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Digital villages construction and agricultural green development are key factors

in promoting the high-quality development of agriculture in China. This paper

takes the period from 2012 to 2023 as the sample observation period and

employs a fixed-e�ects model to empirically analyze the impact of digital

villages construction on agricultural green productivity in 30 provinces of China,

as well as the underlying mechanisms. The results show that: (1) From 2012

to 2023, the level of agricultural green production e�ciency in China has

been steadily increasing, with technological progress being the core driving

force for this growth; (2) The level of digital villages construction significantly

enhances agricultural green production e�ciency. After a series of robustness

and endogeneity tests, the results remain valid; (3) Mechanism tests reveal that

the level of rural human capital plays a mediating role in this process; (4) The

spatial spillover e�ect test indicates that digital villages construction has a positive

spatial spillover e�ect on agricultural green production e�ciency.
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1 Introduction

In recent years, China’s agricultural development has achieved remarkable results

that have attracted global attention, with continuous growth in agricultural output and

significant improvement in agricultural productivity. However, extensive agricultural

production methods have caused irreversible damage to resources and the environment,

such as the decline of soil fertility, destruction of arable land resources, increased

pressure on ecological environment protection, and a decline in the carrying capacity of

agricultural resources and the environment. The report of the 19th National Congress

of the Communist Party of China clearly proposed to promote green development

and strengthen actions to control agricultural non-point source pollution. Agricultural

production pollution has already had a serious impact on China’s ecological environment.

How to achieve a balance between agricultural production benefits and resource and

environmental protection has become a new topic for the high-quality development of

China’s agriculture. Under the impact of the new round of scientific and technological

revolution and industrial transformation, new-generation information technologies have

spread to rural areas, and a digital wave has swept across rural regions. Since the “Digital

villages Strategy” was proposed in 2018, China’s rural digital infrastructure has gradually

improved, and the level of digitalization in agriculture and rural areas has been significantly
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enhanced. Digital villages construction has become an effective

way to solve the problems of agricultural and rural development.

Relying on the organic combination of the new paradigm of the

digital economy and traditional production organization methods,

it has pushed agriculture toward a more environmentally friendly,

efficient, and sustainable direction, and has had a revolutionary

impact on agricultural green development. Based on this, this

paper aims to explore the impact of digital villages construction

on agricultural green production efficiency and its mechanisms

of action, and to discuss how to fully utilize digital villages

construction to improve agricultural green production efficiency

and the level of agricultural green production.

At present, the potential of traditional agricultural production

factors is exhausted, and environmental resources are increasingly

constrained. Against this backdrop, research on agricultural

green production efficiency in the academic community is

comprehensive and detailed, focusing mainly on the definition of

concepts, measurementmethods, spatial and temporal distribution,

and driving factors. Existing studies have primarily used Data

Envelopment Analysis (DEA) and Stochastic Frontier Analysis

(SFA; Liu et al., 2022; Song and Chen, 2019) to measure agricultural

green production efficiency and depict its spatiotemporal evolution

characteristics. Most temporal studies have been conducted at the

national level (Guo et al., 2020), but some scholars have also focused

on key economic development zones, such as the Yangtze River

Economic Belt (Wang et al., 2020), the Silk Road Economic Belt

(Liu and Xin, 2019), the Yellow River Basin (Lu et al., 2020),

and major grain-producing areas (Ye et al., 2023). On this basis,

scholars have empirically examined the impact of factors such as

environmental regulation (Sun, 2022), fiscal subsidies (Wang et al.,

2022), rural finance (Qin et al., 2024), industrial structure (Lei et al.,

2023), and agricultural production agglomeration (Luo et al., 2023)

on agricultural green production efficiency. As digital technology

booms, concepts like digital village building, digital agriculture, and

rural informatization have emerged in academia, and are analyzed

alongside agricultural green production efficiency to explore the

link between digital tech and green agriculture. Digital agriculture

centers on digital upgrades in agricultural production, aiming to

boost the tech level and efficiency of the production process.

Rural informatization emphasizes the construction of information

infrastructure and the dissemination of information, focusing

on addressing the difficulties in information acquisition and

circulation in rural areas. More comprehensive than the above two,

digital village building is a holistic development strategy. It covers

multiple rural domains including the economy, society, culture,

and governance. In addition to encompassing digital agriculture

and rural informatization, it also involves the deep integration of

digital technology with rural life, public services, and grassroots

governance. Existing research on the relationship be-tween

digital technology and agricultural green production efficiency

is inconclusive. Cai and Han (2024) show that digital village

construction boosts agricultural green total factor productivity

(TFP) by promoting large-scale farm operations and accelerating

agricultural informatization. Tang and Chen (2022), however, find

an “inverted U-shaped” relationship, where digital technology

initially aids but later hinders agricultural green development. Sun

and Zhong (2025) explores the mechanisms and spatial spillover

effects of the rural digital economy on agricultural green TFP, while

Lu et al. (2024) indicate that digital village construction enhances

agricultural green TFP through technological progress. These

discrepancies reveal the need for more in-depth research on how

specific pathways of digital village construction interact with local

resources to impact agricultural green production efficiency. This

paper aims to fill this gap by systematically examining the direct,

indirect, and spatial spillover effects of digital village construction

on agricultural green production efficiency, using a comprehensive

theoretical and empirical approach.

Based on the review of the literature, it can be seen that there

are abundant research achievements on the relationship between

digital technology and agricultural green production efficiency,

which provide rich references for this paper. However, research

focusing on digital villages construction and its relationship

with agricultural green production efficiency still needs a

broader perspective. Moreover, the advancement of agricultural

digitalization and green development cannot be separated from

the support of rural human capital. Yet, few studies have explored

the mechanism through which digital villages construction affects

agricultural green production efficiency by considering rural

human capital as a mediating variable. Building on the existing

research findings, this paper constructs an index system for

measuring digital villages construction and agricultural green

production efficiency, introduces rural human capital as a

mediating variable, and employs the Spatial Durbin Model to

explore the spatial spillover effects.

2 Theoretical analysis and research
hypotheses

2.1 The direct impact of digital villages
construction on agricultural green
production e�ciency

Digital villages construction takes the renewal of rural

infrastructure as its foundation and the development of

digital agriculture as its starting point (Liu and Liu, 2024). It

relies on the digital economy and uses modern information

technology as a carrier to comprehensively advance the

modernization of agriculture and rural areas and the high-

quality development of agriculture (Chunfang et al., 2024).

As the digital infrastructure in rural areas continues to

improve, digital technology empowers rural development to

achieve a “qualitative” leap. It has become an important way

to solve the problems of extensive agricultural production

methods, fragmented rural farmland, and scattered household

operations under the background of the “large country with

small farms” agricultural situation and national conditions. It

also provides new opportunities for the green development

of agriculture.

From the perspective of agricultural technological progress,

the promotion of green agricultural development by digital village

construction can be explained by Technology Diffusion Theory

and New Institutional Economics. Digital village construction,

leveraging big data platforms, aligns with Technology Diffusion

Theory by using digital infra-structure to accelerate the spread

of green agricultural technologies. It facilitates the collection,
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organization, and analysis of agricultural data (Zhao et al.,

2024; Wang and Mei, 2024), and through data-driven R&D of

green agricultural technologies in collaboration with universities

and research institutions, it improves the matching accuracy,

optimizes the allocation of production factors, and enhances the

effectiveness of agricultural chemical application (Balafoutis et al.,

2017), thereby reducing environmental pollution. In terms of

institutional innovation, digital information technology networks

promote collaboration and development in agricultural research.

According to New Institutional Economics, digital-enabled

collaborations are considered institutional innovations that

overcome the fragmentation of traditional research (Ballantyne

et al., 2010). Digital information technology networks enable

collaborative and innovative development in agricultural research,

overcoming the fragmentation of research efforts and accelerating

the rate of technological innovation and transfer. This not

only improves the utilization rate of traditional energy sources

but also optimizes the input structure of agricultural factors,

reducing agricultural carbon emissions (Zhu et al., 2022; Li et al.,

2023). The substitution of traditional agricultural production

technologies with digital ones, a direct manifestation of technology

diffusion, is supported by digital village construction. This

substitution, enabled by digital village construction, achieves the

rational use of agricultural resources and enhances agricultural

green production efficiency (Hajiyeva et al., 2023). Policy-

wise, the Chinese government’s “Digital Village Demonstration

Project” has provided financial incentives and regulatory

support, further promoting the diffusion of digital technologies

in agriculture.

From the perspective of changes in agricultural production

methods, the digital economy, as a new type of productive

force, has changed traditional agricultural production methods

through its integration with agricultural production methods,

promoting the development of agricultural production toward

refinement, automation, and informatization, and providing

new momentum for green agricultural development. Before

agricultural production, the combination of digital technology

and machinery empowers the intelligentization of agricultural

production equipment, helping agricultural producers to more

accurately understand soil, climate, and crop production

conditions, and make more scientific planting decisions, reducing

negative externalities in the agricultural production process

(Zhang et al., 2023). During agricultural production, the input

of factors is closely related to output, and the development of

green agriculture must focus on pollution emissions from the

use of chemicals and the sustainable use of agricultural resources

(Wang, 2017). The integration of digital technology promotes

the precise development of agricultural production models,

assisting producers in accurately analyzing resource conditions in

different areas and suitable conditions for agricultural production,

and determining the optimal ratio of fertilizers and pesticides

(Robinson et al., 2022), providing new ideas for alleviating

agricultural non-point source pollution. Based on this, Hypothesis

1 is proposed.

Hypothesis 1. The indirect impact of digital villages construction

on green agricultural rural productivity.

2.2 The indirect impact of digital villages
construction on agricultural green
production e�ciency

Farmers are the principal agents in agricultural production,

and their capabilities are closely linked to the development

of green agriculture. Digital village construction enhances

rural human capital through multiple pathways, indirectly

improving agricultural green production efficiency. Firstly,

digital village construction leverages internet platforms to

break down information barriers, enabling farmers to access

modern agricultural management knowledge. According to

the Technology Acceptance Model (TAM), the accessibility

of information and the usability of platforms significantly

influence farmers’ willingness to engage with new knowledge.

The establishment of online agricultural knowledge databases,

supported by digital infrastructure, exposes farmers to advanced

cultivation techniques, strengthens environmental awareness,

and increases openness to adopting innovative technologies.

High-skilled agricultural producers are more likely to recognize

the drawbacks of traditional practices. They not only enhance

their understanding of agricultural environmental protection and

sustainable development but also facilitate the adoption of new

technologies to transform conventional production methods (Hu

et al., 2023), such as low-carbon agricultural technologies and

eco-friendly fertilizer applications. Secondly, online education

platforms under digital village construction provide flexible

learning opportunities through remote training and distance

education. Farmers with higher educational attainment typically

possess stronger learning and continuous skill-development

capabilities, enabling them to more proficiently adopt, master,

and apply digital agricultural technologies. This strengthens

the impact of digital village initiatives on green agricultural

productivity. Thirdly, improvements in rural human capital

further drive technological innovation and transformation,

promoting green agricultural efficiency (Lu et al., 2024; Ma

et al., 2023). Aligned with endogenous growth theory, a more

educated rural workforce accelerates technological progress.

For instance, in Sichuan’s tea-growing regions, digitally skilled

farmers have developed innovative processing techniques that

reduced energy consumption in tea drying processes. Educated

farmers are also more likely to experiment with adaptive

cultivation methods tailored to local conditions. Fourthly, the

enhancement of individual capabilities enables farmers to better

interact with advanced agricultural machinery (Li et al., 2024).

Given that most digital technologies transform production

through human-machine interfaces (Yang et al., 2019), the

digital literacy of agricultural practitioners becomes critical.

According to technology diffusion theory, individuals with higher

capabilities are more likely to be early adopters of innovations.

Thus, farmers with advanced education can operate machinery

more precisely, improving agricultural accuracy and reducing

resource waste (Padhiary, 2025). Additionally, improved education

levels equip farmers with data analysis and management skills,

allowing them to optimize production processes using internet-

based decision-support systems. In summary, digital village

Frontiers in Sustainable FoodSystems 03 frontiersin.org

https://doi.org/10.3389/fsufs.2025.1597762
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Lei and Chen 10.3389/fsufs.2025.1597762

construction and rural human capital influence agricultural

green production efficiency through multiple pathways, under-

scoring the importance of investing in rural digital infrastructure

and human capital development. Based on this, Hypothesis 2

is proposed.

Hypothesis 2. Digital villages construction affects

agricultural green production efficiency by enhancing rural

human capital.

2.3 The spatial spillover e�ect of digital
villages construction on agricultural green
production e�ciency

Geographical location endows agricultural resources with

inherent spatial spillover characteristics. Driven by the regional

coordinated development strategy, the cross-regional spillover

effects of agricultural TFP have become more evident (Huang

et al., 2024). Digital village construction, empowered by digital

technology, transcends traditional geographical limits of economic

activities. It significantly impacts not only local green agricultural

productivity but also that of neighboring regions. Based on the

knowledge spillover theory, this spatial influence is mainly shown

through two channels: inter-regional technology diffusion and

policy learning. In terms of inter-regional technology diffusion,

regional economic integration speeds up the spread of digital

technology, strengthening the spatial agglomeration of digital

village construction. The proximity of economic activities is

conducive to the dissemination of both explicit knowledge,

such as digital agricultural technology standards, and implicit

knowledge, like smart agriculture practical experience. In addition,

agricultural technological innovation is transferred across regions

through university-enterprise and university-local cooperation

models, with universities serving as a bridge. This enables

agricultural R&D results to benefit surrounding areas and

promotes agricultural production efficiency there via agricultural

technological progress. Policy learning, driven by the shareability

of the green production concept, is another key channel (Zou

et al., 2024). When a region achieves remarkable results in

digital village construction and green agricultural development,

it sets a benchmark for neighboring areas. Local governments

often study and replicate successful policy models, such as

subsidy mechanisms for digital infrastructure construction or

regulatory policies for green production. The policy learning

process, guided by the principle of knowledge spillover, optimizes

resource allocation between regions and accelerates the spread of

green production concepts. Ultimately, it promotes the overall

improvement of agricultural green productivity. In summary,

agricultural green development is closely linked not only to local

rural construction levels but also to digital village construction

in neighboring areas. These spillover effects, rooted in knowledge

spillover mechanisms, highlight the importance of regional

cooperation for promoting agricultural green development. Based

on this, Hypothesis 3 is proposed. Based on this, Hypothesis 3

is proposed.

Hypothesis 3. Digital villages construction has a positive spatial

spillover effect on agricultural green production efficiency.

3 Research method and data resource

3.1 Model construction

3.1.1 Benchmark regression model
This paper constructs an individual fixed effects panel model to

examine the relationship between digital villages construction and

agricultural green production efficiency. The baseline regression

model is shown as follows:

AGPit = γ0 + γ1DIVit + γ2Controlsit + µi + εit

In this context, AGP represents the independent variable, which

is agricultural green production efficiency, DIV represents the

dependent variable, which is digital villages construction, Controls

represent a series of control variables, and εit represents the random

disturbance term.

3.1.2 Mediating e�ect model
This paper introduces rural human capital as a mediating

variable to explore the mechanism of action between the two. Based

on the baseline regression model, the following regression model

is constructed:

AGPit = β0 + β1DIVit + β2Controlsit + µi + εit

Rhcit = α0 + α1DIVit + α2Controlsit + µi + εit

AGPit = θ0 + θ1DIVit + θ2Rhcit + θ3Controlsit + µi + εit

In this context, Rhc represents the moderating variable of rural

human capital, which serves as a mediating variable. If both β1

and α2 are significant, then the construction of digital villages

will impact agricultural green production efficiency through rural

human capital.

3.1.3 Spatial Durbin model
This paper establishes the following spatial Durbin econometric

model to explore the spatial spillover effects between digital villages

construction and agricultural green production efficiency:

AGPit = ρ

n
∑

j = 1

WijAGPit + γ0 + γ1DIVit + γ2

n
∑

j = 1

WijDIVit

+ γmControlsit + γn

n
∑

j = 1

WijControlsit + µi + εit

In this context, ρ is the spatial autoregressive coefficient, γ2

represents the spatial efficiency of digital villages construction on

agricultural green production efficiency, and Wij is the spatial

weight matrix.

3.2 Variable description

3.2.1 Core explanatory variable
The explanatory variable in this paper is the construction

of digital villages. The entropy method is used to measure it
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TABLE 1 Evaluation index system for the development level of digital villages in China.

Primary index Secondary index Tertiary index Weight

Rural digital construction Rural Internet penetration rate Number of broadband users in rural areas (ten thousand households) 0.0581

Rural mobile phone penetration rate Number of mobile phones per hundred rural households at the end of

the year (units/100 households)

0.0081

Rural computer penetration rate Average number of computers per hundred rural households at the end

of the year (units/100 households)

0.0214

Mobile base station density Density of mobile base stations 0.0037

Rural logistics development Length of rural delivery routes (kilometers) 0.0266

Mobile communication network deployment Length of optical cable lines (ten thousand kilometers) 0.0378

Rural digital agriculture Total power of agricultural machinery Total power of various agricultural machinery (ten thousand kilowatts) 0.0423

Digital agriculture base Number of Taobao villages (count) 0.2219

Rural meteorological observation services Number of automated agricultural meteorological observation stations

(count)

0.0174

Degree of electrification in agricultural

production

Value added of agriculture, forestry, animal husbandry, and fishery/total

rural electricity consumption (billion yuan/kilowatt hour)

0.0321

Rural retail level Proportion of retail sales of consumer goods in towns and villages to

total retail sales of consumer goods in society (%)

0.0100

Online retail level Proportion of online retail sales to total social consumer goods (%) 0.0592

Rural digital life Per capita electricity consumption of rural

residents

Total rural electricity consumption/rural population (billion kilowatt

hours/ten thousand people)

0.1209

Digital service consumption level Per capita transportation and communication consumption expenditure

of rural residents (yuan/person)

0.0005

Rural network cultural development Proportion of cable radio and television users in rural areas to total

households (%)

0.0037

Rural online payment level Digital inclusive finance index 0.0141

Rural healthcare development Number of village clinics (count) 0.0427

Rural cultural base Total number of cultural stations in towns and villages (count) 0.0341

Rural digital development

environment

Agricultural technology innovation Number of agricultural science and technology achievements produced

(count)

0.0212

Agricultural research funding Investment in agricultural science and technology activities (billion

yuan)

0.0522

Rural financial institutions Number of rural financial institution outlets (count) 0.0343

Digital agriculture enterprises Stock of digital agriculture industry enterprises (count) 0.0629

Information technology investment Fixed asset investment in transportation, warehousing, and postal

industries (billion yuan)

0.0355

Investment in digital construction Fixed asset investment in information transmission, software, and

information technology services (billion yuan)

0.0395

by establishing an indicator system based on four dimensions:

digital construction of villages, digital agriculture in villages,

digital life in villages, and the digital development environment of

villages. In conjunction with the “Guidelines for the Construction

of Digital Village Standard System” and the availability and

comprehensiveness of data, the following evaluation indicator

system is constructed (Table 1).

3.2.2 Explained variable
The explained variable is agricultural green production

efficiency. To avoid biases of traditional DEA models, a

non-desired super-efficiency SBM model is adopted. The

SBM model, based on slack variables, accurately assesses

efficiency as it considers both desirable and non-desirable

outputs in agricultural production, contrary to traditional

models. The GML index measures TFP change over time.

It excels by accounting for production frontier shifts,

capturing how technology, efficiency, and scale effects

impact the overall efficiency change. Combining SBM and

GML allows for precise current efficiency measurement

and tracking of its dynamic evolution, aptly handling

agricultural green production’s complexity. Based on

relevant literature (Yu et al., 2022), the model is constructed
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TABLE 2 Input-output indicator explanation.

Indicator Variable Description

Input

indicators

Land input Total sown area of crops (thousand

hectares)

Labor input Number of employees in the primary

industry (ten thousand)

Machinery input Total power of agricultural machinery

(ten thousand kilowatts)

Irrigation input Effective irrigated area (thousand

hectares)

Fertilizer input Net application of agricultural fertilizers

(ten thousand tons)

Expected

output

Total

agricultural

output value

Total output value of agriculture,

forestry, animal husbandry, and fishery

(hundred million yuan)

Crop yield Yield of major crops (ten thousand tons)

Non-expected

output

Agricultural

carbon

emissions

Calculated based on Han et al. (2018)

as follows:

ρ = min
λ,x,yg ,ybk

∑m
i=1

Xt
Xi0

1
s1+s2

(

∑s1
j=1

yg

y
g
ro
+

∑s1
j=1

ybk
ybko

)

s.t.































X ≥
∑L

j=1 λjXj

Yg ≤
∑L

j=1 λjY
g
j

Yb ≥
∑L

j=1 λjY
b
j

X ≥ x0, Yb ≤ y
g
0Y

b ≥ yb0
Yg ≥ 0, Yb ≥ 0, L ≤ eλ ≤ µ, λj ≥ 0

In this context, ρ represents the efficiency value of the decision-

making unit, where a value greater than or equal to 1 indicates that

the decision-making unit is efficient. To further reflect the dynamic

changes in production efficiency, the GML index is used to evaluate

the dynamic changes in agricultural green production efficiency,

expressed as follows:

GMLt,t + 1
(

xt,yt,bt,xt + 1,yt + 1,bt + 1
)

=
1+ dt

(

xt,yt,bt
)

1+ dt + 1

(

xt + 1,yt + 1,bt + 1
)

= TCt,t + 1
×ECt,t + 1

In the equation, x represents input, y represents expected

output, b represents non-expected output, and t indicates the time

period. GML represents the index of changes in agricultural green

production efficiency. If it is >1, it indicates an improvement

in agricultural green production efficiency from time t to t+1;

otherwise, it indicates a decline. Referring to relevant literature

(Wang et al., 2023), the GML index is further decomposed into

the technical efficiency (EC) index and the technical progress (TC)

index. When TC > 1, it indicates technological progress; when

EC > 1, it indicates frontier technological progress; otherwise, it

indicates the opposite (Table 2).

3.2.3 Mediating variable
The construction of digital villages areas promotes the

enhancement of rural human capital by establishing digital

communication platforms. Educated agricultural laborers are more

likely to adopt green agricultural technologies and canmore flexibly

apply digital technologies in agricultural production activities.

Therefore, rural human capital (Rhc) is used as a mediating

variable, referencing relevant literature (Han et al., 2018; Ye and

Ma, 2020), and is represented by the average years of education

of rural farmers. The specific calculation formula is as follows:

Average years of education of rural farmers = (Number of rural

illiterates ∗ 1 + Number of rural primary school graduates ∗ 6 +

Number of rural junior high school graduates ∗ 9 + Number of

rural high school and vocational school graduates ∗ 12 + Number

of rural college and above graduates ∗ 16)/Total population aged

over 6.

3.2.4 Control variables
To avoid omitted variable bias, this paper selects the

following control variables based on existing research findings.

These mainly include: ① Agricultural planting structure (Far),

represented by the proportion of grain sown area to the total

sown area of crops; ② Area of crops affected by disasters

(Dis), represented by the proportion of disaster-affected crop

area to the total sown area of crops; ③ Number of agricultural

science and technology personnel (Ars), represented by the

product of the proportion of total agricultural, forestry, animal

husbandry, and fishery output value to regional GDP and the

number of R&D personnel in large-scale industrial enterprises;

④ Level of industrial development (Ind), represented by the

proportion of industrial added value to regional GDP; ⑤

Agricultural structure (Stf), represented by the proportion of

total agricultural output value to the total output value of

agriculture, forestry, animal husbandry, and fishery; ⑥ Financial

support for agriculture (Bud), represented by the proportion

of local fiscal expenditure on agricultural, forestry, and water

affairs to local fiscal general budget expenditure; ⑦ Environmental

protection intensity (Epi), indicated by the proportion of local

fiscal environmental protection expenditure in local fiscal general

budget expenditure.

3.3 Data sources and descriptive statistics
of variables

This paper selects panel data from 30 provinces in China

(excluding Hong Kong, Macau, and Taiwan) from 2012 to 2023

as the research sample. The relevant data is sourced from various

years’ “China Statistical Yearbook,” “China Rural Statistical Year-

book,” “China Urban and Rural Statistical Yearbook,” “Peking

University Digital Inclusive Finance Index,” “China Taobao Village

Research Report,” National Bureau of Statistics, CNKI database,

and Alibaba Research Institute, among others. Some missing

data is supplemented using linear interpolation, as shown in

Table 3.
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TABLE 3 Descriptive statistics of variables.

Variables Sample size Average value Standard deviation Minimum value Maximum value

Agricultural green production efficiency 360 0.653 0.200 0.377 1.054

Digital villages development level 360 0.188 0.106 0.0340 0.578

Agricultural planting structure 360 0.656 0.150 0.355 0.971

Disaster-affected area of crops 360 0.127 0.108 0.001 0.696

Number of agricultural science and

technology personnel

360 1.190 1.252 0.017 6.242

Level of industrialization 360 0.326 0.077 0.100 0.542

Agricultural structure 360 0.530 0.0840 0.363 0.734

Financial support for agriculture 360 0.114 0.034 0.039 0.204

Environmental protection intensity 360 0.029 0.010 0.010 0.068

Rural human capital 360 7.853 0.611 5.848 9.955

4 Results and analysis

4.1 The spatiotemporal evolution
characteristics of agricultural green
production e�ciency

4.1.1 Static analysis of agricultural green
production e�ciency

Based on the development of agricultural green production

efficiency in various provinces and the natural breakpoint method

of ArcGIS, this paper classifies the agricultural green production

efficiency and draws spatial distribution maps with 2012, 2016,

2019, and 2023 as nodes, as shown in Figure 1. Overall, the

agricultural green production efficiency in China shows a trend

of increasing year by year. As of 2023, the agricultural green

production efficiency in half of the regions is at a high level,

indicating that in recent years, the state has attached great

importance to the protection of agricultural resources and the

environment, and the policy effects are obvious. Among them,

although the growth rate in Northeast China has always led

the country, it has the lowest growth rate during the sample

observation period. The possible reason is that Northeast China

is an important major grain-producing area and demonstration

zone in China, with unique natural resource endowments and

an industrial economic foundation. Therefore, it has a good

foundation for agricultural green development. However, as a

major industrial city in China, it is in a critical period of

transformation, resulting in insufficient driving force for its

subsequent development. The western and eastern regions are

developing rapidly, indicating that under the impetus of the Belt

and Road Initiative, the agricultural resource advantages of the

western region have been brought into play. With the deepening

of Sino-foreign cooperation and exchanges, the region has formed a

characteristic industry with strongmarket competitiveness through

the production of characteristic agricultural products. Relying on

the strong inclination of agricultural policies, the eastern region

takes innovation as the lead in the pilot experimental area. With

the superposition of multiple advantages, the agricultural green

production efficiency has been significantly improved. The growth

trend in the central region is slightly lower than the national average

annual growth rate. The possible reason is that the crop planting

in this region is mainly rice planting. Under the influence of

frequent natural disasters and the acceleration of industrialization

in recent years, the region has a high resource input and serious

environmental damage, resulting in its failure to keep up with the

national average development level (Table 4).

4.1.2 Dynamic analysis of agricultural green
production e�ciency

To highlight the trend of changes in agricultural green

production efficiency over time, this paper further conducts a

dynamic analysis of the efficiency values using the GML index. The

calculation results are shown in Table 5. Overall, the annual changes

in the GML index of agricultural green production efficiency

fluctuate significantly, with an average annual growth rate of 5.8%.

During the sample observation period, the GML index is >1,

reaching a maximum value of 1.0976 in 2020–2021. This reflects

that the concept of green development has taken root in people’s

minds and relevant measures have been highly effective, such as the

promotion of organic agriculture, the adoption of green planting

techniques, and strengthened supervision of agricultural chemical

applications. The average annual growth rate of the EC index

(technical efficiency) is 0.92%, fluctuating around 1.00 during the

observation period. This indicates that the agricultural technical

efficiency in China is not very stable and there is still much room

for improvement. The TC index (technology progress) grew at an

average annual rate of 5.26%, indicating an overall upward trend in

agricultural technology during this paper period. After a gradual

decline from 2012 to 2018, the TC index rebounded to a peak

of 1.0828 in 2018–2019, likely due to increased agricultural R&D

investment and digital technology adoption in major producing

regions. However, its growth slowed markedly in 2019–2020,

with a slight year-on-year decrease. This was not just because

of the pandemic, but also due to region-specific disruptions and

policy adjustments. For example, provinces highly dependent on

migrant agricultural technicians faced significant slowdowns as

lockdowns restricted labor mobility, hindering on-site technical
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FIGURE 1

Visual representation of agricultural green production e�ciency in various provinces and cities of China for specific years.

guidance and innovation diffusion. In contrast, regions with well-

developed digital extension systems maintained relatively stable

technological progress by adopting online training and remote

monitoring. It is easy to see that during the sample observation

period, the improvement of China’s agricultural green production

efficiency mainly benefited from technological progress, reflecting

that China’s significant investment in promoting the research and

development of agricultural green production technologies, as well

as measures to enhance the transformation and application of

agricultural scientific research achievements, have been effective.

4.2 Benchmark regression analysis

Based on the robustness of the benchmark regression results

and to examine whether gradually adding control variables under

different settings would lead to differences in the results, this

paper uses the step-by-step regression estimation method to

conduct regression analysis on the full—sample data. The results

are shown in Table 6. As can be seen from Model (1), without

adding any control variables, the regression coefficient of digital

villages construction is significant at the 1% level. The same is

true after gradually adding control variables, which further proves

that whether control variables are added or not, digital villages

construction helps to improve agricultural green production

efficiency, and Hypothesis 1 is preliminarily tested.

The degree of agricultural disaster is significantly negative

at the 1% level. The possible reason is that disasters damage

the agricultural production environment, resulting in lower-

than-expected immediate agricultural output and affecting

long-term agricultural production activities. A series of crop

and economic losses lead farmers to adopt non-environmental-

friendly production behaviors to increase crop yields, such as

increasing the use of chemical fertilizers and pesticides, thus

having a negative impact on agricultural green production

efficiency. The agricultural planting structure has a significant

negative impact on agricultural green production efficiency. The

possible reason is that food crops generate a large amount of

environmental non-point source pollution and agricultural carbon

emissions during the production process. At the same time,

the scale of agricultural planting is insufficient, and agricultural

production materials cannot be effectively allocated and utilized,
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TABLE 4 Agricultural green production e�ciency of agriculture in China from 2012 to 2023.

Year Eastern Central Western Northeastern Nationwide

2012 0.5177 0.4475 0.4448 0.8290 0.5081

2013 0.5453 0.4649 0.4711 0.9229 0.5398

2014 0.5454 0.4783 0.4815 0.8461 0.5386

2015 0.5559 0.4891 0.4910 0.8838 0.5515

2016 0.5757 0.5117 0.5208 0.8938 0.5746

2017 0.6009 0.5323 0.5320 0.9004 0.5919

2018 0.6813 0.5536 0.5647 0.8054 0.6254

2019 0.7228 0.5843 0.6089 0.8975 0.6708

2020 0.7546 0.6637 0.6645 0.8964 0.7176

2021 0.8341 0.6957 0.7361 0.9820 0.7853

2022 0.9132 0.7260 0.7846 0.9804 0.8353

2023 0.9884 0.7323 0.8775 1.0309 0.9008

TABLE 5 The GML index of green agricultural production e�ciency in

China from 2012 to 2023 and its decomposition.

Year GML TC EC

2012–2013 1.0621 1.0455 1.0258

2013–2014 1.0095 1.0318 0.9892

2014–2015 1.0263 1.0234 1.0036

2015–2016 1.0489 1.0378 1.0198

2016–2017 1.0318 1.0323 0.9996

2017–2018 1.0640 1.0373 1.0318

2018–2019 1.0756 1.0828 0.9947

2019–2020 1.0770 1.0601 1.0160

2020–2021 1.0976 1.0760 1.0239

2021–2022 1.0661 1.0785 0.9913

2022–2023 1.0796 1.0727 1.0060

Overall average 1.0580 1.0526 1.0092

thus reducing agricultural green production efficiency. The

agricultural structure is always significantly positive at the 1% level.

According to the “structural bonus hypothesis,” the adjustment

of the agricultural structure directly affects agricultural green

production efficiency. With the improvement of agricultural

technology levels, agriculture will shift from low-efficiency

sectors to high-efficiency sectors, thereby achieving the goal of

improving agricultural green production efficiency. The number

of agricultural science and technology practitioners also has a

significantly positive impact on agricultural green production

efficiency, indicating that agricultural science and technology

personnel effectively drive the improvement of agricultural green

production efficiency by promoting the research and innovation of

agricultural green technologies, facilitating the popularization and

application guidance of production technologies, and spreading

emerging scientific knowledge and technical experience. The

impacts of the degree of industrialization and the intensity of

financial support for agriculture on agricultural green production

efficiency are not significant. This may be because industrialization

can promote the development of agricultural mechanization

to a certain extent, but since its development resources are

mainly concentrated in industrial industries, resource allocation,

and policy support, and not tilted toward the agricultural

field, the impact is not significant. At present, financial funds

for supporting agriculture are mainly used for subsidies for

agricultural production materials. Although production conditions

have improved to some extent, due to the relatively small

investment in agricultural technology and green agriculture,

the impact is also not significant. The insignificant negative

coefficient of environmental protection investment may stem

from structural imbalances in its allocation within the agricultural

sector. This results in inefficient fund utilization, as some

regions focus excessive funding on short-term visible hardware

like sewage treatment plants and waste transfer stations, while

underinvesting in R&D, application of green agricultural tech, and

farmer environmental education. Consequently, environmental

protection funds fail to directly boost agricultural green

production efficiency.

4.3 Robustness and endogeneity tests

4.3.1 One percentage two-tailed trimming
To avoid biases in the regression results caused by extreme

outliers in the original model, this paper conducts 1% two-tailed

trimming on all variables and rebuilds the regression model. The

results are shown in column (1) of Table 7, which are consistent

with the previous regression results.

4.3.2 Adjust the research area
Considering that municipalities directly under the central

government have a relatively high development level, a relatively
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TABLE 6 Baseline regression results.

(1) (2) (3) (4) (5) (6) (7) (8)

Variables AGP AGP AGP AGP AGP AGP AGP AGP

DIV 1.976∗∗∗ 1.882∗∗∗ 1.742∗∗∗ 1.564∗∗∗ 1.591∗∗∗ 1.515∗∗∗ 1.478∗∗∗ 1.441∗∗∗

(21.02) (19.95) (17.40) (12.36) (10.31) (10.36) (9.55) (9.18)

Far −0.940∗∗∗ −0.844∗∗∗ −0.806∗∗∗ −0.813∗∗∗ −0.633∗∗∗ −0.668∗∗∗ −0.684∗∗∗

(−4.23) (−3.84) (−3.68) (−3.69) (−3.01) (−3.10) (−3.17)

Dis −0.228∗∗∗ −0.239∗∗∗ −0.238∗∗∗ −0.252∗∗∗ −0.252∗∗∗ −0.250∗∗∗

(−3.68) (−3.87) (−3.85) (−4.30) (−4.30) (−4.28)

Ars 0.0405∗∗ 0.0395∗∗ 0.0463∗∗∗ 0.0456∗∗∗ 0.0432∗∗

(2.28) (2.18) (2.71) (2.66) (2.51)

Ind 0.0561 0.0889 0.0406 −0.0223

(0.31) (0.53) (0.22) (−0.12)

Stf 1.377∗∗∗ 1.341∗∗∗ 1.296∗∗∗

(6.37) (6.04) (5.78)

Bud −0.347 −0.441

(−0.72) (−0.91)

Epi −1.110

(−1.35)

_cons 0.600∗∗∗ 1.154∗∗∗ 1.144∗∗∗ 1.145∗∗∗ 1.137∗∗∗ 0.456∗∗∗ 0.527∗∗∗ 0.623∗∗∗

(19.26) (8.58) (8.67) (8.73) (8.52) (2.76) (2.73) (3.04)

Ind FE Yes Yes Yes Yes Yes Yes Yes Yes

N 360 360 360 360 360 360 360 360

Adj. R-sq 0.758 0.769 0.778 0.781 0.780 0.804 0.804 0.804

F 38.40 39.64 40.29 39.74 38.46 43.08 41.83 40.86

∗ , ∗∗ , ∗∗∗ Indicate significance at the 10%, 5%, and 1% levels, respectively.

complete digital village construction policy, and significantly better

agricultural development and resource endowments than other

provinces, which may lead to differences in the regression results.

Therefore, this paper excludes the data of four cities, namely

Beijing, Tianjin, Shanghai, and Chongqing, and rebuilds the

regression model. As can be seen from column (2) of Table 7, the

results are consistent with the previous regression results.

4.3.3 Replacing the robust standard error
The standard errors used in the previous sections are common

ones. Considering that the disturbance terms of the same province

in different years often show clustering phenomena, referring

to relevant literature (Du et al., 2023), this paper chooses the

province—level individual clustered robust standard error for re-

estimation. As can be seen from column (3) of Table 7, the results

are consistent with the previous regression results.

4.3.4 System generalized method of moments
regression

To address the lagged effect of digital village construction

on agricultural green production efficiency and potential reverse

causality, this paper employs a dynamic panel model with system

GMM. The core explanatory variable’s lagged term is introduced,

and the dynamic lags of other variables are controlled for to tackle

endogeneity. In column (3) of Table 7, the AR(1) statistic is below

0.1, and the AR(2) statistic is above 0.1. The Hansen J-test p-value

also exceeds 0.1, indicating no over-identification. This confirms

the estimation’s validity. The regression results align with prior

findings, reinforcing the benchmark regression results’ reliability.

4.3.5 Instrumental variable method
To address potential endogeneity from omitted variables, we

conducted a re-test using an instrumental variable: the interaction

between the 1984 telephone-per-100-people count and the prior-

year national information-technology-service revenue. This choice

was guided by two factors. First, fixed telephones reflect past

telecom infrastructure development, influencing both subsequent

internet technology adoption and digital village construction

levels due to usage inertia. Second, past fixed telephone counts

don’t significantly directly impact current agricultural green

production efficiency, meeting the relevance and exogeneity

criteria for instrumental variables. Using a two-stage least squares

(2SLS) regression, the results (see Column 5 in Table 7) remain
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TABLE 7 Results of robustness and endogeneity tests.

(1) (2) (3) (4) (5)

Variables 1% two-tailed
trimming

Adjusting the
research area

Replacing the
robust standard

error

System generalized
method of moments

regression

Instrumental
variable method

DIV 1.441∗∗∗ 1.561∗∗∗ 1.441∗∗∗ 0.0809∗ 5.401∗∗∗

(9.18) (10.30) (4.69) (1.81) (6.19)

L. AGP 1.072∗∗∗

(26.98)

Controls Yes Yes Yes Yes Yes

N 360 312 360 330 360

AR(1) 0.015

AR(2) 0.978

∗ , ∗∗ , ∗∗∗ Indicate significance at the 10%, 5%, and 1% levels, respectively.

consistent with our baseline findings. This robustness check

confirms that our core conclusions are not driven by unobserved

confounding factors.

4.4 Heterogeneity analysis

4.4.1 Regional heterogeneity
China has a vast territory, and the resource endowments of

different regions vary. Therefore, the impact of digital villages

construction on the development of agricultural green production

efficiency varies among provinces. Thus, this paper divides the

30 provinces and municipalities in China into four regions:

the East, the Central, the West, and the Northeast, based on

economic and geographical distances, to further examine the

impact of digital villages construction in each region on agricultural

green production efficiency. The regression results are shown

in Table 8. According to the regression results, the impact of

digital villages construction on the agricultural green production

efficiency in the four regions is significantly positive, indicating

that digital villages construction is inclusive. The Northeast

leverages its rich agricultural resources and suitable production

conditions, marked by high mechanization and contiguous

farmland, to create an ideal setting for digital tech adoption.

This enables digital tools to optimize resource use efficiently and

boosts agricultural green production efficiency, making digital

village building highly impactful. The West, despite its vast

land and sparse population, uses its untapped land resources

and policy investments from the Belt and Road Initiative to

enhance digital connectivity in remote areas and lower data

acquisition costs for smart agriculture. The “East Data, West

Calculation” project further strengthens digital infrastructure

investment and reduces data costs. Its low population density

suits large-scale, data-driven farming, where technologies like

satellite monitoring and automated irrigation can maximize re-

turns on digital infrastructure, offering ample room for efficiency

gains. As China’s core grain-producing region, the Center has

concentrated farmland and a history of policy-backed agricultural

modernization. The “Rural Revitalization” and “Central Rise”

TABLE 8 Results of regional heterogeneity test.

(1) (2) (3) (4)

Variables Eastern Central Western Northeastern

DIV 0.583∗∗ 2.277∗∗∗ 2.751∗∗∗ 2.521∗

(2.11) (6.51) (6.34) (1.95)

_cons 0.683∗ 1.058∗ −0.0682 3.858∗

(1.89) (1.79) (−0.21) (2.02)

N 120 72 132 36

Controls Yes Yes Yes Yes

Adj. R-sq 0.790 0.833 0.800 0.729

F 27.36 28.23 30.08 10.41

∗ , ∗∗ , ∗∗∗ Indicate significance at the 10%, 5%, and 1% levels, respectively.

strategies have sped up the construction of high-standard farmland

with integrated water conservancy and precision irrigation

systems. These systems seamlessly integrate with digital crop

monitoring and pest control tools, driving significant efficiency

improvements through synergy between traditional agricultural

intensity and new digital inputs. The East, with its developed

economy and mature digital ecosystem, already enjoys high

agricultural tech penetration. While its strong infrastructure

supports digital village initiatives, the marginal effect of extra

digital investment is less obvious compared to regions with

lower initial tech adoption, reflecting a saturation effect in green

production technologies.

4.4.2 Temporal heterogeneity
Specifically, referring to the differences in digital villages

construction in the time dimension, this paper takes the year

2018, when the “No.1 Central Document” first proposed the

“Implementation of the Digital Villages Strategy,” as a time

node and divides the sample into two time periods for analysis.

The results are shown in Table 9. The results indicate that the

driving effect of digital villages construction on agricultural green
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TABLE 9 Results of temporal heterogeneity test.

(1) (2)

Variables Year ≥ 2018 Year < 2018

DIV 1.972∗∗∗ 0.600∗∗∗

(6.12) (2.68)

_cons 0.493 0.346

(1.45) (1.49)

N 180 180

Controls Yes Yes

Adj. R-sq 0.831 0.914

F 24.73 52.39

∗ , ∗∗ , ∗∗∗ Indicate significance at the 10%, 5%, and 1% levels, respectively.

TABLE 10 Results of mediating e�ect test.

(1) (2)

Variables Rhc AGP

DIV 0.914∗∗∗ 1.314∗∗∗

(3.00) (8.57)

Rhc 0.139∗∗∗

(5.02)

_cons 10.45∗∗∗ −0.828∗∗

(26.20) (−2.37)

Controls Yes Yes

Ind FE Yes Yes

N 360 360

Adj. R-sq 0.921 0.818

F 114.4 43.44

∗ , ∗∗ , ∗∗∗ Indicate significance at the 10%, 5%, and 1% levels, respectively.

production efficiency before 2018 was significantly less than that in

2018 and later. The reason for this change may be that after 2018,

the key points of implementing the “Digital Villages Strategy” were

further implemented. Subsequently, policy documents such as the

“Outline of the Digital Villages Development Strategy,” the “Digital

Agriculture and Rural Development Plan (2019–2025),” and the

“Notice on Carrying out the National Digital villages Pilot Work”

were successively introduced. The digital dividends released by the

digital economy were rapidly expanded in rural areas. Therefore,

digital villages construction has a more significant promoting effect

on agricultural green production efficiency.

5 Analysis of mechanism of action and
spatial spillover e�ects

5.1 Mediating e�ect test

As can be seen from the mediating effect test results in

Table 10, there is a significant positive impact between digital

villages and rural human capital, and the coefficient of rural human

capital and the core explanatory variable is significantly positive,

indicating that rural human capital plays a partial mediating role

in the influencing process. Thus, Hypothesis 2 is preliminarily

verified. Further explanation is that digital villages can not

only enhance the digital literacy of rural residents and attract

talents to return to their hometowns (Tim et al., 2021), but also

drive the investment in emerging industries through agricultural

digitization, attracting human capital to flow to rural areas, thereby

jointly improving the level of rural human capital. At the same

time, the digital platform provides agricultural producers with a

platform for information acquisition and communication, breaking

the information “island” (Jiang et al., 2022), enabling farmers

to acquire a higher level of knowledge, implanting the concept

of agricultural green development, and thus promoting farmers

to have a higher learning ability and adaptability. Agricultural

producers can make full use of the digital technology tools

brought by digital village construction, be more proficient in

dealing with emergencies in agricultural production, achieve

rational and efficient use of resources, and promote digital village

construction to better empower the improvement of agricultural

green production efficiency.

To further test the robustness of the mediating effect, we used

the Bootstrap method with 1,000 random samples and a 95%

confidence interval. As Table 11 shows, the confidence interval

doesn’t include 0, indicating a significant indirect mediating effect

of rural human capital in digital village construction. Comparing

Tables 10, 11, both the three-step method and the Bootstrap

method confirm the validity of our mediating effect model, so

Hypothesis 2 is robust.

5.2 Spatial spillover e�ect test

5.2.1 Spatial autocorrelation test
Before empirically testing the spatial spillover effect, it is

necessary to ensure that the explained variable (agricultural green

production efficiency) has spatial autocorrelation. In this paper,

an inverse distance spatial weight matrix is set, and a global

Moran’s I test is conducted on the agricultural green production

efficiency of 30 provinces and municipalities in China from 2012

to 2023. The results are shown in Table 12. From the results,

it can be seen that the spatial distribution of provincial-level

agricultural green production efficiency in China is not randomly

generated, but has certain spatial agglomeration characteristics.

Therefore, spatial econometric methods can be selected for

further analysis.

5.2.2 Selection of spatial econometric model
Further, the LM and Wald tests are used to select the spatial

econometric model. As can be seen from Table 13, in the LM test,

all four tests reject the null hypothesis, indicating that the selected

samples in this paper have both spatial lag and spatial error effects,

and it is initially judged that the spatial Durbin model should be

adopted. In the Wald test, the statistic is still significant, the null

hypothesis is rejected, and the degradation of the spatial Durbin

model is rejected. Therefore, considering the test results and the
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TABLE 11 Bootstrap test results.

E�ect type Coe�cient Standard error Confidence interval (P) Confidence interval (BC)

Indirect 0.0390 0.0184 [0.0079, 0.8052] [0.0073, 0.8021]

Direct 0.1389 0.0468 [0.0629, 0.2393] [0.0626, 0.2389]

The confidence interval (P) is estimated via the non-parametric percentile Bootstrapmethod, while the confidence interval (BC) is estimated using the bias—corrected non-parametric percentile

Bootstrap method.

TABLE 12 Results of Moran’s I test for agricultural green production

e�ciency from 2012 to 2023.

Year Moran’s I P-value Z-value

2012 0.071 0.002 3.131

2013 0.103 0.000 3.971

2014 0.080 0.001 3.346

2015 0.110 0.000 4.135

2016 0.113 0.000 4.192

2017 0.114 0.000 4.216

2018 0.024 0.096 1.663

2019 0.044 0.029 2.176

2020 0.022 0.124 1.540

2021 0.034 0.061 1.874

2022 0.010 0.230 1.200

2023 −0.000 0.351 0.933

TABLE 13 Test results of spatial econometric model.

Test Indicator P-value Statistical
value

LM_test LM_Error test 0.000 171.867

LM_Robust_Error test 0.000 17.925

LM_Lag test 0.000 212.740

LM_ Robust_Lag test 0.000 58.797

Wald_test Comparison between SDM and

SAR

0.000 62.26

Comparison between SDM and

SEM

0.000 62.72

LR_test Comparison between SDM and

SAR

0.000 57.33

Comparison between SDM and

SEM

0.000 57.23

goodness of fit of the model, this paper adopts the individual fixed

spatial Durbin model.

5.2.3 Basic regression results
The adjacency matrix was further introduced to ensure the

robustness of the results. The results are shown in Table 14. Under

the two spatial matrices, the coefficients of the core explanatory

variables are significantly positive at the 1% level, indicating that

the construction of digital villages has a significant promoting effect

on agricultural green production efficiency. At the same time, the

spatial autocorrelation coefficient rho value is always significantly

TABLE 14 Regression results of the spatial Durbin model.

AGP

Variables Inverse geographical
distance matrix

Adjacency matrix

DIV 0.644∗∗∗ 0.748∗∗∗

(4.65) (5.75)

Controls Yes Yes

W× DIV 0.676 0.391∗

(1.12) (1.79)

W× Controls Yes Yes

Spatial rho 0.363∗∗∗ 0.465∗∗∗

(2.94) (8.47)

Ind FE Yes Yes

N 360 360

∗ , ∗∗ , ∗∗∗ Indicate significance at the 10%, 5%, and 1% levels, respectively.

positive, indicating that agricultural green production efficiency has

a spatial spillover effect.

Furthermore, the partial differential method was adopted

to decompose the spatial effects into direct, indirect, and total

effects. The results are presented in Table 15. The level of digital

village construction is significantly positive under both matrices,

indicating that the level of digital village construction in a province

not only has a positive promoting effect on the level of agricultural

green production efficiency in the province itself, but also promotes

the growth of agricultural green production efficiency in other

regions. Hypothesis 3 is verified. In terms of the direct effect,

digital village building boosts local agricultural green production

efficiency by driving agricultural progress, optimizing resource

allocation, and cutting environmental impact. For instance, in pilot

villages in Shandong, smart irrigation systems reduced water use

by 25%. Regarding the indirect effect, digital village building has

a significantly positive impact on agricultural green production,

indicating that local digital village building can enhance the

agricultural green production efficiency in other regions through

“knowledge spillover” and “technology diffusion.” For example,

Zhejiang’s “Digital Agriculture Alliance” platform shared AI-

based pest detection and precision fertilization technologies with

neighboring Jiangsu and Anhui provinces. Micro-survey data from

2023 shows that in areas within 100 km of Zhejiang’s digital villages,

such as Suqian in Jiangsu and Wuhu in Anhui, farmers’ adoption

rate of these technologies was 32% higher than in non-neighboring

areas, significantly reducing local chemical fertilizer use and

agricultural carbon emissions., the spatial spillover effects come

from both explicit knowledge diffusion and implicit experience
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TABLE 15 E�ect decomposition of the spatial Durbin model.

AGP

Inverse geographical distance matrix Adjacency matrix

Direct e�ect Indirect e�ect Total e�ect Direct e�ect Indirect e�ect Total e�ect

Variables (1) (2) (3) (1) (2) (3)

DIV 0.672∗∗∗ 1.427∗ 2.099∗∗ 0.857∗∗∗ 1.304∗∗∗ 2.161∗∗∗

(4.66) (1.75) (2.41) (6.09) (3.66) (5.02)

Controls Yes Yes Yes Yes Yes Yes

Ind FE Yes Yes Yes Yes Yes Yes

N 360 360 360 360 360 360

∗ , ∗∗ , ∗∗∗ Indicate significance at the 10%, 5%, and 1% levels, respectively.

sharing via cross-regional agricultural technician exchanges. This

forms a “demonstration-learning-improvement” cycle, effectively

translating local digital village achievements into an increase in

regional green productivity.

In terms of the direct effect, digital village construction has

a significant positive impact on agricultural green production

efficiency. This means that digital village construction can

promote the rationalization of the allocation of agricultural

production factors by driving agricultural technological progress

and transforming agricultural production methods, improve

agricultural production efficiency, reduce agricultural carbon

emissions, and decrease environmental pollution, thereby boosting

the local agricultural green production efficiency. In terms of

the indirect effect, digital village construction has a significantly

positive impact on agricultural green production, indicating that

local digital village construction can drive the improvement of

agricultural green production efficiency in other regions through

knowledge spillover and the “role-model effect.”

6 Conclusions and discussion

This paper empirically examines the impact of digital village

construction on agricultural green production efficiency in 30

provinces of China from 2012 to 2023, as well as the mechanism

of rural human capital in the relationship between them, and draws

the following conclusions: First, at the national level, digital village

construction can effectively improve agricultural green production

efficiency, and the result still holds after a series of robustness tests.

Regionally, digital village construction has a greater promoting

effect in the Northeast region, which is richer in agricultural

resource endowments. Second, during the sample observation

period, the agricultural green production efficiency in 30 provinces

of China shows an upward trend, and its main driving force is

technological progress. Third, rural human capital plays an indirect

mediating role in the influencing process. Fourth, compared with

the intra-provincial area, the spatial spillover effect of the digital

village construction level in adjacent cities outside the province on

agricultural green production efficiency is more significant.

Based on the above analysis conclusions, this paper puts

forward the following countermeasures and suggestions:

On the one hand, enhance the systematic and coordinated

regional approach to digital village building. Boost the digital village

strategy by strengthening local capacity and spurring regional

collaboration. On one hand, solidify rural digital foundations by

improving infrastructure, expanding internet access, and creating

digital platforms. This ensures agricultural entities can obtain

digital resources. Accelerate agricultural IoT deployment and

use big data and cloud computing to raise green agricultural

productivity. On the other hand, given the significant spatial

spillover effects from out-of-province adjacent areas found in

the analysis, set up cross-regional digital governance cooperation

platforms. These should share digital resources like agricultural

big data and technical standards, coordinate regional digital

development plans, and spread green technologies across regions.

At the same time, implement different regional strategies. The

Northeast should develop “digital + agricultural modernization”

models, build innovation centers, promote smart farming tech,

and enhance the digital management of cold-chain logistics

and traceability systems. The central and western regions need

to close the digital gap through infrastructure investment and

human resource development, use policy incentives to undertake

eastern tech spillover, and strengthen cross-regional agricultural

e-commerce cooperation to expand markets for local specialty

products. The eastern coastal areas, as “digital innovation hubs,”

should export advanced governance and green tech to the central,

western, and Northeast regions. They should also establish cross-

regional industrial alliances to promote the flow of capital,

technology, and talent, and explore benefit—sharing mechanisms

in green tech innovation.

On the other hand, promote human capital growth and

regionally appropriate development. Combine strengthening basic

education with targeted skills training to upgrade rural human

capital. On one hand, improve the modern agricultural knowledge

training system, build digital communication platforms to boost

workers’ digital literacy, integrate digital tech into rural basic

education, and conduct skills training that suits local industries.

For example, e-commerce training for areas rich in agricultural

products and smart farming tech training for large-scale farming

areas. On the other hand, considering the spatial spillover effects

of digital development, innovate cross-regional talent collaboration

mechanisms. For instance, joint training programs between the

east and west can promote two-way practical guidance and skill

enhancement. Meanwhile, develop differential human capital plans

for regions with different characteristics. In resource—transition

regions, focus on “digital + industrial transition” training to
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help farmers acquire skills in agricultural product processing and

e-commerce operations, thus promoting the integration of primary,

secondary, and tertiary industries. In ecologically fragile regions,

combine digital literacy with ecological protection technologies to

cultivate professional farmers with both environmental awareness

and digital skills. In specialty agriculture regions, rely on local

resources to develop “digital marketing + cultural innovation”

training projects. Use social media and e-commerce platforms to

promote regional brands and increase product value—added.
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