledge, no research papers focus on the long and short-term

positive and adverse effects of rainfall and temperature changes

on rice production. Proper awareness of the long-term effects

of climatic variability is important for creating effective policy

recommendations. Therefore, this research focuses on long and

short term positive and negative shock impacts of climatic variation

on rice production, with data from 1952 to 2022 using ARDL and

NARDL models.

This study aims to assess whether climatic variables influence

symmetric or asymmetric effects on rice production over time and

to identify how these effects vary in the short and long run. Our

research is significant because of its potential to inform climate-

resilient agricultural policies and strategies by offering empirical

insights in to how rice productivity responds to symmetric

and asymmetric climate variability, an urgent need for ensuring

national food security in the face of increasing climate risks.
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TABLE 1 Summary of study variables.

Variables Notations Sources

Annual rice production

(metric ton)

RP Sri Lanka, Department of

Census and Statistics

Annual cultivated land

area (hectare)

CLA

Annual mean

temperature (degrees of

Celsius)

TEM World Bank, Climate Change

Knowledge Portal

Annual rainfall (mm) RNF

This paper has four main parts. The introduction is the first

part, and the second part provides materials and methods. The

third part defines the results of the research. The last section

includes a discussion, policy recommendations, and a conclusion.

2 Materials and methods

2.1 Overview of research variables

The study used annual data from 1952 to 2022, obtained from

Census and Statistics Department and the World Bank database

(Department of Census and Statistics, Sri Lanka, 2022; World Bank

Climate Change Knowledge Portal, 2023). More details about study

variables are shown in Table 1. Rice production is used as a response

variable, while mean temperature, annual rainfall and cultivated

land area are used as explanatory variables.

2.2 Model framework

This study observed the relationship between rainfall,

temperature, cultivated land area, and rice production in Sri

Lanka, focusing on both symmetric and asymmetric aspects.

To improve the stability of the data for regression analysis,

the variables were transformed using natural logarithms. This

approach ensures that the variance is stabilized, facilitating a more

accurate regression analysis.

LRPt = β0 + β1LRNFt + β2LCLAt + β3LTEMt + εt (1)

LRPt is the natural logarithm of rice crops produced at time t, and

β0 is the intercept of the function. LRNFt is the natural logarithm

of rainfall at time t, while LCLAt indicates the natural logarithm of

land used for crop cultivation at time t. Additionally, LTEMt refers

to the natural logarithm of temperature at time t. β1, β2,β3 are

slope coefficients of the function and εt is the residuals.

Rainfall (LRNF+, LRNF−), Cultivated land area

(LCLA+, LCLA−) and temperature (LTEM+, LTEM−),

were divided into positive and negative changes to test

asymmetric effects.

The revised model can be specified as:

LRPt = β0 + β1LRNF
+
t + β2LRNF

−
t + β3LCLA

+
t + β4LCLA

−
t

+ β5LTEM
+
t + β6LTEM

−
t + εt (2)

As a first step, identifying the stability of the variables contained in

the equation is essential to ensure that data is suitable for analysis.

Some variables can be highly variable over time. Therefore, it

is crucial to find out their order of integration. Once stationary

is confirmed, we move on to conduct linear and non-linear

cointegration analysis as well as long-run evaluations. This step

helps to recognize the order of integration of the variables.

We applied symmetric and asymmetric ARDL methods in our

study. These methods accommodate variables can be integrated

into at a level or at first difference, showcasing their flexibility.

This method is highly reliable for small sample sizes, effectively

addresses endogeneity issues when selecting an appropriate lag

and assists in identifying long-run coefficients. It can effectively

address potential multicollinearity issues, when variables are highly

correlated. Additionally, the Non-linear ARDLmodel estimates the

Error Correction Model, which provides insights into the speed of

change to the long-run equilibrium after a shock.

The Error Correction Term techniques used in this research

are to identify short and long-run dynamics and understand

both short-term fluctuations and long-term trends. This approach

mitigates issues like spurious relationships due to non-stationary

time series data. Equation 1 can then be rewritten as below:

△ LRPt = β0 + β1LRPt−1 + β2LRNFt−1 + β3LCLAt−1

+β4LTEMt−1 +

q
∑

i=1

δ1△ LRPt−i +

q
∑

j=1

δ2△ LRNFt−i

+

q
∑

l=1

δ3△ LCLAt−i +

q
∑

m=1

δ4△ LTEMi−i + µt (1.1)

Where △ represents the initial variation, β0 represents the

intercept, q represents the optimal lag length, µt Represents the

residuals and t represents the time trend.

2.3 Estimation method

We began by applying Ordinary Least Squares techniques to

estimate the coefficient of Equation 1, followed by an investigation

into the long-term connection between variables (Pesaran et al.,

2001). Following this, we utilized the F-test and Wald test to

evaluate the statistical validity of the coefficients for the lagged

variables. The null hypothesis, represented as LRP (LRP, LRNF,

LCLA, LTEM) asserts that there are no long-term associations

among the variables and that they are not correlated. In contrast,

the alternative hypothesis suggests that at least one coefficient

significantly differs from zero.

We used the F-test to find long-term relationships among the

variables in our study. A cointegrating relationship between the

variables was established to determine the long-run coefficients of

the ARDL model (Equation 1.2).

LRPt = β0 +

q
∑

i=1

δ1LRPt−i +

q
∑

j=1

δ2LRNFt−i +

q
∑

l=1

δ3LCLAt−i

+

q
∑

m=1

δ4LTEMt−i + εt (1.2)
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The short-run association is derived from an Error Correction

Model, represented in Equation 1.3.

△ LRPt = β0 +

q
∑

i=1

δ1△ LRPt−i +

q
∑

j=1

δ2△ LRNFt−i (1.3)

+

q
∑

l=1

δ3△ LCLAt−i +

q
∑

m=1

δ4△ LTEMt−i

+ θiECTt−1 + εt

2.4 NARDL model

The advanced and recently developed No-linear ARDL model

was utilized to evaluate the asymmetric and non-linear effects of

temperature, rainfall, and cultivated land area on rice outputs.

Unlike the standard Autoregressive Distributed Lag model, which

overlooks the non-linear and asymmetric relationship between

variables, the NARDL model allows for a more nuanced analysis.

This model was introduced to examine patterns of dynamic

adjustment and the asymmetrical relationships among the variables

in both the short and long run, as shown by Shin et al. (2013).

The positive and negative fluctuations in rainfall, cultivated

area and temperature are represented in the Equation 2. The

determination of cumulative sums follows the methodology

outlined in Equation 2a through Equation 2f.

LRNF+t =

t
∑

i=1

△ LRNF+i =

t
∑

i=1

Max
(

△ LRNFi, 0
)

(2a)

LRNF−t =

t
∑

i=1

△ LRNF−i =

t
∑

i=1

Min
(

△ LRNFi, 0
)

(2b)

LCLA+
t =

t
∑

i=1

△ LCLA+

i =

t
∑

i=1

Max
(

△ LCLAi, 0
)

(2c)

LCLA−
t =

t
∑

i=1

△ LCLA−

i =

t
∑

i=1

Min
(

△ LCLAi, 0
)

(2d)

LTEM+
t =

t
∑

i=1

△ LTEM+

i =

t
∑

i=1

Max (△ LTEMi, 0) (2e)

LTEM−
t =

t
∑

i=1

△ LTEM−

i =

t
∑

i=1

Min
(

△ LTEMi, 0
)

(2f)

The ARDL model, as presented by Shin et al. (2013), employs

cumulative positive and negative partial sums to construct the

Non-linear ARDL model, which is defined in Equation 3.

△ LRPt = ϕ0 + λ1LRPt−1 + λ+2 LRNF
+

t−1 + λ−3 LRNF
−

t−1

+ λ+4 LCLA
+

t−1 + λ−5 LCLA
−

t−1 + λ+6 LTEM
+

t−1

+ λ−7 LTEM
−

t−1 +

q
∑

i=1

ϕi△ LRPt−i +

q
∑

i

(

ϕ+i △ LRNF+t−i

+ ϕ−i △ LRNF−t−i

)

+

q
∑

i

(

ϕ+i △ LCLA+

t−i + ϕ−i △ LCLA−

t−i

)

+

q
∑

i

(

ϕ+i △ LTEM+

t−i + ϕ−i △ LTEM−

t−i

)

+ µt (3)

In this context, λ+2 and λ−2 reveal both long-term positive and

negative influence of explanatory variables on rice production.

Meanwhile
∑q

i ϕ+

i and
∑q

i ϕ−

i reflect the short-term positive and

negative effects of these variables. The error correction model is

detailed in Equation 4.

△ LRPt =

q
∑

i=1

ϕi△ LRPt−i +

q
∑

i

(

ϕ+

i △ LRNF+t−i + ϕ−

i △ LRNF−t−i

)

+

q
∑

i

(

ϕ+

i △ LCLA+

t−i + ϕ−

i △ LCLA−

t−i

)

+

q
∑

i

(

ϕ+

i △ LTEM+

t−i

+ ϕ−

i △ LTEM−

t−i

)

+ θiECTt−1 + µt (4)

The ECT indicated by θi in Equation 4 explains the adjustment

speed of equilibrium after short-run shock, and ϕi indicates the

short-run asymmetries. Additionally, the Wald test identified short

and long-run asymmetries for independent variables.

The asymmetric multiplier effect is evaluated afterwards

confirming long-run relationship, typically by examining the

impact of a 1% variation in LRNF+t−1, △ LRNF−t−1, LCLA
+

t−1,

LCLA−

t−1, LTEM+

t−1, and LTEM−

t−1 can be obtained from

Equation 3.

α1 = −
λ2

λ1
, α2 = −

λ3

λ1
,

α3 = −
λ4

λ1
, α4 = −

λ5

λ1
,

α5 = −
λ6

λ1
, α6 = −

λ7

λ1
(5)

According to the projected asymmetric multipliers articulated

in Equation 5, it is evident that system shocks facilitate dynamic

adjustments that oscillate between stability and deviation. The

α coefficients in Equation 5 represent the long-run association

between an endogenous variable and each exogenous variable,

indicating the degree of the long-run impact of each exogenous

variable on the response variable.

2.5 Model diagnostic tests

We employed the Breusch-Godfrey LM test to detect serial

correlation, the Ramsey RESET test for model specification

or the presence of omitted variables, the Jarque-Bera test to

examine normality and the Breusch-Pagan-Godfrey test to evaluate

heteroscedasticity. The outcomes of these tests are outlined in

subsections 3.5 and 3.6. Stability tests were also conducted,

which encompassed the evaluation of multiplicative effects and

the application of recursive regression residuals, specifically the

CUSUM and CUSUMSQ. A check of the multiplicative effects

among the research variables was also performed. The reliability of

the model was examined by using these tests.

3 Results

3.1 Descriptive statistics

The average rice production over the study period was

2,317,000 metric tons. The country had an average cultivated land
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FIGURE 1

The trend analysis of endogenous and exogenous variables.

TABLE 2 Summary of the descriptive statistics.

Statistic RP RNF CLA TEM

Mean 2,317.74 1,741.55 780.83 26.89

Median 2,340.00 1,746.38 783.00 26.92

Maximum 5,149.00 2,524.06 1,259.00 27.71

Minimum 458.00 1,292.24 385.00 26.06

Std. Dev. 1,231.10 256.38 206.18 0.41

Obser. 71 71 71 71

area of nearly 780,000 hectares. An increasing trend in both rice

production and cultivated land area has been observed since 1952

(Figure 1). During this period, the highest average temperature

recorded was 27.71 degrees Celsius. The results show that (Table 2),

over the study period, highest rainfall is 2,524.06mm annually.

However, the lowest is 1,292.24 mm annually.

3.2 Stability testing and structural analysis

In the time series analysis process, it is crucial to consider

both non-linearity and stationarity to confirm the strength and

validity of the outcomes. Non-linearity refers to the presence of

relationships in the data that cannot be adequately captured by

linear models, leading to the use of non-linear models. On the other

hand, stationarity refers that the required statistical properties of

time series for most types of modeling, such as variance and mean,

remain stable over time. By addressing non-linearity and ensuring

stationarity, researchers can improve the validity of their time series

models and avoid misleading inferences.

The co-integration analysis started with assessing the univariate

properties of the time series data. Two key conditions must be

satisfied to ensure that the co-integration analysis yields significant

findings. All variables should be integrated at the same level, and

their linear relationship must be stationary. This study found that

all variables, except rainfall, were non-stationary at the level. Based

on the literature review, we utilized the Augmented Dickey-Fuller

(ADF), Phillips-Perron (PP), Structural Break Unit Root (SBUR),

and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. The SBUR

test was conducted to identify any instability points present in

the variables.

Each of the natural logarithms of the research variables was

stationary at the first difference, as exposed in Table 3. The April

2021 policy for organic agriculture and disease outbreaks leads

to structural changes impacting indicators and variables’ stability.

These factors need to be considered to confirm the accuracy of our

findings. Therefore, ADF and PP, KPSS, and SBUR tests were used

in the analysis (Zivot and Andrews, 1992). Table 3, under the unit

root test with structural breaks, represents the SBUR test results,

which exposed that the variables remain stable, even with structural

breaks at the first difference.

Broock et al. (1996) developed the BDS test, which utilizes

the correlation integral to detect non-linearity and independence

in time series data. The BDS study aims to determine patterns

of logical, expected instability in time series that have not been

previously examined. This test effectively distinguishes between

chaotic and non-linear procedures. While primarily designed to

outperform linear regression, the BDS test can also evaluate a range

of other non-linear models.

The BDS test statistics confirm that all four variables display

non-linear dependencies, with rice production, cultivated land

area and temperature showing strong non-linearity, while rainfall

displays weaker non-linearity (Table 3, under BDS statistics

analysis). The increasing BDS statistics with higher embedding
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TABLE 3 Results of the KPSS, PP, ADF, unit root test with structural breaks and BDS tests.

Results of the KPSS, PP and ADF tests

At level 1st di�erence

Variable ADF PP KPSS ADF PP KPSS

LRP −1.830 −1.782 1.068 −9.196∗∗∗ −14.856∗∗∗ 0.228∗∗∗

LRNF −11.829∗∗∗ −11.568∗∗∗ 0.167∗∗∗ −10.554∗∗∗ −72.732∗∗∗ 0.139∗∗∗

LCLA −1.328 −2.188 1.037 −10.678∗∗∗ −21.636∗∗∗ 0.073∗∗∗

LTEM −1.293 −2.105 1.066 −8.185∗∗∗ −31.224∗∗∗ 0.500∗∗∗

Unit root test with structural breaks

Variables At level 1st di�erence

t-statistics Breakpoint Outcome t-statistics Breakpoint Outcome

LRP −5.273∗∗∗ 1,995 Stationary −5.171∗∗∗ 1,986 Stationary

LRNF −3.765 1,973 Unit root −5.375∗∗∗ 2,008 Stationary

LCLA −3.220 1,986 Unit root −5.150∗∗ 1,986 Stationary

LTEM −3.580 1,967 Unit root −6.862∗∗∗ 1,983 Stationary

BDS statistics analysis

BDS Statistics Di-2 Di-3 Di-4 Di-5 Di-6

LRP 0.174∗∗∗ 0.302∗∗∗ 0.390∗∗∗ 0.452∗∗∗ 0.497∗∗∗

LRNF 0.014∗ 0.020∗ 0.028∗∗ 0.028∗ 0.031∗∗

LCLA 0.107∗∗∗ 0.186∗∗∗ 0.241∗∗∗ 0.280∗∗∗ 0.310∗∗∗

LTEM 0.101∗∗∗ 0.162∗∗∗ 0.203∗∗∗ 0.233∗∗∗ 0.257∗∗∗

Significant levels—∗∗∗1%, ∗∗5%, and ∗10%.

TABLE 4 Lag order selection criteria for VAR model.

Lag LogL LR FPE AIC SC HQ

0 292.316 NA 2.76e-09 −8.357 −8.227 −8.305

1 418.797 234.631∗ 1.12e-10∗ −11.559∗ −10.911∗ −11.302∗

2 429.523 18.654 1.32e-10 −11.406 −10.240 −10.944

∗Specifies lag order selected by the criterion.

dimensions further specify that variables show complex non-

linear structures over time. It justifies using the NARDL model,

which accounts for asymmetric and non-linear relationships in the

estimation process.

3.3 Cointegration analysis

Table 4 shows that the minimum observed values of the Akaike

Information Criterion (AIC), Schwarz Criterion (SC), Hannan-

Quinn Criterion (HQ), Final Prediction Error (FPE) and LR

statistic determine the optimal lag length. Additionally, the lag

length selection for the vector autoregressive model is validated

by a polynomial graph, where all points fall within the circle and

representing that a lag length of 1 is appropriate (Figure 2).

We employed the F-statistic from the Wald test to assess the

collective impact of all regressors, which confirmed the presence

of co-integration among the variables. As shown in Table 5, for

the period 1952–2022, when the equation is modeled linearly,

the computed F-statistic of 98.512 exceeds the upper bound

critical value of 3.67 at the 5% significance level. However, when

the equation is modeled non-linearly over the same period, the

computed F-statistic of 35.292 also exceeds the upper bound critical

value of 3.28 at the 5% level. According to the findings from the

bounds testing, we rejected the null hypothesis in both scenarios,

providing evidence of co-integration between the study variables at

the 5% significance level.

3.4 Assessing long and short-term e�ects: a
comparative analysis

The long-term and short-term variable estimations by the

ARDL model are shown in Table 6. Cultivated area and rice

production have a significant long and short-run relationship.

According to the results, a 1% increment in cultivable land area

leads to a 1.269% increase in rice production over the long term

and a 0.980% increment over the short term. This indicates that
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land expansion continues to be a vital driver of rice productivity

over time. Additionally, a 1% increment in rainfall will result in a

0.256% surge in rice yield in the short term and implies that rainfall

plays a more immediate role in crop performance during a given

season and is one of the influencing factor on water availability and

planting decisions. However, rainfall does not exhibit a significant

impact in the long term.

The temperature coefficient has statistically substantial effects

on rice production solely in the long term. Specifically, a

1% increment in temperature is associated with a 0.863%

increase in rice production. Temperature changes do not
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FIGURE 2

Polynomial graph for lag length selection in the VAR model.

have a statistically significant short-term effect and imply that

short-run temperature fluctuations are either less impactful

on immediate yield outcomes or can be managed through

current adaptation practices such as adjusted sowing dates

and resistant variety selection. Table 6 shows that the Error

Correction Term (ECMt-1) is a negative value, and the probability

value is 0.00, suggesting it is statistically significant. Overall,

it shows long-term stability and indicates that any imbalance

from previous periods can be corrected at a rate of 14.2%. It

suggests that the system adjusts relatively quickly toward long-

term equilibrium.

3.5 Structural and diagnostic reliability
analysis of ARDL model

The R2 value of 87% indicates both diagnostically sound

and structurally stable. According to a value of the Ramsey

RESET, the regression model is appropriately defined, suggesting

no functional issues with functional form misspecification. The

serial correlation LM test suggests no significant serial correlation.

Moreover, the Breusch-Pagan-Godfrey test suggests no significant

heteroscedasticity. These results are indicated in Table 7. To analyze

possible changes in the estimated model, the CUSUM statistics

graph in Figure 3A confirms that the regression coefficients remain

stable over time. Additionally, the CUSUMSQ graphs in Figure 3B

show that the stability of the variance of residuals over time. The

outcomes suggest slight instability in variance.

3.6 NARDL model analysis

The non-linear model F-statistic value is 35.292, surpassing the

upper bound critical value at the 5% significance level (Table 5).

Additionally, the results from the correlation analysis can help

assess the presence of long-term correlation with the Error

Correction Term at lag1. This analysis reveals that the suitable

TABLE 5 Bound test outcomes: linear and non-linear analysis.

Equation AIC lag F-stat Outcome

FLRP (LRP|LRNF, LTEM, LCLA) Linear 1 98.512 Cointegration

Test statistic Value Sig I(0) I(1)

F-statistic 98.512 10% 2.37 3.2

5% 2.79 3.67

2.5% 3.15 4.08

1% 3.65 4.66

FLRP LRP|LRNF+, LRNF−, LTEM+, LTEM−, LCLA+ ,

LCLA− (Non-linear) 1 35.292 Cointegration

F-statistic 35.292 10% 1.99 2.94

5% 2.27 3.28

2.5% 2.55 3.61

1% 2.88 3.99
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TABLE 6 Estimation of long-term and short-term variables through ARDL model.

Estimation of long-term variables through ARDL model

Variables Coe�cient Standard error t-statistic Probability

LRNF 0.013 0.027 0.485 0.629

LTEM 0.863∗∗ 0.379 2.275 0.026

LCLA 1.269∗∗∗ 0.184 6.891 0.000

C 35.211∗∗∗ 11.370 3.096 0.003

Estimation of short-term variables through ARDL model

Variables Coe�cient Standard error t-statistic Probability

D(LRNF) 0.256∗∗∗ 0.089 2.864 0.005

D(LCLA) 0.980∗∗∗ 0.059 16.423 0.000

ECM (-1) −0.142∗∗∗ 0.032 −4.330 0.000

∗ : Significant at the 10% level, ∗∗ : Significant at the 5% level, ∗∗∗ : Significant at the 1% level.

expression (ECT-1) is both destructive and statically significant in

establishing a long-term relationship with RP,RNF+,RNF−,TEM+,

TEM−, CLA+ CLA−. The coefficient of the ECMt-1 in this analysis

is negative. It indicates that any deviations from the long-run

equilibrium from previous years are corrected at a rate of 104.6%

per period (Table 8).

The results of the NARDL analysis for both long and short-

term perspectives are presented in Table 8.The results align with

what was observed in the ARDL analysis. Based on the long-term

asymmetric relationship, positive shocks in the cultivated land area

led to a boost in rice production. A 1% increment in positive

changes in the cultivated land area will lead to a 1.048% upsurge

in rice production in the short term as well as a 1% increment in

positive changes to the cultivated land area will result in a 0.882%

upsurge in rice production in the long term. Therefore, a positive

correlation exists between cultivated land and rice production.

Based on the study of long-term NARDL estimates, the effect of

rainfall fluctuations on rice yields due to both positive and negative

shocks have been quantified at −0.405 and −0.252, respectively.

This signifies a projected decline in rice production of 0.405%,

with each 1% increase in rainfall. Conversely, a 1% decrease

in rainfall is associated with an increase in rice production of

0.252%. However, the short-term coefficients denoting the impacts

of rainfall variations within the asymmetric model do not reach

statistical significance.

The long-term effect of temperature changes on rice yield is

quantified as −2.620 for positive temperature variations and 1.917

for negative temperature variations. This indicates that the harmful

effects of excessive heat have a considerable impact on rice yields.

The findings explain that when there is a 1% rise in temperature,

rice production declines by 2.620%, and this change is significant at

the 5% significance level. Additionally, negative temperature shocks

rise by 1%, and rice production decreases by 1.917% at the 10%

significance level. However, it is important to note that neither

positive nor negative temperature shocks seem to have no impact

on rice yields in the short term.

The findings of the ARCH test and the Breusch-Pagan-Godfrey

test indicate that probability values are 0.380 and 0.07, respectively

(Table 8). The null hypothesis can be refuted as those values are

TABLE 7 Validation and diagnostics of ARDL model.

Diagnostic tests results F-stat P-value

R2 0.871

Adjusted R2 0.856

Test F-stat P-value

Serial correlation LM test 0.741 0.480

Normality test (Jarque-Bera) 5.346 0.069

Breuch-Pagan- Godfrey test 1.394 0.217

ARCH test 0.259 0.612

Ramsey RESET 2.042 0.158

higher than 5%, a significant level and indicate that there was no

heteroscedasticity or ARCH effect in the model. Additionally, the

Serial Correlation LM test was conducted to detect autocorrelation

of the regression model. Based on the result, the p-value for the

Chi-square statistic is 0.640. It is >0.05 and implies the non-

existence of serial correlation in the residuals. The results show

that the probability value is 0.417 in the normality test, which is

larger than 0.05. Thus, we cannot reject the null hypothesis. It

indicates that the residuals are not significantly different from a

normal distribution.

The CUSUM line remains within the confidence bands,

suggesting that the model coefficients do not change significantly

over time (Figure 4A). Conversely, the crossing of the CUSUMSQ

line through the confidence bands indicates a potential instability

in the variance of the residuals (Figure 4B). These two tests used to

assess the stability and consistency processes over time.

The multiplier graph of NARDLmodels illustrates the dynamic

adjustment paths of the endogenous variable to positive and

adverse shocks in the exogenous (LRNF, LTEM, and LCLA)

variables. Figure 5A through Figure 5C illustrate how the new

equilibrium equations have shifted due to earlier negative and

positive shocks. They also show how the dependent variables

react over time to variations in the independent variables,

Frontiers in Sustainable FoodSystems 08 frontiersin.org

https://doi.org/10.3389/fsufs.2025.1592542
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Samarasinghe et al. 10.3389/fsufs.2025.1592542

A                                                                                     B

-30

-20

-10

0

10

20

30

70 75 80 85 90 95 00 05 10 15 20

CUSUM 5% Significance               

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

70 75 80 85 90 95 00 05 10 15 20

CUSUM of Squares 5% Significance

FIGURE 3

(A) Cumulative sum and (B) sum of squares plots of recursive residuals.

TABLE 8 Long-run and short-run non-linear ARDL findings and diagnostic results.

Long-run non-linear ARDL findings

Variables Coe�cient Standard error t-Statistic Probability

LRNF_POS −0.405∗∗ 0.165 −2.447 0.020

LRNF_NEG −0.252∗∗ 0.121 −2.104 0.027

LCLA_POS 0.882∗∗∗ 0.110 7.958 0.000

LCLA_NEG 0.960∗∗∗ 0.117 8.209 0.000

LTEM_POS −2.620∗∗ 1.104 −2.372 0.021

LTEM_NEG 1.917∗ 1.052 1.822 0.074

C −0.130∗∗∗ 0.036 −3.567 0.000

Model statistics probability

R-square 0.957

Adjusted R square 0.954

F-statistics 35.292

Diagnostic tests Test statistics Probability

Serial correlation LM test 0.449 0.640

Normality test (Jarque-Bera) 1.748 0.417

Breuch-Pagan- Godfrey test 1.810 0.070

ARCH test 0.780 0.380

Ramsey RESET 0.349 0.556

Short-run non-linear ARDL findings

Variables Coe�cient Std. error t-statistic Probability

D(LRNF_NEG) 0.004 0.028 0.160 0.873

D(LCLA_POS) 1.048∗∗∗ 0.041 25.130 0.000

ECM (-1) −1.046∗∗∗ 0.058 −17.898 0.000

∗ : Significant at the 10% level, ∗∗ : Significant at the 5% level, ∗∗∗ : Significant at the 1% level.

highlighting possible asymmetries. The black-scattered and hard

black lines show that rice production changes asymmetrically

as the changes to negative and positive shocks. Thick and thin

lines with red dots indicate the asymmetric variations and critical

boundaries. Figure 5 show an asymmetric relationship between

study variables.

3.7 Granger causality test results

We have analyzed the long and short-term impacts of

temperature, rainfall, and cultivated land area on rice production

in Sri Lanka. It is crucial to suggest policy recommendations for

minimizing the effect of climate variation on agriculture farming.
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FIGURE 4

The (A) CUSUM and (B) CUSUM of squares of recursive residuals plots.
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FIGURE 5

The multiplier e�ect of (A) temperature, (B) cultivated land area, and (C) rainfall.

We applied the Granger causality model to investigate whether

previous values of one variable can offer helpful information for

forecasting the upcoming values of another variable introduced by

Engle and Granger (1987). Our focus is on the causal relationship

between rice production and climatic variables. Table 9 shows the

predictive or causal relationship between every two-time series.

3.8 Evaluation of model stability

We can enhance the confidence in our long-term estimates

from the Autoregressive Distributed Lag Model by integrating

advanced techniques like Dynamic Ordinary Least Squares

(DOLS), Fully Modified Ordinary Least Squares (FMOLS), and

Canonical Cointegration Regression (CCR; Park, 1992; Phillips and

Hansen, 1990; Stock and Watson, 1993). The FMOLS estimator

identifies a single correlation among the variables and then

employs a semi-parametric adjustment to address estimation

issues arising from long-term correlations and random factors.

The CCR technique resembles FMOLS but focuses especially

on solving cointegration problems rather than adjustment for

stationary data.

A significant advantage of the DOLS test is that it can handle

variables with mixed integration orders within a cointegrated
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TABLE 9 Results of Granger causality analysis.

Causality direction F-Statistic Prob.

LRNF− → LRP 9.916∗∗∗ 0.000

LRP→ LRNF− 1.749 0.182

LRNF+ → LRP 10.484∗∗∗ 0.000

LRP→ LRNF+ 0.774 0.465

LTEM− → LRP 4.301∗∗ 0.017

LRP→ LTEM− 1.889 0.159

LTEM+ → LRP 4.781∗∗∗ 0.011

LRP→ LTEM+ 0.401 0.671

LCLA− → LRP 7.532∗∗∗ 0.001

LRP→ LCLA− 1.819 0.170

LCLA+ → LRP 4.415∗∗ 0.016

LRP→ LCLA+ 0.370 0.693

LRNF− → LTEM− 5.214∗∗∗ 0.008

LTEM− → LRNF− 1.355 0.265

LRNF− → LTEM+ 3.785∗∗ 0.028

LTEM+ → LRNF− 0.110 0.895

(∗∗∗) and (∗∗) show 1% and 5% level of significance.

framework. It also helps reduce issues related to endogeneity and

biases that can arise from small sample sizes. Table 10 shows that

the long-term estimates from CCR test, FMOLS test and DOLS test

show consistent signs for LCLA, LRNF and LTEM. Additionally,

the Canonical Cointegration Regression findings also indicate that

the NARDL long-run results are dependable.

4 Discussion and policy
recommendation

This research study explores the vigorous connection between

climate fluctuations and rice production in Sri Lanka, focusing on

whether this relationship is symmetric or asymmetric. We employ

ARDL and NARDL methods for analysis over the period from

1952 to 2022. The Non-linear ARDL method is a modification of

the linear ARDL model that effectively captures the asymmetrical

relationship between variables in the long and short term.

Additionally, it provides a strong framework for analyzing how

positive and negative shocks in each explanatory variable affect

rice production.

NARDL results demonstrate a significant, long and short-

run asymmetric relationship among climatic variables and rice

production in Sri Lanka. Both positive and negative climatic

changes have affected rice production to a large extent in the

country. It was observed that expansion and reduction in the

cultivated land area significantly affect short- and long-term rice

production. Importantly, these outcomes are similar to the research

shown by Pickson et al. (2022) and Zhang et al. (2023).

According to the study results, there is an unfavorable effect on

rice output due to positive rainfall shock. However, the beneficial

TABLE 10 DOLS, FMOLS, and CCR estimation results.

Variables Coe�cient Standard
error

t-Statistic

Method-FMOLS

LRNF 1.635∗∗∗ 0.568 2.877

LTEM 13.346∗∗∗ 2.162 6.171

LCLA 1.670∗∗∗ 0.126 13.214

C −46.914∗∗∗ 6.785 −6.913

Method-DOLS

LRNF 1.684∗∗∗ 0.508 3.313

LTEM 13.523∗∗∗ 2.985 4.530

LCLA 1.683∗∗∗ 0.185 9.066

C −45.623∗∗∗ 8.700 −5.243

Method-CCR

LRNF 1.511∗∗∗ 0.401 3.766

LTEM 13.449∗∗∗ 2.600 5.171

LCLA 1.665∗∗∗ 0.153 10.865

C −46.498∗∗∗ 8.381 −5.548

(∗∗∗) show 1% level of significance.

effect on rice production is created due to the negative shock of

rainfall in the long term. Rainfall is identified as the most crucial

factor influencing crop yield in Central Asia, according to Guo et al.

(2022). In Turkey, rainfall positively impacts rice production in the

short and long term, as noted by Chandio et al. (2021). Conversely,

rainfall harms the rice and wheat crops production efficiency, with

extreme rainfall in India causing a particular reduction in crop

yield (Singh, 2020). Additionally, positive and negative rainfall

fluctuations and sown area significantly and strongly influence rice

production in South Punjab.

Our research found that long-run positive temperature shocks

negatively and significantly affect rice production. Similarly, long-

term negative temperature shocks also negatively impact rice

production statistically and significantly. However, in the short

term, both positive and negative temperature changes do not affect

rice production in Sri Lanka. These outcomes are similar to the

results of Abbas andMayo (2021). In Nepal, a rise of 1◦C in average

summer temperature is correlated with a decrease of 4,183 kg in

rice yield (Rayamajhee et al., 2021). Furthermore, Tan et al. (2021)

Observed that high temperature harmfully affects crop yield during

the minor season and low temperature beneficially affects both

main and minor seasons.

According to the study’s results, the negative effects of

temperature and rainfall highlight the need to promote practical

implications of climate-resilient rice varieties, crop diversification,

adjusting planting dates, deep tillage, application of organic

materials, planting by parachute method, cultivation together, zero

tillage and improve irrigation and drainage systems to ensure

sustainable rice production. The positive impact of reduced rainfall

on yield indicates that better water management is needed to

improve field conditions by reducing waterlogging risks, especially

in heavy clay soil areas. Implementing weather forecasting and
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early warning systems can help farmers make correct decisions to

minimize the risk.

Therefore, our findings are essential for rapid and effective

forecasting, policy formulation, and implementation of climate

change prediction and rice production planning in Sri Lanka and

are helpful to managing the issues of food security in the country.

We need to highlight that suitable policies and innovative climate

adaptation and mitigation strategies must be introduced to reduce

the challenges of climate change on rice production nationally.

Climate innovative agriculture practices are very essential to be

introduced to the farmers at the field level. Promoting genetically

modified rice varieties is crucial. At the same time, it needs

to be ensured that farmers have access to these seeds through

efficient seed resources and distribution systems. Crop diversity

and adopting agroforestry practices can reduce risks associated with

rice production and improve overall food security. Establishing and

strengthening weather monitoring and early warning systems will

help farmers make informed decisions and prepare for weather

events. Conducting farmer education programs on climate-smart

agricultural practices and strengthening agricultural extension

services that provide continuous support and information.

The development of sustainability policies, the promotion of

institutional cooperation and financial incentives for the use

of climate change measures are important. Introducing crop

insurance systems and subsidies for climate-resilient technologies

protects farmers from climate-related losses.

Investing in ongoing research and robust data collection

processes will help us understand the impact of climate deviations

and develop new solutions. Doing these things will increase the

resilience of Sri Lanka’s rice production to climate variations,

guarantee food security and promote sustainable agriculture

production. Therefore, the Sri Lankan government should review

and focus on climate change strategy under the following key

areas. First, weather forecasters, policymakers, and researchers

need to collaborate to develop an effective and comprehensive

plan enough to solve the problem of climate impacts. This ensures

food safety over time. Second, the relevant authorities should

prioritize developing the adaption capacity of farmers to manage

the impact of climate variations on farming. Third, the Sri Lankan

government should use agricultural research to promote strategic

policy adjustments. In addition, the processes and activities of the

current policies need to be reviewed. Farm-level climate change

adaptations are crucial for long-term agricultural sustainability in

Sri Lanka.

5 Conclusion

Our research study estimated the impact of temperature

changes, rainfall changes, and cultivated land area covering the 70-

year time series data. The analysis includes the climatic variables’

positive and negative features at different levels. Very limited

literature papers focused on climate change’s symmetric and

asymmetric impact on rice production. Therefore, our results

significantly facilitate the country’s rice sector development.

The changing climate has significantly affected Sri Lanka’s rice

production recently. Also, it indirectly affects farmers’ livelihoods.

Sri Lankan rice production is unstable due to prolonged

drought and irregular rain patterns. The dry zone rice farmers are

facing huge problems regarding water availability due to limited

water sources. The main findings imply that climatic variables have

adversely impacted rice yields. The results of ARDL showed that

rainfall and temperature strongly impact rice production, but it

could not approach the non-linear context. As a solution to that

issue, the NARDL results captured asymmetrical impacts on rice

output. The long and short-term analysis further described those

results effectively. The results emphasized that positive and negative

temperature fluctuations create adverse conditions for rice output

in the long term. Positive and negative rainfall shocks negatively

and positively impacted rice yield in the long term, respectively.

Although, results implied that the positive shocks of the cultivated

land area positively impacted rice output in the long and short term.

This study was unable to focus on sunny days, hot days, air quality,

and rainy days due to the unavailability of data. We focused only on

rice production, cultivated land area, temperature and rainfall on

a yearly basis. However, future research should expand to include

additional variables. Additionally, farmer perception and factors

affecting climate change adaptation strategies need to be focused

on sustaining rice farming in Sri Lanka and ensuring food security

in the nation.
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