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The impacts of rural digitization 
on agricultural carbon emission 
efficiency: evidence from 30 
provinces in China over 2011–
2022
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Under the dual goals of the “dual carbon” and digital rural development strategies, 
giving full play to the role of rural digitalization to enhance the carbon emission 
efficiency of agriculture is of great significance to the green and sustainable 
development of agriculture. Based on the panel data of 30 provinces in China 
from 2011 to 2022, dynamic spatial Durbin and threshold effect models were 
used to demonstrate the impact of rural digitalization on agricultural carbon 
emission efficiency. The results show that: (1) Both of the agricultural carbon 
emission efficiency and the level of rural digitalization in all provinces in China 
show a steady upward trend. During the study period, the agricultural carbon 
emission efficiency in the central region improved the fastest, as well as the rural 
digitalization level in the western region; (2) Rural digitalization has a significant 
positive promoting effect on agricultural carbon emission efficiency, and this 
promoting effect has a spatial spillover effect. Digital development in neighboring 
rural areas will also improve the carbon efficiency of agriculture in the region. 
The direct effect is the strongest in the central region, and the spillover effect of 
the eastern region is the most prominent; (3) The impact of rural digitization on 
agricultural carbon emissions efficiency has a threshold characteristic. With the 
improvement of rural digitalization, the promoting effect on agricultural carbon 
emissions efficiency is more significant. Among the four regions, the threshold 
value of the rural digital level is the lowest in the eastern region, while in the 
western region has the highest threshold value. The results of this study provide 
useful insights for promoting rural digital development, improving agricultural 
carbon emission efficiency, and promoting agricultural green development.
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1 Introduction

According to the Food and Agriculture Organization (FAO) of the United Nations, the 
amount of greenhouse gases (GHGs) released from agricultural land exceeds 30% of the total 
global anthropogenic GHG emissions, which is equivalent to generating 15 billion tons of 
carbon dioxide per year (Huang et al., 2019). The agricultural carbon emission efficiency is 
not prominent compared with that of total industrial carbon emissions, but the source of 
agricultural carbon emissions is more complex, and agricultural carbon emission efficiency 
accompanied by the high growth of agricultural production has been increasing (Liu et al., 
2024). It is predicted that global agricultural GHG emissions may increase by 58% in 2050, 
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making it the most difficult carbon emission source to control (Gao 
et  al., 2024; Zhang et  al., 2024). Extreme weather triggered by 
greenhouse gas emissions has profoundly affected the survival and 
development of human beings and has become a major challenge 
common worldwide. Among them, the intensity of agricultural 
carbon emission efficiency has also gradually increased with the rapid 
development of agricultural production, becoming the second largest 
source of greenhouse gas emissions. On the other hand, the complexity 
of agricultural carbon emission sources, involving the use of 
agricultural machinery, fertilizer application, animal husbandry 
development, and other aspects, increases the difficulty of controlling 
carbon emission sources (Zheng et  al., 2024). Therefore, a global 
consensus has been reached to mitigate climate change by reducing 
agricultural carbon emissions.

Since the reform and opening up, China has made remarkable 
achievements in agricultural development. According to statistics, 
China’s total grain output increased from 430.7 million tons in 2003 
to 706.5 million tons in 2024, achieving 21 consecutive years of 
growth. In spite of this, the green development of China’s agriculture 
still faces serious challenges. In the process of the rapid development 
of agricultural modernization, the large consumption of fossil energy, 
the excessive use of pesticides, and the irrational use of agricultural 
waste have led to serious agricultural non-point source pollution and 
carbon emission (Zhang and Liu, 2024). As a traditional agricultural 
country, agriculture has now become the second largest source of 
greenhouse gas emission in China. Therefore, how to explore the 
low-carbon transformation and green development of agriculture 
under the background of “dual carbon” strategy has become an 
important issue facing the current society (Li et al., 2024).

Agricultural carbon emission efficiency (ACEE) refers to the ratio 
of the minimum carbon emission that can be realized by agricultural 
production activities to the actual carbon emission under the 
conditions of given expected output and input factors. The higher the 
actual carbon emission, the lower the agricultural carbon emission 
efficiency, which is closely related to agricultural production input 
factors and output. Under the framework of the “two-carbon” strategy, 
improving agricultural carbon emission efficiency is not only an 
inevitable requirement to achieve the goal of carbon peak carbon 
neutrality but also the core path to break the constraints of agricultural 
resources and environment and build a modern ecological 
agriculture system.

Research studies showed that although China’s total agricultural 
carbon emission efficiency has raised in a fluctuating trend, their 
growth rate has slowed down significantly. In recent years, it has even 
been on a downward trend, and agricultural carbon emission 
efficiency has been significantly improved in most provinces (Yao 
et al., 2024). However, FAO data show that China’s total agricultural 
carbon emission efficiency in 2019 was 782,839,100 tons, still the 
world’s largest agricultural carbon emission efficiency country. In this 
context, it is necessary to further improve the agricultural carbon 
emission efficiency to facilitate the low-carbon transformation of 
agricultural production.

At the same time, the Chinese government attaches great 
importance to the construction of digital countryside, has issued the 
“Digital rural Development Strategy Outline,” “Digital rural 
Development Action Plan (2022–2025)” and other policies, document 
No. 1 of the CPC Central Committee in 2023 also proposed to 
in-depth implementation of digital rural development actions, to 

promote the development of digital application scenarios. Rural 
digitalization refers to the process of systematically reconstructing 
agricultural production mode, rural governance mode, and farmers’ 
lifestyle through the deep integration of new generation information 
technology (such as big data, Internet of Things, artificial intelligence, 
and 5G) with agricultural and rural economy and society. Its core is to 
use data as a key production factor to promote the comprehensive 
digital transformation of rural infrastructure, industrial system, public 
services, and ecological protection and ultimately achieve the strategic 
goals of bridging the urban–rural digital divide, accelerating 
agricultural modernization and sustainable rural development. 
Through the deep integration of digital technology and agricultural 
and rural systems, rural digital development is reshaping the 
improvement path of agricultural carbon emission efficiency. As the 
core carrier of rural digitalization, the wide application of intelligent 
monitoring equipment and agricultural big data platform not only 
realizes the accurate control of farmland water and fertilizer, the 
optimization of agricultural machinery operation path, and the whole 
process management of waste resource utilization but also significantly 
reduces the energy consumption and greenhouse gas emission 
intensity per unit output through dynamic carbon emission 
monitoring and traceability analysis (Guo et al., 2022).

In view of improving the agricultural carbon emission efficiency, 
scholars have proposed that agricultural carbon trading markets can 
be  established land-use change (Ryan and Tiffany, 1998) and 
reasonable setting of standard price of agricultural tax (Murray, 2004), 
so as to reduce agricultural non-point source pollution and improve 
agricultural carbon emission efficiency. In recent years, scholars have 
also begun to conduct in-depth studies on the impact of agricultural 
economic development (Khan et  al., 2021; Huang et  al., 2019), 
agricultural technology progress (Sun, 2022), and agricultural 
comprehensive development investment (Chu et  al., 2024) on 
agricultural carbon emission efficiency and put forward targeted 
strategies to promote the improvement of agricultural carbon 
emission efficiency.

In view of the environmental effects of the application of digital 
technology, some scholars believe that the rapid development of 
digital economy will promote the increase in energy consumption 
such as electricity, thus leading to the growth of carbon emissions 
(Hamdi et al., 2014). Some other scholars hold the opposite view, 
believing that the application of digital technology can improve 
production efficiency and technological innovation level, enhance the 
public’s concern for the environment, and thus inhibit carbon 
emissions (Zhang et al., 2024). In addition, some scholars believe that 
the impact of digital technology on carbon emissions is non-linear, 
and the two show an inverted U-shaped relationship of “first increase 
and then decrease” (Li et  al., 2024). Liu (2019) took the lead in 
introducing digitalization into the field of agricultural production, 
believing that digital development may reduce agricultural carbon 
emission efficiency. Tian et al. (2024) found through their research 
that digital development in agriculture and rural areas can significantly 
reduce the carbon emission level of grain cultivation, but at the same 
time, there are obvious spatial differences.

At present, research studies on rural digitalization and agricultural 
carbon emission efficiency mainly focus on the following three 
aspects: (1) Research on the development of rural digitalization and 
agricultural green transformation. One view holds that rural 
digitalization can promote the improvement of rural human capital by 
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optimizing rural communication infrastructure and improving rural 
residents’ awareness of modern information technology, so as to 
further promote the wide application of green agricultural technology 
in agricultural production process (Lu et al., 2024a). Another view is 
that smart agriculture, precision agriculture, and other new 
agricultural development models based on digital technology have 
accelerated the flow of production factors such as labor, capital, and 
information technology and reconstructed the structure and spatial 
organization of rural production factors (Han et al., 2018; Qaim, 2020; 
Sun, 2022). It will help accelerate the transformation of agricultural 
production mode and promote the green transformation of 
agricultural development (Zhang et al., 2024). (2) Research on rural 
digitalization and agricultural green total factor productivity. Some 
scholars believe that rural digitalization can improve agricultural 
green total factor productivity and reduce agricultural input–output 
ratio by promoting agricultural scale management, alleviating 
resource factor mismatch, and promoting green technology progress 
(Liu et al., 2021; Lu et al., 2024a). At the same time, rural digitalization 
can also have a positive impact on the agricultural green total factor 
productivity in the surrounding areas through the spatial spillover 
effect. (3) Research on the development of modern agriculture and 
efficiency. Existing literature has analyzed the impact of modern 
agricultural development on agricultural carbon emission efficiency 
from the perspectives of agricultural mechanization degree, 
agricultural industry agglomeration, agricultural land management 
scale, and agricultural insurance (Guan et al., 2023; Sun, 2022). A 
basic consensus has been reached that technological progress has an 
important positive impact on agricultural carbon reduction. It can 
be seen from the existing studies that there are abundant studies on 
the impact of rural digitalization on the green development of 
agriculture and the impact of modern agriculture on agricultural 
carbon emission efficiency.

However, existing research studies on the relationship between 
rural digitalization (RUD) and agricultural carbon emission efficiency 
(ACEE) are still in the initial stage, and the spatial effect of rural 
digitalization on agricultural carbon emission efficiency has not been 
considered. In addition, most of the existing studies are based on a 
static perspective, ignoring the dynamic change of carbon emissions. 
Based on the panel data from 2011 to 2022, this study first calculated 
the rural digitization level and agricultural carbon emission efficiency 
and analyzed the change trend of the two during the study period. 
Then, based on the dynamic spatial econometric model, the impact of 
rural digitalization on agricultural carbon emission efficiency was 
analyzed. Then, a dynamic threshold effect regression model was 
constructed to analyze the non-linear impact of rural digitalization on 
agricultural carbon emission efficiency, aiming to provide scientific 
basis and theoretical reference for low-carbon 
agricultural development.

Therefore, the marginal contribution of this study is shown in the 
following aspects: First, the impact of rural digitalization on 
agricultural carbon emission efficiency is demonstrated through 
empirical analysis, which provides a new perspective for exploring the 
factors that may affect the green development of agriculture. Second, 
most studies focus on the impact of rural digital development on 
regional industrial economic development, while this study focuses 
on the environmental impact of rural digital development, which is 
conducive to expanding the scope of research on the impact of rural 
digital development. Third, the spatial Durbin model and threshold 

effect model were used to verify the spatial spillover and non-linear 
effects of rural digitalization on agricultural carbon emission 
efficiency, which is conducive to scientifically explaining the influence 
and characteristics of rural digitalization on agricultural carbon 
emission efficiency.

2 Theoretical analysis and research 
hypotheses

Digital technologies have successfully changed the agricultural 
carbon emissions landscape through infrastructure, structural 
optimization, technological innovation efficiency, and resource 
allocation effects. Agricultural carbon emission efficiency refers to the 
ratio between the minimum carbon emission that can be realized by 
agricultural production activities and the actual carbon emission 
under the given conditions of expected output and input factors. The 
greater the actual carbon emission, the lower the agricultural carbon 
emission efficiency, which is closely related to agricultural input and 
output factors (Chen et al., 2024). Under the framework of Cobb–
Douglas production function, traditional agricultural production 
relies on the linear combination of labor, capital, and technology, 
while the intervention of digital technology breaks through this static 
paradigm and reshapes production logic through factor virtualization 
and network synergy (Oenema, 2020). As a new production factor, 
digital technology not only expands the production boundary in the 
form of independent multiplier but also reconstructs the function 
mechanism of traditional factors through data flow (Jin et al., 2024). 
They will affect the expected output and unexpected output of 
agriculture at the same time and then affect the efficiency of 
agricultural carbon emission. In addition, the digital economy is more 
likely to break through geographical space boundaries, and its impact 
on agricultural carbon emission efficiency will also spill over to other 
regions, forming a spatial spillover effect. Therefore, this study starts 
with the development of rural digitalization and builds a theoretical 
analysis framework on how rural digitalization affects agricultural 
carbon emission efficiency on the basis of the application status of 
digital technology.

2.1 Influence mechanism of rural 
digitalization on agricultural carbon 
emission efficiency

With the improvement of rural digitization level, digital elements 
have gradually become the key elements of rural production activities. 
They can optimize the original factor allocation structure on the basis 
of big data, promote the digital transformation of traditional 
agricultural production, improve the efficiency of agricultural resource 
utilization, change the extensive production mode, and improve the 
efficiency of agricultural carbon emissions. First of all, according to 
the Environmental Kuznets Curve (EKC), the extensive development 
of traditional agriculture leads to rising carbon emissions, whereas 
digital technologies such as smart agricultural machinery and 
agricultural IoT enable agricultural production to surpass the EKC 
turning point through precision fertilization, real-time monitoring, 
and resource optimization (Zhang et al., 2022; Wang et al., 2024b). 
This drives a “win–win” scenario where crop yields increase while 
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carbon intensity decreases. Digital technology uses big data, Internet 
of things, and other technologies to carry out accurate research and 
judgment on other input factors in agricultural production activities, 
update agricultural data in real time through sensors, drones, climate 
monitoring, and other equipment, and help farmers make more 
scientific production decisions through intelligent algorithms (Zheng 
et al., 2024). Second, digital technology is conducive to the realization 
of modern agricultural management through intelligent agricultural 
machinery, the realization of automated farming, precision irrigation, 
scientific fertilization, and other agricultural production work and 
effectively avoid the risk of excessive land reclamation, land 
degradation, and waste of natural resources caused by excessive 
fertilizer (Yang et  al., 2022). Therefore, the degree of rural digital 
development will drive the level of agricultural technology, along with 
the continuous improvement of agricultural production efficiency and 
the growth of agricultural economy. Through the interaction of 
various elements, agricultural production is moving toward green and 
sustainable development, gradually forming a green and low-carbon 
agricultural industry, creating new types of employment, increasing 
employment opportunities for rural labor, improving agricultural 
carbon emission efficiency, and forming a virtuous cycle.

Thus, Hypothesis 1 is proposed: Rural digital development can 
promote agricultural carbon emission efficiency.

2.2 Spatial spillover effects of rural digital 
on agricultural carbon emission efficiency

Digital technology is non-competitive and replicable, and digital 
innovation in core regions can radiate to neighboring regions through 
technology imitation, knowledge sharing, or industrial chain 
coordination. For example, after digital planting patterns are replicated 
across regions, the redundancy of agricultural inputs in multiple 
places can be reduced simultaneously (Lu et al., 2024a). At the same 
time, digital platforms break geographical barriers and promote the 
cross-domain flow of labor, capital, and other factors, such as 
developed regions through e-commerce networks to transmit 
low-carbon agricultural standards to less developed regions, forcing 
the latter to optimize production processes. In addition, carbon 
emissions are spatially related, and the transformation of energy 
structure caused by digitization in one place (such as the 
popularization of photovoltaic agriculture) can affect the carbon 
balance of surrounding areas through regional power networks or 
ecological compensation mechanisms (Guo et al., 2022). The research 
also shows that the strengthening effect of environmental regulation 
generated by the application of digital technology will form regional 
linkage governance through inter-governmental policy learning 
(Zhou et al., 2023).

In short, the impact of rural digitalization on agricultural carbon 
emission efficiency forms a spatial spillover through three dimensions 
of peer effect, learning effect, and diffusion effect: The peer effect is 
manifested as the “demonstration-imitation” cycle in the geographic 
neighboring regions. The digital technology leading regions form a 
visual emission reduction paradigm through shared platforms (such 
as the intelligent agricultural machinery cross-regional cooperation 
system), which promotes the technological replication and 
institutional benchmarking in the neighboring regions, and reduces 
the trial-and-error cost of low-carbon transition (Xiong and Zhou, 

2024). The learning effect relies on the cross-regional knowledge 
network, and the implicit experience (such as the practice of digital 
soil testing formula) is coded and spread through the agricultural 
technology extension system, enterprise alliance, and other channels, 
while the explicit knowledge (such as AI bug warning algorithm) is 
cross-domain integration through the open data interface to improve 
the absorption capacity of global emission reduction technology (Lu 
et  al., 2024b). The diffusion effect follows the “core-edge” level 
penetration logic, and digital infrastructure hub areas (such as 
national agricultural science and technology parks) radiate technical 
standards to the edge areas through industrial chain digitization (such 
as blockchain traceability system), while policy dividends are 
transmitted top-down through administrative levels (provincial-city-
county), forming synergy on emission reduction scale.

On this basis, the Hypothesis 2 is proposed: Rural digitization has 
a spatial spillover effect on agricultural carbon emission efficiency.

2.3 Non-linear threshold characteristics of 
rural digitization on agricultural carbon 
emission efficiency

In the early stage of digitalization, due to weak infrastructure, lack 
of digital skills of farmers, and high cost of technology application, 
digital technology is difficult to deeply embed in the agricultural 
production system, resulting in its function of optimizing resource 
allocation and replacing high-carbon elements cannot be effectively 
released (Zhang et al., 2018). For example, due to the lack of equipment 
operation capacity or financial support, small-scale farmers are 
difficult to digest the fixed investment of intelligent agricultural 
machinery, remote sensing monitoring, and other technologies, and 
digitalization only stays in shallow applications such as information 
transmission, which cannot trigger substantial carbon reduction 
behavior (Zhou et al., 2023). With the increase in digitization level, the 
marginal cost of technology application decreases, and agricultural 
production entities can rely on digital platforms to integrate land, 
labor, and other factors, accurately match water and fertilizer needs, 
and optimize agricultural machinery scheduling, thus significantly 
reducing energy and chemical consumption per unit output (Song 
et al., 2022). In addition, after the digitalization level is improved, the 
data interoperability of the upstream and downstream of the 
agricultural industry chain is enhanced, which promotes the formation 
of a “technology-organization-market” collaborative carbon reduction 
mechanism, and further amplifies the emission reduction effect, which 
is shown in Figure 1. Therefore, Hypothesis 3 is proposed: There is a 
non-linear characteristic of the impact of rural digitization on the 
carbon emission efficiency of agriculture.

3 Variable selection, model 
construction, and data sources

3.1 Variable selection

3.1.1 The explained variable
Agricultural carbon emission efficiency (ACEE) is the explained 

variable in the empirical study. Agricultural carbon emission 
efficiency is commonly calculated by the Data Envelopment Analysis 
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(DEA), to overcome the deficiency of neglecting the relaxation of 
input and output variables in the traditional DEA method. Based on 
research of Liu et al. (2021), the super-efficiency SBM model is used 
to effectively measure ACEE. Input and output indicators were 
selected based on the study of Chen et al. (2024), and an evaluation 
indicator system for agricultural carbon emission efficiency was 
established as shown in Table 1. Among them, the input indicators 
include agricultural fixed capital stock, crop sown area, primary 
industry employees, fertilizer application amount, pesticide use 
amount, agricultural film use amount, and agricultural machinery 
input. The agricultural fixed capital stock is calculated based on the 
research of Lu et al. (2024b). The desirable output indicator is the 
total output value of agriculture, forestry, animal husbandry, and 
fishery, and the undesirable output indicator is the agricultural 
carbon emission.

The total amount of agricultural carbon emissions (CAE) was 
measured from three aspects, namely, agricultural land use, rice 
cultivation, and livestock and poultry farming, with reference to the 
study of Guan et  al. (2023). Among them, the carbon emission 
measurement of agricultural land refers to the research results of Tian 
et  al. (2024), including six carbon sources: chemical fertilizer, 

pesticides, agricultural film, agricultural diesel oil, tillage, and 
irrigation. The CH4 emissions generated by rice planting were 
considered, and the emission coefficient referred to Han et al. (2018) 
and was calculated for early, medium, and late rice. Carbon emissions 
from livestock and poultry breeding mainly include CH4 from animal 
intestinal fermentation and CH4 from fecal management and N2O gas. 
Due to the differences in the livestock and poultry feeding cycles, the 
average annual feeding amount must be corrected. According to the 
global warming potential results and coefficients reported by IPPC, 
two types of greenhouse gases, namely, CH4 and N2O, are converted 
to equal amounts of CO2 for subsequent analytical calculations.

 
σ

= =
= = ×∑ ∑

1 1

m m

i i i
i i

CA CA e
 

(1)

In Equation 1, CA is the total agricultural carbon emissions. In 
Equation 1, CA is the total agricultural carbon emissions, CAi 
represents the carbon emissions of carbon source i, and ea. represents 
the activity level of carbon source if , σ i  represents the carbon emission 
coefficient of carbon source i.

FIGURE 1

Influence mechanism of rural digitalization on agricultural carbon emission efficiency.

TABLE 1 Measuring indicators of CAEE.

Primary index Secondary index Unit

Input indicators

Agricultural fixed capital stock 10 thousand yuan

Crop sown area 1 thousand hectares

Number of people employed in agriculture, forestry, 

husbandry and fishery

10 thousand of people

Application amount of converted agricultural chemical 

fertilizer

10 thousand tons

Pesticide usage 10 thousand tons

Agricultural film usage ton

Total power of agricultural machinery 1 million kw

Desirable output indicator Total output value of agriculture, forestry, animal husbandry 

and fishery

100 million yuan

Undesirable output indicator Agricultural carbon emission 10 thousand tons
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3.1.2 The core explanatory variable
As explained in the introduction, rural digitalization refers to the 

process of systematic reconstruction of agricultural production mode, 
rural governance mode, and farmers’ lifestyle through the deep 
integration of a new generation of information technology with 
agricultural and rural economy and society. According to studies of Lu 
et al. (2024b), AUD is measured from the three dimensions of digital 
infrastructure, digital innovation level, and digital industry development, 
according to the logic of “development foundation–development power–
development achievement.” The development of digital infrastructure is 
reflected the Internet penetration rate in rural areas, rural information 
technology equipment, and rural meteorological observation services. 
The digital innovation level is reflected by the information technology 
application in rural areas, the rural consumption of digital products and 
services, the rural digital finance, and the rural production investment. 
The digital industry development is reflected by the digitizing of rural 
production, the digitizing of rural circulation, the digitizing of rural 
operations, and the rural digital industry base. All the measuring 
indicators are shown in Table 2. On this basis, the entropy weight method 
is used to determine the weight of each index.

3.1.3 Control variables
Other variables affecting the ACEE were further controlled to 

alleviate the missing variable bias as much as possible. Control 
variables were selected as follows: ① The agricultural economic 
development level (pgdp) is expressed as the ratio of the added 
value of the primary industry to that of employees in the primary 
industry. ② Agricultural industrial structure (str), expressed as the 
ratio of the added value of the planting industry and animal 
husbandry to the added value of agriculture, forestry, animal 
husbandry and fishery, the planting industry, and animal husbandry, 
are the main sources of agricultural carbon emissions (Xu et al., 
2022). ③ Agricultural financial support (afs) is expressed as the 
ratio of expenditure on agriculture, forestry, and water affairs to 
financial expenditure. External policy intervention by the 
government can affect carbon emissions (Wang et  al., 2022). ④ 
Environmental regulation intensity (enr) is measured by the ratio 
of pollution control investment to GDP to reflect the local 
environmental regulation intensity as much as possible (Sun, 2022). 
⑤ Rural human capital (edu) is measured by the average length of 
education in rural areas. In general, improving education can affect 
the marginal cost of emission reduction.

3.2 Global Moran’s I index

To better analyze the spatial spillover effect of rural digitization on 
agricultural carbon emissions, this study first uses the global Moran’s 
I index to measure the spatial autocorrelation of the rural digitization 
level and agricultural carbon emission efficiency. The calculation 
formula is as follows:

 

( )( )

( )
= =

= = =

− −

=

−
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1 1

2

1 1 1

n n
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n W X X X X
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(2)

In the above (Equation 2) formula, I is the global Moran’s I index, 
Wij is the spatial weight matrix, X is the variable, which refers to RUD 
or ACEE, Xi and Xj refer to the values of the variables in the 
corresponding spatial units i and j, respectively, X is the average of the 
variables, n is the total number of provinces, and i and j represent 
different provinces. The value range of the global Moran’s I index is 
[−1, 1]. When its value is greater than 0, it indicates that the variable 
has a positive spatial correlation. The closer the value is to 1, the more 
significant the spatial correlation. When the value of the Moran’s 
I index is less than 0, the variable has a negative spatial correlation, 
and the closer it is to −1, the more significant the spatial dispersion. 
When the value of the Moran’s I index is equal to 0, it indicates that 
the variable has spatial randomness.

3.3 Empirical models

3.3.1 Dynamic spatial Durbin model
The spatial Durbin model was constructed because there may 

be spatial dependence of both the explained variable ACEE and the 
explanatory variable RUD. Considering the time lag of the impact of 
rural digitization on agricultural carbon emissions, this study further 
constructed a Durbin model of dynamic space, for which the ACEE 
of lag one phase term is introduced in the model (ACEEi,t-1). To 
alleviate the possible endogeneity problems of the model, the model 
is constructed as follows:
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In Equation 3, ACEEit and Xit represent the explained and 
explanatory variables (including control variables), respectively, 
and the subscripts i and t represent the province and year, 
respectively. ρ is the spatial correlation coefficient, Wij is the spatial 
weight matrix, β, τ , ρ , and θ , the underestimated parameters, ui 
and vt represent the spatial and temporal effects, and εit represents 
the spatial error terms following an independent distribution. Two 
types of spatial weight matrices, namely, the geographic distance 
spatial matrix (W1) and the economic geographic nested spatial 
weight matrix (W2), are used for model estimation, while the 
economic geographic nested spatial weight matrix is used for 
robustness analysis.

3.3.2 Dynamic threshold effect model
According to the previous analysis, there may be a non-linear 

relationship between the impact of rural digitization (RUD) on 
agricultural carbon emissions (ACEE). At the same time, the rural 
digitization level should be considered the threshold variable. In view 
of the continuous characteristics of ACEE, ACEEi,t-1 is also added as 
an explanatory variable. Owing to the lack of a mature method of 
combining the spatial measurement model with the threshold 
regression model, the ordinary dynamic panel threshold regression 
model is finally established as follows:
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TABLE 2 Comprehensive evaluation index system of rural digitalization.

Objective Dimension index Secondary indicators Measurement methods Attribute

Digitization in rural areas

Digital infrastructure

The Internet penetration rate in rural areas

The proportion of administrative villages with 

Internet broadband services is /%
+

Number of rural broadband access users / rural 

households
+

Rural information technology equipment

Rural residents per 100 households / computer 

ownership
+

The number of mobile phones per 100 rural 

households
+

The number of color TV sets per 100 rural 

households
+

Rural meteorological observation services
Agricultural meteorological observation station/

station
+

Level of digital innovation

Information technology application in rural 

areas

Rural business outlets service population / 

10,000 people
−

Rural consumption of digital products and 

services

Consumer expenditure on digital products and 

services for rural residents /%
+

Rural digital finance Digital financial inclusion level (Index) +

Rural production investment
Investment in fixed assets in primary industry 

(excluding rural households) /10 thousand yuan
+

Digital industry development

Digitizing of rural production
The added value of digital economy in the 

primary industry / 100 million yuan
+

Digitizing of rural circulation Rural logistics business / 100 million yuan +

Digitizing of rural operations
Rural e-commerce sales purchase volume / 100 

million yuan
+

Rural digital industry base Number of Taobao villages / one +
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In Equation 4, θ1, θ2, and θn  are the threshold values, 
and β11, β12, and β1,n are the regression coefficients of different 
threshold intervals. I  (·) is a schematic function, and the other 
variables explain the same function as Equation 3.

3.4 Data sources

Considering the availability of data, panel data for 30 provinces in 
China from 2011 to 2022 were used in this study (not involving Tibet, 
Hong Kong, Macao, and Taiwan). The data mainly come from the 
China Rural Statistical Yearbook, China Statistical Yearbook, China 

Monthly Statistical Bulletin of Agricultural Products Import and 
Export, China Statistical Yearbook of Population and Employment, 
and the provincial yearbooks of the corresponding years. The number 
of Taobao villages in each province comes from the report of Ali 
Research Institute. Some missing data were supplemented by 
interpolation method. The descriptive statistics for all the variables are 
shown in Table 3.

3.5 Characteristics of ACEE and RUD in 
China

According to the results of the Super-SBM method to calculate 
the ACEE, the change trend of annual means ACEE in 30 
provinces and four regions from 2011 to 2022 is shown in Figure 2. 
The annual mean of ACEE in the whole region fluctuated roughly 
between 0.968 and 1.192 from 2011 to 2022 and reached its 
maximum in 2022. In recent years, the central government has 
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FIGURE 2

Development trend of ACEE in China from 2011 to 2022.

TABLE 3 Descriptive statistics of the variables.

Variable name Sample Mean Standard deviation Minimum value Maximum value

Agricultural carbon emission efficiency 

(ACEE)
360 1.063 0.252 0.205 1.323

Rural digitalization (RUD) 360 0.267 0.114 0.096 0.756

Agricultural economic development 

level (pgdp)
360 2.911 1.256 0.642 10.348

Agricultural industrial structure (str) 360 81.714 10.901 56.833 96.606

Agricultural financial support (afs) 360 11.455 3.284 4.11 20.384

Environmental regulation intensity 

(enr)
360 0.114 0.104 0.001 0.993

Rural human capital (edu) 360 7.879 0.576 6.125 9.878
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attached great importance to environmental protection, aiming at 
agricultural pollution, governments at all levels have formulated 
a series of control measures, so agricultural clean production 
technology has been effectively promoted. Overall, China’s ACEE 
showed an upward trend from 2011 to 2022, with an average 
annual growth rate of 1.650%. For four different regions, ACEE is 
greater than 1 in most years. The average annual growth rates of 
ACEE in eastern, central, western, and northeastern regions 
during the study period were 1.786, 1.859, 1.748, and 1.208%, 
respectively. As the core grain-producing region in China, the 
central area has become a key focus of national agricultural 
policies in recent years. For instance, high-standard farmland 
construction policies have significantly enhanced resource 
utilization efficiency and green technology efficiency by 
improving agricultural infrastructure, such as irrigation systems 
and soil quality, thereby making it the fastest-improving region 
in ACEE.

Meanwhile, RUD was measured with panel data based on 
entropy evaluation method. The results show that the mean value 
of RUD in eastern China is the highest, while the mean value of 
RUD in western China and Northeast China is relatively lower 
among the four regions. From Figure 3, it can be seen that the 
average of RUD in the eastern region is the highest among all 
regions over the study period. The annual average of RUD of the 
whole research region continuously improved over time, with 
average annual growth rates of 2.56%. The average annual growth 
rates of RUD in eastern, central, western, and northeastern region 
during the study period were 2.32, 2.43, 3.03, and 2.33%, 
respectively. The growth rate of RUD in western region is higher 
than that of other regions. The digitalization level of rural areas in 
the western region has improved the fastest, mainly benefiting 
from the dual drive of policy inclination and latecomer advantage: 
The national “rural revitalization” and “digital China” strategies 
give priority to the layout of the western region, through special 
funds to support new infrastructure (such as 5G base stations and 

optical fiber networks) and e-commerce logistics sinking; at the 
same time, its original digital foundation is weak, and the eastern 
and western cooperation mechanisms are superimposed to 
introduce eastern technical resources, promoting the rapid 
popularization of smart agriculture, distance education, and other 
applications and realizing leapfrog shortcomings.

4 Model estimation results and 
analysis

4.1 Spatial panel model estimation results 
and analysis

4.1.1 Global spatial auto-correlation test
According to the calculation, the global Moran’s I index values of 

rural digitization (RUD) and agricultural carbon emission efficiency 
(ACEE) over the years were significantly positive (Table 4), indicating 
a significant spatial correlation of RUD and ACEE. In terms of time, 
the mean values of the global Moran’s I  index values of RUD and 
ACEE were increasing annually. Thus, the trend of spatial 
agglomeration of RUD and ACEE was constantly increasing.

4.1.2 Identification of spatial econometric models
The above spatial auto-correlation test reveals that both the ACEE 

and RUD have strong spatially correlated characteristics; thus, spatial 
factors should be considered when studying their relationship. The 
appropriate space measurement model was then chosen according to 
Elhorst (2003): First, it has to judge whether the spatial econometric 
model is applicable. The test statistics for LM lag, robust LM lag, LM 
error, and robust LM error all passed the significance test, indicating 
that the null hypothesis that the SPM or SEM is not present can 
be rejected, where the spatial panel model is applicable. The Wald and 
LR statistics were then combined to determine which spatial model 
was more appropriate. The estimation with the SDM as the parent 
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Development trend of RUD in China from 2011 to 2022.
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showed that both the Wald and the LR statistics passed the significance 
test, indicating that fitting the data via the SDM is more appropriate. 
A geographic distance spatial weight matrix was used for each test, 
and the results are shown in Table 5. For both types of spatial Durbin 
models, the Hausman test rejected the null hypothesis (p < 0.01); thus, 
the fixed effects model was more appropriate. Moreover, the two-way 
fixed Durbin model was selected for empirical analysis to avoid the 
influence of unobserved time changes on the estimated results.

4.1.3 Estimation results of the spatial Durbin 
model

4.1.3.1 Estimation results of the spatial Durbin model
Model estimation was performed on two types of spatial weight 

matrices, and the estimation results are shown in Table  6. The 
coefficients of RUD on ACEE in all the models were positive and 
passed the significance tests, indicating that the rural digitization had 

TABLE 4 Global Moran’s I values of RUD and ACEE from 2011 to 2012.

Rural digitization (RUD) Agricultural carbon emission efficiency (ACEE)

Year Moran’s 
I value

p-
value

Year Moran’s 
I value

p-
value

Year Moran’s 
I value

p-
value

Year Moran’s 
I value

p-
value

2011 0.334** 0.041 2017 0.369** 0.022 2011 0.328* 0.078 2017 0.387* 0.071

2012 0.339*** 0.006 2018 0.373** 0.034 2012 0.335* 0.019 2018 0.390** 0.043

2013 0.343* 0.085 2019 0.376*** 0.008 2013 0.339* 0.096 2019 0.402* 0.054

2014 0.347* 0.097 2020 0.369*** 0.003 2014 0.367** 0.045 2020 0.404** 0.019

2015 0.356** 0.039 2021 0.384*** 0.004 2015 0.374** 0.021 2021 0.412*** 0.006

2016 0.357*** 0.002 2022 0.389*** 0.008 2016 0.369** 0.044 2022 0.417*** 0.003

***, **, and * represent p < 0.01, p < 0.05, and P < 0.1, respectively, and the T value is in parentheses.

TABLE 5 Tests of spatial regression models.

Tests Static Durbin model Dynamic Durbin model

LM-lag test 48.464*** 45.545***

Robust LM-lag test 41.323*** 35.438***

LM-error test 55.322*** 76.523***

Robust LM-error test 36.448*** 54.654***

Wald-spatial lag test 108.732*** 232.161***

LR-spatial lag test 151.154*** 76.863***

Wald-spatial error test 124.091*** 231.821***

LR-spatial error test 51.676*** 48.676***

Hausman test 45.766*** 70.644***

***Represents p < 0.01, and the T value is in parentheses.

TABLE 6 Estimation results of spatial Durbin model.

Variables The static SDM model The dynamic SDM model

Model 1 (W1) Model 2 (W2) Model 3 (W1) Model 4 (W2)

ACEEi,t-1 0.311*** (3.379) 0.265*** (2.760)

RUDit 0.075** (2.997) 0.112*** (4.315) 0.137*** (3.752) 0.153*** (4.432)

pgdp 0.045*** (3.186) 0.028*** (1.191) 0.170*** (4.966) 0.121** (3.221)

str −0.196*** (−1.969) −0.075*** (−4.139) −0.143* (−2.118) −0.113** (−3.127)

afs −0.135*** (−3.326) −0.123*** (−3.176) −0.129** (−2.765) −0.186*** (−6.176)

enr 0.031 (1.180) 0.074 (1.143) 0.065 (0.995) 0.074 (1.121)

edu 0.143** (2.496) 0.085** (2.989) 0.101** (2.383) 0.122** (2.965)

W* RUDit 0.035** (3.197) 0.081** (2.135) 0.035** (2.946) 0.050** (3.031)

Adj R2 0.820 0.763 0.841 0.764

Log L 187.325 145.866 109.875 186.521

***, **, and *represent P < 0.01, P < 0.05, and P < 0.1, respectively, and the T value is in parentheses. Limited by space, this table does not give the spatial interaction coefficients of each 
control variable in the estimated results.
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a significant positive effect on ACEE. The improvement of rural digital 
boosts the transformation of traditional agricultural production to 
digital production, improves the efficiency of the use of agricultural 
resources, changes the extensive production mode, and improves 
ACEE. Thus, the research hypothesis H1 was confirmed. The R2 value 
of model fitting indicates that the dynamic Durbin model has a greater 
degree of fit than the static Durbin model does, indicating that the 
dynamic Durbin model is better. Therefore, the fit degree of the 
dynamic Durbin model is greater than that of the static Durbin model, 
indicating that the dynamic Durbin model is better fit for estimation. 
This is mainly because the static Durbin model does not consider the 
dynamic influence of ACEE in the regression process, resulting in 
estimation errors. According to the regression results of the dynamic 
panel model, the coefficient of ACEEi,t-1 is positive (p < 0.01), fully 
indicating that the ACEE has a significant dynamic persistence 
characteristic. In addition, a comparison of the estimation results of 
different models reveals that the dynamic Durbin model, which is 
based on the geographic distance weight matrix, has the highest fit 
degree. Therefore, the results in Column 3 (Model 3) in Table 6 were 
analyzed here. The RUD coefficient of Model 3 was 0.137 (p < 0.01), 
which was lower than the estimated coefficient of the static Durbin 
model, indicating that the static model overestimated the promoting 
effect of RUD on ACEE. The spatial lag term coefficient (W*RUD) of 
RUD was significantly positive at the 5% confidence level, indicating 
the interaction of RUD between provinces and that local RUD affects 
the ACEE in its neighboring provinces. In conclusion, it can be seen 
that the promoting effect of RUD has a spatial spillover effect on 
ACEE, verifying Hypothesis H2.

In terms of control variables, the agricultural economic 
development level (pgdp), the environmental regulation (enr), and the 
agricultural technology investment (tech) all have significant positive 
effects on ACEE. The improvement of agricultural economic 
development will promote the allocation of agricultural resources, 
optimize the structure of agricultural production, and contribute to 
the upgrading of agricultural production technology, the improvement 
of resource utilization efficiency, and the promotion and application 
of energy saving and emission reduction technologies, thus promoting 
the improvement of ACEE. In addition, the higher the level of 
environmental regulation, the more local governments attach 
importance to farmers’ low-carbon production by introducing 
relevant emission reduction policies, providing green subsidies to 
farmers and other measures. Local governments guide farmers to 
cultivate the awareness of emission reduction and promote their green 
production from passive to active; this will improve agricultural green 
production efficiency and reduce agricultural carbon emissions. 
Meanwhile, the improvement in the level of human capital usually 
tend to lead to the adoption of a lower-carbon agricultural production 
mode, thus reducing carbon emissions.

The agricultural industrial structure (str) and the agricultural 
financial support (afs) have a significantly positive impact on 

ACEE. That may because the planting and breeding industries are the 
two main sources of agricultural carbon emissions. The increasing 
proportion of these two industries often results in greater agricultural 
carbon emissions, which is not conducive to the improvement of 
ACEE. The improvement of agricultural financial investment does not 
mean the improvement of agricultural financial investment efficiency. 
Specifically, when investing in agricultural production technology 
reform, the government will consider the cost first of all. When the 
technology is fully mature, it is usually cost-effective to put it into the 
market, so it is generally chosen to put it into application when the 
technology is relatively mature. However, in this process, some 
technologies with insufficient verification not only cannot achieve 
emission reduction after being put into use but also may lead to an 
increase in carbon emissions, or the government pays more attention 
to the development of agricultural economy and fails to strike a good 
balance between them and green development. As a result, more 
carbon emissions are generated, which is obviously not conducive to 
the improvement of ACEE.

4.1.3.2 Spatial effect decomposition
To accurately reflect the influence of each factor on ACEE, the 

total effects of the SDM model were decomposed into direct and 
indirect effects (Table 7). The direct effect is the influence of RUD on 
ACEE in the local region. Indirect effect, that is, spatial spillover effect, 
refers to the impact of RUD of neighboring areas on the ACEE of the 
local area.

The direct effect coefficient of RUD in Table 7 is 0.161 (p < 0.05), 
which is 0.008 lower than the value of 0.153 before the unbiased 
treatment in Table 6, indicating that the local rural digitization affects 
the surrounding provinces, reversing the province and decreasing 
agricultural carbon emission efficiency. The indirect effect of RUD was 
0.075 (p < 0.1), which passed the significance test at the 10% level, 
indicating that RUD has a significant spatial spillover effect on 
ACEE. The possible reason is that with the improvement of the 
digitalization level in rural areas, digital agriculture and low-carbon 
ecological agriculture are gradually promoted, so farmers will steadily 
promote agricultural carbon reduction. At the same time, the 
low-carbon economic effect of external agriculture effectively drives 
the surrounding areas to learn from and follow suit. This has improved 
the digitalization level of the surrounding rural areas and improved 
the efficiency of agricultural carbon emissions in the surrounding areas.

4.1.4 Analysis of regional heterogeneity
Given the large differences between rural digitization and 

agricultural carbon emissions in different regions of China, the 
approach of Xu et al. (2022) is applied to divide the whole study 
area into eastern, central, western, and northeast regions for 
model estimation to test regional heterogeneity. The model 
estimation results are shown in Table 8. As shown in Table 8, the 
estimated results for each region are consistent with the results for 

TABLE 7 Results of spatial effect decomposition.

Variable RUD pgdp str afs enr edu

Direct effect 0.161** (3.153) 0.165** (2.316) −0.123** (−3.026) −0.141*** (−2.638) 0.095 (1.221) 0.193** (2.814)

Indirect effect 0.075* (3.785) 0.095** (2.711) −0.048* (−1.995) −0.075** (−2.237) 0.091 (1.095) 0.015 (0.021)

Total effect 0.236** (3.051) 0.260** (2.982) −0.171* (−2.328) −0.216** (−1.993) 0.186 (1.135) 0.208* (2.126)

***, **, and *represent P < 0.01, P < 0.05, and P < 0.1, respectively, and the T value is in parentheses.
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the whole study area sample: The direct and spatial spillover 
effects of RUD on ACEE are significant, indicating that the above 
study results are relatively robust. For all four regions, the 
coefficients of ACEEi,t-1 are significantly positive, indicating that 
ACEEs of all regional are affected by the state of the previous 
stage. In addition, the coefficients of W*RUD in the eastern, 
central, and western regions are all significantly positive, 
indicating that local RUD has a spatial spillover effect on ACEE in 
its surrounding regions, whereas this effect is not significant in the 
northeast region.

The spatial effects of different regions were then decomposed, 
and the results are shown in Table 9. The direct (local) effect of the 
central region is the strongest, with a coefficient of 0.253 (p < 0.05). 
This may be because the resource base of rural digital development 
in central China is relatively well, whereas the ACEE is not so high; 
thus, the marginal effect of rural digital development on the ACEE is 
more prominent. Regarding spatial spillover effect, the spillover effect 
of RUD on ACEE in the eastern region had a regression coefficient of 
0.105 (p < 0.05), which was greater than the coefficients in other 
regions. That may because the eastern region has a quite good 
economic foundation and good infrastructure, and the information 
and factor flows operate conveniently and efficiently. Therefore, the 
spillover effect in the eastern region is more prominent. However, the 
spillover effect in northeast China is not significant, possibly because 
the local natural geography and climate conditions cause weak 
resource factor liquidity, which is not conducive to the spillover effect 
of digital carbon reduction in rural areas.

4.1.5 Endogeneity test
To alleviate the possible endogenous problems of the model, the 

two-stage least square method of instrumental variables (IV-2SLS) 
was used for processing. Proximity to digital infrastructure hubs is 

selected as the instrumental variable, and the selection of the 
instrumental variable must meet the two conditions of correlation and 
exogeneity: First, rural digitalization is related to proximity to digital 
infrastructure hubs. Therefore, proximity to digital infrastructure 
hubs can represent the level of rural digitalization to a certain extent. 
The correlation conditions between instrumental variables and 
independent variables are satisfied. Second, proximity to digital 
infrastructure hubs does not directly affect the efficiency of 
agricultural carbon emissions, thus satisfying the exogenous 
conditions of instrumental variables. The results show that: in the first 
stage, instrumental variables are positively correlated with RUD, and 
the closer the distance to the digital infrastructure hub, the more 
conducive the subsequent RUD improvement; and in the second 
stage, the impact of rural digitization on ACEE was still significantly 
positive at 1% level, and all passed the validity test of 
instrumental variables.

4.2 Threshold effect test results and 
analysis

In this study, the threshold effect model was used to verify the 
non-linear effects of RUD on (ACEE). Based on Hansen (1999) 
framework, the threshold test adopts grid search method to iterate 
through all potential threshold values, preliminarily identifies 
threshold values based on the minimization of residual sum of 
squares (RSS), and calculates the significance level of threshold 
effect through 200 Bootstrap self-sampling. The results show 
(Table  10) that the F statistic of the single threshold model is 
18.987, which is significant at 1% level (p  = 0.003), and the 
corresponding threshold is 0.289, indicating that when the rural 
digitization index crosses this critical value, its mechanism of 

TABLE 8 Estimation results by regions.

Variable Eastern region Central region Western region Northeast region

ACEEi,t-1 0.205*** (3.379) 0.235*** (2.760) 0.332*** (3.379) 0.276*** (2.760)

RUDit 0.166*** (2.738) 0.224*** (3.153) 0.089** (3.074) 0.118*** (3.765)

pgdp 0.122* (2.003) 0.101* (1.999) 0.109* (2.441) 0.131* (1.997)

str −0.084* (−1.984) −0.114* (−2.068) −0.144* (−2.241) −0.095* (−2.168)

afs −0.181** (−3.054) −0.236*** (−3.986) −0.254** (−2.663) −0.179*** (−4.086)

enr 0.092 (1.132) 0.085 (1.265) 0.059* (2.042) 0.651 (1.221)

edu 0.172* (2.615) 0.125** (3.164) 0.109 (1.155) 0.125** (2.965)

W* RUDit 0.034* (2.132) 0.016** (−2.875) 0.021** (2.635) 0.013 (1.832)

Adj R2 0.8765 0.8165 0.8907 0.7146

Log L 161.631 182.732 139.543 59.4328

***, **, and *represent P < 0.01, P < 0.05, and P < 0.1, respectively, and the T value is in parentheses.

TABLE 9 Analysis of the spatial effects of the different regions.

Variable Eastern region Central region Western region Northeast region

Direct effect 0.171** (2.975) 0.253** (2.997) 0.135** (3.096) 0.121** (3.132)

Indirect effect 0.105** (3.031) 0.099** (3.115) 0.086** (2.616) 0.051 (1.065)

Total effect 0.276** (2.786) 0.342** (3.113) 0.221** (2.867) 0.172** (1.987)

**Represents p < 0.05, and the T value is in parentheses.
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action on ACEE will undergo structural changes. However, both 
the double threshold (F = 3.210, p = 0.214) and the triple threshold 
failed the 10% significance test, which proved that there was only 
a single inflection point. Further combined with the explanation of 
economic significance, the threshold value of 0.289 corresponds to 
the critical level of 28.9% coverage of digital infrastructure in 
counties; at this time, the penetration rate of the synergy degree of 
agricultural data platform reaches the scale effect threshold, digital 
technology changes from “local pilot” to “global empowerment,” 
and the marginal emission reduction cost is significantly reduced.

Since the threshold regression model contains the lag term of 
the explained variable, biased results will be obtained if the OLS 
method is used to estimate the threshold value regression model 
with the explained variable lag term. Therefore, the systematic 
generalized moment estimation method is used here, and the 
estimation results are shown in Table 11. When the RUD of the 
whole study area was less than or equal to the threshold value of 
0.289, the regression coefficient of RUD was 0.104 (p < 0.05). 
When RUD exceeded 0.289, the regression coefficient of RUD was 
0.171 (p < 0.05). This finding indicates that as the rural 
digitalization level (RUD) increases, its promoting effect on ACEE 
increases. This is mainly due to the continuous accumulation of 
digital production factors, the rapid increase in the use of internet 
users, the continual decrease in the marginal cost of farmers’ access 
to information, knowledge, and technology, and the decrease in the 
cost of farmers adopting green production technology; thus, 
carbon emissions in the agricultural production process are also 
reduced. Thus, carbon emission efficiency in the agricultural 
production process is promoted.

Moreover, the influence of different regions is estimated with the 
help of the dynamic threshold panel model, and the number and 
threshold values of different regions are determined. Each of the four 
regions had only one threshold value, as shown in Table 11. Among 
the four regions, the eastern region had the lowest threshold value 
(RUD = 0.206). When the RUD was less than the threshold, the 
coefficient of RUD was 0.121 (p < 0.01), and when the RUD exceeded 
the threshold, it climbed to 0.217 (p < 0.01). The eastern region has a 
high level of urbanization and economic development, the perfect 
digital infrastructure in rural areas, and the improvement of the rural 
digital level further highlights the agricultural ecological value and 
strengthens ecological awareness of agricultural producers. Therefore, 
they will earnestly practice agricultural, ecological, and environmental 
behavior and reduce the input of harmful substances. At this time, 
the positive effect of rural digitalization on the ACEE is enhanced. 
The threshold value of RUD in the western region was the highest 
(RUD = 0.307), but when the RUD was less than the threshold value, 
its influence coefficient was not significant. When the RUD exceeds 
the threshold value, its coefficient reaches 0.097 (p < 0.015). This 
finding indicates that if rural digital development in western China 
is at a low level, it cannot significantly improve ACEE; only when the 
RUD crosses the threshold and increases to a high level, it will have 
a significant promoting effect on the ACEE. This may be because the 
economies of most western regions are underdeveloped, the level of 
rural digital development is not high, and advanced agricultural 
technology is difficult to popularize. Thus, RUD did not significantly 
affect the ACEE at the beginning of the fusion. When RUD exceeds 
the threshold value of 0.621, agricultural producers realize that 
agricultural ecological capital creates more value, at which point 

TABLE 10 Threshold characteristic test.

The threshold 
variable

Model 
testing

Threshold value F statistics p-value Critical value

1% 5% 10%

RUD

A single threshold 0.289 18.987*** 0.003 24.097 12.865 9.432

Double thresholds
Threshold 1:0.265

Threshold 2:0.383
3.210 0.214 11.977 4.843 3.664

Three thresholds — 1.891 0.142 7.909 5.558 4.029

*** represents P < 0.01, and the T value is in parentheses.

TABLE 11 Estimation results of dynamic threshold effect.

Region The threshold 
variable

Threshold and 
interval

Regression 
coefficient

T value Standard error

The whole region RUD
RUD ≤ 0.289 0.104** 3.024 0.001

RUD > 0.289 0.171** 2.822 0.015

Eastern region RUD
RUD ≤ 0.206 0.121*** 5.951 0.101

RUD > 0.206 0.217*** 4.822 0.081

Central region RUD
RUD ≤ 0.238 0.198*** 5.931 0.001

RUD > 0.238 0.311*** 4.328 0.015

Western region RUD
RUD ≤ 0.307 0.074 0.985 0.174

RUD > 0.307 0.097*** 4.373 0.157

Northeast region RUD
RUD ≤ 0.303 0.104** 2.687 0.071

RUD > 0.303 0.147** 2.761 0.038

*** and ** represent P < 0.01 and P < 0.05, respectively, and the T value is in parentheses.
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agricultural carbon emissions become important and using harmful 
environmental factors in production is consciously reduced, 
ultimately improving the ACEE. Compared with that in the western 
region, the rural digitalization level in the central region has a 
stronger promoting effect on ACEE, perhaps because of the relatively 
high economic development level in the central region and good 
rural digital construction, which can support the low-carbon and 
green development of agriculture. Therefore, improving RUD is 
highly important for increasing ACEE.

5 Conclusion and implications

Based on data from 30 provinces and regions in China (excluding 
Hong Kong, Macao, Taiwan, and Tibet) from 2011 to 2022, this study 
examines the impact of rural digital development on agricultural 
carbon emissions with the help of a dynamic spatial Durbin model and 
threshold effect model and obtains the following conclusions: First, 
both agricultural carbon emissions (ACEE) and the level of rural 
digitization (RUD) have a significant spatial clustering feature. 
Therefore, the spatial Durbin model can better reveal the relationship 
between the two. Moreover, the dynamic sustainability of ACEE and 
the accumulation of ACEE in the early stage directly affect ACEE in the 
current and later periods. Therefore, the dynamic panel model can 
objectively reflect the actual development of ACEE and is beneficial for 
solving the endogeneity problem. Second, RUD has a spatial spillover 
effect on ACEE. As far as the whole study area is concerned, an increase 
in the degree of RUD can increase ACEE in the local area and has a 
certain promoting effect on ACEE in its surrounding regions, which is 
consistent with that of Wang et al. (2024a). By region, RUD of the 
central region has the strongest direct (local) effect on ACEE, whereas 
the eastern region has the greatest spillover effect. Third, there are 
threshold characteristics for the influence of RUD on ACEE, and there 
is only one threshold value in the whole region as well as in four 
different regions. This conclusion is different from the study of Wang 
et  al. (2024a), whose study showed a double threshold effect of 
agriculture and tourism integration on agricultural eco-efficiency, and 
this difference may be due to the different scale of the study area. The 
promoting effect of RUD on ACEE increases significantly when RUD 
exceeds the threshold across the study area. This indicates that as RUD 
increases, its promoting effect on ACEE enhances. Among the four 
regions, the eastern region has the lowest threshold value, and the 
western region has the highest threshold value. Moreover, when the 
RUD in western China was lower than the threshold value, its impact 
on the ACEE failed the significance test. Only when it crosses the 
threshold value, does RUD have a significant effect on the improvement 
of ACEE. Therefore, improving RUD is the key way to fully realizing 
its role in improving ACEE.

The above research conclusions have the following implications 
for the role of RUD in reducing ACEE.

First, given the positive role of rural digitization in improving 
ACEE, the application and promotion of new technologies, new 
products, and new models in the field of digital agriculture should 
be increased in the future, and agricultural sensors and intelligent 
equipment should be  included in the purchase subsidies of 
agricultural machinery as soon as possible. It is important to continue 
to promote the strategies of “broadband to the countryside” and 

“digital countryside,” achieve 4G or 5G network coverage in rural 
areas, and ensure basic information services for rural residents. It is 
necessary to establish digital economy demonstration villages and 
agricultural big data pilot counties to promote the transformation of 
digital achievements into real productivity as soon as possible.

Second, given the significant regional heterogeneity of the impact 
of rural digitalization on agricultural carbon productivity, dynamic and 
differentiated digital rural development strategies should 
be implemented in the future. For areas that have achieved good results 
in green and low-carbon agricultural development, we will further 
consolidate the dividend of digital carbon reduction and yield increase 
in rural areas, pay attention to technology diffusion, and help areas 
with low digitalization levels. The eastern region should continue to 
play a leading role in the demonstration of low-carbon agriculture, and 
the central and western regions should speed up the strengthening of 
weak spots, continuously develop ecological low-carbon agriculture, 
promote a comprehensive green transformation of agricultural 
development, narrow regional differences, and break the regional 
imbalance in the development of low-carbon agriculture.

Third, in view of the significant spatial spillover effect of rural 
digitalization on ACEE, efforts should be made to improve the inter-
regional cooperation mechanism in the future, take advantage of 
digitalization to overcome the limitation of economic distance, build an 
integrated digital economy smart service platform, establish a large digital 
economy service database, and realize the sharing of data resources and 
platforms. Information disclosure and technology popularization of 
agricultural production environment will be strengthened.

The research limitations of this study mainly include the following 
two aspects: First, although this study has carried out a theoretical 
analysis of the influence mechanism, it has not been empirically tested 
due to the limited version of the study. The influence mechanism can 
be further tested through empirical analysis in the future; second, due 
to the limitation of data availability, this study adopts provincial panel 
data for research. The spatial scale of sample measurement is large, 
which may affect the accuracy of results. In the future, it can 
be quantitatively analyzed by using smaller scale sample data such as 
municipal panel data.

Note: The eastern region comprises 10 provinces: Beijing, Tianjin, 
Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and 
Hainan; the central region consists of 6 provinces: Shanxi, Anhui, 
Jiangxi, Henan, Hubei, and Hunan; the western region comprises 11 
provinces: Chongqing, Sichuan, Guizhou, Guangxi, Yunnan, Shaanxi, 
Inner Mongolia, Gansu, Ningxia, Qinghai, and Xinjiang; and the 
northeastern region consists of 3 provinces: Heilongjiang, Jilin, 
and Liaoning.
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