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international price fluctuation on 
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based on Bayesian-VAR model
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Context: Under the suppression of Trump  2.0 tariffs in the United  States, 
fluctuations in agricultural product prices have become one of the significant 
risks to the security of China’s supply chain, especially for soybeans which are 
greatly affected by the US market.

Methodology: Based on the monthly data of international and Chinese 
soybean futures prices and spot prices from May 2008 to October 2024, this 
paper constructs a Bayesian VAR model to explore the transmission path of 
international price fluctuations to Chinese soybean futures and spot prices.

Innovation: Different from many previous studies, this paper adopts the 
Bayesian VAR model, which can alleviate overfitting more effectively than the 
VAR model, improve the prediction accuracy, and reflect the dynamic impact of 
price fluctuations more accurately.

Conclusion: The results show that fluctuations in international market prices 
have a significant price discovery effect on the Chinese soybean market, which 
can help participants in the upstream and downstream of the supply chain 
reduce the risk of price fluctuations in the short term. However, the hedging 
function of the futures market still needs to be improved in the long term.
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1 Introduction

Both price fluctuations and environmental pollution pose significant risks to the security 
of the agricultural product supply chain (Huang et al., 2023; Lin et al., 2022; Xu et al., 2024; 
Xu et al., 2025). Since the advent of the Trump 2.0 era in 2025, the tariff-centered international 
trade environment has grown increasingly complex, intensifying the uncertainty and price 
volatility of agricultural markets and posing substantial risks to the security of China’s soybean 
supply chain. As the world’s largest soybean importer, China is heavily dependent on 
international markets, sourcing approximately 80 percent of its soybean imports from major 
producers such as the United States and Brazil. However, the trade conflict between USA and 
China since 2018 has not only driven up import costs, but also increased price volatility in 
China’s soybean market, affecting all sides of the soybean supply chain. Meanwhile, as an 
important tool for risk management, the role of the futures market in the soybean supply chain 
is becoming increasingly prominent. However, the development of China’s futures market is 
relatively late and there is insufficient price risk management. Therefore, how to effectively 
avoid the risks brought to the soybean supply chain by international price fluctuations through 
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the price discovery and hedging functions of the futures market is a 
practical problem.

The unique seasonality, supply peaks and perishability of 
agricultural products make the management of agricultural supply 
chain more complex and challenging than that of manufacturing 
supply chain (Imbiri et al., 2021). The prices of agricultural products 
are highly susceptible to factors such as weather and natural disasters 
(Zia et  al., 2022). Furthermore, changes in supply and demand, 
exchange rate fluctuations, policy adjustments, etc. will also have a 
significant impact on prices, making price fluctuations an inevitable 
source of risk in the supply chain. Especially under the high trade 
interdependence among countries and the impact of the novel 
coronavirus epidemic and other factors, the risks associated with 
agricultural product prices have also increased, attracting growing 
global attention to food security (Pu and Zhong, 2020; Laborde et al., 
2020). Soybeans are one of the most important agricultural products. 
China is the world’s largest consumer and importer of beans. 
Consequently, fluctuations in international soybean prices directly 
influence soybean prices in China (Montanía et al., 2021; Zhang et al., 
2021). In addition, fluctuations in energy prices also impact China’s 
soybean market. During periods of crisis, market efficiency tends to 
decline due to greater susceptibility to extreme events (Hu et al., 2024). 
For instance, the U.S.-China trade war, as a political and economic 
event, undermined the information dominance of the U.S. soybean 
futures market (Bandyopadhyay and Rajib, 2023; Adjemian et al., 
2021), increased price volatility in China’s soybean market, and 
prompted China to accelerate the diversification of its soybean import 
sources (Wen et  al., 2023). Additionally, it strengthened the 
co-movement between soybean prices and energy prices such as crude 
oil (Cheng et al., 2023). In this context, Han et al. (2013) examined the 
role of the Dalian Commodity Exchange (DCE) in the global price 
discovery process of soybean futures and found that the DCE’s 
soybean futures prices exert a significant influence on price discovery 
relative to the Chicago Board of Trade (CBOT).

The agricultural futures market plays the role of an “information 
center” in shaping price expectations in the spot market (Garcia and 
Leuthold, 2004). As early as 1983, Garbade and Silber (1983) 
pointed out that in markets characterized by rapid information 
dissemination and high liquidity, futures markets typically lead spot 
markets. In the international soybean market, Brazil has become 
the world’s largest soybean exporter, accounting for more than 40% 
of global soybean exports. However, the United States still plays an 
important role in the global soybean market. Changes in the futures 
price of soybeans in the United States will affect other markets and 
even drive up the price of soybeans in Brazil (Li and Hayes, 2017). 
Studies have found that the volatility of the U.S. soybean futures 
market significantly affects the Chinese market, which confirms the 
United States’ status as a global financial market leader (Fung et al., 
2003). Such volatility transmission has been observed across all 
commodities studied (including soybeans, corn, wheat and sugar), 
especially in the soybean market (Jiang et al., 2017). The relationship 
between spot and futures prices of soybeans exhibits distinct 
characteristics across different market phases. Futures market 
typically plays a leading role in price discovery. In the price 
transmission process, the soybean futures market plays a leading 
role, particularly under conditions of high market liquidity, where 
futures prices often precede spot prices. The international soybean 
futures market exerts a significant price discovery effect on the spot 

price of Chinese soybean (Xu et al., 2019; Wu et al., 2024). The 
research finds that the role of the futures market in price discovery 
is enhanced during periods of market bubbles, while it weakens 
during periods of non-bubbles, indicating that market conditions 
have a significant impact on the effectiveness of the price discovery 
function (Li and Xiong, 2019). Gao et al. (2024) noted that China’s 
recent retaliatory tariffs on U.S. soybeans have strengthened China’s 
position in the discovery of soybean futures prices.

In recent years, fluctuations in commodity prices have led to an 
increasing income risk for farmers, and hedging in the futures 
market has been an effective coping strategy (Penone et al., 2021). 
Rutledge (1972) mentioned that hedgers use the futures market to 
mitigate risks associated with spot market price fluctuations. In order 
to attract speculative capital to match the trades of hedgers, a 
discrepancy between the futures price and the expected expiration 
price will arise (Li and Hayes, 2022). This means that soybean price 
risk can be reduced by hedging. Due to the multifractal characteristics 
of the soybean futures market, investors need to design effective 
hedging strategies to manage price risks and help them maintain 
stable returns during market fluctuations (Yin and Wang, 2021; 
Erasmus and Geyser, 2024). Tejeda and Goodwin (2014) compared 
the effectiveness of multi-product hedging strategies with single-
commodity hedging and found that dynamic multi-product hedging 
can significantly lower risk, providing more effective risk 
management tools. Notably, some scholars have studied the risk 
transmission mechanisms between the most mature (U.S.) and the 
fastest-growing (China) commodity futures markets. Their research 
confirmed the dominant role of the U.S. agricultural futures market 
in price leadership, while also acknowledging the increasingly 
significant role of China’s futures market in price discovery (Ke 
et al., 2019).

Building upon the aforementioned research, this study discusses 
the dynamic influence of international price fluctuations on the 
soybean market in China by combining the price discovery and 
hedging function of futures market. The innovations of this study are 
as follows: First, a Bayesian VAR model is innovatively constructed. 
This approach is rarely applied in prior studies, which predominantly 
use traditional VAR models. The Bayesian VAR model incorporates 
prior distributions to constrain parameter estimation, effectively 
mitigating overfitting, enhancing forecasting accuracy, and improving 
the modeling of parameter uncertainty. Second, the longitudinal 
scope and novelty of the data. Using international soybean futures 
prices and Chinese soybean spot prices from May 2008 to October 
2024, this study provides a more dynamic reflection of the impact of 
international price fluctuations. For instance, this study finds that 
although hedging operations in the Chinese futures market can 
reduce the risk of fluctuations in spot prices in the short term. 
However, due to the liquidity of the Chinese futures market and the 
limitations of basis fluctuations, there is still room for improvement 
in the hedging effect in the long term.

2 Materials and methods

2.1 Theoretical analysis

Price fluctuations are the main source of risk faced by participants 
in the upstream and downstream of the soybean supply chain. By 
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taking advantage of the price discovery and hedging functions of the 
futures market, farmers and other suppliers can analyze price signals, 
hedge against price fluctuations in the spot market, stabilize profits 
and control costs.

2.1.1 Risk avoidance mechanism of upstream 
suppliers

As the production and supply link of the soybean supply chain, 
the main risk for upstream suppliers comes from the impact of falling 
soybean prices on planting income and inventory value.

Firstly, the price discovery function. The price discovery function 
of the futures market provides upstream suppliers with price 
expectations for the soybean market, enabling them to plan 
production and inventory reasonably. When futures prices indicate 
that they may rise in the future due to insufficient supply, growers can 
expand their planting area and soybean suppliers can increase their 
purchasing scale to seize the market opportunity first. On the contrary, 
price signals indicating a decline in prices can optimize resource 
allocation and avoid market risks.

Secondly, the hedging function. In the futures market, by 
establishing futures positions, suppliers can convert the risk of price 
fluctuations into a relatively controllable level of returns. When 
suppliers hold soybean inventories and predict a future decline in 
market prices, they can sell futures contracts in the futures market to 
hedge against the risk of a possible drop in spot prices in the future. If 
inventory prices fall, the profits in the futures market will make up for 
the losses in the spot market and ensure that inventory values are not 
affected by price fluctuations.

2.1.2 Risk avoidance mechanism of downstream 
demand side

The downstream demand side, as the final consumption link of 
the soybean supply chain, its main risk comes from the impact of 
market price fluctuations on raw material costs.

Firstly, the price discovery function. The price discovery function 
of the futures market provides the demand side with a clear global cost 
warning, helping them optimize their purchasing decisions and 
reduce price risks. When the futures price signal indicates that the 
future market supply and demand are tight and prices may rise, the 

demand side can purchase raw materials in advance to lock in low-cost 
supplies. When the signal indicates that the price may fall, the demand 
side can postpone the purchase to reduce the risk of high inventory 
squeezing the price.

Secondly, the hedging function. The actual risk management 
operations on the demand side of soybeans rely on the Chinese futures 
market, further locking in procurement costs and production profits 
through futures tools. By purchasing futures contracts, the future 
purchase price can be locked in advance, enabling the demand side of 
soybeans to stabilize profits amid the sharp fluctuations in raw 
material prices.

2.1.3 The coordination mechanism under the 
linkage of Chinese and international futures 
markets

The international soybean futures price reflects the global soybean 
market and the international supply and demand relationship. 
International futures prices influence the trend of Chinese futures 
prices through price transmission and guide the Chinese soybean 
market price. The Chinese futures market not only provides a 
reference for supply and demand through the price discovery 
function, but also uses hedging tools to help the upstream and 
downstream of the soybean supply chain  lock in profits or costs. 
Through the coordinated operation of Chinese and international 
futures markets, the upstream and downstream of the soybean supply 
chain have effectively reduced the uncertainty risks of the supply chain 
and enhanced the overall stability and resilience. As shown in Figure 1.

2.2 Model construction-Bayesian-VAR 
model

This paper adopts the BVAR empirical method. The Bayesian 
Vector Autoregression (BVAR) model incorporates prior distributions 
to constrain parameter estimation, effectively mitigating overfitting, 
enhancing forecasting accuracy, and improving the modeling of 
parameter uncertainty. While the Vector Autoregression (VAR) model 
is widely used for forecasting macroeconomic variables, it tends to 
suffer from overfitting in high-dimensional settings. The introduction 

FIGURE 1

Supply chain upstream and downstream coordination mechanism.
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of Bayesian methods-particularly shrinkage priors-has demonstrated 
strong performance in improving predictive accuracy (Van der Drift 
et al., 2024). Moreover, BVAR models are more data-driven and offer 
greater flexibility, whereas DSGE models face limitations in handling 
high-dimensional data and lack model flexibility.

For a time series vector ( )′= …1 2, ,. ,t t t ktY y y y  with k variables, The 
VAR (P) model can be expressed as Equation 1:

 
−

=
= + +∈∑

1

p

t i t i t
i

Y c A Y
 

(1)

Where Yt  is a k × 1 vector representing the value of all variables at 
time t; iA  is a k × k coefficient matrix for lag i; p denotes the lag order; 
c represents the intercept term; and ∈t is the error term assumed to 
be white noise.

In the Bayesian framework, the sum of iA  and ∑  parameters are 
assigned prior distributions. Normal distribution or independent and 
identically distributed Gaussian distribution is typically selected as the 
prior. Common prior distribution forms include a Gaussian distribution 
(assuming parameters iA  follow a zero-mean normal distribution) and 
a Wishart distribution for the prior of the covariance matrix ∑.

In the posterior distribution, observed data are used to update the 
prior distribution to obtain the posterior distribution of the 
parameters. The posterior distribution represents the probability 
distribution of parameter values given the observed data (Equation 2).

 ( ) ( ) ( )θ ∝ θ θP |Y P Y| P
 (2)

Where ( )θP |Y  is the posterior distribution of parameter θ , 
( )θP Y|  is the likelihood function, and ( )θP  is the prior distribution.

Common sampling methods include Markov chain Monte Carlo 
(MCMC) method, which is used to extract samples in the posterior 
distribution, so as to obtain the estimated value of model parameters 
and their uncertainty.

2.3 Data sources and sample description

This study selects the closing price of yellow soybean No.1 futures 
from May 2008 to October 2024 as the sample of Chinese soybean 
futures price, the CBOT soybean futures closing price as the 
international soybean futures price, and Chinese soybean spot price 
as the soybean market price. All data are sourced from the WIND 
database. Among them, the CBOT soybean futures closing prices, 
originally quoted in cents per bushel, have been converted into yuan 
per ton based on prevailing exchange rates. The basic descriptive 
statistics of the core variables are presented in Table 1.

3 Results

3.1 Unit root test and granger causality test

3.1.1 Unit root test
ADF test is used to test the stability of each price series. The results 

indicate that all original sequences of China’s soybean spot price (SP), 

China’s soybean futures price (FP) and international soybean futures 
price (CBOT) are non-stationary, while their first-order differenced 
series reject the null hypothesis at the 1% significance level, thereby 
demonstrating stationarity. Therefore, the subsequent analysis utilizes 
the first-order differenced series of these three variables, denoting 
them with a ‘d’ prefix to indicate differencing.

3.1.2 Granger causality test
The Granger causality test requires stationarity of time series data 

and is used to determine whether a time series can effectively predict 
another. In the Granger causality test, the selection of the lag length 
has an important impact on the results. When selecting the lag length, 
the minimum values of AIC and SC are primarily referenced, 
supplemented by subsequent test results to determine the most 
appropriate lag structure. Consequently, a lag length of two is selected, 
and the relevant test results are presented in Table 2.

According to Table 2, both dCBOT and dFP are found to Granger-
cause dSP at the 5% significance level, indicating a unidirectional 
relationship. Fluctuations in the futures market (including 
international and Chinese futures prices) significantly influence spot 
market prices, suggesting that price changes in the international and 
Chinese futures markets are transmitted to the soybean spot market 
through the futures market’s price discovery function.

3.2 Lag order selection and MCMC stability 
test

During the construction of the BVAR model, it is necessary to 
specify prior distributions for the coefficients. This study adopts the 
conjugate Minnesota prior. The default prior assumes that only the 
first own-lag coefficient has a mean of 1, while all other coefficients 
have a mean of 0. Selecting the lag length is a critical consideration 
when establishing the model. Traditional methods, such as using the 
AIC standard method, may overestimate the number of lags. 
Therefore, this study employs the Bayestest model to compute the 
posterior probability of the model. It is assumed that each candidate 
model has an equal prior probability. According to Table 3, the model 
with three lags exhibits the highest posterior probability among the 
three considered models, thus, a third-order lag is selected for 
subsequent impulse response and variance decomposition analyses.

Prior to further analysis in the BVAR model, it is essential to verify 
the convergence of the MCMC sampling. According to Figure 2, the 
trace plot exhibit no apparent trends, and autocorrelation levels are 
low, indicating successful convergence of the MCMC sampling.

As shown in Table  4, the 95% confidence intervals for all 
eigenvalue moduli do not encompass values greater than or equal to 
one, confirming that all eigenvalues lie within the unit circle and that 
the system is stable.

TABLE 1 Core variables descriptive statistics.

Variable Obs Mean Std.
dev.

Min Max

SP 198 4169.156 666.5048 3363.76 5888.17

FP 198 4410.201 762.9892 3131.83 6312.68

CBOT 198 2810.077 543.9256 2027.31 4087.96
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3.3 Impulse response analysis

It can be  seen from Figure  3a that in the early stage of the 
international soybean futures prices shocks, China’s soybean futures 
prices (dFP) exhibit a significant negative response. In the initial phase 
of price decline, the magnitude of the negative response is large, 
indicating that international soybean futures fluctuations exert a 
short-term disturbance effect on China’s soybean futures market. Over 
time, this negative impact gradually weakened, and the response curve 
returned to near zero, indicating that China’s futures market absorbs 
and adjusts to international market shocks. The negative impact may 
reflect the excessive short-term sensitivity of China’s soybean futures 
market to international shocks, implying potential market instability 
or speculative behavior. These findings further confirm that the 
international soybean futures price (CBOT) has a significant influence 
on the Chinese futures price, highlighting the international market as 
a key external factor for China’s soybean futures market.

In the initial stage, the spot price (dSP) of Chinese soybeans 
showed a significant positive response to the international futures 
price, which indicates that the spot market of Chinese soybeans is 
highly sensitive to the price fluctuations of the international soybean 
futures market. However, as time goes by, the positive response 
gradually weakens but still remains above zero. This reflects that the 
Chinese soybean market is highly dependent on the international 
market. Especially against the backdrop of a relatively high proportion 
of soybean imports, changes in international market prices have a 
significant external impact on China’s spot prices.

Meanwhile, it can be seen from Figure 3b that in the initial stage 
of the impact of China’s soybean futures price on China’s soybean 
spot price, China’s soybean spot price (dSP) showed a positive 
response, that is, the spot price increased with the rise of futures 
price, and the positive response amplitude reached the maximum at 
the initial stage, indicating that the futures market price fluctuation 
had a significant guiding effect on the spot market. With the passage 
of time, the positive impact gradually weakened, the response curve 
showed a trend of gradual decline, and finally approached zero. This 
shows that there is a significant price transmission mechanism 
between China’s soybean futures market and spot market. 
Fluctuations in futures prices will directly affect spot prices, 
reflecting the price discovery function of the futures market. This 

positive impact also shows that the futures market can guide the spot 
market to make pricing adjustments by reflecting future 
price expectations.

From the above impulse response diagram, it can be seen that the 
international soybean futures price (dCBOT) has a significant price 
transmission effect on the Chinese market, which is manifested in two 
direct and indirect paths: on the one hand, the international futures 
price (dCBOT) will directly affect the Chinese spot price (dSP); on the 
other hand, international futures prices are indirectly transmitted to 
Chinese spot prices (dSP) through Chinese futures prices (dFP). 
Among them, the impact of dCBOT on dFP is significant in the short 
term, and the positive impact of dFP on dSP is also obvious, indicating 
that the Chinese futures market plays an intermediary role in price 
transmission, which further verifies the price guidance and 
transmission mechanism of the international market to the 
Chinese market.

3.4 Variance decomposition analysis

Table 5 indicates that the fluctuations of the International Soybean 
Futures Price (dbot) are less affected by external factors (dSP and 
dFP), which suggests that the prices in the international market (such 
as CBOT) are less influenced by the feedback from the Chinese market.

Firstly, the fluctuations of China’s spot price (dSP) were mainly 
explained by itself in the short term (the contribution rate in the first 
period was 83.66%), but as time went by, the contribution rate of its 
own shock gradually decreased (72.78% in the eighth period), 
indicating that the influence of external factors (dCBOT, dFP) on it 
gradually increased.

Secondly, the contribution of international futures prices to 
China’s spot prices gradually increased from 9.79% in the first period 
to 17.17% in the eighth period, indicating that the price transmission 
effect of the international market on China’s spot market has become 
more significant and gradually strengthened.

Thirdly, the contribution rate of futures prices to spot prices rose 
from 6.55% in the first quarter to 10.04% in the eighth quarter. This 
indicates that China’s futures market has a certain influence on the 
price guidance of the spot market, but it is lower than the direct 
influence of the international market.

3.5 Further analysis: verification of hedging 
function

In order to quantify the actual role of the futures market in 
reducing the risk of soybean price fluctuations, this paper estimates 

TABLE 2 Granger causality test results.

Lag phase Null hypothesis F-statistic p v. Causality

2 dCBOT is not the Granger cause of dSP 7.4129 0.025 yes

dFP is not the Granger cause of dSP 9.5583 0.008 yes

dCBOT is not the Granger cause of dFP 4.8968 0.086 no

dSP is not the Granger cause of dCBOT 2.4319 0.296 no

dSP is not the Granger cause of dFP 2.205 0.332 no

TABLE 3 The selection of lag order.

Order Log(ML) P(M) P(M|y)

Lag1 −3.78e+03 0.3333 0.0000

Lag2 −3.76e+03 0.3333 0.0000

Lag3 -3.73e+03 0.3333 1.0000

https://doi.org/10.3389/fsufs.2025.1594210
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Xu et al. 10.3389/fsufs.2025.1594210

Frontiers in Sustainable Food Systems 06 frontiersin.org

the hedging performance degree measured by the optimal hedging 
ratio (Equations 3, 4).

 ∆ = + ∆ + εc t tHF c b HF  (3)

 

( )∆ ∆
=

∆
c t

t

cov HF , HF
b

HF  
(4)

Among them,  cHF  is the difference sequence of soybean spot at 
time t, which can be understood as the price yield of soybean spot, 
and  tHF  is the difference sequence of soybean futures at time t, 
which can be understood as the price yield of soybean futures. c is a 
constant term, tå  is the residual of the regression equation, b is the 
hedging rate.

This paper uses the HE index proposed by Ederington to evaluate 
the hedging performance under the optimal hedging ratio. The 
HE index, also known as the Edlington index, is based on the principle 
of minimizing risk to measure the hedging effect. Specifically, the 
HE value reflects the degree to which the variance of the yield of the 

hedging portfolio is reduced compared to the variance of the spot 
yield without hedging when hedging through the use of futures 
contracts (Equations 5–7):

 

( ) ( )
( )
−

= t t

t

Var U Var H
HE

Var U  
(5)

 

( ) ( ) ( )
( )
= ∆ +β ∆

− β ∆ ∆

2
t

c t

Var H Var lnHC Var lnHF
2 Cov HF , HF

 (6)

 ( ) ( )= ∆tVar U VAR lnHC  (7)

( )tVar H  represents the variance of the return rate of the portfolio 
after hedging, â is the calculated optimal hedging ratio, and ( )tVar U  
is the variance of the spot return rate without hedging. The larger the 
value of the HE index, the more the variance of the combination after 
hedging is reduced, that is to say, the more the risk is reduced, the 
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FIGURE 2

MCMC test diagram.

TABLE 4 Parameter stability test.

Eigenvalue 
modulus

Mean Std.dev. MCSE Median Equal-tailed [95%cred.
interval]

1 0.5960851 0.0671138 0.000336 0.5946916 0.4645424 0.7304319

2 0.5229635 0.762327 0.000381 0.528827 0.3644732 0.6578511

3 0.4131889 0.0960316 0.00048 0.4141151 0.2431756 0.5843047

4 0.2152237 0.0888426 0.000444 0.20005 0.077098 0.3856478

5 0.1243613 0.0580975 0.00029 0.11168123 0.0331408 0.2606396

6 0.0651273 0.0443594 0.000222 0.0587793 0.0030418 0.1661547

Pr(eigenvaluse lie inside the unit circle) = 1.0000.
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FIGURE 3

(a) Impulse response of dCBOT to dFP and dSP. (b) Impulse response of dFP to dSP.

TABLE 5 Variance decomposition diagram.

Period Variance Decomposition of 
dCBOT

Variance Decomposition of dSP Variance Decomposition of dFP

dCBOT dSP dFP dCBOT dSP dFP dCBOT dSP dFP

1 1 0 0 0.09787 0.83657 0.06554 0.17470 0 0.82529

2 0.97816 0.00863 0.01320 0.12536 0.79646 0.07816 0.15678 0.01025 0.83296

3 0.96542 0.01339 0.02118 0.15174 0.75765 0.09060 0.15622 0.01507 0.82869

4 0.95455 0.01817 0.02727 0.16421 0.73965 0.09614 0.15693 0.01925 0.82380

5 0.94866 0.02087 0.03046 0.16928 0.73212 0.09859 0.15761 0.02141 0.82097

6 0.94584 0.02214 0.03201 0.17099 0.72932 0.09968 0.15804 0.02238 0.81956

7 0.94467 0.02263 0.03269 0.17155 0.72825 0.10019 0.15826 0.02277 0.81896

8 0.94418 0.02282 0.03299 0.17174 0.72780 0.10044 0.15837 0.02292 0.81870
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better the hedging effect is; on the contrary, the smaller the HE index 
value is, the smaller the degree of risk reduction is, and the hedging 
effect is poor.

Among them, the first-order difference sequences of soybean 
futures price (FP) and soybean spot price (SP) are stationary 
sequences, so the OSL model is established directly. The regression 
results are as follows.

The expressions of dSP and dFP can be obtained from Table 6:

 = − + εt t tdSP 0.35333dFP 3.524743  (8)

The results calculated based on Equation 8 show that after hedging 
through the futures market, the risk of spot price fluctuations is 
reduced by 23.94%. That is, although the futures market has played a 
risk-aversion function to a certain extent, its hedging effect is still not 
significant enough. Possible reasons include relatively low liquidity in 
China’s futures market, large basis fluctuations, and incomplete 
transmission of international market price fluctuations.

4 Conclusion

4.1 Main conclusion

Based on the role of futures market in China’s soybean supply chain, 
this paper discussed the mechanism and conduction effect of the price 
discovery and hedging function. The main conclusions are as follows:

First, the international soybean futures market reflects the changes 
in supply and demand in the global market and provides a price 
benchmark for the soybean supply chain. The research results reveal 
that international futures prices have a price transmission effect on 
China’s futures and spot prices. Furthermore, the impact on the spot 
price of soybeans has a strong external effect, which is manifested as 
direct transmission and long-term continuous influence. This 
conclusion reflects the high sensitivity of China’s soybean prices to the 
international market.

Second, the soybean futures market has a certain transmission effect 
on the spot price. Soybean suppliers can reduce the risk of soybean prices 
to a certain extent through the futures market, lock in the selling price 
and avoid the risk of price decline. However, the calculation results of 
Edlington show that although hedging operations in China’s futures 
market can reduce the risk of spot price fluctuations by 23.94%, due to 
the limitations of liquidity and basis fluctuations in the futures market, 
there is still room for improvement in the hedging effect.

4.2 Policy suggestion

The research conclusion reveals that the price discovery function 
of the soybean futures market has played a good role, but the hedging 

function needs to be further enhanced. Based on this, this paper puts 
forward the following suggestions.

Firstly, the government should actively promote the application 
of the “futures + insurance” model in the soybean supply chain. By 
promoting insurance companies and futures exchanges to design 
“futures + insurance” products for soybean growers, it is ensured 
that soybean growers can obtain stable income regardless of 
whether the price rises or falls. Meanwhile, as the government 
increases subsidies to growers, purchasing enterprises can also 
safeguard their own interests by lowering the purchase price and 
stabilize the soybean supply chain from the production end.

Secondly, the government should further improve the system of 
the soybean futures market. The research results show that there is a 
strong correlation between the international market and the Chinese 
soybean market, and the international futures price has a significant 
transmission effect on the price of Chinese soybeans. Therefore, by 
improving the futures market system, the role of risk management and 
price stability of the futures market can be strengthened.

Thirdly, the government should further strengthen the 
construction of the linkage mechanism with the international futures 
market. By establishing a data docking mechanism between the 
international futures market (such as CBOT) and the Chinese futures 
market (such as DCE), we can promote the real-time transmission of 
global supply and demand information in the Chinese market and 
help Chinese participants respond to international price 
fluctuations faster.
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TABLE 6 OSL regression results of dSP and dFP.

Variable Coefficient Std.
Error

T-
Statistic

Prob.

C −3.524743 7.470146 −0.471844 0.6376

dFP 0.35333 0.045099 7.834605 0.0000
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