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Introduction: In Kenya, smallholder dairy farming is a livelihood and a

cornerstone of the national economy, accounting for 80% of the country’s

milk supply and a significant portion of its GDP. Yet, this sector grapples with

sustainability challenges, marked by high methane emissions and a downturn

in milk yields. To combat these issues, climate-smart dairy strategies, including

improved breeding, feeds and feeding, animal health management, manure

management, and zero grazing, are being championed. These strategies aim

to boost production sustainably, fortify resilience against climate variability,

and curtail emissions. Despite their potential, the uptake of these strategies is

sporadic and uneven. This study delves into the e�ects of climate-smart dairy

strategies on milk productivity and gross margins in Kenya.

Methodology: This study employed a multinomial endogenous switching

regressionmodel on 385 respondents in Nyandarua County. The data sheds light

on the determinants of adopting climate-smart dairy strategies and their e�ects

on milk productivity and gross margin.

Results and discussion: According to the findings, age, education, cooperative

membership, group duration, entrepreneurial orientation, distance to input

market, and risk perception significantly influenced the uptake of climate-smart

dairy strategies. Further, the adoption of improved breeding, improved feeds and

feeding, and animal health management significantly increased milk productivity

(ATT = 547 litres) and gross margin (ATT = KES 18649) for adopters, indicating

that adopting multiple strategies is e�ective. The study o�ers robust support

for implementing holistic and cohesive climate-smart dairy strategies. These

strategies are pivotal in optimising productivity and enhancing the dairy sector’s

economic viability. The study underscores the need for targeted policies to

improve the adoption of sustainable dairy practices, o�ering comprehensive

insights into balancing economic and environmental goals in smallholder dairy

farming.
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1 Introduction

Globally, urbanization, economic growth, and higher incomes

are increasing demand for animal products, particularly dairy and

beef. As a result, there is a strong emphasis on commercializing and

expanding the production of these products. However, this drive

to boost dairy production has negative environmental and climate

impacts, leading to increased Greenhouse gas (GHG) emissions

(Giro and Kumar, 2022). This trend, coupled with emissions from

other sectors, intensifies climate change.

According to a study by Vernooij et al. (2024), the GHG

emission intensity of cow milk in sub-Saharan Africa is the

highest globally, at 9 kg of CO2 equivalent per kilogram of fat and

protein-corrected milk. This is four times higher than the global

average, and estimates from other parts of sub-Saharan Africa are

likely to be similar (Pressman et al., 2018). Although developed

countries contribute significantly to climate change, the effects

are dire in developing countries, where agriculture is a primary

source of livelihood (Abbas et al., 2023; Ntinyari and Gweyi-

Onyango, 2020). In Africa, over 70% of GHG emissions attributable

to agriculture stem from the livestock sector (Balehegn et al.,

2020). The reliance on rainfed agriculture in sub-Saharan African

countries exacerbates the impact of climate change, highlighting

the need for disseminating climate-smart strategies as one of the

possible solutions (Mburu et al., 2024).

The global demand for dairy products, driven by urbanization

and economic growth, is mirrored in Kenya, where smallholder

dairy farming plays a vital role in the economy but grapples with

sustainability and environmental challenges. Kenya’s dairy industry

is notable within Sub-Saharan Africa, producing 3% of the region’s

milk (Odero-Waitituh, 2017), with each cow producing about

4,000 kg of milk annually (Kirui et al., 2021). Smallholder dairy

farmers in Kenya contribute 80% of the nation’s milk, typically

managing three dairy animals per household (Ngeno, 2018). The

dairy sector significantly contributes to Kenya’s GDP, accounting

for about 8% of the economic output and growing at an annual

rate of 4.1%, surpassing other agricultural sectors (Odero-Waitituh,

2017; Vernooij et al., 2024).

Kenya’s agriculture accounts for 63% of the country’s total

GHG emissions. Of these emissions, 55% are attributed to

enteric fermentation from livestock, while 37% are estimated to

originate from manure (Vernooij et al., 2024). Consequently,

dairy production contributes to approximately 15% of total GHG

emissions in the country (Government of Kenya, 2017; Wilkes

et al., 2020). The dominant GHG emissions in the sector are

methane, accounting for 96%, followed by nitrous oxide at 3%,

and carbon dioxide at 1%. The amount of methane emitted is

influenced by the breed type, feed quality and quantity, and

environmental conditions (Pinto et al., 2020). If no action is taken,

this emission is projected to increase as annual milk consumption is

expected to rise from 110 kg to 220 kg per person by 2030 (Vernooij

et al., 2024). With cattle production contributing over 80% of the

livestock emissions, addressing emissions from dairy production

is critical (Martius et al., 2023). This has implications for Kenya’s

climate policy, particularly its commitment to the United Nations

Framework Convention on Climate Change, the Paris Climate

Agreement, and the Nationally Determined Contributions, which

target a 7% annual reduction in GHG emissions by 2030 (Chelang’a

et al., 2025; Martius et al., 2023). Furthermore, the Kenya Climate

Smart Agriculture Strategy (2017–2026) identifies dairy production

as a priority for emission reduction and resilience building through

improved feeds and manure management (Wilkes et al., 2020).

Although the dairy sector contributes to climate change,

smallholder dairy farming has been severely affected by climate

change effects, including prolonged drought, temperatures, and

frequent floods, in the recent decade (Intergovernmental Panel on

Climate Change, 2022; Maindi et al., 2020).

In recognition of this dual challenge, climate-smart dairy

strategies (CSDS) have been promoted to cushion smallholder dairy

farmers from climate change risks. CSDS is based on three pillars:

sustainably increase production for income and food security;

adapt and build resilience for agri-food systems and people; and

reduce GHG emissions (Food Agriculture Organisation, 2021;

Rodríguez-Barillas et al., 2024). However, the adoption of CSDS

has remained low and uneven (Maindi et al., 2020; Mburu et al.,

2024). Existing literature has centered on factors influencing the

adoption of CSDS, such as improved breeding, fodder varieties,

feed supplementation with concentrates, treating crop residues

with urea, feed conservation, health management, herd size

management, composting, and use of biogas (Korir et al., 2023;

Mujeyi et al., 2022; Mburu et al., 2024; Shikuku et al., 2017).

Adoption of CSDS, such as biogas production, appropriate manure

composting, use of leguminous fodder, feed formulation, and

treatment of crop residues remain low, with less than 10% of

farmers implementing these strategies (Maindi et al., 2020; Mburu

et al., 2024).

Research studies have pointed out that demographic,

socioeconomic, and institutional factors such as gender, human

capital, household size, land ownership rights, off-farm income,

credit, and access to extension services are strongly tied to the

adoption of CSDS (Korir et al., 2023; Maindi et al., 2020; Mburu

et al., 2024; Musafiri et al., 2022a). For instance, education level

increases the ability to comprehend information (Abegunde

et al., 2019); large household size indicates available labor for

adoption (Mujeyi et al., 2022); off-farm income reduces the need

for borrowed credit (Chelang’a et al., 2025); physical assets provide

resources for adoption (Akzar et al., 2023); while extension services

are key for knowledge and skills development (Maina et al., 2020;

Musafiri et al., 2022a).

Other studies have explored the effects of adoption on

productivity (Akzar et al., 2023), income (Shikuku et al., 2017), food

security (Mujeyi et al., 2021; Teklu et al., 2024), poverty reduction

(Zegeye et al., 2022), and reduction of GHG emissions (Ericksen

and Crane, 2018; Kihoro et al., 2021; Vernooij et al., 2024).

However, these studies assessed the outcomes separately. Bridging

this gap is essential for aligning agricultural development with

national climate commitments, particularly in enhancing adoption,

reducing emissions, and improving the welfare of farmers.

Therefore, the present study adds significant value to the

literature by comprehensively investigating the double effect of

CSDS on milk productivity and gross margin. Increasing milk

production through improved feeds reduces GHG emissions

(O’Hara, 2023). We assume that strategies that enhance milk

production will also reduce GHG emissions. Further, we include
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farmer entrepreneurial orientation variables to complement the

socioeconomic and institutional factors affecting productivity and

gross margin. According to our knowledge, literature on the effect

of entrepreneurial orientation on milk productivity (Daneluz et al.,

2021; Kimaru et al., 2020) and gross margin in smallholder farms

is scarce.

We found two main approaches in the literature for studying

the impact of climate-smart strategies. The first approach involves

using the propensity score matching technique to determine the

effect of CSDS on productivity, income, and food security. Studies

conducted by Abbas et al. (2023), Belay et al. (2023), and Radeny

et al. (2022) have used this method. However, one limitation

of the propensity score matching model is that it does not

account for unobserved heterogeneity, which can result in biased

estimates, as noted by Ngeno (2018). The second approach involves

using an endogenous switching regression model to estimate the

effects of CSDS on food security. A study conducted by Teklu

et al. (2024) employed this method. It is worth noting that

endogenous switching regression and propensity score matching

models are limited when the outcome variables are more than

two. Considering these drawbacks and having two outcome

variables, our study employed amultinomial endogenous switching

regression model (MESR) to account for selection bias arising from

unobserved and observed heterogeneity. Additionally, the model

allows the estimation of individual and combined effects of CSDS

on milk productivity and gross margin. The present study used

primary data collected from 385 smallholder dairy farmers from

Nyandarua County between October and November 2023.

This paper contributes twofold to the literature. First, we assess

the factors influencing the adoption of single and multiple CSDS.

Second, we estimate the individual and combined effects of CSDS

on milk productivity and gross margin. The study’s implications

apply tomany Sub-Saharan countries that face common challenges,

including low uptake of dairy technologies (Akzar et al., 2023;

Mburu et al., 2024; Korir et al., 2023).

The rest of this paper is organized as follows: Sections 2

and 3 provide details on the methodology and empirical strategy,

respectively. Section 4 presents the data. Section 5 discusses the

empirical findings. Section 6 draws conclusions based on the results

along with potential policy implications.

2 Materials and methods

2.1 Research design and sample selection

The study employed a cross-sectional research design,

offering numerous advantages for effectively achieving the

research objectives. It ensures efficient data collection from

diverse respondents at one time, providing timely results and

cost-effectiveness (Sedgwick, 2014). Additionally, it captures

a broad spectrum of population characteristics, enabling

further investigation while laying the foundation for future

research endeavors.

Primary data was collected in Kinangop and Kipipiri Sub-

Counties in Nyandarua County, a crucial region for milk

production in central Kenya, between Mount Kenya and the

Aberdare areas (Figure 1).

The unit of analysis was smallholder dairy producers. The

respondents included males and females who are key decision-

makers in a household. We employed a multistage sampling

technique to select them. In the first stage, Nyandarua County was

chosen purposively since cow milk is one of the County’s three

priority value chains for quality and quantity enhancement. It is

also the second-largest milk producer in Kenya. The second stage

involved the purposive selection of two out of five Sub-Counties

based on milk production and climatic conditions favoring

agriculture. These Sub-Counties are Kinangop and Kipipiri. In

the third stage, six wards, namely Gathara, Engineer, Njabini,

Kipipiri, Wanjohi, and Githiori, were selected from the two Sub-

Counties based on milk production and their vulnerability to

climate change. In the last stage, smallholder producers were

randomly selected from the six wards using a systematic random

sampling at intervals of five from the list of dairy producers.

The list of dairy producers was obtained from the Ministry

of Agriculture, Livestock and Fisheries in Nyandarua County.

We applied the Yamane formula (Yamane, 1973) to compute a

sample size of 384 farmers. This choice is justified using a finite

population. The dairy farmers were proportionately selected at

the Ward level since the population in each ward is not equal

in size.

2.2 Data collection method

This study gathered primary data using a semi-structured

questionnaire, which included a mix of open and closed-ended

questions. Data was collected through face-to-face interviews

with participants. To ensure the questionnaire’s effectiveness and

appropriateness, a pre-test was conducted, evaluating the relevance

and clarity of the questions. Additionally, a pilot study was carried

out to measure the time needed to complete the questionnaire

and gauge respondents’ reactions to the questions. Following

Abegunde et al. (2019), we conducted the pilot study with 10%

of the intended sample size. Specifically, forty dairy producers

from Njoro Sub-County were selected for the pre-test due to their

similar characteristics to those in Kipipiri and Kinangop Sub-

Counties. The pre-test allowed us to test for the reliability and

validity of the questionnaire. As a result of this phase, we refined

the questionnaire, which included in refining the questionnaire,

which included rephrasing questions for enhanced coherence,

determining the ideal number of daily interviews, and positioning

sensitive questions toward the questionnaire’s conclusion for

strategic purposes.

During this process, we devoted specific attention to validating

and enhancing the effectiveness of the selected CSDS by organizing

focus group discussions and conducting key informant interviews.

Altogether, 8 dairy farmers engaged in the focus group discussions,

encompassing 2 youths, 2 females, and 4 males. Likewise, 8 experts

were interviewed for the key informant interviews, representing a

diverse range of perspectives: 2 Sub-County dairy board members,

2 dairy cooperative leaders, 2 extension officers, and 2 officers from

the Kenya Climate Smart Agriculture Project.
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FIGURE 1

Map of Nyandarua County.

The participants were purposely selected to ensure a

comprehensive understanding of the CSDS from various

stakeholders, including farmers, local authorities, and project

personnel. By including different demographics and expertise, we

aimed to gather insights that are both inclusive and representative

of the community’s needs and challenges.

Proficient enumerators fluent in the Kikuyu dialect, the

predominant language in the selected geographic area, facilitated

both the focus group discussions and key informant interview

sessions. This choice ensured effective communication and

rapport-building with participants, maximizing the quality and

depth of collected data. We aimed to foster a conducive

environment for open dialogue and nuanced understanding during

the research process by utilizing enumerators familiar with the local

language and cultural nuances. These discussions and interviews

were instrumental in identifying new CSDS for inclusion and

determining which strategies needed refinement or removal.

The study gathered data on household and farmer demographic

factors, socioeconomic characteristics, social capital and

institutional factors, and entrepreneurial and behavioral factors.

Additionally, we obtained information on the adoption status of

CSDS through structured yes-and-no questions.

Prior to data collection, 10 enumerators who were experienced

in using digital software underwent a thorough 3-day training

session focusing on ethical conduct guidelines for surveys and

effective probing techniques to ensure accurate data acquisition.

The survey was conducted between October and November

2023. Participants were briefed on the study’s objectives and

guaranteed that the information they provided would remain

confidential. Further, they were not required to disclose personal

identifiers on the questionnaires. The researcher reassured

participants that the data collected would be used solely for

research purposes and treated with the utmost confidentiality.

Data collection occurred during the daytime, with regular

evening meetings between the researcher and enumerators to

assess progress and address emerging issues. The researcher

reviewed the data daily to ensure its consistency and promptly

identify and correct any errors that arose during data collection.

Additionally, enumerators were required to record the respondents’

GPS coordinates as part of the quality control measures. The

data collection process utilized ODK software, while subsequent

cleaning and analysis were done using Excel and STATA version

18 software.

2.3 Selection of the treatment and
outcome variables

Variable selection was pivotal in this study, enabling us to build

more accurate, interpretable, and efficient models. We deserved

specific attention to identifying the subset of predictors that were

most relevant to the phenomenon under investigation.

This study has two outcome variables: productivity and gross

margin. The CSDS considered treatment variables for the present

study are indicators of GHG emissions reduction and those related

to increased milk productivity and gross margin. The selected

CSDS was based on the literature review and validated using focus

group discussion. The five treatment variables include manure

management, improved breed, improved feeding and feeds, animal

health management, and zero grazing.

For accurate estimates, milk production was classified into

three seasons: high, average, and low. Dairy farmers were required

to specify the amount of milk produced per cow per day during
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TABLE 1 Level used as an indicator of adoption by climate-smart dairy strategy and reference literature.

CSDS Level used to indicate adoption Reference literature

Improved breed Use of artificial insemination (Ericksen and Crane, 2018; Maindi et al., 2020)

Improved feeds and feeding Use of concentrates/cultivation of high energy-protein fodder (Food and Agriculture Organisation, 2019; Giro and Kumar, 2022; Mburu

et al., 2024)

Animal health management Deworming every 3 months and weekly tick control (Kihoro et al., 2021; ood and Agriculture Organisation, 2017; Ericksen and

Crane, 2018)

Manure management Manure collection, covering and composting (Niles et al., 2022; Vernooij et al., 2024)

Zero grazing Zero grazing unit (Kihoro et al., 2021; Wilkes et al., 2020)

months characterized by high, medium, and low production. The

mean of these three seasons was then calculated as the daily milk

production per cow, which was subsequently multiplied by the

average number of days milked per month to determine the average

milk production per month. This average monthly milk production

was further multiplied by the number of months milked and the

total number of milking cows to obtain the average annual milk

production per household. Finally, productivity was computed by

dividing the total milk yield per year by the number of milked cows.

On the other hand, the gross margin from milk was calculated

as the difference between the total milk yield per cow per year

multiplied by the average price and the total variable cost incurred.

The variable costs include deworming, vaccination, spraying,

disease treatment, feed purchase, and fodder production costs, such

as seeds, fertilizer, fungicides, pesticides, and labor incurred during

the last production year.

2.4 Empirical strategy

We estimated two separate models using a two-step

multinomial MESR model. One model has productivity as the

outcome variable, while the other has gross margin as the outcome

variable. We used MESR to compare the effect of adopting

and non-adopting CSDS on these outcome variables. A major

advantage of MESR models is that they estimate individual and

combined effects of the treatment variables on the outcome. Unlike

the propensity score matching technique, they also account for

both observed and unobserved factors that may influence decisions

on CSDS adoption and outcome equations. This approach helps to

account for both endogeneity and self-selection bias. The MESR

treatment effect model was utilized following McFadden (1974)

and Bourguignon et al. (2007) to correct selection bias.

In the first stage, a multinomial logit (MNL) model determined

producers’ individual and combined CSDS decisions. The MNL

model helps account for the interrelationships among the CSDS

decisions. In the second stage, the effects of each alternative and

combined CSDS on productivity/gross margin were estimated

using ordinary least squares regressions (OLS) with selectivity

corrections terms from the first step. The CSDS considered are

improved breeds (j1), improved feeding and feeds (j2), animal

healthmanagement (j3), zero grazing (j4) andmanuremanagement

(j5). As each attribute has multiple attribute levels, this study

used a single attribute level to distinguish between adoption and

non-adoption. We used the literature to select the reference level

(Table 1).

The adoption of each strategy was treated as binary, with

a value of one assigned if the household adopted the strategy

and zero otherwise. Producers were assumed to use a single or

multiple CSDS to maximize expected utility, (Ti) , by comparing

the productivity and gross margin given by K alternative CSDS.

The condition for the producer i to adopt j over other alternatives

is that Tij > TiK K 6= j that is, j gives the highest productivity/gross

margin compared to any other K 6= j alternatives. The expected

gross productivity/gross margin associated with each CSD strategy

cannot be directly observed but can be described as a function of

observable factors in a latent variable as follows:

T
∗

ij = βjZi + εij (1)

whereT∗
ij is a latent variable explaining the outcome,Zi is a vector of

independent variables while εij is the error term. The Zi covariates

are assumed to be uncorrelated with the error term εij that is,

E
(

εij
∣

∣Zi) = 0. The assumption implies that εij is independent

and identically Gumbel distributed.

The probability (Pr) that producer i will adopt CSDS j can be

expressed by a MNL model (McFadden, 1974) as follows:

Pij = Pr
(

εij < 0
∣

∣ Zi

)

=
exp( Zi β j)

∑j
K=1 exp( Zi βK)

(2)

The outcome equations for each possible regime j can be

expressed in binary terms as follows, based on the framework

of five CSDS’ adoption and non-adoption status. We used the

Hausman test to assess the independence of the assumption of

irrelevant alternatives in the MNL model (Freese and Long, 2000).

The test was insignificant, indicating our analysis did not violate the

assumption. The expected outcomes for choosing any combination

of CSDS are given as follows:



































E (Ti1|Ai = 1)Qiβ1 + µi1

E (Ti0|Ai = 0)Qiβ0 + µi0

.

.

.

E
(

Tij

∣

∣Ai = j
)

Qiβj + µij

(3)

where Tij is the expected productivity/gross margin of household

i in regime j (j = 1, 2, 3, 4, 5), (Ai) is the adoption status, with

(Ai) = 1 being adopters while (Ai) = 0 being non-adopters, Qi is

a vector of explanatory variables, βi is a vector of coefficients to be

estimated, while the error terms µi is normally distributed, which

satisfies E
(

µij

∣

∣Qij, Zij

)

= 0 and variance
(

µij

∣

∣Qij, Zij

)

= σ 2
j .
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OLS estimates in the second step will be biased if the

error terms in the selection and regime equations are not

independent. Consistent estimation necessitates including the

alternative selection correction components in Equation 5 to

account for unobserved factors (producers’ intuitive abilities

and motivation).

The actual and counterfactual scenarios for adopters and non-

adopters can be presented in four cases as follows:

Adopters, if they adopt (actual)

E (Ti1|Ai = 1) = βaQia + σaλa (4)

Adopters, if they do not adopt (counterfactual)

E (Ti0|Ai = 1) = βnaQia + σnaλa (5)

Non-adopters, if they do not adopt (actual)

E (Ti0|Ai = 0) = βnaQina + σnaλna (6)

Non-adopters, if they adopt (Counterfactual)

E (Ti1|Ai = 0) = βaQina + σaλna (7)

where σjis the covariance between the εij of selection and the µij

of the regime equations, λjis the inverse mills ratios computed

from the estimated probabilities in the regime equations. The

standard errors in the regime equations were bootstrapped to

account for possible heteroscedasticity arising from the generated

regressor λj. The actual and counterfactual productivity/gross

margin expected from adopters and non-adopters was calculated

based on the parameters to be estimated βa and βna. To estimate

the average treatment on the treated (ATT) for adopters, the

observed productivity/gross margin and its counterfactual were

differentiated as follows:

ATT = E (Ti1|Ai = 1) − E(Ti0|Ai = 1) (8)

Similarly, the average treatment on untreated (ATU) for non-

adopters was computed as the difference between the actual and

the counterfactual productivity/gross margin, according to the

following equation:

ATU = E (Ti0|Ai = 0) − E(Ti1|Ai = 0) (9)

2.5 Selection of the instrumental variable

As Asante et al. (2024) proposed, estimating a MESR model

must include at least one instrumental variable for model

identification. The admissibility of possible variables as instruments

can be established by performing a simple falsification test (Asante

et al., 2024; Khonje et al., 2018). While the MESR model

helps address selection bias by accounting for both observed

and unobserved heterogeneity, it does not, on its own, ensure

causal inference. To strengthen identification, we employed group

membership duration as an instrumental variable for adoption.

We conducted a simple falsification test, which supported the

instrument’s validity, indicating that group duration is correlated

with adoption but not directly associated with the outcome

productivity and gross margin, thus satisfying the exclusion

restriction (Table A2). The distance to the input market was a weak

instrument and, hence, was not included in the analysis. Despite

this, causal interpretation still depends on the validity of underlying

assumptions that cannot be empirically verified. Therefore, we

interpreted the results as indicative of causal relationships, but we

maintain a degree of caution and acknowledge that the findings

remain subject to the limits of observational data.

2.6 Measuring of entrepreneurial
orientation

Entrepreneurial orientation was measured using a multi-item

index adapted from the validated scales of Lumpkin and Dess

(1996) and Sambrumo et al. (2022), which have been widely used in

agricultural and rural entrepreneurship studies. The index captured

five key dimensions of entrepreneurial orientation: innovativeness,

which is the ability of farmers to try new innovations before

others; risk-taking, which is the ability of farmers to invest

their resources to unpredictable outcomes; proactiveness, which

is the farmers’ ability act in anticipation of future changes in

dairy farming; autonomy which is the ability of farmers to

make independent decisions on dairy farm investments, and

competitiveness aggressiveness is the ability of farmers to strive to

outperform other farmers in dairy production. Each dimension was

measured using three items on a 5-point Likert scale (1 = strongly

disagree, 5= strongly agree).

2.7 Diagnostic tests

To address potential econometric issues, heteroskedasticity and

multicollinearity were tested using the Breusch-Pagan and Variance

Inflation Factor (VIF). Table 1 shows the level used as an indicator

of adoption of climate-smart dairy strategy and reference literature.

Table A1 provides results for multicollinearity test using Variance

Inflation Factor. Table A1 presents VIF results discussed under

diagnostic tests. There was evidence of heteroskedasticity (p <

0.05), and robust standard errors were applied to ensure consistent

and efficient parameter estimates. All variables included in the

model had VIF values (Mean VIF= 1.29) below the threshold of 5,

indicating no multicollinearity problem. Furthermore, an inverse

probability weighting regression adjustment (IPWRA) was used

to check the robustness of MESR results (Tables A3, A4). The

results of the MESRmodel had lower standard errors than IPWRA,

making it a better model for this study.

3 Results

3.1 Descriptive statistics

Table 2 provides the combinations of CSDS adopted by

dairy farmers, while Table 3 presents summary statistics

for various variables of the farmers’ demographic factors,

socioeconomic characteristics, social capital and institutional
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TABLE 2 Alternative combination of CSDS adopted by smallholder dairy

producers.

Alternative CSDS Frequency Percentage

One Single strategy or

none

36 9.35

Two Two combinations 70 18.18

Three B1F1H1 50 12.99

Four B1F1H1M1 110 28.57

Five B1F1H1M1Z1 119 30.91

Onemeans adoption of a single climate-smart dairy (CSD) strategy or none such as [improved

breed (B1) or improved feed (F1) or manure management (M1) or adoption of none (No)],

non-adoption and adoption of single strategy were merged together due to low frequencies;

Two means adoption of two CSDS [improved breed, and health management (B1H1) or

improved health and manure management (H1M1)]; B1F1H1 denotes improved breed, feed,

and health management; B1F1H1M1 denotes improved breed, feed, health management and

manure management; and B1F1H1M1Z1 denotes improved breed, feed, health management,

manure management and zero grazing.

factors, entrepreneurial and behavioral factors, and dairy milk

productivity and income factors. The overall statistics are also

provided.

Results reveal several tendencies regarding the adoption of

CSDS. In summary, higher adoption of CSDS is associated with

older age, male-headed households, higher education, larger farm,

and herd sizes, greater off-farm income, stronger group and

cooperative memberships, better access to extension services, closer

training distances, higher entrepreneurial orientation, greater risk

perception, and awareness. These farmers also tend to access

more credit, produce more milk, and achieve higher revenues

and margins, indicating better overall profitability. The evidence

from the present paper shows no statistical difference between

the averages of age, household size, farming experience, and

total variable costs. Education, extension access, entrepreneurial

orientation, risk perception, milk yield, and financial metrics show

significant differences across adoption categories, denoted by high

statistically significant F-values and chi-squared values.

The literature on Africa and Kenya supports some of

these tendencies. For example, other studies have shown that

participation in dairy cooperatives significantly improves the

adoption of climate-smart strategies (Balchax et al., 2023; Maindi

et al., 2020). According to Candemir et al. (2021), dairy

cooperatives in developing countries assist farmers in adopting

innovations to increase productivity and reduce transaction costs.

However, the authors argue that some innovations, such as fertilizer

use, may harm the environment.

Another notable result concerns the total variable costs for milk

production per year. On average, they were KES 23,895. However,

we noticed notable differences when breaking down these costs

based on different CSDS categories.

On the one side, farmers who used improved breeds, better

feeds, and enhanced animal healthmanagement (B1F1H1) faced the

highest average variable costs (KES 29,986). This suggests that while

these strategies might lead to better milk production or quality, they

also come with higher expenses. Conversely, farmers who adopted

a more comprehensive approach, incorporating improved breeds,

feeds, health management, manure management, and zero grazing

(B1F1H1M1Z1), incurred the lowest average variable costs (KES

21,089). This indicates that while this method is more extensive,

it is more cost-efficient overall.

An important factor in these cost differences is the expenditure

on feed. Feed concentrates and fodder production alone constituted

about 79% of the total variable costs in dairy production.

Therefore, the high costs observed with the B1F1H1 combination

can likely be attributed to the significant expenses associated

with feed. Adopting improved breeds and better feeds and

health management leads to higher costs, primarily due to feed

expenses. However, adding manure management and zero grazing

to these practices can reduce overall costs, highlighting the

efficiency of a more integrated farming approach, as Kihoro et al.

(2021) suggested.

The annual individual variable costs per cow indicate that labor

costs were higher (KES 15,512) than other non-feed costs for all

CSDS. This finding aligns with the results of Maina et al. (2020),

which emphasized that dairy production is labor-intensive.

The findings of this paper are also consistent with existing

literature suggesting that adopting agricultural technologies can

lead to improved productivity and income in Africa and Kenya

(Khonje et al., 2018; Musafiri et al., 2023; Ngeno, 2018). In our

sample, the average milk production per cow was 2,724 liters per

year. However, farmers who adopted all five CSDS experienced a

significant increase in production, reaching 3,319 liters per cow

annually. This comprehensive adoption also resulted in the highest

gross margin for smallholder dairy farmers, amounting to KES

99,518 annually.

3.2 Drivers of CSDS adoption among
farmers

Table 4 shows the effect of different factors on the adoption

of various combinations of CSDS using MNL model and the

(B1F1H1M1Z1) as the base category. Interpreting the marginal

effects on individual probabilities is more convenient as they

are expressed in the same unit as a probability (Khonje et al.,

2018). The columns of the table display the marginal effects

for each combination, while the rows represent different factors

influencing adoption, along with their estimated parameters,

statistical significance, and standard errors.

The statistical analysis of themodel’s fit and performance shows

that it is statistically significant and explains a relatively large

portion of the variation in the outcome, indicating a good fit to the

data. The Likelihood Ratio Chi-Square of 266.26 with 76 degrees

of freedom suggests that the model is statistically significant, with

a probability of 0.0000. This means that the independent variables

collectively significantly affect the dependent variable. The Pseudo

R² suggests that 37.94% of the variability in the adoption of CSDS

is explained by the model.

The adoption of CSDS can be influenced by various factors,

which can be grouped into three categories. Factors such as

age, gender, education, herd size, access to extension services,

and membership in cooperatives positively affect the adoption of

different CSDS. On the other hand, factors like risk perception, level

of education, entrepreneurial orientation, and distance to resources

generally lower the adoption of fewer strategies. Additionally, off-

farm income, group membership, and training have insignificant
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TABLE 3 Summary statistics and adoption of multiple climate-smart dairy strategies among smallholder farmers.

Variables One Two B1F1H1 B1F1H1M1 B1F1H1M1Z1 Overall f-value/χ2

Demographic factors

Age 53.81 (11.32) 53.74 (15.33) 49.46 (12.39) 50.7 (11.90) 49.62 (10.71) 51.04 (12.33) 1.93

Male headed

households

27.78 30.00 52.00 63.64 76.47 56.62 54.12∗∗∗

Household size 4.67 (1.60) 4.44 (2.18) 4.64 (2.37) 4.96 (2.34) 4.67 (2.10) 4.71 (2.17) 0.66

Socioeconomic factors

Education 6.06 (2.12) 5.29 (2.69) 7.32 (2.82) 10.16 (2.90) 12.61 (2.71) 9.28 (3.93) 103.7∗∗∗

Farm size 1.53 (2.22) 0.75 (0.70) 1.40 (1.74) 1.38 (1.39) 1.56 (1.32) 1.34 (1.45) 3.87∗∗∗

Herd size 1.67 (0.68) 1.71 (1.00) 1.8 (0.76) 2.09 (0.87) 2.19 (1.07) 1.97 (0.95) 4.71∗∗∗

Farmers with

off-farm income

(%)

36.11 37.14 44.00 39.09 53.78 43.64 7.94∗

Farming

experience

13.78 (7.95) 16.67 (13.31) 12.94 (8.50) 16.38 (10.03) 14.35 (10.0) 15.11 (10.39) 1.67

Social capital and institutional factors

Farmers in group

(%)

41.67 44.29 60.00 68.18 73.11 61.82 23.70∗∗∗

Cooperative

member (%)

8.33 5.71 12.00 49.09 57.14 35.06 84.44∗∗∗

Extension access

(%)

25.00 28.57 26.00 50.91 57.14 43.12 29.10∗∗∗

Amount of credit 7,500

(23,068.22)

5,800

(17,739.34)

10,760

(28,668.09)

11,945.46

(30,896.94)

28,890.76

(67,558.99)

15,496.10

(44,370.07)

4.30∗∗∗

Distance 2.15 (1.25) 2.96 (2.14) 2.34 (1.64) 2.68 (1.95) 2.18 (1.40) 2.48 (1.75) 3.02∗∗

Training 0.83 (0.91) 1.24 (1.21) 1.62 (2.18) 1.55 (2.08) 2.0 (2.22) 1.57 (1.95) 3.30∗∗

Entrepreneurial and behavioral factors

Entrepreneurial

orientation

58.81 (58.81) 53.70 (16.36) 59.24 (19.90) 67.26 (19.72) 72.12 (13.50) 64.47 (18.89) 14.78∗∗∗

Risk perception 3.39 (0.57) 3.20 (0.67) 3.49 (0.60) 3.77 (0.64) 3.88 (0.63) 3.63 (.68) 16.16∗∗∗

Awareness 2.5 (0.82) 2.73 (0.91) 3.03 (0.90) 2.94 (0.86) 2.88 (0.97) 2.86 (0.91) 2.44∗∗

Behavioral

intention

4.08 (0.76) 4.1 (0.64) 4.09 (0.70) 3.80 (0.84) 3.80 (0.79) 3.91 (0.78) 3.33∗∗

Dairy milk productivity and income

Milk yield/cow/

year

1,168.25

(594.3)

1,882.21

(1,245.4)

2,798.9

(1,761.2)

3,091.43

(1,450.5)

3,318.91

(1,587.3)

2,724.06

(1,607.3)

23.09∗∗∗

Milk price/liter 44.64 (2.0) 44.89 (2.48) 45.36 (2.29) 45.45 (1.66) 46.11 (1.91) 45.46 (2.12) 5.72∗∗∗

Total

revenue/cow/ year

52,053.58

(26,084.42)

84,094.5

(54,526.96)

127,919

(83,499.20)

140,462.89

(67,551.83)

150,478.82

(72,988.93)

123,414

(74,097.41)

23.05∗∗∗

Total variable

cost/cow/ year

22,985.90

(16,935.54)

25,602.43

(23,106.71)

29,985.77

(24,318.21)

23,374.48

(18,097.41)

21,089.08

(17,611.71)

23,895.44

(19,843.88)

1.96

Gross

margin/cow/ year

29,067.68

(58,492)

58,492.07

(43,983)

97,933.23

(77,011)

117,088.41

(58,037.9)

129,389.74

(68,543.2)

99,518.57

(68,496.8)

30.40∗∗∗

∗∗∗ , ∗∗ , ∗ denotes statistical significance at 1%, 5%, and 10% level. The gross margin and total revenue are in Kenya shillings currency.

Standard deviation is given in parentheses; categorical variables are in percentages.

effects across most combination strategies. Insignificant and

significant positive and negative estimated marginal effects

highlight the relationship between demographic, socioeconomic,

and institutional factors in determining the likelihood of adopting

specific combinations of CSDS and the nuanced nature of adoption

decisions among farmers.
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TABLE 4 Determinants of adoption of CSDS using MNL model.

Variables One Two B1F1H1 B1F1H1M1 B1F1H1M1Z1

Marginal e�ects Marginal e�ects Marginal e�ects Marginal e�ects Marginal e�ects

Demographic factors

Age 0.003∗∗

(0.001)

−0.002

(0.002)

0.000

(0.002)

−0.002

(0.002)

0.001

(0.002)

Gender −0.020

(0.027)

−0.047

(0.035)

0.058∗

(0.033)

−0.012

(0.045)

0.021

(0.041)

Household size −0.001

(0.006)

0.004

(0.007)

0.006

(0.010)

0.008

(0.011)

−0.017∗∗

(0.008)

Socioeconomic factors

Education −0.003

(0.004)

−0.028∗∗∗

(0.006)

−0.015∗∗∗

(0.006)

−0.008

(0.007)

0.054∗∗∗

(0.007)

Land size 0.020

(0.011)

−0.054∗

(0.029)

0.021

(0.014)

−0.002

(0.015)

0.014

(0.013)

Off-farm income 0.021

(0.028)

−0.009

(0.034)

0.038

(0.031)

−0.055

(0.046)

0.006

(0.042)

Farming experience −0.002

(0.001)

0.005∗∗

(0.002)

−0.002

(0.002)

0.004

(0.003)

−0.004

(0.003)

Herd size −0.014

(0.014)

0.034∗

(0.019)

−0.020

(0.018)

0.016

(0.024)

−0.017

(0.022)

Social capital and institutional factors

Group membership 0.019

(0.035)

−0.010

(0.041)

−0.022

(0.041)

−0.018

(0.047)

0.030

(0.043)

Cooperative membership −0.030

(0.037)

−0.072

(0.056)

−0.078∗

(0.046)

0.141∗∗∗

(0.043)

0.040

(0.039)

Group membership duration −0.017∗∗∗

(0.006)

0.001∗∗∗

(0.006)

0.007∗∗∗

(0.005)

0.011∗∗

(0.005)

−0.002

(0.004)

Extension access 0.012

(0.032)

−0.032

(0.039)

−0.061

(0.039)

0.073∗

(0.043)

0.007

(0.039)

Training −0.017∗∗

(0.009)

0.003

(0.009)

0.012

(0.008)

−0.004

(0.011)

0.007

(0.009)

Distance −0.021∗∗∗

(0.007)

0.019∗∗∗

(0.007)

−0.006

(0.010)

0.024∗∗

(0.011)

−0.017

(0.010)

Amount of credit 0.000

(0.000)

−0.000

(0.000)

0.000

(0.000)

−0.000

(0.000)

0.000∗

(0.000)

Entrepreneurial and behavioral factors

Entrepreneurial orientation −0.066∗∗∗

(0.025)

−0.017

(0.032)

0.010

(0.034)

0.039

(0.046)

0.035

(0.043)

Risk perception 0.017

(0.020)

−0.072∗∗∗

(0.027)

0.002

(0.028)

0.020

(0.035)

0.033

(0.030)

Awareness −0.031∗

(0.016)

−0.015

(0.021)

0.024

(0.019)

0.020

(0.024)

0.002

(0.024)

Behavioral intention 0.027

(0.021)

0.042∗

(0.022)

0.014

(0.023)

−0.065∗∗

(0.026)

−0.018

(0.023)

Number of observations= 385

LRχ2 (76)= 266.26

Prob > χ2= 0.0000

Log likelihood=−362.56359

Pseudo= 0.3794

∗∗∗ , ∗∗ , ∗ denotes statistical significance at 1%, 5% and 10% level.
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3.2.1 Demographic factors
The results reveal that age has a negative effect on the

adoption of CSDS. Older farmers prefer simpler strategies, as

supported by Gemtou et al. (2024) and Maindi et al. (2020), who

found a negative correlation between age and the use of multiple

climate-smart strategies due to aging-related physical limitations.

However, Akzar et al. (2023) reported that older farmers’ experience

leads to a positive correlation with the adoption of multiple

dairy technologies.

Gender influences CSDS adoption, with males more likely to

adopt improved breeds, feeds, and health management (B1F1H1),

possibly due to their control over resources and understanding of

CSDS, aligning with Maindi et al. (2020)’s findings. The finding

contradicts those of Musafiri et al. (2022a), which suggested

that female-headed households had a higher propensity to adopt

climate-smart practices than their male counterparts.

Household size has an inverse relationship with adopting

comprehensive CSDS (B1F1H1M1Z1), where larger households

have fewer resources for such strategies. Household size is an

important variable as it signifies labor to adopt labor-intensive

CSDS. However, larger families could be constrained with resources

to adopt capital-intensive CSDS, such as biogas plant and feed

supplementation, which aligns with the findings of Musafiri et al.

(2022a). This contradicts Asante et al. (2024) and Balchax et al.

(2023), who argued that larger households’ labor resources lead to

broader adoption of climate-smart strategies.

3.2.2 Socioeconomic characteristics
Farmers with higher levels of education are less likely to

adopt the simpler combinations (B1F1H1), yet more inclined

to embrace the comprehensive suite (B1F1H1M1Z1). This trend

suggests that each additional year of formal education equates to

a broader adoption of CSDS. Educated farmers are better equipped

to understand the synergies between different strategies, leading to

a more holistic implementation. These observations are consistent

with the research conducted by Asante et al. (2024), Korir et al.

(2023) and Musafiri et al. (2022a).

Land size presents a contrasting effect, with a larger land area

negatively impacting the adoption of two CSDS combinations.

Land serves as a source of wealth, which may drive the adoption

of CSDS that require farmland, such as improved fodder varieties.

A large land size implies a larger herd, which may limit the time

available for adopting labor-intensive CSDS, like improved fodder

production and manure management. This finding echoes Okello

et al. (2021), who noted that large land size was linked to low

intensification. However, Meraner and Finger (2019) argued that

large farms were associated with the adoption of on-farm risk

management strategies due to greater wealth.

Regarding herd size, a positive correlation exists with the

adoption of two CSDS. As the number of dairy animals rises,

competition for resources like land and labor also escalates.

Consequently, this diminishes the available time and resources for

adopting capital and labor-intensive CSDS. This finding stands

in contrast to Korir et al. (2023), which reported that expanding

herd size was associated with the adoption of multiple dairy

technologies in Ethiopia. Larger herd sizes necessitate more feed,

thereby encouraging farmers to adopt manure management and

multiple feed sources, as supported by Balchax et al. (2023) and

Maina et al. (2020).

Additionally, there is a positive correlation between a farmer’s

experience and the likelihood of adopting a combination of

two CSDS. This relationship is nuanced by age; with increased

experience, farmers aremore inclined to implementmultiple CSDS.

However, this trend may reverse as physical capabilities decline

with age. Over time, the initial appeal of new technologies canwane,

leading to reduced usage, as noted by Schukat and Heise (2021).

3.2.3 Social capital and institutional factors
Our findings reveal that the duration of a farmer’s membership

in agricultural groups has a dual effect on the adoption of CSDS.

While a longer membership negatively affects the adoption of

a single CSD strategy, it positively influences the adoption of

combinations involving two, three, and four strategies. Agricultural

groups play a pivotal role in knowledge dissemination and

extended participation in these groups equips farmers with a

deeper understanding of the advantages of integrating multiple

CSDS. This pattern is supported by literature, such as Ng’ang’a

et al. (2020), who found that robust social capital promotes

the adoption of key climate-smart strategies, including improved

breeds, fodder production, irrigation, and livestock manure

management, in Laikipia.

Similarly, dairy cooperative membership exhibits a contrasting

effect on CSDS adoption. It appears to hinder the adoption of

the basic combination (B1F1H1) while fostering the uptake of

a more multiple CSDS (B1F1H1M1). This could be attributed

to the role of social networks in enhancing information

exchange and learning opportunities. In our study region, dairy

cooperatives are instrumental in providing resources such as

feed concentrates, feed formulation guidelines, and ingredients,

thereby facilitating the adoption of improved feeding practices

among farmers. This observation aligns with Akzar (2021),

which emphasized the significance of cooperative membership in

embracing complementary dairy feed technologies.

Furthermore, access to extension services is positively

correlated with the adoption of the B1F1H1M1 combination.

Extension services, both governmental and non-governmental, are

crucial in disseminating information and educating farmers on

the multifaceted benefits of adopting an array of CSDS, potentially

leading to enhanced milk production and lower production

costs. Extension provides farmers practical skills to implement

agricultural technologies (Musafiri et al., 2022a). Supporting this,

Korir et al. (2023) noted that Ethiopian farmers who trusted

government extension officers were more inclined to adopt a

broader spectrum of dairy technologies.

Access to credit positively influences the adoption of the

(B1F1H1M1Z1) combination. This suggests that financial access

is a key enabler for households, particularly those with limited

resources, to implement capital-intensive CSDS. The significance

of financial support is corroborated by studies such as Mburu et al.

(2024), Mujeyi et al. (2021), and Yang and Sharp (2017). However,

this contrasts the findings of Zemarku et al. (2022) and Okello

et al. (2021), who reported a negative correlation between credit

access and the adoption of dairy technologies. The present study

underscores the importance of financial resources in facilitating the

uptake of advanced CSDS.
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TABLE 5 ATT and ATU estimates of MESR model (Milk productivity per year).

CSDS Scenario Productivity of actual (a) Productivity of
counterfactual (b)

Treatment e�ects:
ATT/ATU (a–b)

SE

No or Single CSDS Adopter 1,168.25 2,459.895 ATT=−1,291.645∗∗∗ 92.964

Non-adopter 1,155.934 2,884.549 ATU=−1,728.615∗∗∗ 45.025

Two CSDS Adopter 1,882.214 2,113.508 ATT=−231.2936∗∗ 51.384

Non-adopter 2,929.856 2,911.141 ATU= 18.7152 41.204

B1F1H1 Adopter 2,798.9 2,251.711 ATT= 547.1888∗∗∗ 99.676

Non-adopter 2,989.261 2,712.894 ATU= 276.3669∗∗∗ 49.396

B1F1H1M1 Adopter 3,091.432 2,741.538 ATT= 349.8941∗∗∗ 33.444

Non-adopter 3,288.262 2,577.116 ATU= 711.1455∗∗∗ 30.684

B1F1H1M1Z1 Adopter 3,318.908 3,026.97 ATT= 291.9371∗∗∗ 42.187

Non-adopter 3,338.292 2,457.949 ATU= 880.3426∗∗∗ 35.473

∗∗∗ , ∗∗ denotes statistical significance at 1% and 5% level. SE is the standard error.

Contrary to initial assumptions, the distance to input markets

has a negative relationship with CSDS adoption. While one might

expect proximity to the market to be a facilitator, the study reveals

that greater distances do not deter farmers from adopting two

or three (B1F1H1) CSDS combinations. This is attributed to the

critical role of improved breeds, feeds, and health management

in dairy productivity, which may outweigh the transaction costs

incurred from longer distances. This finding is at odds with

Zemarku et al. (2022), who suggested that closer market access

boosts the likelihood of technology adoption in dairy farming.

Our study reveals a statistically significant negative relationship

between training and adopting a single CSD strategy or none.

Specifically, as farmers attend more training sessions, they are

less likely to adopt a single CSD strategy or none, favoring the

adoption of multiple strategies instead. This trend suggests that

training broadens farmers’ understanding of the synergistic benefits

of employing various strategies concurrently. This is consistent

with Yang and Sharp (2017), who observed that training positively

impacts the adoption ofmultiple bestmanagement practices among

dairy farmers. Training is crucial for increasing awareness and

encouraging behavioral shifts toward adopting integrated climate-

smart strategies, as Gemtou et al. (2024) support.

3.2.4 Entrepreneurial and behavioral factors
The entrepreneurial mindset of farmers significantly influences

their adoption of CSDS. Those with a strong entrepreneurial

orientation are more inclined to invest in multiple CSDS, which

has been shown to enhance milk production, rather than limiting

themselves to a single CSD strategy or none. This trend is supported

by research emphasizing the role of entrepreneurial spirit in

embracing sustainable agricultural technologies, as documented by

Barzola Iza et al. (2019); Daneluz et al. (2021), and Wang et al.

(2023).

Furthermore, farmers’ awareness of CSDS appears to decrease

the likelihood of adopting a single CSD strategy or none

over multiple strategies. Empirical evidence suggests that a

comprehensive understanding of CSDS encourages adopting

various practices, particularly when farmers recognize the potential

for increased production and resilience against climate change. This

behavior aligns with findings from Li et al. (2023), Maina et al.

(2020), and Mburu et al. (2024).

Perceived risks of climate change also play a critical role.

Farmers’ perception of the risks associated with climate change

on dairy production is negatively related to the adoption of

two specific combinations of CSDS. When farmers perceive

climate change as a threat to dairy production, they are less

likely to adopt a few CSDS than multiple CSDS. This finding

is consistent with Amamou et al. (2018), who discovered that

climate change risks such as new diseases, reduced animal

fertility, decreased milk production, reduced longevity, and

feed unavailability increased the likelihood of adopting multiple

mitigation measures. Similarly, Mburu et al. (2024) reported that

past drought conditions encouraged farmers in Kenya to adopt

feed concentrates.

Lastly, behavioral intention is positively correlated with

adopting two CSDS combinations and negatively associated

with adopting (B1F1H1M1). Behavioral intention is assessed

through self-reporting. Self-reported intentions may not always

translate into action, often hindered by the substantial financial

commitments required for multiple CSDS, which may be beyond

the reach of smallholder farmers. This observation diverges from

Schukat and Heise (2021), who reported a positive correlation

between the intent and actual adoption of smart farming

technologies in Germany.

3.3 E�ects of adopting climate-smart dairy
strategies on milk yield and gross margin

Tables 5, 6 present the results of the analysis of the effects

of CSDS on milk productivity and gross margin per cow per

year, respectively. These tables evaluate how effective CSDS are

in improving milk productivity/gross margin by comparing actual

outcomes (column 3) with estimated outcomes (column 4) if

the strategies had not been adopted. The difference between the

treatment (ATT) and the counterfactual (ATU) effects, presented
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in column 5, indicates the productivity/gross margin gains

attributable to these strategies, and the standard error (column 6)

provides information on the reliability of these estimates, ensuring

the validity of our findings.

The data presented in the tables for each category of CSDS can

be interpreted through two distinct scenarios. In the first scenario,

farmers have implemented the particular strategy under analysis,

while in the second, they have not. This comparative approach

allows for a clearer understanding of the effects of adopting

specific CSDS. MESR provides estimates associated with actual and

counterfactual scenarios.

The Average Treatment Effect on the Treated (ATT) and

Average Treatment Effect on the Untreated (ATU) values across

different strategies and farmer groups show varying degrees of

statistical significance, with most being highly significant (at 1%).

This robustness indicates reliable findings.

Our research findings indicate that the impact of implementing

CSDS on milk productivity per cow per day varies significantly

depending on the type and number of strategies used. As farmers

adopt multiple CSDS, such as moving from implementing two

strategies to the most comprehensive set (B1F1H1M1Z1), the

positive effect on productivity generally improves, especially for

adopter farmers. This suggests that a more integrated approach to

CSDS can lead to better results.

The B1F1H1M1Z1 strategy is the most beneficial for non-

adopters, suggesting that a more integrated approach to CSDS

could result in higher productivity gains. Among adopters, the

B1F1H1 strategy demonstrates the greatest increase in productivity,

indicating that multiple CSDSmay be the most effective for current

adopters. This finding supports empirical literature emphasizing

the importance of improved breed, feed, and animal health

management in increasing milk production (Akzar et al., 2023;

Balehegn et al., 2020; Kihoro et al., 2021). This finding reinforces

the results of Musafiri et al. (2023), which indicated that input

combinations such as organic fertilizer and climate-resilient crops

enhance farmers’ livelihoods through improved soil health and

crop yields.

Moreover, the analysis suggests that broader CSDS not only

improve milk productivity but also have a favorable effect on

the gross margin per cow: more comprehensive CSDS (B1F1H1,

B1F1H1M1, B1F1H1M1Z1) tend to have positive economic impacts

for both adopters and non-adopters, whereas the single and

two option CSDS may not be as beneficial. The significant

positive ATU values for non-adopters suggest that there may

be barriers to adoption that are not economic, such as lack

of access to technology, knowledge, or other resources. The

findings emphasize the significance of selecting the appropriate

CSDS to maximize economic returns and promote climate-

smart agriculture practices. Strategies that offer multiple options

(B1F1H1, B1F1H1M1, B1F1H1M1Z1) seem more economically

advantageous for adopters, suggesting that a comprehensive

approach to CSDS may be more beneficial. The finding supports

the validity of counterfactual modeling for estimating yield gains

under climate-smart agriculture (Musafiri et al., 2022b).

3.3.1 Robustness check using the IPWRA
When treatment is multivalued, a treatment effects model could

be appropriate (Akzar et al., 2023). The study employed the IPWRA

model to conduct a comparative analysis between the MESR model

results and determine the best model between the two. The IPWRA

model has a double robust property and thus offers consistent

estimates even when one of the models (outcome or treatment)

is misspecified (Caldera, 2019). It also accepts various outcomes

such as count, continuous, fractional, or nonnegative variables.

Moreover, it can handle both binary and multivalued treatment

variables. The findings indicate that the direction of the average

treatment on treated was the same for both models. However, the

MESR model had more significant outcomes and lower standard

errors than IPWRA (Tables 5, 6; Tables A3, A4). Although both

results indicate that adopting multiple CSDS positively influenced

milk production and gross margin, IPWRA estimates were less

precise. Additionally, the IPWRA model does not account for

unobserved heterogeneity, such as individuals’ motivation and

skills (Zegeye et al., 2022).

4 Conclusions and policy implications

This study on the effects of adopting CSDS yields several

insights into how these strategies affect productivity and economic

returns in Nyandarua County, Kenya. The study’s findings

underscore the importance of adopting comprehensive and

multifaceted CSDS to maximize economic benefits and promote

sustainable agricultural practices. Implementing a single CSD

strategy or none significantly reduces productivity for adopters

and non-adopters, indicating that minimal adoption is ineffective.

In contrast, a holistic approach encompassing multiple strategies

leads to better economic outcomes. This is evident as the number

of CSDS increases, and there is a corresponding improvement in

productivity, particularly for adopter farmers. This trend suggests

that more integrated approaches to CSDS yield better results

and can transform the dairy sector by enhancing productivity

and sustainability.

The study highlights the significant economic advantages of

adopting a more comprehensive CSDS. Specifically, strategies like

B1F1H1M1Z1 show the highest benefits for non-adopters, while

the B1F1H1 strategy is most beneficial for adopters. These findings

suggest that while specific strategies are universally effective,

others may need to be tailored based on whether a farmer is an

adopter or non-adopter of CSDS. This differentiation is crucial for

maximizing the economic benefits and ensuring that all farmers

benefit from CSDS.

Furthermore, the statistically significant ATT and ATU values

across different strategies affirm the reliability of the findings.

These metrics demonstrate that the positive impacts of CSDS

are not random but statistically robust, giving policymakers and

stakeholders confidence in their efficacy.

While productivity is a crucial factor, the study emphasizes the

importance of considering other aspects, such as environmental

impact, cost, and feasibility, in evaluating the overall effectiveness

of CSDS. This broader perspective ensures that CSDS not

only enhances economic outcomes but also contributes to

environmental sustainability and the long-term viability of the

dairy sector.

Various farmers’ demographic factors, socioeconomic

characteristics, social capital and institutional factors, and

entrepreneurial and behavioral factors influence the adoption
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TABLE 6 ATT and ATU estimates of MESR model (Gross margin per year).

CSDS Scenario Gross margin of
actual (a)

Gross margin of
counterfactual (b)

Treatment e�ects:
ATT/ATU (a–b)

SE

No or Single option CSD Adopter 29,067.68 85,294.69 ATT=−56,227.01∗∗∗ 4,018.275

Non-adopter 26,528.11 106,785.7 ATU= 80,257.59∗∗∗ 1,995.988

Two option CSD Adopter 58,492.07 64,247.66 ATT=−5,755.589 2,369.204

Non-adopter 81,092.45 108,635.6 ATU=−27,543.11∗∗∗ 1,448.303

B1F1H1 Adopter 97,933.23 79,283.98 ATT= 18,649.25∗∗ 4,453.917

Non-adopter 108,782.1 99,755.18 ATU= 9,026.934∗∗ 2,380.734

B1F1H1M1 Adopter 117,088.4 100,314.9 ATT= 16,773.48∗∗∗ 1,553.471

Non-adopter 120,628.1 92,490.63 ATU= 28,137.51∗∗∗ 1,313.303

B1F1H1M1Z1 Adopter 129,389.7 115,265.3 ATT= 14,124.49∗∗∗ 1,939.901

Non-adopter 128,384.7 86,155.14 ATU= 42,229.57∗∗∗ 1,642.285

∗∗∗ , ∗∗denotes statistical significance at 1%, 5% and 10% level.

of multiple CSDS. This highlights the relationship of human,

physical, and financial resources in successfully adopting CSDS.

Understanding these influences can help in designing targeted

interventions that address the specific needs and challenges faced

by different groups of farmers.

For example, the findings from our MNL model suggest that

policies should support strengthening agricultural groups and

cooperatives and expanding extension services. These institutions

are vital for fostering the adoption of CSDS, leading to more

sustainable and productive dairy farming practices. Encouraging

long-term engagement in agricultural groups and cooperative

membership can significantly enhance farmers’ propensity to

implement comprehensive CSDS. Additionally, trust-building

initiatives within extension services can further promote the

adoption of beneficial dairy technologies.

The findings of this study underscore the need for integrated

policy interventions that address the multiple barriers to CSDS

adoption. Policymakers should consider bundled support packages

that combine access to training, credit, and extension services to

improve uptake. Training programs should go beyond introducing

individual CSDS to demonstrate the synergistic benefits of adopting

multiple complementary strategies. Such an approach would help

farmers understand how integrating strategies such as improved

feeding, manure, and animal health management can enhance

productivity, profitability, and environmental sustainability.

Moreover, targeted support should be directed toward aging

farmers, who may face physical limitations in adopting labor-

intensive technologies. Interventions such as labor-saving devices,

youth engagement in farm labor, and simplified technologies

could reduce physical strain and improve adoption among older

demographics. In addition, policies should support farmer groups

and cooperatives as channels for disseminating CSDS knowledge

and offering collective access to inputs and finance. These

actionable insights provide a pathway for scaling CSDS adoption

while ensuring inclusivity and long-term sustainability.

A holistic approach, combining financial, educational, and

entrepreneurial support, is essential for the widespread adoption

of CSDS and the sustainability of dairy farming in the

face of climate change. Policies should focus on providing

financial support, improving infrastructure, offering targeted

education, and encouraging research to understand local adoption

barriers. Customized approaches and behavioral interventions

are recommended to ensure farmers’ intentions to adopt CSDS

translate into actual practice, promoting sustainable and resilient

dairy farming.

The present study provides compelling evidence for adopting

multiple and integrated CSDS to maximize productivity and

economic benefits in the dairy sector. While the analysis is

grounded in the Kenyan context, the findings have broader

relevance for livestock systems across Sub-Saharan Africa, where

smallholder dairy farming faces similar challenges such as climate

variability, low productivity, limited access to extension, and aging

farmer populations.

Although the study provides valuable insights, it is important

to acknowledge some of its limitations. First, the study was limited

by financial resources, which restricted it to four out of eight sub-

counties in Nyandarua County. Secondly, the focus on Nyandarua

Countymay not represent all dairy producers in Kenya. Thirdly, the

effects of CSDS on milk productivity and gross margin may not be

fully captured due to the unavailability of longitudinal data. Finally,

the study relied on farmers’ capacity to recall production input and

output information. This may contribute to inconsistencies in the

reported data, as most farmers do not keep farm records.

Given the reliance on self-reported data for variables such

as milk yield, input costs, and milk price, potential recall bias

was addressed through multiple measures. Enumerators used

short recall periods, specifically asking farmers to report on daily

milk yields and input costs based on monthly expenditures.

To aid memory, enumerators guided probing. Where possible,

farmers were encouraged to refer to existing records or receipts.

Despite these efforts, we acknowledge that some recall errors

may persist.

Future research endeavors might expand their scope to

overcome these limitations, facilitating the generalization of

findings to broader populations and enabling comparisons between

rural and urban settings. Further, future studies could consider

panel data for robust impact evaluation. Future research could

also enhance data reliability by triangulating self-reported figures
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with farm records or integrating digital record-keeping tools like

mobile apps.
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Appendix

Pre estimation tests

Table A1 Variance inflation factor.

Variables VIF 1/VIF

Education 1.854 0.539

Age 1.823 0.549

Experience 1.75 0.572

Entrepreneurial orientation 1.516 0.659

Coopmember 1.335 0.749

Land size 1.254 0.798

Herd size 1.252 0.799

Risk perception 1.237 0.808

Gender 1.229 0.814

Awareness 1.199 0.834

Off Income 1.154 0.867

Extenesion access 1.147 0.872

Behavioral intention 1.139 0.878

Credit amount 1.093 0.915

Group membership 1.073 0.932

Training 1.065 0.939

Household size 1.061 0.943

Distance to input market 1.049 0.954

Mean VIF 1.29

Table A2 Simple falsification test of the excluded instrument

(group duration).

Outcome
variable

CSD F-statistic P-value

Milk production One or none 0.02 0.9022

Two 0.97 0.3303

B1F1H1 0.04 0.8398

B1F1H1M1 0.8398 0.2587

B1F1H1M1Z1 0.2587 0.9029

Gross margin One or none 0.12 0.7346

Two 0.7346 0.1951

B1F1H1 0.16 0.6891

B1F1H1M1 0.60 0.4398

B1F1H1M1Z1 0.4398 0.9268

Insignificant P-values indicate that the instrument does not affect the outcome variables; thus,

a good instrument.

Robustness check results

Table A3 Inverse probability weighting regression adjustment estimates

for productivity.

CSDS Milk yield
of actual
adoption

(a)

Milk yield of
counterfactual
adoption (b)

ATET
a–b

SE

One or none

CSDS

1,168.25 2,732.124 –1,563.874∗∗∗ 288.6449

Two CSDS 1,882.214 2,348.952 –466.7381∗ 251.3508

B1F1H1 2,798.900 2,297.654 501.2464∗ 266.7496

B1F1H1M1 3,102.965 2,804.388 287.0435 175.9219

B1F1H1M1Z1 3,318.908 3,025.588 293.3196 224.594

∗∗∗ , ∗ denotes statistical significance at a 1%, and 10% levels, respectively.

Table A4 Inverse probability weighting regression adjustment estimates

for gross margin.

CSDS Gross
margin
of actual
adoption

(a)

Gross margin
of

counterfactual
adoption (b)

ATET
a–b

SE

One or none

CSDS

29,067.69 98,648.32 –69,580.63∗∗∗ 15,474.67

Two CSDS 58,492.07 71,073.18 –12,581.11 11,614.29

B1F1H1 92,882.75 81,320.22 16,613.01 11,562.53

B1F1H1M1 117,079.42 103,798.3 13,290.12∗ 7,393.479

B1F1H1M1Z1 129,389.71 115,893 13,496.71 8,674.357

∗∗∗ , ∗ denotes statistical significance at a 1%, and 10% levels, respectively.
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