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Under the context of global warming, the continuous rise in greenhouse gas

emissions has become a critical concern. As a significant source of greenhouse

gas emissions, the carbon emissions fromagriculture exert a considerable impact

on climate change, which cannot be overlooked. Agricultural technological

innovation is crucial for reducing carbon emissions. Examining how the

scale and structure of agricultural technological innovation impact agricultural

carbon emissions is important for achieving the Carbon Peaking and Carbon

Neutrality Goals. This research is based on data from 30 provinces in China

over the period of 2013–2022. It utilizes fixed-e�ects models, moderation

models, and spatial econometric models to empirically investigate the impact

mechanisms of the scale and diversity of agricultural technological innovation

on agricultural carbon emissions. The research findings reveal that: (1) China’s

agricultural carbon emissions exhibit an overall declining trend, while the

scale of agricultural technological innovation and the level of technological

diversity demonstrate a general upward trend. However, regional disparities

exist. The total agricultural carbon emissions in the central regions remain

relatively high, whereas the scale of agricultural technological innovation and

the level of diversity decrease progressively from the southeastern coastal

areas toward the inland regions. (2) The scale of agricultural technological

innovation and the diversity of technologies have a significant inhibitory e�ect

on agricultural carbon emissions. (3) Mechanism analysis reveals that the scale

of agricultural technological innovation positively moderates the impact of

technological diversity on agricultural carbon emissions. Specifically, an increase

in the scale of technological innovation enhances the inhibitory e�ect of diversity

on carbon emissions. (4) Spatial e�ect analysis indicates that there is a significant

spatial correlation between the scale and diversity of agricultural technological

innovation. The scale of agricultural technological innovation has a negative

spatial spillover e�ect on agricultural carbon emissions in adjacent areas. The

increase in the scale of local technological innovation helps to spread agricultural

technological resources to neighboring areas and reduce their agricultural

carbon emissions. This study enriches the research on the impact of agricultural

technology innovation on agricultural carbon emissions, providing theoretical

references for promoting agricultural technology innovation and sustainable

agricultural development.

KEYWORDS

agricultural carbon emissions, innovation scale, technological diversity, sustainable

development, China

1 Introduction

In recent years, the issue of global warming has increasingly become a focal point of

worldwide attention, with total greenhouse gas emissions continuing to rise. Governments

around the world have prioritized addressing climate change and reducing greenhouse

gas emissions on their agendas. The Chinese government has explicitly stated that
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tackling global warming hinges on technological progress

(Xiaochun et al., 2023), emphasizing that technological innovation

is a decisive factor in achieving carbon reduction goals and

developing a low-carbon economy (Yin and Li, 2019; Lamini

et al., 2021). As the second-largest source of global greenhouse

gas emissions, the agricultural sector plays a critical role in

mitigating global warming by controlling its carbon emissions.

In China, agricultural activities account for ∼16% to 17% of total

carbon emissions (Huang and Sun, 2022), making the reduction

of agricultural carbon emissions of paramount importance. The

academic community has increasingly focused on studying the

mechanisms influencing agricultural carbon emissions. Among

the various factors affecting agricultural carbon emissions,

agricultural technological innovation has emerged as a significant

and indispensable force in promoting energy conservation and

emission reduction (Li and Xu, 2022).

Furthermore, the agricultural industrial structure is also

recognized as a significant factor influencing agricultural carbon

emissions (Cui et al., 2024). The primary challenge in China’s

agricultural sector has shifted from insufficient total supply to

structural imbalances (Wei, 2017). Currently, China’s agricultural

industrial structure faces numerous challenges, including heavy

reliance on resource consumption, outdated technologies, and

extensive development practices. These issues have led to high

levels of agricultural carbon emissions and increased difficulty

in emission reduction, thereby hindering the transition to low-

carbon agriculture and sustainable development. The technological

structure serves as the foundational support for the industrial

structure, and restructuring the technological system of an industry

can drive the transformation of the industrial structure toward

low-carbon practices (Liu et al., 2022). To achieve the low-

carbon transition of the agricultural industrial structure, the key

lies in overcoming the structural constraints of the agricultural

technological system. The optimization and upgrading of the

technological structure represent the core pathway to achieving this

breakthrough (Liu, 2012).

From the theoretical perspective of evolutionary economic

geography, diversity is considered a critical factor influencing

regional development (Yan and An, 2013). A homogeneous

technological structure carries the risk of “technological lock-

in,” which can hinder the innovation and development of

local technological systems (Aantoalha, 2019). Technological

diversity, on the other hand, can break path dependence and

foster knowledge spillovers and cross-disciplinary integration

across different technological fields. Interdisciplinary technological

exchanges often lead to breakthrough innovations. Therefore,

transitioning from a single-technology agglomeration model to

a diversified technology cluster model is an inevitable pathway

for regional sustainable development (Shanlang et al., 2023). To

achieve sustainable agricultural development, it is essential to

enhance regional agricultural technological diversity.

In summary, existing literature has made significant progress

in exploring the mechanisms influencing agricultural carbon

emissions. However, several gaps remain: first, current studies

have not incorporated the structural changes in agricultural

industries induced by technological diversity into their analytical

frameworks, thereby overlooking the impact of agricultural

technological diversity on agricultural carbon emissions.

Second, there is insufficient research on whether the scale of

agricultural innovation influences the structure of agricultural

technology and, consequently, its impact on agricultural carbon

emissions. Although some studies have indicated that agricultural

technological innovation significantly reduces agricultural carbon

emission intensity through mechanisms such as reducing non-

clean energy use, lowering agricultural chemical inputs, and

increasing agricultural output levels (Zhang et al., 2024), the

relationship between the scale of agricultural innovation, the

structure of agricultural technology, and agricultural carbon

emissions requires further exploration. Therefore, this paper

examines the mechanisms through which both the scale and

structure of agricultural technological innovation influence

agricultural carbon emissions.

2 Literature review and research
hypotheses

2.1 Scale of agricultural technological
innovation and agricultural carbon
emissions

Current research on the impact of innovation on carbon

emissions primarily focuses on the scale of innovation. Existing

studies, based on an output perspective, often use the number of

patents as a measure of technological innovation scale (Nyarko

et al., 2018; Khattak et al., 2020) and suggest that the scale of

innovation can inhibit carbon emissions (Zhu et al., 2024). In terms

of research scope, most literature concentrates on the emission

reduction effects of technological innovation in the industrial

sector. For instance, Richmond and Kaufmann (2005) argue that

technological progress and innovation contribute to environmental

improvement. Gu (2022) using patent data and focusing on 275

prefecture-level cities in China, demonstrate that the scale of

technological accumulation enhances emission reduction effects.

However, research specifically addressing the relationship between

agricultural technological innovation and agricultural carbon

emissions is limited. Most scholars approach this issue from the

perspective of technological progress. For example, Yang and

Li (2017) indicate that agricultural technological progress can

improve energy efficiency, thereby reducing agricultural carbon

emission intensity. Li and Zhou (2020) notes that agricultural

technological progress generally contributes to the reduction of

agricultural carbon emissions, but a detailed analysis reveals

significant differences in the impacts of different pathways of

agricultural technological progress on carbon emissions.

This research posits that the increase in the scale of agricultural

technological innovation can reduce carbon emissions. The impact

of agricultural technological innovation scale on agricultural

carbon emission intensity can be explained through two pathways.

The first pathway is the direct effect: the application of advanced

agricultural technologies in production processes can reduce

the use of “non-clean” technologies in traditional agriculture,

enhance energy efficiency, and improve high-energy-consumption

production methods (Fan, 2022). When innovative technologies
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are applied in clusters, the scale effect can further reduce energy

consumption, thereby lowering agricultural carbon emissions. The

second pathway is the indirect effect: when the scale of innovation

reaches a certain threshold, it can trigger structural restructuring,

promoting industrial upgrading and rationalization (Yang, 2013).

The emergence of new technologies can influence changes in the

input structure of agricultural production factors, guiding the flow

of resources from low-efficiency sectors to high-efficiency sectors,

leading to transformations in agricultural structure (Tang and

Yi, 2024), and ultimately reducing agricultural carbon emissions.

Based on this, the following hypothesis is proposed:

Hypothesis 1: The scale of agricultural technological innovation

inhibits agricultural carbon emissions.

2.2 Agricultural technological diversity and
agricultural carbon emissions

Technological diversity refers to the variety of technological

combinations and structures within a specific field (Guo et al.,

2024), reflecting the heterogeneity of knowledge within a region.

Technological diversification can promote the sharing of industrial

technologies through various means, such as collaborative

exchanges, effectively bridging the technological gaps between

different sectors. This fosters spillover effects of technological

innovation and contributes to the reduction of carbon emissions

(Liu, 2024).

In the research of technological diversity and carbon emissions,

most scholars focus on the impact of technological diversity

on carbon emissions and energy intensity in manufacturing

enterprises. For instance, Shanlang et al. (2023) conducted an

empirical analysis using patent data and urban energy data

from 249 prefecture-level cities in China. Their results indicate

that as the level of green technological diversity increases, the

energy intensity of these cities initially rises and then declines,

highlighting the importance of enhancing regional technological

diversity. Zhou et al. (2024). point out that technological diversity

facilitates the adoption of clean energy, reduces reliance on

fossil fuels, and contributes to carbon emission reduction. Wu’s

(2024) related research identifies two mechanisms through which

technological diversity reduces carbon emissions in manufacturing

enterprises: first, by promoting shifts in production patterns to

reduce emissions, and second, by fostering green technology-biased

progress. Influenced by environmental regulations, manufacturing

enterprises tend to adopt low-carbon and environmentally friendly

technologies, achieving green technology-biased progress and

thereby reducing carbon emissions.

This research posits that diversity in agricultural technological

structures can reduce agricultural carbon emissions. The

mechanisms through which agricultural technological diversity

mitigates carbon emissions are primarily reflected in the

following three aspects: first, by promoting the transformation

of agricultural production models, improving energy efficiency,

reducing dependence on fossil fuels, and driving the low-carbon

transition of the agricultural industrial structure, thereby lowering

agricultural carbon emissions. Second, through knowledge

spillovers and synergistic effects, facilitating the exchange and

integration of different technologies, promoting agricultural

technological innovation and upgrading, and enabling low-carbon

sustainable development in agriculture. Based on this, the following

hypothesis is proposed:

Hypothesis 2: Agricultural technological diversity inhibits

agricultural carbon emissions.

2.3 The moderating role of agricultural
technological innovation scale

The literature on technological diversification indicates that a

city’s level of innovation is closely related to its technological

diversity (Gao, 2021). Therefore, the inhibitory effect of

technological diversification on agricultural carbon emissions

requires a corresponding level of innovation to be effective. As

the scale of agricultural technological innovation increases, it

first generates a cost-decreasing effect in technology integration.

Large-scale innovation investments lead to the accumulation of

knowledge capital, reducing the coupling costs between different

technological modules. This makes technological diversity more

achievable, thereby contributing to the reduction of agricultural

carbon emissions.

Hypothesis 3: The scale of agricultural technological innovation

positively moderates the relationship between agricultural

technological diversity and agricultural carbon emission.

2.4 The spatial spillover e�ects of
agricultural technological innovation

Regarding the spatial spillover effects of innovation on carbon

emissions, many scholars have employed spatial econometric

methods to study the spillover effects of innovation on regional

carbon emissions (Jing et al., 2023; Zhao et al., 2025). According

to the First Law of Geography, all objects in space exhibit

spatial correlation and influence each other. Regions in close

geographic proximity often demonstrate a certain degree of spatial

correlation in technological innovation, typically showing a positive

relationship. That is, technological changes in one region can

generate positive spillover and feedback effects on geographically

adjacent areas. Similarly, agricultural technological innovation

activities may also exhibit spillover effects akin to those of general

technological innovation in the process of promoting agricultural

carbon emission reduction. Based on this, the following hypothesis

is proposed:

Hypothesis 4: Agricultural technological innovation exerts

significant spatial spillover effects on agricultural carbon emissions.

3 Data sources and research methods

3.1 Data sources

This research analyzes panel data from 30 provinces,

autonomous regions, and municipalities in mainland China

from 2013 to 2022 (excluding the Tibet Autonomous Region).

Agricultural patent data are sourced from the incopat patent
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TABLE 1 Agricultural carbon emission accounting index system.

Carbon
source
category

Carbon
source

Carbon
emission
coe�cient

Reference
source

Agricultural

energy use

Diesel 0.5927 kgC/kg IPCC2013

Agricultural

material

input

Fertilizer 0.8956 kgC/kg Oak Ridge National

Laboratory, USA

Pesticide 4.9341 kgC/kg Oak Ridge National

Laboratory, USA

Agricultural

film

5.1800 kgC/kg Institute of Agricultural

Resources and Ecological

Environment, Nanjing

Agricultural University

Crop

cultivation

Sowing 312.60 kg/km2 College of Agronomy

and Biotechnology,

China Agricultural

University

Irrigation 266.48 kg/hm2 College of Agriculture,

Nanjing Agricultural

University

database (www.incopat.com). Data on agricultural carbon

emissions and control variables are obtained from China Statistical

Yearbook, China Rural Statistical Yearbook, and provincial

statistical yearbooks.

3.2 Variable selection

(1) Agricultural carbon emissions

Current methods for measuring agricultural carbon emissions

primarily include the carbon emission coefficient method (He

et al., 2018), input-output analysis (Zhang et al., 2022), and

the carbon footprint lifecycle method (Yao et al., 2017). Among

these, the carbon emission coefficient method is widely recognized

and utilized by scholars due to its simplicity and ease of

calculation. Therefore, this research measures agricultural carbon

emissions based on the IPCC Guidelines for National Greenhouse

Gas Inventories, focusing on three aspects: agricultural energy

consumption, agricultural material inputs, and methane emissions

from crop cultivation. The specific calculation formula is as follows:

ACE =
∑

ACEi =
∑

(Ti · ξi) (1)

In Equation 1, ACE represents the total agricultural carbon

emission, ACEi represents the carbon emission from various

agricultural production activities, Ti represents the quantity of

carbon sources, ξi represents the emission factor of the carbon

source. The calculation of total carbon emissions is presented in

Table 1.

(2) Scale of agricultural technological innovation

Currently, the academic community widely adopts the number

of patents as a primary indicator to measure the scale of innovation

activities (Liang et al., 2023), as patents, being a significant output

of innovation, directly reflect the scale of innovation. This research

selects patent authorization data as the basis for analysis. According

to information released by the National Intellectual Property

Administration, the International Patent Classification (IPC) code

A01 encompasses technologies related to agriculture, forestry,

animal husbandry, hunting, trapping, and fishing. Therefore, this

paper screens invention patents with IPC classification numbers

containing “A01” to ensure the agricultural attributes of the

patent data. A total of 128,366 agricultural authorized patents

are identified and used as the measurement data for agricultural

technology innovation scale (APT).

(3) Agricultural technological diversity

The measurement of agricultural technological diversity draws

on Frenken et al.’s (2007) entropymethod, using the three-digit IPC

classification to measure technological diversity (ADV), with the

formula below:

ADVit

g
∑

s=1

Ps,itLn

(

1

Ps,it

)

(2)

In Equation 2, ADVit represents t the technological diversity of

non-related technologies in province i in year t, Ps,it represents the

proportion of three-digit patent s in province i in year t relative to

all invention patents authorized in that province that year.

(4) Control variables

Drawing on previous research, relevant variables were selected

to control for potential influences on agricultural carbon

emissions. This paper selects the agricultural industrial structure

(AIS), agricultural mechanization level (AM), and agricultural

economic level (AGDP) as control variables. Specifically, the

agricultural industrial structure (AIS) is measured by the

proportion of the added value of the primary industry in GDP,

the agricultural mechanization level (AM) is indicated by the total

power of agricultural machinery, and the agricultural economic

development level (AGDP) is represented by the total output value

of agriculture, forestry, animal husbandry, and fishery in the region.

3.3 Model setting

To clarify the direct effects of agricultural technological

diversity and innovation on agricultural carbon emissions, this

research constructs a spatial-temporal double fixed-effect model

as follows:

ACEi,t = β0 + β1APTi,t + β2ADVi,t + β3Controlsi,t + λi + µt

+ εi,t (3)

In Equation 3, ACEi,t represents the agricultural carbon emissions

in province i in year t, APTi,t represents the scale of agricultural

technological innovation in province i in year t, ADVi,t represents

the agricultural technological diversity in province i in year t, λi

and µt are time and provincial fixed effects, and Controls denote

the control variables.

To examine whether the agricultural technological innovation

scale is a moderating factor in the impact of technological diversity

on agricultural carbon emissions, the following moderation model

is constructed:

ACEi,t = β0 + β1APTi,t + β2ADVi,t + β3APTi,t ∗ ADVi,t

+ β4Controlsi,t + λi + µt + εi,t (4)
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FIGURE 1

Spatial-temporal distribution of agricultural carbon emissions.

In Equation 4, APTi,t ∗ ADVi,t represents the interaction between

agricultural technological innovation and diversity. If β1 and β3

have the same sign and the β3 term is significantly regression,

it suggests that agricultural technological innovation positively

moderates the inhibitory effect of technological diversity on

agricultural carbon emissions.

To further explore the spatial effects of agricultural technology

diversity and agricultural technology innovation on agricultural

carbon emissions, the Spatial Autoregressive (SAR) model

(Equation 5) and the Spatial Error Model (SEM) (Equations 6, 7)

are constructed. The expressions are as follows:

Agrcai,t = ρWAgrcai,t + βXi,t + εi,t (5)

Agrcai,t = βXi,t + εi,t (6)

εi,t = θWi,t + µt (7)

In Equations 5–7, ρ represents the spatial regression coefficient,

capturing the spatial dependence in the regression relationship;

W denotes the spatial weight matrix, which reflects the spatial

interactions or connections between different units; Xi,t is the

vector of explanatory variable; εi,t is the vector of random error

terms; θ measures the spatial dependence in the spatial errormodel,

indicating how the error terms are correlated across different units.

4 Results and analysis

4.1 Measurement results analysis

(1) Spatial-temporal distribution characteristics of agricultural

carbon emissions

There are significant differences in agricultural carbon

emissions across China’s provinces. The (a) 2013 and (b) 2022

graphs in Figure 1 are visual representations of agricultural carbon

emissions for 2013 and 2022, respectively. In 2013, the top five

provinces for agricultural carbon emissions accounted for over one-

third of the national total, while the bottom five made up <2%.

Between 2013 and 2022, agricultural carbon emissions in Chinese

provinces showed a downward trend, with the national average

decreasing from 347.983 to 299.557 million tons (Figure 1).

From a spatial perspective, agricultural carbon emissions

exhibit distinct spatial clustering characteristics. In 2013, provinces

with higher agricultural carbon emissions included Henan,

Shandong, Hebei, Anhui, and Jiangsu, most of which are located

in or adjacent to the central region of China. This is primarily

due to the relatively homogeneous industrial structure and less

rational energy consumption patterns in the central region,

where agricultural practices heavily rely on traditional high-

carbon emission methods, such as extensive use of fertilizers and

pesticides, and lower levels of agricultural mechanization, leading

to increased agricultural carbon emissions. In contrast, regions with

lower agricultural carbon emissions, such as Shanghai, Tianjin,

and Beijing, are located in economically developed areas with

higher levels of industrialization, where agriculture constitutes a

relatively smaller share of the regional economy. Additionally,

agricultural production in these areas focuses more on cash crops

and vegetables, with less cultivation of methane-emitting crops like

rice, resulting in lower overall agricultural carbon emissions.

(2) Spatial-temporal distribution characteristics of agricultural

technological innovation scale.

The (a) 2013 and (b) 2022 graphs in Figure 2 are visual

representations of agricultural technological innovation for 2013

and 2022, respectively. From 2013 to 2022, the scale of agricultural

technological innovation in China has significantly increased.

Spatially, agricultural technological innovation exhibits a pattern

of higher levels in the southeast and lower levels in the

northwest. High-value regions are concentrated in the eastern

coastal provinces, while low-value regions are located in inland

western provinces such as Inner Mongolia and Qinghai. This

disparity arises because the eastern coastal regions possess stronger

economic foundations and technological capabilities, enabling

higher levels of agricultural technological innovation under

policy support. In contrast, inland western provinces like Inner

Mongolia and Qinghai, with relatively weaker economic bases and
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FIGURE 2

Spatial distribution of agricultural technological innovation.

FIGURE 3

Spatial distribution of agricultural technological diversity.

limited technological resources, have become low-value regions for

agricultural technological innovation (Figure 2).

(3) Spatial-temporal distribution characteristics of agricultural

technological diversity.

To reveal the spatial evolution characteristics of agricultural

technological diversity in China, a visual analysis of agricultural

technological diversity was conducted. The (a) 2013 and (b)

2022 graphs in Figure 3 are visual representations of agricultural

technological diversity for 2013 and 2022, respectively. From a

time-series perspective, the agricultural technological diversity of

Chinese provinces and cities has significantly improved, with the

national average increasing from 1.1423 to 2.391.

Spatially, agricultural technological diversity in China

exhibits notable regional disparities, generally characterized

by a distribution pattern of “higher in the east and south,

lower in the west and north,” with a gradual decline from the

southeastern coastal areas toward the inland regions. Specifically,

significant spatial clustering is observed in the eastern and central

regions. Areas with higher agricultural technological diversity

are concentrated in the eastern and southern regions, showing

a clustering trend. These include the four municipalities of

Beijing, Tianjin, Shanghai, and Chongqing, as well as provinces

such as Jiangsu, Shandong, Henan, Hubei, Zhejiang, Fujian,

and Guangdong. This is attributed to the relatively developed
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economies of these regions, which possess strong economic

foundations and attract substantial talent, capital, and technological

investments, thereby promoting the research, development, and

application of agricultural technologies and resulting in higher

levels of agricultural technological diversity.

In contrast, the western and northern regions exhibit lower

levels of agricultural technological diversity. This is due to the

relatively lagging economic development in these areas, where

government policies focus more on infrastructure construction

and basic livelihood security, with comparatively less investment

in agricultural technology. Consequently, the level of agricultural

technological diversity remains lower in these regions.

4.2 Mechanism analysis of agricultural
technological innovation’s impact on
agricultural carbon emissions

4.2.1 Benchmark regression analysis
Model 1 selects agricultural technological innovation scale

(APT) as the independent variable. Model 2 selects agricultural

technological diversity (ADV) as the independent variable.

Model 3 includes agricultural technological innovation (APT),

agricultural technological diversity (ADV), and their interaction

term (APT∗ADV). As shown in Table 2.

The results of Model 1 indicate that the scale of agricultural

technological innovation is significantly negatively correlated

with agricultural carbon emissions at the 1% level, suggesting

that an increase in the scale of agricultural technological

innovation inhibits agricultural carbon emissions. This validates

Hypothesis 1. Agricultural technological innovation promotes

the development and application of clean technologies, enhances

energy efficiency, and drives industrial structure upgrading,

thereby reducing agricultural carbon emission intensity. The

results of Model 2 show that agricultural technological diversity

is significantly negatively correlated with agricultural carbon

emissions. For every unit increase in agricultural technological

diversity, agricultural carbon emissions are reduced by 11.742

units, indicating that an increase in agricultural technological

diversity exerts an inhibitory effect on agricultural carbon

emissions. This validates Hypothesis 2. When a region has a

high level of agricultural technological diversity, a diversified

agricultural technology structure can facilitate the transformation

of production models, improve energy efficiency, promote the

use of clean energy, and accelerate the development of green

technologies, thereby reducing carbon emissions in agricultural

production. Model 3 introduces the interaction term between

agricultural technological diversity and the scale of agricultural

innovation to analyze the moderating effect between technological

diversity and innovation scale. The results demonstrate that an

increase in the scale of agricultural technological innovation

enhances the inhibitory effect of agricultural technological diversity

on agricultural carbon emissions, validating Hypothesis 3. This is

because regions with a higher scale of agricultural technological

innovation can quickly learn and adapt when faced with unfamiliar

fields or complex technological challenges, reducing the costs

and risks of technology integration. The increase in the scale

of agricultural technological innovation not only expands the

TABLE 2 Benchmark regression model test.

Variables (1) (2) (3)

APT −0.052∗∗∗ −0.007

(−4.46) (−0.38)

ADV −12.443∗ −2.983

(−1.82) (−0.42)

APT∗ADV −0.016∗∗∗

(−2.77)

AIS 1.713 2.182 1.243

(0.93) (1.15) (0.68)

AGDP 1.028 1.818 0.447

(0.31) (0.53) (0.14)

AM 30.878∗∗∗ 30.353∗∗∗ 28.053∗∗∗

(2.86) (2.72) (2.62)

_cons 102.215 93.150 128.549

(1.20) (1.06) (1.53)

N 300 300 300

adj. R2 0.447 0.411 0.464

∗p < 0.1, ∗∗∗p < 0.01.

range of technological options but also improves the specificity

and efficiency of technology application, thereby more effectively

utilizing these diversified technological means to reduce carbon

emissions in agricultural production and achieve green and

sustainable agricultural development.

Regarding the control variables, the level of agricultural

mechanization is also significantly positively correlated with

agricultural carbon emissions. The reason lies in the fact that

increased agricultural mechanization heightens the dependence of

agricultural production on fossil fuels, particularly the sharp rise in

the consumption of fuels such as diesel for agricultural machinery.

This, in turn, leads to a significant increase in greenhouse

gas emissions.

4.2.2 Endogeneity test
To address potential endogeneity issues in the model, all

variables were lagged by one period. The regression results in

Table 3 show that, after accounting for potential endogeneity, the

main conclusions of this research remain valid.

4.2.3 Robustness test
To further enhance the reliability of the conclusions, this

research conducted robustness tests by altering the time window.

The research period was adjusted from 2013–2022 to 2013–2021,

and the regression results remained consistent with the previous

findings. As shown in Table 4.

4.2.4 Heterogeneity analysis
To further explore the regional heterogeneity in the impact

of agricultural technological innovation scale and diversity on
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TABLE 3 Results of endogeneity test.

Variables (1) (2) (3)

L.APT −0.047∗∗∗ −0.006

(−4.10) (−0.30)

L.ADV −12.910∗ −4.733

(−1.89) (−0.67)

L.APT∗ADV −0.014∗∗

(−2.34)

L.AIS 3.618∗ 4.325∗∗ 3.368∗

(1.91) (2.24) (1.80)

L.AGDP 1.180 2.280 0.886

(0.30) (0.55) (0.22)

L.AM 17.608 18.969∗ 16.304

(1.64) (1.72) (1.53)

_cons 188.466∗∗ 162.175∗ 201.130∗∗

(2.22) (1.86) (2.40)

N 270 270 270

adj. R2 0.488 0.459 0.502

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 4 Results of robustness test.

Variables (1) Car (2) Car (3) Car

APT −0.044∗∗∗ 0.004

(−3.62) (0.22)

ADV −12.606∗ −3.098

(−1.87) (−0.44)

APT∗ADV −0.017∗∗∗

(−2.95)

AIS 0.507 0.596 −0.228

(0.24) (0.27) (−0.11)

AGDP 0.027 0.626 −0.487

(0.01) (0.19) (−0.15)

AM 24.243∗∗ 23.522∗ 20.241∗

(2.02) (1.92) (1.70)

_cons 177.531∗ 175.354∗ 212.842∗∗

(1.87) (1.81) (2.28)

N 270 270 270

R2 0.469 0.446 0.490

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

agricultural carbon emissions, this research divides the sample

data into three sub-samples representing the eastern, central, and

western regions for separate regression analyses. As shown in

Table 5.

In terms of agricultural technology innovation scale, the results

show that the agricultural technology innovation scale in the

eastern and central regions significantly curbs agricultural carbon

emissions, while the inhibitory effect of agricultural technology

innovation scale on agricultural carbon emissions in the western

region is not significant. This is mainly due to differences in

industrial structure, economic development level, and policy

support among regions. The eastern region, with a diversified

industrial structure and a strong economic foundation, can

effectively utilize agricultural technology innovation to suppress

carbon emissions. The central region, driven by policy support and

the transformation of agriculture toward modernization, has also

significantly reduced carbon emissions through the expansion of

agricultural technology innovation scale. In contrast, the western

region, characterized by a relatively single industrial structure, weak

economic base, and limited capacity for technology promotion,

shows no significant effect of agricultural technology innovation

scale on curbing carbon emissions.

The impact of agricultural technology diversity on agricultural

carbon emissions varies by region, mainly due to significant

differences among regions in terms of economic development level,

industrial structure, technological level, resource endowment, and

policy support. The impact of agricultural technology diversity on

agricultural carbon emissions is not significant overall. However, in

the eastern and western regions, agricultural technology diversity

can curb agricultural carbon emissions, while in the central region,

it may promote agricultural carbon emissions. The eastern region,

with its economic and technological advantages, can better utilize

technology diversity to suppress carbon emissions. The western

region, driven by ecological protection needs and policy support,

leverages technology diversity to achieve low-carbon development.

As for the central region, despite its efforts to promote agricultural

technology innovation, the unique characteristics of its agricultural

industrial structure, production methods, and resource utilization

patterns mean that the increase in technology diversity has not

effectively reduced carbon emissions. On the contrary, due to

an over-reliance on high-energy-consuming and high-emission

agricultural inputs such as chemical fertilizers and pesticides, there

has been a certain degree of increase in carbon emissions.

4.2.5 Analysis of spatial spillover e�ects
Using the ArcGIS spatial statistics tool, provincial adjacency

(shared borders and points) was employed as the spatial weight

matrix, and Moran’s I index was applied to test whether the

variables exhibit spatial correlation. The test results, as shown in

Table 6, indicate that Moran’s I indices for agricultural carbon

emissions and the scale of agricultural technology innovation

are significantly positive, demonstrating a notable positive spatial

correlation. Although the Moran’s I index for agricultural

technology diversity is not significant in a few years, it still exhibits a

certain degree of positive spatial correlation overall. Therefore, it is

necessary to further explore the spatial carbon emission reduction

effects of agricultural technology innovation.

Firstly, this article uses LM test to determine the type of spatial

effect. Secondly, through Hausman test and LR test, it is found

that using a fixed effects model is more appropriate. Therefore,

this article ultimately chooses a spatial lag model with double fixed

effects to study the spatial spillover effects of agricultural technology
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TABLE 5 Heterogeneity test results.

Variables (1)
Eastern

(2)
Central

(3)
Western

(4)
Eastern

(5)
Central

(6)
Western

APT −0.032∗∗ −0.122∗∗∗ 0.004

(−2.38) (−3.50) (0.08)

ADV −14.771 13.074 −4.326

(−0.99) (0.83) (−0.65)

AIS 28.230∗∗∗ −3.114 −7.312∗∗∗ 27.791∗∗∗ −0.010 −7.031∗∗∗

(6.34) (−1.13) (−3.25) (5.88) (−0.00) (−3.09)

AM −12.886 18.655 81.832∗∗∗ −15.430 10.196 82.416∗∗∗

(−0.61) (1.20) (4.26) (−0.70) (0.61) (4.31)

AGDP −0.388 −49.305 2.690 −0.338 −73.089∗ 2.731

(−0.06) (−1.32) (0.91) (−0.05) (−1.74) (0.95)

Cons 257.741∗ 707.724∗∗ −291.934∗ 281.564∗ 964.732∗∗ −295.448∗∗

(1.77) (2.10) (−1.97) (1.89) (2.64) (−2.00)

N 120 90 90 120 90 90

R2 0.602 0.551 0.424 0.582 0.476 0.428

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 6 Morans’I index.

Period Carbon emissions Scale Diversity

Morans’I Z P Morans’I Z P Morans’I Z P

2013 0.300∗∗∗ 2.928 0.003 0.295∗∗∗ 3.020 0.003 0.381∗∗∗ 3.567 0.000

2014 0.300∗∗∗ 2.921 0.003 0.430∗∗∗ 4.155 0.000 0.160∗∗ 1.688 0.091

2015 0.271∗∗∗ 2.672 0.008 0.365∗∗∗ 3.156 0.000 0.063 0.839 0.401

2016 0.264∗∗∗ 2.610 0.009 0.442∗∗∗ 4.050 0.000 0.304∗∗∗ 2.938 0.003

2017 0.260∗∗∗ 2.573 0.010 0.389∗∗∗ 3.772 0.000 0.103 1.229 0.219

2018 0.258∗∗ 2.555 0.011 0.431∗∗∗ 4.233 0.000 0.085 1.040 0.298

2019 0.254∗∗ 2.524 0.012 0.353∗∗∗ 3.435 0.000 0.149 1.620 0.105

2020 0.256∗∗ 2.539 0.011 0.381∗∗∗ 3.682 0.000 0.192∗∗ 1.959 0.050

2021 0.248∗∗ 2.461 0.014 0.342∗∗∗ 3.338 0.000 0.295∗∗ 2.817 0.005

2022 0.238∗∗ 2.366 0.018 0.331∗∗∗ 3.240 0.002 0.175∗ 1.802 0.072

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

innovation scale, and chooses a spatial error model with double

fixed effects to study the spatial spillover effects of agricultural

technology diversity.

As shown in Table 7, the estimated coefficient of Spatial-

rho is significantly positive, indicating that agricultural carbon

emissions have a significant positive spatial spillover effect.

That is, a reduction in local agricultural carbon emissions can

affect the agricultural carbon emissions in neighboring regions.

Technological innovation can optimize production methods,

support local agricultural development, and reduce agricultural

carbon emissions. At the same time, agricultural technology can

spread and penetrate into surrounding areas, thereby reducing

agricultural carbon emissions in those regions. Moreover, the

successful experience of low-carbon transformation in a region can

be transmitted through multiple channels. Neighboring regions,

inspired and motivated by this, may imitate these practices, thereby

reducing agricultural carbon emissions.

Since the spatial model includes a spatial lag term, the

regression coefficients cannot accurately describe the impact

of the independent variables on the dependent variable and

need to be decomposed into effects. The results of the effect

decomposition show that the direct effect, indirect effect, and total

effect of agricultural technology innovation scale on agricultural

carbon emissions are significantly negative. This indicates that

the agricultural technology innovation scale in a province can

reduce both local agricultural carbon emissions and those in

surrounding areas. This suggests that an increase in the local

agricultural technology innovation scale helps spread agricultural

technology resources to neighboring regions, thereby reducing

agricultural carbon emissions. This is mainly due to the following
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two aspects: first, agricultural technological knowledge has a

significant diffusion and spillover effect, which can accelerate the

flow of agricultural technology between regions. On the other

hand, high-level agricultural technology innovation in a region can

serve as a leading example for neighboring areas. Through cross-

regional exchanges of agricultural technology, surrounding regions

can not only learn and adopt advanced agricultural technologies

but also enhance the exchange and interaction of agricultural

technologies, thereby promoting local agricultural development

and reducing agricultural carbon emissions. Table 8 presents the

estimation results of the spatial error model, with a spatial lag

coefficient of 0.231, which is significant at the 1% level. This

indicates that agricultural carbon emissions in a province are

influenced not only by observable factors such as the level of

agricultural technology diversity, agricultural industrial structure,

and agricultural mechanization level, but also by unobservable

factors in neighboring regions.

5 Conclusions and policy implications

5.1 Conclusions

This research is based on panel data from 30 provinces,

municipalities, and autonomous regions in China from 2013 to

2022. Using fixed-effects models, moderating effects models, and

spatial econometric models, it explores the impact mechanisms

of agricultural technology innovation on agricultural carbon

emissions from the perspectives of technological innovation scale

and technological structure. The research empirically examines the

impact mechanisms of agricultural technology innovation scale and

agricultural technology diversity on agricultural carbon emissions.

The main conclusions are as follows:

First, agricultural carbon emissions generally show a downward

trend. During the period from 2013 to 2022, agricultural carbon

emissions in various provinces and cities across China exhibited an

overall declining trend. Both the scale of agricultural technology

innovation and the level of agricultural technology diversity

showed an upward trend, but with significant regional disparities.

The total agricultural carbon emissions in the central region were

higher than those in the eastern and western regions, while the scale

of agricultural technology innovation and the level of agricultural

technology diversity displayed a spatial distribution pattern that

decreased from the southeastern coastal areas inland.

Second, the inhibitory effect of agricultural technology

innovation and diversity on carbon emissions. The research results

indicate that both the scale of agricultural technology innovation

and agricultural technology diversity have a significant inhibitory

effect on agricultural carbon emissions. Specifically, the increase

in the scale of agricultural technology innovation can promote the

development and application of clean technologies, enhance energy

efficiency, drive industrial structure upgrading, and thereby reduce

the intensity of agricultural carbon emissions. The improvement in

agricultural technology diversity can facilitate the transformation

of productionmodes, increase energy efficiency, promote the use of

clean energy, and accelerate the development of green technologies,

thus reducing carbon emissions in agricultural production.

Third, the moderating role of the scale of agricultural

technology innovation. Mechanism analysis reveals that the scale

TABLE 7 Estimation results of spatial lag model.

Variables Direct e�ect Indirect e�ect Total e�ect

APT −0.049∗∗∗ −0.012∗∗ −0.061∗∗∗

(−4.44) (−2.15) (−4.35)

Spatial–rho 0.207∗∗∗

(2.69)

Controls YES

N 300

R2 0.291

∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 8 Estimation results of spatial error model.

Variables SEM

ADV −10.614∗

(−1.72)

Lambda 0.231∗∗∗

(2.88)

sigma2_e 371.682∗∗∗

(12.17)

Controls YES

N 300

adj. R2 0.678

∗p < 0.1, ∗∗∗p < 0.01.

of agricultural technology innovation has a positive moderating

effect on the inhibitory impact of agricultural technology diversity

on agricultural carbon emissions. That is, an increase in the scale

of agricultural technology innovation can enhance the inhibitory

effect of agricultural technology diversity on agricultural carbon

emissions. This is mainly because regions with a larger scale

of technological innovation can engage in more complex and

advanced technological activities and find matching resources

and opportunities in a broader range of technological fields,

thereby exerting a more significant impact on agricultural

carbon emissions.

Fourth, spatial effect analysis shows that agricultural

technology innovation and agricultural technology diversity

exhibit significant spatial correlation and have a negative spatial

spillover effect on agricultural carbon emissions in neighboring

regions. Specifically, the increase in local agricultural technology

innovation scale and agricultural technology diversity not only

reduces local agricultural carbon emissions but also promotes

agricultural technology progress in adjacent regions through

technology diffusion and demonstration effects, thereby reducing

agricultural carbon emissions in neighboring areas.

5.2 Policy implications

First, Strengthen Investment in Agricultural Technology

Innovation. The government should increase support for

agricultural technology innovation, particularly in terms of
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funding and technological investment in the central and

western regions, to narrow the technological gap between

regions. Through policy guidance and financial support,

enterprises and research institutions should be encouraged to

engage in agricultural technology innovation activities, develop

and promote clean production technologies, energy-saving

technologies, and other solutions to reduce agricultural carbon

emission intensity.

Second, Promote Agricultural Technology Diversity.

Encourage the diversified development of agricultural technologies

and avoid over-reliance on single technologies. Through

technology introduction, collaborative research and development,

and talent cultivation, the variety and combination of agricultural

technologies should be enriched to improve their diversity and

adaptability. This will not only help reduce agricultural carbon

emissions but also enhance the stability and sustainability of

agricultural production.

Third, Enhance Policy Coordination and Demonstration

Effects. Leverage the spatial spillover effects of agricultural

technology diversity and innovation to encourage technological

cooperation and exchange between advanced regions and

neighboring areas. Eastern regions can provide technological

exports and share experiences to help central and western regions

improve agricultural production efficiency and emission reduction

capabilities. Meanwhile, establish a collaborative mechanism for

regional agricultural sustainable development, promoting healthy

competition and cooperation among regions through policy

guidance and financial support.

Fourth, policies should be tailored to the specific conditions of

different regions. The eastern region should continue to increase

investment in agricultural technology innovation, encouraging

enterprises and research institutions to develop and apply more

advanced agricultural technologies. This will not only drive local

progress but also provide models and guidance for the central

and western regions. Additionally, the eastern region should

further optimize its agricultural industrial structure, reducing

reliance on traditional high-carbon agricultural practices to

achieve an upgrade in the agricultural industry structure. The

central region should receive more policy support and financial

subsidies to support agricultural technology innovation and the

promotion of low-carbon technologies. This will help bridge the

technology gap and enhance the region’s capacity for sustainable

agricultural development. The western region should focus on

strengthening agricultural infrastructure construction to improve

the hardware conditions for agricultural technology application. At

the same time, through policy guidance and financial support, the

region should actively introduce and apply advanced agricultural

technologies from the eastern region. This will not only enhance

the agricultural technology level in the western region but also

reduce agricultural carbon emissions and promote sustainable

agricultural development.
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