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Introduction: The empowerment of agricultural green transformation through 
the digital economy has emerged as a critical pathway toward sustainable 
development.

Methods: Utilizing panel data from 286 Chinese cities spanning from 2011 to 
2023, this study employs the “Broadband China” Strategy as a quasi-natural 
experiment to construct a multi-period difference-in-differences (DID) model. 
We examine the impact of the digital economy (DE) on agricultural green total 
factor productivity (AGTFP), while also exploring its underlying mechanisms, 
heterogeneous characteristics, and spatial spillover effects.

Results: The findings reveal the following: (1) The DE significantly enhances AGTFP. 
(2) This enhancement is driven by green technology innovation, environmental 
regulation, and financial development. (3) The impact of DE on AGTFP varies 
across natural geographical factors and socio-economic factors. (4) Positive spatial 
spillover effects are observed in the impact of DE on AGTFP.

Discussion: This study highlights that to achieve sustainable agricultural growth, 
it is crucial to continuously promote rural digital economy development, 
leverage financial instruments to support agricultural green transformation, 
implement region-specific development strategies, and strengthen inter-
regional cooperation and communication.
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1 Introduction

Agriculture, as the most fundamental sector in the national economic system, not only 
provides significant social benefits but also contains profound economic value. However, 
under the traditional agricultural model, the issue of low capital return rate has long restricted 
the realization of its economic potential. This reality has prompted industrialized countries 
worldwide to systematically integrate modern production factors into the agricultural field, 
with the aim of enhancing agricultural profitability and ensuring sectoral stability. For China, 
a country with vast agricultural resources, the post-1978 reform and opening-up period has 
witnessed remarkable agricultural advancements. Historical records indicate that the gross 
output value of the primary industry has grown at an average annual rate of 5.5% at constant 
prices over the past 45 years. Concurrently, national grain production has risen from 304.76 
million to 695.41 million metric tons, and exceeded 700 million tons for the first time in 2024.
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When reviewing China’s agricultural development trajectory, a 
historical prioritization of quantitative growth over sustainable 
frameworks has brought forth a series of environmental challenges 
that require careful consideration, including the intensive utilization 
of agrochemicals driven by yield maximization, soil salinization risks 
associated with suboptimal irrigation practices, and farmland quality 
management issues linked to agricultural waste disposal mechanisms 
(Zhou and Zhang, 2024). Since the early 21st century, China’s 
agricultural sector has emitted approximately 1 billion tons of CO2 
equivalent annually (Tian and Yin, 2022). Notably, recent findings 
indicate that agricultural non-point source pollution has become a 
non-negligible contributor. In terms of pollutant emissions, it has 
exhibited a trend of exceeding industrial and domestic sources in 
certain indicators, accounting for 64.2% of chemical oxygen demand 
(COD), 52.7% of total nitrogen (TN), and 70.6% of total phosphorus 
(TP) emissions (Ministry of Ecology and Environment of the People’s 
Republic of China, 2024). Such pollution incurs economic costs 
equivalent to 6% of agricultural GDP (Tang et al., 2016), with broader 
implications for ecological quality, food security, and public 
well-being.

The persistent ecological deficit will gradually materialize its 
adverse impacts on the growth potential of agriculture, suggesting that 
a transformative shift is worth consideration. To achieve sustainability, 
it is crucial to advance strategies for the green transition of agriculture 
to harmonize economic benefits with ecological preservation (Khan 
and Ali, 2022). China has consistently maintained an exploratory 
stance in eco-governance, deepening its insight and innovation 
concerning the development pathways of green agriculture through 
systematic methodologies. As early as 2008, the Chinese government 
proposed establishing a “resource-efficient and environmentally 
friendly agricultural production system” to modernize practices. Since 
the second decade of the 21st century, China has been progressively 
shifting its national economic paradigm from “quantity-oriented 
growth” to “quality-driven improvement” (Hao et  al., 2021). The 
transition was supported by top-level strategies, with multiple Central 
No.1 Documents explicitly emphasizing improving agricultural 
quality through green development. During this period, a series of 
policy frameworks—including the National Agricultural Sustainable 
Development Plan (2015-2030), Opinions on Innovating the System 
and Mechanism to Promote Green Agricultural Development, and the 
14th Five-Year Plan for National Green Agricultural Development—
have systematically outlined the pathway for green agricultural 
progress. The 20th National Congress Report of the Communist Party 
of China further elevated agricultural green development as a key 
component of national rejuvenation. In contrast to conventional total 
factor productivity (TFP), green total factor productivity (GTFP) 
incorporates environmental factors into its analytical framework 
(Weitzman, 1976; Kumar and Khanna, 2009). This indicator effectively 
evaluates the level of high-quality economic development under 
environmental constraints, emphasizing the principles of 
environmental sustainability, efficiency, and green growth. Research 
confirms that improving agricultural green total factor productivity 
(AGTFP) is a viable strategy for green agricultural development (Wu 
et al., 2020).

The digital economy, developing at an unprecedented pace, has 
become the cornerstone of modern industry and a primary driver of 
global business innovation. This paradigm has exerted and will 
continue to exert a profound impact on socio-economic development 

and global governance evolution. According to official reports, China’s 
digital economy has gained significant prominence within its national 
economic structure. By 2023, its scale had expanded 3.8 times over the 
past 11 years, accounting for 42.8% of the annual GDP and 
contributing 66.45% to overall economic growth (China Academy of 
Information and Communications Technology, 2024). Notably, 
industrial digitalization reached 43.84 trillion CNY, accounting for 
81.27% of the total digital economy, thereby highlighting its pivotal 
role in upgrading traditional industries. Although the digital 
penetration rate in China’s primary sector stood at 10.78% in 2023—
relatively modest in comparison to the secondary and tertiary 
sectors—the agricultural sector is actively pursuing digital 
transformation to achieve leapfrog development along green growth 
pathways. The enhancement of AGTFP, a critical metric evaluating the 
dual objectives of production efficiency and environmental 
sustainability, fundamentally relies on the extensive application and 
deep integration of digital technologies. Since the implementation of 
the “Broadband China” Strategy in 2013, the Chinese government has 
progressively designated 117 pilot cities (urban clusters), fostering 
substantial progress in national informatization and digital economic 
development. This raises several critical research questions: Has this 
pilot policy effectively promoted improvements in AGTFP? What are 
the underlying mechanisms driving this effect? What distinctive 
characteristics do the policy effects exhibit? Addressing these 
questions bears significant practical implications for achieving green 
and high-quality agricultural development in the digital era.

The structure of this study is as follows: Following the 
introduction, Section 2 provides a review of relevant literature. Section 
3 outlines the policy context and presents a theoretical analysis. 
Section 4 details the variables, models, and data employed in the study. 
Section 5 examines empirical results, which have been subjected to a 
series of robustness tests. In Section 6, we  further analyze the 
mechanisms, heterogeneous characteristics, and spatial spillover 
effects. Section 7 is the discussion. Finally, Section 8 summarizes the 
research conclusions and offers policy recommendations.

2 Literature review

In studies examining the impact of the digital economy (DE) on 
AGTFP, scholars have employed both qualitative and quantitative 
approaches. From a theoretical perspective, Le Clech and Fillat-
Castejon (2020) argued that agricultural systems have been 
undergoing a digital revolution, particularly through the global 
proliferation of Internet of Things (IoT) technologies. These 
innovations facilitate intelligent resource management, critical for 
enhancing agricultural productivity and sustainable development. 
Rijswijk et al. (2019) applied the concept of “disruptive forces” to 
characterize digitalization’s transformative effects on agriculture. 
Through a case study of Sub-Saharan Africa, Mapiye et al. (2021) 
demonstrated that digitalization significantly improves accessibility to 
information and services, thereby enhancing agricultural productivity 
and farmer livelihoods. Chen (2021) identified that DE-driven rural 
industries leverage the multiplier effect of information technology to 
optimize agricultural input–output efficiency. Synthesizing these 
insights, Luo et  al. (2022) systematically analyzed the efficiency-
enhancing mechanisms and positive externalities of the DE through 
three dimensions—agricultural production systems, operational 
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systems, and industrial systems. Their work further established the 
foundational role of digital technologies in facilitating agricultural 
functional expansion.

Extensive empirical research supports that the DE serves as a 
catalyst for TFP growth (Pfeiffer et al., 2020; Naqeeb and Giulia, 2023). 
The integration of digital technologies into agricultural industries has 
reshaped resource management paradigms, reduced allocation 
disparities, and led to greener practices (Sharma et al., 2020; de Obade 
and Gaya, 2021), with EU data validating these effects (Bocean, 2024). 
In Denmark, precision farming technologies and controlled traffic 
systems alleviate ecological pressures while generating sustained 
economic benefits (Jensen et  al., 2012). Canadian farmers widely 
recognized the advantages of digitalization in enhancing work quality, 
advancing farm productivity, and improving agricultural profitability, 
particularly strong among early adopters (Abdul-Rahim et al., 2024). 
Although innovative technologies (e.g., GPS-based fertilization) 
emerge in high-income countries, they have a substantial impact on 
the improvement of agricultural output in underdeveloped economies 
(Li T. et  al., 2024). In Brazil, the digital agricultural technology 
paradigm is oriented towards better land use and lower socio-
environmental impacts, promoting the growth of ATFP in a green 
manner (Souza et  al., 2020). In Bangladesh, the modest rate of 
agricultural productivity growth primarily benefits from technological 
progress, and this transformation is the result of the diffusion of green 
technologies (Bagchi et al., 2019). Evidence from six Southeast Asian 
countries also indicates that the sustainable path of agricultural green 
development is driven by technological innovation rather than 
technological efficiency promotion. In brief, the higher the level of 
green technology, the greater the likelihood of improving AGTFP 
(Hamid et al., 2023). A micro-survey in Tanzania reveals that digital 
technologies, represented by radio and SMS, have improved 
smallholder farmers’ awareness and adoption of sustainable 
agricultural practices through cost-effective information 
dissemination (Silvestri et  al., 2021). Through case studies of 
developing countries, Deichmann et  al. (2016) demonstrated that 
digital technologies help mitigate information asymmetries in 
agricultural supply chains, unlocking potential digital dividends for 
rural areas. Nevertheless, they warned that multidimensional digital 
divides could exacerbate developmental inequalities. Krishna and 
Naik (2020) emphasized that limited channels for information 
dissemination in India contribute to gaps in crop production practices, 
potentially resulting in higher production costs, lower yields, and 
worsening environmental degradation. However, emerging evidence 
suggests nonlinear U-shaped or inverted U-shaped relationships 
between digital investments and agricultural green development 
(Wang et al., 2023; Fu et al., 2024; Zhou et al., 2023), whereas Dutch 
dairy farm case studies have demonstrated statistically insignificant 
effects of digital equipment adoption on productivity growth and 
technological advancement (Steeneveld et al., 2015).

Recent scholarly investigations have provided significant empirical 
insights into China’s digital agricultural transformation. Based on 
provincial panel data from 30 Chinese mainland provinces (excluding 
Tibet), Hong et  al. (2023) and Zeng et  al. (2024) demonstrated 
measurable enhancements in AGTFP driven by DE. Zhang Q. et al. 
(2024) further elucidated that technical efficiency improvements 
constitute the primary mechanism underlying this productivity boost. 
Using the forestry sector as a case study, Chen C. et  al. (2023) 
identified regional heterogeneity in this effect, with eastern and 

northeastern regions outperforming central and western. Wen et al. 
(2024) emphasized a critical mismatch between China’s agricultural 
trajectory and green productivity needs. Their findings position 
digitization as a mediator capable of bridging this gap, thereby 
facilitating the development of sustainable agricultural frameworks. 
Moreover, several studies have covered the Yangtze River Economic 
Belt (Wu and Song, 2018), the Yangtze River Delta region (Bao et al., 
2023) and the Dongting Lake region (Du and Dai, 2020), while others 
have utilized city-level data from provinces such as Jiangsu (Ma and 
Lv, 2024), Zhejiang (Jin and Zhong, 2024), and Shandong (Peng et al., 
2024a). County-level analysis reveals that a one-percentage-point 
increase in rural digitalization corresponds to a 1.78% increase in 
AGTFP (Lu S. et al., 2024). Additionally, a survey conducted among 
Chinese melon farmers provides micro-level empirical support for the 
role of the DE in promoting the green transformation (Musajan et al., 
2024). Hua et al. (2024) further argued that digital monitoring has 
promoted environmentally friendly practices in swine breeding.

Scholars have also adopted multidimensional analytical 
frameworks to examine the impact of DE on AGTFP, generating a 
range of interpretations and findings. Industrial evolution studies 
identify underlying mechanisms including industrial structure 
upgrading (Chen C. et al., 2023; Gao et al., 2022), rural industrial 
integration (Zeng et  al., 2024), and agricultural industrial 
agglomeration (Liu, 2024). Production factor analyses emphasize the 
mediating roles of large-scale farmland operation (Hu et al., 2023), 
labor transfer (Song et al., 2025), agricultural capital deepening (Wu 
et al., 2025), green technological innovation (Chen C. et al., 2023; 
Gao et al., 2022), and production management skills (Cai and Han, 
2024). Notably, Guo and Liu (2023) empirically validated a resource 
allocation mechanism in which digital village construction promotes 
AGTFP by mitigating factor mismatches in labor, land, and capital. 
As an optimized capital allocation mechanism, digital inclusive 
finance—representing the financial dimension of the DE—has a 
positive effect on AGTFP improvement (Gao et al., 2022), with digital 
logistics serving as a critical implementation channel (Xu et  al., 
2025). Liu et al. (2024), utilizing provincial panel data, evaluated the 
effectiveness of financial agglomeration in driving carbon emission 
reduction in the agricultural sector. Furthermore, Lu S. et al. (2024) 
demonstrated that rural digitization stimulates entrepreneurial 
activities in rural areas, thereby enhancing AGTFP—with the 
mediating effect accounting for 3.34% of the total effect. Threshold 
analyses revealed diminishing AGTFP marginal returns from digital 
village construction when environmental regulation exceeds optimal 
intensity (Cai and Han, 2024). Spatial econometric modeling has 
further confirmed positive spatial autocorrelation in DE, revealing 
significant AGTFP spillover effects through spatial weight matrices 
(Lu S. et al., 2024).

The reviews of existing literature reveal substantial scholarly 
achievements alongside three limitations: first, most studies rely on 
provincial-level data or use such data as a sample for regional analyzes, 
with scarce research conducted on larger-scale datasets. Compared to 
city-level data, the former is more prone to aggregation bias, which 
affects the accuracy of regression analysis. Second, although causal 
effects between DE and AGTFP have been extensively explored, the 
prior studies predominantly treat quantitative assessments of policy 
effects as part of robustness tests rather than core analytical objectives. 
Third, existing literature has primarily explored mechanisms through 
perspectives such as industrial evolution and production factors, 
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whereas the perspective of financial development—despite finance’s 
centrality in modern economies—remains underexplored.

Accordingly, we utilize panel data from 286 Chinese cities spanning 
from 2011 to 2023 and employ the “Broadband China” Strategy as a 
quasi-natural experiment within a multi-period difference-in-differences 
(DID) model to examine the impact of DE on AGTFP. We  further 
explore the underlying mechanisms, heterogeneous characteristics, and 
spatial spillover effects. Compared with existing literature, the potential 
marginal contributions of this study are as follows: First, we  use 
nationwide city-level panel data and a DID model to quantitatively assess 
the policy effects of the “Broadband China” Strategy, identifying the 
causal relationship between DE and AGTFP. Furthermore, we examine 
heterogeneity across natural geographical factors (e.g., natural 
geographical locations, precipitation distributions, and terrain relief 
degrees) and socio-economic factors (e.g., agricultural functional zones, 
digitalization levels, and financial literacy levels), while testing for spatial 
spillover effects to enhance interpretability and generalizability. Second, 
in constructing an evaluation index system for AGTFP, we innovatively 
incorporate “agricultural ecological value” as a desired output indicator—
measured by the actual ecological value—thereby enhancing the 
scientific rigor and comprehensiveness of the evaluation framework. This 
approach considers not only agricultural economic value but also its 
ecological performance. Third, using financial development as the entry 
point, we constructed a comprehensive indicator system composed of 
financial scale, financial structure, and financial efficiency. We analyzed 
the role of financial development in the impact of the DE on AGTFP, 
highlighted the core position of finance in the modern economy, and 
provided new empirical evidence and policy insights for understanding 
how the DE promotes agricultural green transformation through 
financial channels.

3 Policy background, theoretical 
analysis, and research hypotheses

3.1 Policy background

For a prolonged period, China’s digital transformation faced 
systemic constraints due to underdeveloped broadband infrastructure, 
limited network coverage, and suboptimal stability in performance. 
According to data from the International Telecommunication Union 
(ITU), in 2011, Chinese mainland ICT Development Index was 
recorded at 3.88, ranking 78th among 155 global economies—a 
significant gap relative to developed nations in Europe and North 
America. In response to these challenges, the Chinese government 
instituted the “Broadband China” Strategy and Implementation Plan 
in 2013, outlining five strategic priorities, including coordinated 
regional broadband development, accelerated network modernization, 
and enhanced broadband applications. In the subsequent 3 years, 117 
cities (city clusters) at different levels covering the eastern, central and 
western regions were selected in phases as pilot zones for the 
“Broadband China” Strategy. The primary objective was to bolster 
network supply capacity and service quality through improved digital 
infrastructure, which laid a foundation for integrating digital elements 
into agricultural practices and driving green transformation.

The implementation of the strategy has yielded significant 
outcomes with particular relevance to fields of agriculture and 
rural areas. According to data from the Ministry of Industry and 

Information Technology (MIIT), by the end of 2024, China had 
670 million fixed broadband subscriptions, with rural users 
comprising 29.9% of this total. This rural broadband penetration 
has been pivotal in enabling the adoption of digital technologies 
aligned with green agricultural principles. The advancement of 
fiber-optic networks has enabled 207 gigabit-capable cities to 
provide ultra-high-speed connectivity to over 500 million 
households, and has supported the deployment of smart 
agricultural systems in rural areas. For instance, precision 
agricultural technologies, such as GPS autosteering tractors, 
depend on high-speed broadband to collect and analyze real-time 
data (Chancellor, 2023). This process, by minimizing resource 
waste and environmental impact, embodies the fundamental 
principles of green agriculture.

Furthermore, the nation has deployed 4.251 million 5G base 
stations, ensuring comprehensive urban coverage at prefecture and 
county levels, with 5G adoption rates surging to 70%, which has 
enabled the development of remote monitoring and management 
solutions for agricultural production. In the realm of green agriculture, 
5G-based technologies enable real-time environmental monitoring, 
automatic pest and disease identification, and carbon footprint 
measurement, among other functions. These capabilities enable data-
driven decision-making, which helps decrease dependence on 
intensive farming methods, encourages sustainable land utilization, 
and improves the traceability of green agricultural products. These 
applications exemplify how improved broadband connectivity enables 
the adoption of green agricultural practices, aligning with China’s dual 
objectives of digital economy advancement and ecological 
civilization construction.

The “Broadband China” Strategy has not only catalyzed the rapid 
growth of digital infrastructure but has also accelerated the pervasive 
integration of digital applications across various industries, thereby 
accelerating the convergence between the digital and real economies. 
Fundamentally, the DE, as a novel economic paradigm, is highly 
dependent on a well-developed digital infrastructure, particularly 
broadband networks. As the primary conduit for digital information 
transmission, broadband infrastructure establishes the physical 
foundation for digitalization. Its enhancement is manifested in 
multiple dimensions, such as network coverage expansion, 
transmission velocity optimization, and service accessibility 
improvement, all of which are critical indicators reflecting regional 
digital maturity.

Research by Zhao et al. (2020) and Tian and Zhang (2022) further 
confirms the strong correlation between digital infrastructure 
advancement and digital economic growth, highlighting the proactive 
role of the “Broadband China” Strategy. The highly correlation 
between broadband infrastructure enhancement and digitalization 
progression stems from the fact that advanced broadband networks 
not only enhance data transmission efficiency but also reduce 
adoption barriers for digital technology. This, in turn, promotes the 
widespread application of digital solutions across different industries, 
including agriculture. The strategic implementation creates synergistic 
interaction between digital infrastructure development and industrial 
green transformation, establishing an enabling ecosystem for digital-
green integration in agricultural practices. Therefore, our study posits 
that the “Broadband China” Strategy serves as an institutional 
embodiment of digital economy evolution. Meanwhile, the strategy 
adopts a phased and gradual promotion model. This design meets the 
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exogeneity requirement of policy shocks and reduces its correlation 
with concurrent local agricultural policies, which can be regarded as 
an ideal quasi-natural experiment. We  employ this national pilot 
policy as a proxy variable to measure DE, thereby constructing a novel 
analytical framework to examine policy-driven digitalization impacts 
on agricultural sustainability.

3.2 Theoretical analysis and research 
hypotheses

3.2.1 The direct impact of DE on AGTFP
Departing from traditional economic paradigms, the DE, 

characterized by its distinctive advantages in processing massive data, 
reducing search costs, and improving matching quality and 
transaction efficiency between the supply and demand sides, is 
profoundly transforming conventional agricultural production 
methods and management practices (Borenstein and Saloner, 2001). 
This transformation stems from the integration of digital technologies 
into physical industries and their role in driving agricultural digital-
intelligent transformation and green transition.

At the macro level, the sustained implementation of the 
“Broadband China” Strategy has invigorated the development of 
digital infrastructure, thereby promoting the optimization of 
agricultural systems. First, the strategy facilitates intelligent allocation 
and efficient utilization of agricultural resources. By expanding rural 
broadband coverage and boosting network transmission speeds, it 
provides essential support for digital management of agricultural 
production factors. Through high-speed connectivity, agricultural 
producers can employ IoT and big data technologies to gather real-
time information on soil moisture, meteorological data, and crop 
growth. Such practices allow for the precise and dynamic adjustment 
of water, fertilizers, and pesticides, reducing resource waste and 
environmental pollution, and advancing the green transformation of 
the “input side” in AGTFP (Radoglou-Grammatikis et  al., 2020; 
Barros et al., 2020). Second, the strategy assists in establishing a data-
driven environmental monitoring and green technology dissemination 
system. High-speed broadband networks enable real-time tracking 
and quantification of environmental indicators (e.g., carbon emissions 
and non-point source pollution), which is achieved via remote sensing 
and drone technologies. Agricultural ecological data platforms 
facilitate dynamic ecological benefit assessments (Sun, 2022), 
supporting targeted green subsidy policies. Digital technologies also 
accelerate the diffusion of sustainable agricultural innovations, 
reducing technology adoption costs and driving the shift to 
low-emission, high-efficiency production models (Li, 2024). Third, the 
strategy promotes the deep integration of agricultural value chains 
with the DE. Emerging models such as agricultural e-commerce and 
smart logistics, catalyzed by broadband development, have 
reconfigured agricultural product supply-demand mechanisms. Rural 
e-commerce streamlines supply chains, reducing costs and promoting 
high-value-added products to optimize the “desired output” in 
AGTFP (Song et al., 2021). Meanwhile, broadband-supported cold 
chain logistics monitoring ensures product quality and reduces post-
harvest waste, enhancing the overall efficiency and sustainability of 
the agricultural sector.

At the meso-level, the implementation of the “Broadband China” 
Strategy significantly promotes the integration of digital technologies 

into agricultural sector, thereby reshaping industrial organization and 
structural framework. First, the strategy enhances digital collaboration 
and efficiency across agricultural industry chains. The proliferation of 
broadband networks breaks down information barriers among 
production, processing, and distribution segments (Ma and Lv, 2024). 
Industrial internet platforms enable end-to-end data integration, from 
pre-production procurement to post-harvest marketing. For example, 
processing enterprises utilize real-time crop data to meet green 
product demands and guide crop structure optimization. Logistics 
firms optimize routes using network data, reducing agricultural 
product loss. Such digital coordination mitigates information 
asymmetry and resource misallocation, improves input–output 
efficiency, and boosts the technical efficiency in AGTFP. Second, the 
strategy accelerates greening and specialization in agricultural 
industrial clusters. Network platforms facilitate technology sharing, 
resource complementarity, and market coordination, speeding up 
digital transformation. In digital-developed regions, agricultural 
clusters establish shared laboratories and remote technical service 
centers via broadband, promoting green technology applications and 
reducing individual enterprises’ R&D costs. Concurrently, cluster 
enterprises jointly build green brands, creating advantages of scale and 
environmental sustainability, thus elevating regional AGTFP (Zhang 
et al., 2022; Ding et al., 2024). Third, the strategy optimizes spatial 
allocation and structural adjustment of agricultural production 
factors. By reducing information search and transaction costs, it 
guides production factors towards greener and more efficient 
applications (Xu et  al., 2023). This “green orientation” of factor 
allocation drives agricultural industries towards resource-efficient and 
eco-friendly models, structurally enhancing AGTFP. Moreover, digital 
technologies have spurred the deep integration of agriculture with the 
secondary and tertiary sectors (Huang et al., 2023). The integration 
has birthed diverse business models that expand the scope of 
traditional agriculture, enhancing its comprehensive benefits and 
market competitiveness. Broadband networks, as the linchpin of these 
changes, provide technological support for inter-industry integration, 
further optimizing resource allocation and strengthening the 
sustainability of agricultural growth.

At the micro-level, the robust digital infrastructure constructed 
through the “Broadband China” Strategy has fully unleashed the 
potential of digital tools, profoundly empowering behavioral shifts 
among agricultural production entities. First, the strategy bolsters 
farmers’ digital literacy and willingness to adopt green production 
technologies. For instance, farmers can obtain green cultivation 
techniques (e.g., eco-friendly pest control methods) through short 
videos and livestreaming (Aker, 2011; Ren et al., 2023). Meanwhile, 
e-commerce platforms provide real-time insights into consumer 
preferences for green agricultural products, thereby guiding 
production decisions. This digital enablement decreases dependence 
on traditional high-pollution practices, increases the acceptance of 
environmentally friendly technologies, and optimizes the pure 
technical efficiency in AGTFP. Second, the strategy propels digital 
transformation and managerial modernization in agricultural 
enterprises. Agribusinesses leverage broadband networks to deploy 
IoT-based monitoring systems and intelligent equipment, facilitating 
precision-controlled and automated production processes. For 
example, sensor-based real-time soil moisture monitoring enables 
automated irrigation adjustments to minimize water wastage, and big 
data analytics refines fertilization strategies to reduce chemical inputs 
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(Parra-López et al., 2024). Concurrently, digital traceability systems 
allow enterprises to conduct full-chain environmental impact 
assessments from field to table, meeting consumer demand for 
product transparency and enhancing product added value. Such 
digital transformation reduces production costs while increasing the 
potential for green premiums (Parida and Örtqvist, 2015; Goldfarb 
and Tucker, 2019), creating dual impetus for AGTFP growth. Third, 
the strategy intensifies consumer-driven market incentives for green 
production. The digital ecosystem fosters a transparent market 
information environment, enhancing the transmission of consumer 
preferences. Through e-commerce platforms and social media, 
consumers increasingly access product-specific environmental data, 
showing marked preference for low-carbon and organic products that 
command price premiums (Peng et al., 2024b; Huang and Dou, 2024). 
These demand-side signals, rapidly transmitted via broadband 
networks to producers, compel farmers and enterprises to adopt green 
standards. Consequently, a “demand-driven” green transition 
mechanism emerges at the micro-level, achieving dual optimization 
of “desirable outputs” and “undesirable outputs” in AGTFP.

Based on the foregoing analysis, we  propose the 
following hypothesis:

H1: Under the “Broadband China” Strategy, DE has a significant 
positive effect on AGTFP.

3.2.2 The indirect effects of DE on AGTFP

3.2.2.1 Green technological innovation
As a critical integration point between the DE and green 

agricultural development, what theoretical logic underlies green 
technological innovation? The following analysis will be conducted 
from the dimensions of accelerated knowledge flow, transformed 
innovation models, and promotion and application of achievements.

First, the “Broadband China” Strategy has consolidated the 
infrastructure for the DE and opened up a “high-speed channel” for 
knowledge flow in the agricultural sector. The high-speed and wide-
coverage broadband network it constructs, relying on its data 
integration capabilities, breaks down the barriers to knowledge flow 
in the traditional innovation system (Tang et al., 2021). On the one 
hand, it promotes the deep integration of knowledge from different 
disciplines and fields in green technological innovation, providing 
interdisciplinary support for the research and development of 
environmentally friendly agricultural technologies (Ning et al., 2023). 
On the other hand, it reduces the information exchange costs among 
scientific research institutions, enterprises, and farmers through 
digital innovation platforms, facilitating the rapid dissemination and 
sharing of cutting-edge theories and practical experience required for 
green technological innovation. The acceleration of knowledge 
accumulation lays a theoretical foundation for green technological 
innovation, enhances the quality and efficiency of innovation, and 
reserves technological strength for AGTFP improvement.

Second, the development of the DE has driven shifts in innovation 
models, particularly in the R&D phase, where its data-driven 
characteristics have played a crucial role. The “Broadband China” 
Strategy has achieved high-speed network coverage, creating 
conditions for the real-time collection and efficient analysis of 
agricultural production data. Through this, innovation entities can 
accurately identify the technical bottlenecks and demand pain points 

in agricultural green development, enhance the targeting of green 
technology R&D, and avoid resource waste and blind R&D efforts. 
Meanwhile, the application of technologies such as digital simulation 
and artificial intelligence in R&D has significantly shortened the 
technology development cycle. The high-speed data transmission 
channels facilitate the instant sharing of R&D data among scientific 
research teams in different regions, forming an efficient model of 
cross-regional collaborative R&D (Chen Y. et  al., 2023). The 
improvement in R&D efficiency enables faster introduction of new 
technologies that meet the needs of agricultural green development. 
When applied to crop production, these technologies will promote the 
improvement of AGTFP.

Third, the application of green technological innovation 
achievements in agricultural production is essential to improve 
AGTFP, and the “Broadband China” Strategy provides critical 
infrastructure support for this process. Digital platforms based on 
high-speed broadband networks break through spatial and temporal 
limitations, enabling rapid dissemination of green technological 
innovation achievements to farmers in remote areas. Farmers can 
obtain green technology information through mobile terminals and 
solve application challenges through online video guidance, remote 
expert consultations, and other means (Aker, 2011; Kansiime et al., 
2019). Furthermore, the DE drives transformations in agricultural 
production organization. Large-scale and intelligent agricultural 
operators, leveraging stable networks and efficient data processing 
capabilities, are more inclined to adopt and apply green technologies 
and can also drive surrounding farmers to collectively adopt new 
technologies. As green technological innovation achievements are 
widely popularized in crop cultivation, the production efficiency and 
sustainable development capabilities of the agricultural industry are 
enhanced, ultimately achieving a comprehensive improvement 
in AGTFP.

Based on the foregoing analysis, we  propose the 
following hypothesis:

H2: Under the “Broadband China” Strategy, DE exerts a significant 
positive effect on AGTFP through green technological innovation.

3.2.2.2 Environmental regulation
Environmental regulation serves as a vital means to promote the 

green transformation of agriculture, while the digital economy 
development provides momentum for environmental regulation. 
Taking environmental regulation as the entry point, the following 
theoretical discussion will be  conducted from the dimensions of 
precise decision-making, efficient supervision, and 
collaborative cooperation.

First, in traditional agriculture development, the goals of 
environmental regulation are often constrained by issues such as 
incomplete information collection and lagging data updates, resulting 
in insufficient pertinence. However, the implementation of the 
“Broadband China” Strategy enables the government to rely on an 
information network covering all aspects of agricultural production 
to obtain real-time multi-dimensional data on resource utilization and 
pollutant emissions. Through the analysis and mining of massive data, 
the government can accurately identify environmental issues in 
different regions, and then formulate environmental standards and 
regulatory policies that are suitable for the actual situation of 
agriculture (Wang and Fu, 2022). This kind of precision-oriented 
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approach avoids the efficiency loss of the “one-size-fits-all” model. It 
motivates farmers to proactively adjust production methods, increase 
investment in green technologies, optimize resource allocation, and 
improve environmental quality, providing support for the 
improvement of AGTFP from the institutional level.

Second, the effective implementation of environmental regulations 
depends on strict supervision. Technologies such as the IoT and big 
data promoted by the “Broadband China” Strategy have helped the 
government establish a full-fledged and real-time supervision system, 
which can accurately capture whether farmers’ production behaviors 
comply with environmental requirements. Such efficient supervision 
significantly reduces regulatory costs, enhances the precision and 
deterrence of supervision (Hampton et  al., 2013), and compels 
agricultural producers to abandon the traditional high-pollution and 
high-energy-consumption model and shift to green and low-carbon 
production technologies and management methods (Wang and Fu, 
2022). To meet regulatory requirements, farmers will take the initiative 
to adopt green technologies. While reducing agricultural non-point 
source pollution, these technologies can improve the quality and yield 
of agricultural products, achieve the coordinated improvement of 
production efficiency and ecological benefits, and directly promote 
AGTFP growth (Lu H. et al., 2024).

Third, the “Broadband China” Strategy enhances information 
sharing and collaborative cooperation among government 
departments, between governments and enterprises, and between 
farmers. This enables the government to use digital platforms to 
integrate resource data from multiple departments, and to deeply 
integrate environmental regulation with agricultural industry policies. 
Based on the agricultural production data provided by the DE, the 
government can formulate precise industrial support policies that 
align with environmental regulation objectives, guiding enterprises to 
increase investment in green technology R&D and farmers to adopt 
new technologies (Song et al., 2022). Meanwhile, relying on real-time 
data monitoring, the government can dynamically evaluate policy 
effects and adjust policy directions to ensure that environmental 
regulations match the needs of agricultural green development. This 
collaborative policy system optimizes the allocation of agricultural 
production factors, improves resource utilization efficiency, reduces 
environmental costs, and creates systematic support conditions for the 
sustained improvement of AGTFP.

Based on the foregoing analysis, we  propose the 
following hypothesis:

H3: Under the “Broadband China” Strategy, DE exerts a significant 
positive effect on AGTFP through environmental regulation.

3.2.2.3 Financial development
As the cornerstone of modern economy, the financial sector also 

plays an indispensable role in the process of the DE promoting the 
improvement of AGTFP. Therefore, from the perspective of financial 
development, we aim to analyze this indirect impact through three 
dimensions: financial scale, financial structure, and 
financial efficiency.

In terms of financial scale, the “Broadband China” Strategy utilizes 
digital technologies to break through the geographical limitations of 
rural financial services, promoting the extension of financial services 
to county-level rural areas. It activates the enthusiasm of farmers and 

agricultural SMEs for financial participation, thereby expanding rural 
green financial demand (Liang et al., 2022). In response, financial 
institutions allocate more resources to green technology fields such as 
smart irrigation and precision fertilization to support the green 
transformation of high-standard farmland (Zhang Y. et al., 2024). 
Meanwhile, broadband networks help improve farmers’ financial 
literacy and foster new business entities like agricultural cooperatives. 
The large-scale financing needs of these entities prompt financial 
institutions to expand the supply of green agricultural credit (Zhang 
and Wang, 2022; Ye et al., 2023). Additionally, the strategy accelerates 
the digitalization of agricultural industry chains, enhances production 
transparency, and drives financial institutions to design green financial 
products around industry chains. This promotes green transformation 
across the entire chain, forming a virtuous cycle between scale effects 
and green development.

In terms of financial structure, the “Broadband China” Strategy 
enables financial institutions to incorporate ESG factors into risk 
assessment. It optimizes credit structures, guides capital toward 
resource-saving agricultural projects, and promotes the green 
upgrading of traditional credit systems (Liu and Ren, 2023). The DE 
breaks down traditional financing barriers by relying on digital 
platforms to expand non-credit financing methods such as stocks and 
bonds, thereby constructing a diversified capital supply structure. This 
allows agricultural operators to flexibly adjust financing strategies and 
enhance the financial resilience of green production (Chu et al., 2024). 
In the insurance sector, digital technologies address the information 
asymmetry issue in traditional insurance, promoting the 
popularization of customized products such as climate index 
insurance and agricultural product price index insurance (Holmstrom, 
2021; Hu et al., 2022). This optimizes risk diversification structures, 
enhances the risk resistance capabilities of agricultural entities, and 
indirectly strengthens their motivation to adopt green technologies.

In terms of financial efficiency, the “Broadband China” Strategy 
gives rise to new entities such as internet financial platforms. Through 
competition, these entities urge traditional institutions to optimize 
processes, enhance risk control capabilities, and shorten the launch 
cycle of green financial products. Digital technologies reduce rural 
financial transaction costs through remote services and utilize big data 
to precisely assess the creditworthiness and financing needs of 
business entities, achieving efficient matching of funds with green 
agricultural projects (Wang and Fu, 2022; Ding et  al., 2023). 
Additionally, agricultural technology enterprises and financial 
institutions collaborate via technologies like blockchain to transform 
technological achievements into quantifiable credit assets. This 
improves the financing efficiency for green technology R&D and 
commercialization, promotes the large-scale application of green 
technologies, and achieves dual improvements in agricultural 
production efficiency and ecological sustainability.

Based on the foregoing analysis, we  propose the 
following hypothesis:

H4: Under the “Broadband China” Strategy, DE exerts a significant 
positive effect on AGTFP through financial development.

3.2.3 The spatial spillover effects of DE on AGTFP
The DE, characterized by its positive externalities, creates an 

environment conducive to economies of scale and scope. Through 
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mechanisms—policy demonstration effects, factor mobility effects, 
and industrial radiation effects—it generates spatial spillover effects 
on the improvement of AGTFP in neighboring regions.

First, with the support of the “Broadband China” Strategy, the 
digital economy development has achieved a win-win situation 
between agricultural production efficiency and environmental 
sustainability, and established a practical development model. The 
policy demonstration effect prompts agricultural operators and 
government administrators in neighboring areas, especially those 
facing the challenges of high consumption and low efficiency in 
traditional agricultural practices, to recognize the transformative 
power of digital solutions. Inspired by the success of pilot zones, 
they actively adopt and adapt these digital approaches, exploring 
region-specific paths to develop green agriculture. This emulation 
process effectively spreads digital innovation, contributing to the 
overall improvement of AGTFP in surrounding regions (Lu 
S. et al., 2024).

Second, the “Broadband China” Strategy, with its focus on digital 
infrastructure development, reduces barriers in accessing green 
agricultural resources, gradually giving rise to the factor mobility 
effect (Li R. et al., 2024). Digitalization breaks down geographical 
constraints, allowing specialized talent to share their expertise across 
regions and offer valuable insights into green agricultural practices. 
Advanced technologies spread rapidly through the internet, enabling 
peripheral regions to benefit from green production innovations. 
Digital platforms also integrate fragmented information into a 
unified network, accelerating knowledge sharing and collaborative 
actions in green agriculture. Through these channels of talent 
exchange, technology spillover, and information diffusion, the DE 
promotes the coordinated development of green agriculture, not only 
locally but also in neighboring areas, thus driving up AGTFP 
across regions.

Third, the phased implementation of the “Broadband China” 
Strategy has unlocked various application scenarios for the DE in 
agriculture. As a critical facet, rural e-commerce bridges gaps in 
market access, product promotion, and brand building through 
network technology. By expanding the market reach for green 
agricultural products, it compels neighboring regions to adopt 
green standards to meet the growing demand for eco-friendly 
goods, thereby enhancing AGTFP. Additionally, the DE stimulates 
cross-regional industrial chain expansion, creating opportunities 
for the upgrading of supporting industries such as packaging, 
storage, and logistics. This spatial expansion broadens the 
influence of green agriculture, fostering extensive cooperation, 
shared outcomes, and the formation of regional green industrial 
clusters. Simultaneously, it accelerates the integration of 
agriculture with non-agricultural sectors like tourism, education, 
and culture. These emerging business models enhance the 
resilience and vitality of county-level economies and, through the 
industrial radiation effect, contribute to the overall improvement 
of AGTFP across regions.

Based on the foregoing analysis, we  propose the 
following hypothesis:

H5: Under the “Broadband China” Strategy, DE has the spatial 
spillover effects on AGTFP, and has a significant promoting effect 
on AGTFP both local and neighboring regions.

4 Research design

4.1 Variable selection

4.1.1 Dependent variable
Considering the significant variations in input, output, and 

production cycles across different sectors within the generalized 
agriculture (Ge et al., 2018), this study focuses on the analysis of 
narrow-sense agriculture (i.e., crop farming). Compared with the 
DEA model and SBM model, the EBM model can more accurately 
capture the efficiency of resource allocation through non-radial and 
non-angle slack variable treatment. Combined with the GML index, 
it can dynamically evaluate the changes in TFP, which aligns with the 
evaluation needs of the dual goals of “economy-ecology” in 
agricultural green transformation. Therefore, we  employ the 
EBM-GML model to evaluate AGTFP. The evaluation index system 
is presented in Supplementary Table 1, and the relevant calculation 
formulas are available in the literature (Zhou et  al., 2024). It is 
important to note that we  adopt 2011 as the base period and 
normalize the initial value of AGTFP for each city to capture the 
cumulative trend in AGTFP, we convert the calculated chain base 
indices into fixed base indices.

In terms of input indicators, we refer to the research of Ge et al. 
(2018) and select five indicators to measure agricultural inputs, 
including land, labor force, agricultural machinery, chemical 
fertilizer, and water. Among them, labor force input is determined by 
isolating the number of employees dedicated to the agricultural 
industry from the total workforce in the primary industry, using the 
proportion of gross agricultural output value relative to the combined 
output value of agriculture, forestry, animal husbandry, and fishery 
as a weighting factor; Agricultural machinery input is calculated 
following the same methodological principle. Chemical pesticide and 
agricultural film inputs are excluded due to substantial data gaps at 
the city-level.

Output indicators comprise both desired and undesired outputs. 
For the desired output, we use the gross agricultural output value to 
measure the economic value of agriculture. However, the agricultural 
value is not only reflected in the economic value created by agricultural 
production, but also in the ecological value generated by 
non-economic functions (e.g., climate regulation, water retention, soil 
stabilization, and biodiversity preservation) (Sun et  al., 2011). 
Specifically, based on the equivalent factor method (Costanza et al., 
1997; Xie et al., 2005; Xie et al., 2008), we select seven crops (rice, 
wheat, corn, soybean, potato, oil crop, and vegetables) to calculate one 
standard equivalent of agricultural ecosystem services value. 
Following the methods of relevant literature (Yang et  al., 2019), 
we  apply correction coefficients to adjust the total agricultural 
ecosystem services value in order to reflect the realistic ecological 
value of agriculture. For the undesired output, we refer to the research 
of Li et al. (2011) and select four types of carbon emission sources 
(fertilizer, agricultural diesel, tillage, and irrigation) to estimate 
agricultural carbon emissions. Additionally, based on the inventory 
analysis method (Liang, 2011), we  select the COD, TN, and TP 
involved in agricultural chemical fertilizer and farmland solid waste 
pollution sources to quantify agricultural non-point source pollution, 
and standardize the pollutant emissions using the equivalent pollution 
load method for cross-source comparability.
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4.1.2 Independent variable
This study employs the “Broadband China” pilot policy as a proxy 

variable to measure the DE, constructed through the interaction term 
between city and time dummy variables. To ensure sample 
comparability, we  excluded autonomous prefectures, county-level 
cities, and city samples with substantial missing data from our analysis. 
Following the official lists of demonstration cities (city clusters) across 
different implementation batches, we  designate 107 cities as the 
treatment group (comprising 37 in the first batch, 36 in the second, and 
34 in the third), while the remaining 179 cities as the control group.

4.1.3 Mediating variables
In current research, a unified measurement standard for green 

technological innovation has not yet been established, and there are 
mainly three methods: First, it is measured by the number of simple 
technical invention patents. In fact, this approach mainly reflects the 
total amount of technological innovation but does not distinguish the 
“green attributes” of patents, thus failing to accurately reflect the core 
connotation of “green technological innovation.” Second, it is 
measured through green product innovation and green process 
innovation. However, both require measurement by subdivided 
indicators (such as product carbon footprint and process pollution 
emission intensity), which usually rely on survey data or industry 
standards. This approach is highly subjective and involves high data 
acquisition costs. Third, considering that environmental regulatory 
measures can incentivize large-scale green patent R&D, it is measured 
by the number of green patent authorizations or applications. The 
former reflects the innovative willingness and investment of R&D 
entities. The latter represents the substantive innovative achievements 
approved through official review, which can better reflect the stock of 
practically applicable green technologies. In summary, we select the 
number of green patent authorizations to measure green technological 
innovation (GTI). To address zero values, we process the data by 
adding 1 and then taking the logarithm.

The environmental regulation system consists of two major 
categories: formal environmental regulations and informal 
environmental regulations. The former can be further divided into 
two forms: command-and-control type and market-incentive type. 
Currently, China’s environmental regulation system is dominated by 
the command-and-control type (Wang et  al., 2015), which is 
embodied in the government’s vigorous promotion of pollution 
control and related tasks through the introduction of a series of laws 
and regulations, the scientific formulation of environmental standard 
systems, and the enforcement of these regulations as the basis. Against 
this practical backdrop, we refer to the research of Shao et al. (2024), 
measuring environmental regulation (ER) by the ratio of the word 
count in sentences containing environmental protection-related 
vocabulary in city government work reports to the total word count 
of the entire report. This measurement method not only accords with 
the institutional characteristics of China’s environmental governance, 
but also provides a quantitative analytical framework for comparative 
studies on the effects of cross-regional environmental regulations.

Financial development (FD) is a dynamic process that combines 
quantitative expansion and qualitative improvement, and the 
construction of its indicators needs to take into account the scale 
characteristics, structural optimization, and efficiency improvement 
of the financial system. We  construct a comprehensive indicator 
system composed of financial scale, financial structure, and financial 

efficiency by synthesizing data availability and the financial needs of 
agricultural green development, and realize quantitative measurement 
through the entropy value method. The specific construction logic is 
as follows: (1) Financial scale, measured as the ratio of the balance of 
CNY deposits and loans of financial institutions to the regional 
GDP. This indicator reflects the financial system’s potential to support 
agricultural green development by quantifying regional financial asset 
agglomeration relative to the total economic volume (Goldsmith, 
1969). (2) Financial structure, measured as the ratio of original 
insurance premium income to the balance of CNY loans of financial 
institutions. According to the financial function theory (Levine, 1997), 
non-credit financing tools (such as insurance) can alleviate the risk 
premium of agricultural green investment through functions such as 
risk diversification and price discovery, forming functional 
complementarity with traditional credit. We  also considered 
alternative indicators such as the proportion of direct financing, but 
were constrained by the small scale of direct financing of agricultural 
enterprises and the low data availability. Finally, the insurance-credit 
ratio was selected as a financial structure indicator with more realistic 
explanatory power. (3) Financial efficiency, measured as the loans-to-
deposits ratio of financial institutions in CNY. This indicator focuses 
on the resource allocation efficiency of the financial system in 
transforming savings into investment (Stiglitz, 1985). High financial 
efficiency means that more social funds can flow to the agricultural 
green production side through credit channels, avoiding capital idling. 
We also considered alternative indicators such as the non-performing 
loan ratio, but agricultural loans are greatly affected by natural risks 
and market fluctuations, and the non-performing loan ratio fluctuates 
violently, which cannot stably and accurately reflect financial 
efficiency. Therefore, the loan-deposit ratio was finally adopted as the 
basic indicator.

4.1.4 Control variables
To mitigate potential estimation biases arising from omitted 

variables, we  select the following control variables: (1) 
Industrialization (IND), measured as the ratio of secondary industry 
value-added to regional GDP; (2) Agricultural Fiscal Expenditure 
(AFE), measured as the ratio of agricultural, forestry, and water-
related fiscal expenditures to total local government spending; (3) 
Foreign Direct Investment (FDI), measured as the ratio of FDI 
inflows to regional GDP; (4) Human Capital Stock (HCS), measured 
as the logarithm (after adding one) of the number of college students 
per 10,000 persons; (5) Productive Infrastructure (PI), measured as 
the ratio of effectively irrigated area to total crop sown area; (6) Living 
Infrastructure (LI), measured as the ratio of highway mileage to local 
land area.

4.2 Modeling

4.2.1 Baseline model
To examine the causal relationship between DE and AGTFP, 

we  employ the “Broadband China” Strategy as a quasi-natural 
experiment representing exogenous policy shock in digital economy 
development, utilizing a DID model for identification. Given that the 
policy was implemented in multiple phases and batches, while a 
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classical DID model is constrained to evaluating the policy effects at 
a single time point, we construct the following multi-period DID 
model of Equations (1, 2) to effectively analyze policies spanning 
multiple time points:

 α α α µ ν ε= + + + + +0 1 2it it it i t itAGTFP DE X  (1)

 = ×it i tDE Treat Post  (2)

where AGTFP is agricultural green total factor productivity; DE is 
a policy dummy variable, and its coefficient α1 reflects the net effect of 
policy implementation; Treat is a city dummy variable that equals to 
1 for pilot cities and 0 otherwise; Post is a time dummy variable that 
equals to 1 for implementation years and subsequent periods, and 0 
otherwise; X is a series of control variables; i is the city; t is the year; μ 
is the city fixed effect; ν is the time fixed effect; ε is the random 
perturbation term.

4.2.2 Mediating effect model
Based on the theoretical analysis in the previous section, 

we posit that DE may have an impact on AGTFP through green 
technology innovation, environmental regulation, and financial 
development. To empirically examine the above-mentioned 
mechanism, we construct the following mediating effect model of 
Equations (3, 4):

 β β β µ ν ε= + + + + +0 1 2it it it i t itMed DE X  (3)

 γ γ γ γ µ ν ε= + + + + + +0 1 2 3it it it it i t itAGTFP DE Med X  (4)

where Med is a series of mediating variables, including green 
technology innovation (GTI), environmental regulation (ER), and 
financial development (FD). All other variables retain their definitions 
consistent with the baseline model.

4.2.3 Spatial effect model
Based on the theoretical analysis in the previous section, 

we further incorporate spatial factors into the analytical framework 
to explore the spatial spillover effects of DE on AGTFP, and 
construct the following spatial difference-in-differences 
(SDID) model:

 ( )
ρ δ δ θ

η µ ν λ ε−
= + + +

+ + + + −
1 2

11
it it it it it

it i t it

AGTFP WAGTFP DE X WDE

WX W  (5)

where W is the spatial weight matrix; ρ, θ, η, and λ are the spatial 
lag coefficients of the corresponding variables. All other variables 
retain their definitions consistent with the baseline model. Equation 5 
is the general form of the SDID model, which can be divided into 
three spatial econometric models based on whether a correlation 
coefficient is zero value: if ρ = θ = η = 0, it is a spatial error DID model; 

If θ = λ = 0, it is a spatial lag DID model; If λ = 0, it is a spatial Durbin 
DID model. Subsequent empirical tests will determine the optimal 
model specification.
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where D is the geographical distance calculated using city 
coordinates. GDP  is the average of per capita real GDP from 2011 
to 2023. In terms of setting the spatial weight matrices, we 
selected the geographical distance matrix of Equation (6) 
constructed based on the geographical coordinates between 
cities, whose elements are the reciprocals of the geographical 
distances between any two cities. This matrix assumes that the 
spatial effect decays with the increase of distance, and is suitable 
for analyzing the spatial spillover effects caused by geographical 
proximity. Meanwhile, the economic-geographical distance 
matrix of Equation (7) is also incorporated into our research. It 
considers both economic scale and geographical distance, and 
cities with similar economic characteristics and geographical 
locations have higher weights. This matrix reflects the interaction 
between “economic similarity” and “geographical proximity,” is 
appropriate for analyzing spatial spillovers under economic 
gradient differences, and complements the single-dimensional 
defect of the W1. Additionally, the gravity matrix of Equation (8) 
will be used as part of the robustness test. This matrix simulates 
the economic attractiveness between cities and places more 
emphasis on the dominant role of economic scale in 
spatial spillovers.

4.2.4 Data source and processing
Based on the availability and completeness of data, we take the 

period from 2011 to 2021 as the temporal scope and select 286 
cities in China as research samples. The selection of 2011 as the 
starting point of the study period is based on the following 
considerations: First, the “Broadband China” Strategy was 
implemented in 2013, making the period from 2011 to 2012 a 
critical pre-policy baseline that provides sufficient pre-treatment 
data for policy effect evaluation. Second, 2011 marked the 
commencement of the China’s 12th Five-Year Plan, during which 
agricultural policies explicitly incorporated green transformation 
objectives, establishing a pivotal observation point for studying 
agricultural sustainable development. Third, 2011 represents the 
inaugural year of consistent and complete statistical data at the 
city level in our research, facilitating the construction of a unified 
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baseline framework. The sample data were primarily sourced from 
authoritative publications including the China Statistical 
Yearbook, China City Statistical Yearbook, China Rural Statistical 
Yearbook, China Financial Yearbook, China Insurance Yearbook, 
along with regional statistical yearbooks and bulletins. We employ 
linear interpolation to fill in some missing values, and adjust 
monetary value indicators to the 2011 base period for temporal 
comparability. The descriptive statistics of the main variables are 
reported in Supplementary Table 2.

5 Empirical results and analysis

5.1 Baseline model regression

We utilize the “Broadband China” Strategy as a quasi-natural 
experiment to examine the causal relationship between DE and 
AGTFP through a multi-period DID model. The detailed results are 
reported in Supplementary Table 3. Column (1) indicates that the 
regression coefficient of DE is positive and statistically significant at 
the 5% level. Column (2), which adds a series of control variables, 
shows that the policy net effect of the “Broadband China” Strategy 
has slightly increased, and still remains highly statistically significant. 
These results indicate that compared with non-pilot cities, the 
implementation of pilot policy has a positive effect on improving 
AGTFP, which can promote an average increase of 0.1075 percentage 
points in AGTFP in pilot cities. This empirical evidence provides 
preliminary validation for H1.

During the implementation of the “Broadband China” 
Strategy, the concurrent economic policies may have generated 
policy superposition effects that could potentially interfere with 
our empirical results. To enhance the accuracy and robustness of 
results, we  extend the baseline model by incorporating three 
additional pilot policies that might impact on AGTFP: (1) 
National Smart City Pilot Policy (SmartCity), (2) National Big 
Data Comprehensive Experimental Zones (NBDCEZs), and (3) 
National Agricultural Science and Technology Parks (NASTPs). 
Columns (3) to (5) report the results considering only the impact 
of a single policy, while Column (6) reports the results 
considering all three policy impacts simultaneously. The results 
demonstrate that after controlling for these policy-related 
dummy variables, the regression coefficient of DE remains 
positive and statistically significant at the 1% level, and the 
coefficient value is similar to the results in Column (2). This 
consistency robustly validates our primary research conclusions 
regarding policy effectiveness.

5.2 Validity test of DID model

5.2.1 Parallel trend test
The validity of the DID model is contingent upon satisfying the 

parallel trend assumption, which requires that the AGTFP between 
treatment and control groups maintain comparable developmental 
trajectories or exhibit no systematic disparities prior to the 
implementation of the “Broadband China” Strategy. To empirically 
verify this fundamental assumption, we adopt the methodological 
framework proposed by Beck et al. (2010), employ the event study 

methodology for testing, and construct the model specified in 
Equation (9):

 
ϕ ϕ ϕ µ ν ε=

=− ≠−
= + + + + +∑ 5
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it k ik it i t itk kAGTFP DE X
 

(9)

where DEik is a series of policy dummy variables, and its coefficient 
φk reflects the differential in AGTFP between treatment and control 
groups during the kth year following the “Broadband China” Strategy. 
All other variables retain their definitions consistent with the 
previous model.

Considering the sample interval, we set the 5 years before and after 
the implementation of the “Broadband China” Strategy as the window 
period, with the year preceding policy implementation as the base 
period. Supplementary Figure  1 reveals that during the 
pre-implementation phase (when k ≤ 0), the φk consistently encompass 
zero values in the confidence interval at the 95% level, statistically 
validating the parallel trend assumption between treatment and control 
groups. Following policy implementation (when k > 0), particularly 
from the second policy year onward, the φk demonstrate statistically 
significant positive values with an annually increasing trajectory, 
indicating that DE represented by the “Broadband China” Strategy has 
a significant marginal increasing effect on AGTFP, but this effect has a 
latency period of approximately 2 years.

This delayed response can be attributed to multiple factors. First, 
the deployment of digital infrastructure necessitates substantial 
temporal investment. Although the “Broadband China” Strategy has 
been implemented in phases since 2013, the completion of fiber-optic 
network coverage in rural areas, along with base station construction 
and terminal equipment popularization, typically requires several 
years to accomplish (Zhao et  al., 2020). Second, agricultural 
stakeholders’ adoption of digital technologies follows a learning 
curve process. As Aker (2011) observed, farmers’ familiarity with and 
application of digital tools undergo progressive stages of training, 
trial-and-error experimentation, and adaptive adjustment. For 
instance, the implementation of precision agriculture technologies 
demands complementary agronomic knowledge transfer, while the 
promotion of green production models necessitates modifications to 
conventional farming practices—both processes being inherently 
time-intensive. Third, the natural cycles of agricultural production 
prevent immediate reflection of policy effect in annual statistics. The 
water-saving efficacy of smart irrigation systems, for example, 
requires a complete growing season to validate, while carbon 
emission reduction benefits depend on long-term monitoring. 
Consequently, initial policy effect primarily manifests as 
infrastructure development and capacity building, with substantive 
economic and environmental benefits emerging progressively from 
the second year onward.

5.2.2 Heterogeneity treatment effect test
A potential issue with the multi-period DID model is the 

presence of heterogeneous treatment effects, meaning that the same 
treatment may produce different effects on different individuals. 
This heterogeneity is mainly reflected in two dimensions. First, in 
the temporal dimension, the variation of treatment effects over time 
can lead to negative weights and bias. Second, in the group 
dimension, differences in group-specific effects at various treatment 
time points affect the weighted average results. In this case, using 
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the traditional two-way fixed effects model for estimation may 
introduce potential bias (Goodman-Bacon, 2021). Therefore, we 
utilize the Goodman-Bacon decomposition method to test for 
these effects.

As shown in Supplementary Table 4, the results of the multi-
period DID are predominantly driven by the “appropriate control 
group,” which uses never treated units as the control group and 
carries a weight of 92%. In contrast, the “inappropriate control 
group,” which employs earlier treatment units as the control group, 
accounts for only 5.7% of the weight. This empirical evidence 
suggests that the heterogeneous treatment effects exert limited 
impact on our primary results, thus validating the results reported 
in Supplementary Table 3.

5.2.3 Placebo test
Considering that other unobserved redundant factors might 

interfere with the baseline regression results, we draw on the approach 
of Cao and Chen (2022) and adopt the following three placebo 
test methods.

First, in the temporal placebo test, we advance the 
implementation timeline of the “Broadband China” Strategy by one 
to three periods as “pseudo treatment times” and conduct regression 
using the pre-policy implementation sample. As shown in 
Supplementary Figure 2, the confidence interval at the 95% level of 
the placebo effect all contain zero values, indicating that the test 
does not have statistical significance.

Second, in the spatial placebo test, while maintaining original 
treatment time and group structures, a subset of observations is 
randomly selected from the full sample without replacement as 
“pseudo treatment individuals” for regression. As shown in 
Supplementary Figure  3, the estimated coefficients of the test are 
mostly concentrated around zero values and follow a normal 
distribution, while the estimated value of the policy effect (0.1075) 
appeared in the right tail of the placebo effect distribution, classifying 
it as an extreme value.

Third, in the mixed placebo test, we use both “pseudo treatment 
times” and “pseudo treatment individuals” for regression. As shown 
in Supplementary Figure  4, the estimated policy effect (0.1075) 
similarly falls within the extreme value range. This is consistent with 
the conclusions of the above two placebo tests, jointly demonstrating 
that the validity of the baseline model results stems from the real 
policy effects of the “Broadband China” Strategy, rather than 
accidental factors or model specification biases, thus validating the 
reliability of H1.

5.3 Robustness test

5.3.1 Instrumental variable test
We use a DID model in the above-mentioned section to evaluate 

the net effect of the “Broadband China” Strategy on 
AGTFP. Theoretically, it is believed that the selection mechanism does 
not have significant endogeneity, that is, the selection of pilot cities is 
almost random and is basically independent of the model disturbance 
term. However, in reality, the designation of pilot cities often interacts 
with urban resource endowments, deviating from the ideal state  
of completely random allocation. Given the difficulty of fully 

incorporating such complex factors into the model, the regression 
results may still contain endogenous bias.

To address this methodological concern, we adopt the idea of 
Huang et  al. (2019), select the interaction term between fixed 
telephone subscribers per 100 persons (city-level data in 2000) and 
mobile internet users in the previous year as an instrumental 
variable (IV), and conduct two-stage least squares (2SLS) estimation. 
This approach is motivated by two key considerations. First, the fixed 
telephone subscribers per 100 persons (in 2000) reflects the 
historical level of telecommunication infrastructure, while the 
lagged mobile internet user indicator represents the dynamic 
progression of digital economy development. Their interaction term 
effectively captures the synergistic effects of communication 
technology advancement across different stages, which is highly 
correlated with the DE driven by the “Broadband China” Strategy. 
Regions with more advanced historical communication 
infrastructure were more likely to be selected as policy pilot cities 
and could more readily facilitate agricultural green transformation 
through digital technology upgrades. Second, the fixed telephone 
subscribers per 100 persons (in 2000), as a historical indicator, bears 
no direct relationship with current AGTFP. Its influence operates 
exclusively through the developmental pathway of DE driven by the 
“Broadband China” Strategy, rather than through other unobserved 
factors (e.g., economic development level, educational investment, 
etc.). Meanwhile, the lagged mobile internet user indicator, as a 
dynamic measure, eliminates contemporaneous correlation with 
current policy shocks, thereby ensuring that the instrumental 
variable affects the outcome variable (AGTFP) solely through the 
endogenous variable (DE). The detailed results reported in 
Supplementary Table 5.

In Column (1), Kleiberen-Paap rk LM statistics reject the null 
hypothesis at the 1% level, satisfying instrumental variable 
identifiability; Cragg Donald Wald F statistics and Kleiberen-Paap rk 
Wald F statistics are both greater than the critical value of 16.38 at the 
10% level of the Stock Yago weak identification test, rejecting the null 
hypothesis of weak instrumental variables. These tests collectively 
validate the instrumental variable appropriateness. In Column (2), 
after considering endogeneity issues, the regression coefficient of DE 
remains positive and statistically significant, thus verifying the 
robustness of the previous conclusion.

5.3.2 PSM-DID
To address potential endogeneity issues arising from the 

non-randomness of policy implementation and eliminate selection 
bias caused by systematic errors, we  use the Propensity Score 
Matching Difference-in-Differences (PSM-DID) model for 
robustness test. Specifically, we  select all control variables as 
covariates and implement three distinct matching methods—
nearest neighbor matching, caliper matching, and kernel 
matching—for propensity score matching. Subsequent DID 
estimation was performed again based on the matched treatment 
and control groups.

As shown in Supplementary Table 6, the coefficient of DE remains 
positive and statistically significant at the 1% level across different 
matching methods, indicating that DE can still significantly improve 
AGTFP after controlling for sample selection bias, further confirming 
the results of the baseline model.
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5.3.3 Other robustness tests
As shown in Supplementary Table  7, to further validate the 

reliability of the results of the baseline model, we conduct additional 
robustness tests as follows:

 (1) Intensity DID. Referring to the research of Zhao et al. (2020), 
we  employ the entropy method to calculate the Digital 
Economy Advancement Index (DEAI). This index is then 
interacted with the policy dummy variable (DE) to perform 
an intensity DID regression. The result shows that the 
coefficient of the interaction term is positive and statistically 
significant at the 1% level, indicating that in cities with a 
highly digitalized environment, the “Broadband China” 
Strategy has a more remarkable effect in enhancing 
AGTFP. This finding confirms the synergy between digital 
infrastructure and policy effects, that is, policies are more 
likely to play a role in regions with a better digital 
economic foundation.

 (2) Lagged treatment of independent variable. In view of the 
potential temporal lag effect in the “Broadband China” 
Strategy, we  introduce a two-period lag to independent 
variable. This adjustment allows for the capture of policy lag 
effect and mitigates the impact of endogeneity issues on the 
results. The result shows that the coefficient of the lag term is 
positive and statistically significant at the 5% level, indicating 
that the policy effect has persistence. This finding supports the 
robustness of the conclusion of the baseline model in the 
time dimension.

 (3) Exclude certain city samples. Considering the special status of 
municipalities directly under the central government, 
provincial capitals, and municipalities with independent 
planning status, which are often selected as pilot zones for 
various economic policies and reform measures, their data 
may bias the overall result. Therefore, after excluding 35 key 
cities, we  re-conduct the regression using the remaining 
sample data. The result shows that although the coefficient 
value of DE has slightly decreased, it remains significant, 
indicating that the core conclusions still hold after excluding 
policy-sensitive cities and verifying the universality of the 
policy effects.

 (4) 1% bilateral winsorization. To reduce the interference of 
extreme values on statistical inference, we  winsorize all 
continuous variables at the 1st and 99th percentiles. The 
result shows that the regression coefficient remains 
significantly positive and is highly consistent with that of 
the baseline model, indicating that the estimation results of 
the model have strong robustness to the data distribution.

 (5) Controlling for province-year fixed effect. While our baseline 
model already controls for city-specific and year-specific fixed 
effects, there may still be unobservable factors at the provincial 
level that vary over time. To address this issue, we  further 
strengthen identification by introducing province-year 
interactive fixed effect. The result shows that the absolute value 
of the coefficient increases and remains significant, and the R2 
increases to 0.8170. This indicates that even under strict control 
conditions, the policy effect remains robust, and the impact of 
the DE is independent of the traditional provincial 
policy framework.

6 Further analysis

6.1 Mechanism test

The above-mentioned findings indicate that DE—exemplified by 
the “Broadband China” Strategy—has a significant positive effect on 
enhancing AGTFP. However, it remains to be  further confirmed 
whether this effect is achieved through green technology innovation, 
environmental regulation, and financial development. Therefore, 
we  employ a mediating effect model for empirical testing, with 
detailed results are reported in Supplementary Table 8.

The regression results for GTI as a mediating variable are shown 
in Columns (2) to (3) of Supplementary Table 8. In Column (2), the 
regression coefficient of DE is significant and positive at the 1% level, 
indicating that DE is conducive to green technology innovation. 
Column (3) represents the addition of GTI to the baseline regression 
model. The results reveal that the coefficient of DE remains positive 
and statistically significant, but the coefficient value has decreased 
compared to the result reported in Column (1). The coefficient of GTI 
is positive and statistically significant at the 1% level. This suggests that 
DE promotes AGTFP through green technology innovation, thus 
validating H2.

The regression results for ER as a mediating variable are shown in 
Columns (4) to (5) of Supplementary Table 8. In column (4), the 
regression coefficient of DE is significant and positive at the 5% level, 
indicating that DE is conducive to environmental regulation. Column 
(5) represents the addition of ER to the baseline regression model. The 
results reveal that the coefficient of DE remains positive and 
statistically significant, albeit slightly lower than that in the baseline 
regression. The coefficient of ER is positive and statistically significant 
at the 5% level. This demonstrates that DE promotes AGTFP through 
environmental regulation, thus validating H3.

The regression results for FD as a mediating variable are shown in 
Columns (6) to (7) of Supplementary Table 8. In Column (6), the 
regression coefficient of DE is significant and positive at the 1% level, 
indicating that DE is conducive to financial development. Column (7) 
represents the addition of FD to the baseline regression model. The 
results reveal that the coefficient value of DE decreased to 0.0516, yet 
it is not statistically significant. The coefficient of FD is positive and 
statistically significant at the 10% level, exhibiting a complete 
mediating effect. This indicates that DE promotes AGTFP through 
financial development, thus validating H4.

In addition, the results from Sobel test and Bootstrap test confirm 
the robustness and effectiveness of the above-mentioned mediation 
mechanisms. Notably, compared with the partial mediating effects of 
GTI and ER, FD exhibits a complete mediating effect. This finding 
may reveal a key logic: as the core hub for resource allocation, finance, 
when deeply integrated with the DE (e.g., digital inclusive finance), 
can more efficiently impact the green allocation of agricultural 
production factors (e.g., capital, technology, and labor). In other 
words, the empowerment of the DE on agricultural green development 
essentially transforms “data factors” into “capital factors” through the 
digital transformation of the financial system, thereby driving the 
greening of production modes. This mechanism not only explains the 
realistic path of China’s agricultural transformation, but also provides 
a dual-drive paradigm of “digital technology + financial innovation” 
for developing countries—by enhancing financial accessibility and 
optimizing capital allocation efficiency, it transforms green 
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development from a policy goal into the spontaneous behavior of 
market entities.

6.2 Heterogeneity test

6.2.1 Natural geographical factors
China has a vast territory, and differences in natural geographical 

locations may lead to varied effects of DE on AGTFP. Following the 
regional classification standards of National Bureau of Statistics of 
China, we divide the sample into eastern, central, and western regions 
for comparative analysis. As shown in Columns (1) to (3) of 
Supplementary Table  9, the promotion effect of DE on AGTFP 
exhibits a distinct regional gradient, with the strongest in the eastern 
region, followed by the central, and weaker in the western. However, 
the regression coefficient for the western region is much lower than 
those of the eastern and central, failing to reach statistical significance. 
A possible explanation is that the complex natural geographical 
conditions in western rural areas have increased the difficulty in 
broadband network deployment. The remoteness and dispersion of 
villages has led to extremely high marginal costs for network coverage, 
and post-maintenance further raises operational costs due to issues 
such as inconvenient transportation. Additionally, the green 
transformation of agriculture requires substantial input of resource 
elements, while the relatively weak economic foundation in western 
regions restricts such investments. This realistic dilemma of “high-
input, low-return” makes it difficult for the enabling effects of the DE 
to be spontaneously realized through market mechanisms.

Precipitation, a critical component of natural endowments, is 
directly linked to crop growth, irrigation methods, and ecological 
stability. Diverse precipitation distributions lead to variations in the 
demand for and adaptation to digitalization in agricultural production. 
We use the 800-millimeter isohyet as the criterion to classify samples 
with an annual average precipitation of 800 millimeters or more as 
“humid areas,” and the others as “non-humid areas.” In humid areas 
with superior water and heat conditions, traditional agriculture has 
formed a relatively stable pattern, meaning that basic production can 
be maintained by relying on natural precipitation. In this case, the core 
role of the DE may be difficult to break through the threshold of the 
“natural condition dividend,” leading to the dilution of its effect on 
improving AGTFP by natural advantages. Additionally, the areas are 
mostly major grain-producing areas with obvious characteristics of 
large-scale planting. Digitalization primarily replaces human labor 
rather than solving core resource constraints. Therefore, the 
incremental contribution of the DE fails to pass statistical test 
(Supplementary Table 9, Column 4). In non-humid areas with scarce 
water resources and high drought risks, agricultural production relies 
more on artificial intervention and technological optimization. 
Technologies brought by the DE, such as intelligent monitoring (e.g., 
soil moisture sensors) and precision irrigation systems (e.g., 
IoT-controlled drip irrigation), directly mitigate water bottlenecks. 
Under resource-constrained conditions, its green effects of “water-
saving, yield-increasing, and carbon-reducing” are more likely to 
emerge. Meanwhile, when confronted with more prominent climatic 
uncertainties, local farmers may be more inclined to incur technical 
costs to reduce risks, thus significantly promoting AGTFP 
(Supplementary Table 9, Column 5).

Terrain factors not only create a diversified spatial layout for 
agricultural production but may lead to the heterogeneous effect of 
DE on AGTFP by acting on the application scenarios of digital 
technology. We use the median of terrain relief degree as the criterion 
to categorize the sample into higher terrain relief areas (above the 
median) and lower terrain relief areas (below the median). As shown 
in Columns (6) to (7) of Supplementary Table  9, the regression 
coefficients of both exhibit positive effects, but the policy effect 
intensity and statistical significance of the latter are better. For higher 
terrain relief areas, although complex terrain increases the cost of 
digital application, the foundational enabling role of the “Broadband 
China” Strategy can still optimize resource allocation through 
information circulation. Moreover, some adaptive technologies (e.g., 
basic e-commerce and remote guidance) have partially broken 
through geographical constraints. Meanwhile, agricultural production 
in these areas is not completely incompatible with digitalization. 
Under the dual pressures of ecological protection and production 
efficiency, farmers have a rigid demand for lightweight digital 
technologies, making the marginal promotion effect of the DE 
statistically significant. For lower terrain relief areas, the concentrated 
and contiguous layout of farmland provides a carrier for the 
standardized and large-scale application of digital technologies, 
making it easier to quantify and demonstrate policy effects. 
Furthermore, these areas have more advantages in infrastructure, 
technological diffusion, and policy implementation, thus better 
releasing the multiplier effect of policy dividends and exhibiting 
stronger significance and effect intensity.

6.2.2 Socio-economic factors
The diversity in agricultural production structures is an 

indispensable consideration in the formulation and implementation 
of regional agricultural policies, profoundly shaping the evolutionary 
trajectory of AGTFP. According to the classification criteria of the 
National Medium- and Long-Term Food Security Outline (2008–
2020), we categorize the sample into major grain-producing areas and 
non-major producing areas. The results are reported in Columns (1) 
to (2) of Supplementary Table 10. Due to policy attention and resource 
allocation, major grain-producing areas may have formed a relatively 
complete agricultural informatization system, and the role of the DE 
is more reflected in the improvement of marginal efficiency. 
Meanwhile, these areas face strict ecological assessment, and the DE 
can achieve green transformation on the premise of ensuring grain 
production through the integration of green technology. Although the 
improvement of such technological applications on AGTFP is limited, 
the policy effect exhibits a long-term mechanism (manifested as high 
statistical significance), which is consistent with the production logic 
of “seeking progress while maintaining stability” in major producing 
areas. In contrast, non-grain major producing areas are dominated by 
cash crops, with production objectives placing emphasis on economic 
benefits. Such crops exhibit higher sensitivity to technological 
innovation and market information. In these areas, the DE represents 
a “breakthrough from nothing.” In the initial stage, the introduction 
of disruptive technologies through policy-driven measures can rapidly 
activate the innovative vitality of production entities, leading to a 
significant increase in AGTFP (characterized by a higher regression 
coefficient). However, as technological diffusion becomes widespread, 
the marginal effect may diminish in the later stage.
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The penetration and maturity of the DE vary across regions. At 
different stages of digitization, the impact of the “Broadband China” 
Strategy on AGTFP may demonstrate heterogeneous characteristics. 
Using the median of DEAI calculated in the previous as the criterion 
to divide the sample into highly digitalized regions (above the median) 
and less digitalized regions (below the median). As shown in Column 
(3) of Supplementary Table 10, the regression coefficient for highly 
digitalized regions is positive and statistically significant at the 10% 
level. A higher level of digitalization implies that these regions have 
more complete information infrastructure, more advanced digital 
technologies, and a wider range of digital application scenarios, which 
contribute to the intelligent, precise, and green transformation of 
agricultural production. The results in Column (4) of 
Supplementary Table 10 indicate that in less digitalized regions, the 
impact of the “Broadband China” Strategy on AGTFP is relatively 
weak and statistically insignificant. This phenomenon may 
be attributed to considerable shortcomings in digital infrastructure 
construction, digital technology application, and digital talent 
cultivation in these regions, which limit the penetration of digital 
technology into the agricultural sector and weaken the expected 
effects of policies.

Financial literacy is defined as individuals’ capacity to acquire 
economic information and achieve rational asset allocation 
accordingly. Variations in farmers’ financial literacy across regions 
may affect the effectiveness of the “Broadband China” Strategy in 
improving AGTFP. We use the median of HCS as the criterion to 
categorize the sample into higher financial literacy regions (above 
the median) and lower financial literacy regions (below the 
median). As shown in Columns (5) to (6) of Supplementary Table 10, 
individuals from higher financial literacy regions usually have 
stronger skills in information acquisition and interpretation, 
enabling them to efficiently capture and leverage the opportunities 
brought by the digital economy development, thereby optimizing 
agricultural resource allocation and promoting green production 
transformation. Simultaneously, these regions often have well-
developed digital infrastructure and financial service systems, 
which provide support and guarantee for the transmission of policy 
measures. Comparatively, individuals from lower financial literacy 
regions may exhibit deficiencies in policy comprehension, 
investment decision-making, and risk management, making it 
challenging to fully convert policy advantages into tangible 
improvement of AGTFP.

6.3 Spatial effect test

Before incorporating spatial factor into econometric analysis, it is 
necessary to verify the existence of spatial effects through spatial 
autocorrelation test on AGTFP. As shown in Supplementary Table 11, 
under various spatial weight matrix specifications, the Global Moran’s 
I of AGTFP is positive, and the vast majority of years are significant at 
least at the 1% level, indicating significant positive spatial correlation. 
Complementary analysis using Local Moran’s I scatterplots reveals 
that the majority of scatter points cluster in Quadrants I (high-high 
aggregation area) and III (low-low aggregation area), indicating that 
AGTFP is not independently and randomly distributed in 
geographical space but rather exhibits significant spatial 
agglomeration, which confirms the judgment of the Global Moran’s 

I. These findings validate the appropriateness of using spatial 
econometric model for extended analysis.

To determine the specific estimation form of the spatial 
econometric model, we sequentially conduct LM test, Hausman test, 
Wald test, and LR test, ultimately identifying the spatial Durbin DID 
model with two-way fixed effects as the optimal choice. The detailed 
results are reported in Supplementary Table 12.

Based on the W1 and W2, we use the SDID model to further test 
the impact of DE on AGTFP, and extend the analysis to the spatial 
spillover effects of pilot policy on AGTFP. The detailed results are 
reported in Supplementary Table 13.

First, under various spatial weight matrix specifications, the 
spatial lag coefficient (Rho) of the dependent variable is positive and 
statistically significant, indicating that there is spatial autocorrelation 
in AGTFP, that is, the improvement of AGTFP in a certain region 
tends to promote similar enhancements in neighboring regions 
through geographical and economic connections.

Second, when spatial factor is taken into account, the 
regression coefficient of DE remains positive and statistically 
significant at least at the 5% level, consistent with the previous 
findings and reaffirming H1. Meanwhile, coefficient of W*DE is 
positive and statistically significant, demonstrating that the 
“Broadband China” Strategy has significant spatial spillover effects 
on AGTFP. Furthermore, the results of spatial effect decomposition 
indicate that the direct, indirect, and total effects are all positive 
and statistically significant, under the “Broadband China” Strategy, 
there are spatial spillover effects of DE in increasing AGTFP, and 
the local DE has a positive impact on the improvement of AGTFP 
in neighboring regions, thus validating H5.

Third, under the W1, 47.89% of the improvement effect of the 
“Broadband China” Strategy on AGTFP is achieved through spatial 
spillover. Conversely, under the W2, the proportion of indirect effect 
decreases slightly. In this regard, we make the following analyses: (1) 
geographical proximity plays a fundamental supporting role in spatial 
spillover. In the process of the impact of the DE on AGTFP, 
geographical proximity provides natural convenience for information 
dissemination, technological diffusion, and resource sharing. 
Neighboring regions often have similar natural geographical 
conditions and agricultural production environments. Digital 
infrastructure upgrades and the application of agricultural digital 
technologies driven by the “Broadband China” Strategy, among other 
factors, can rapidly permeate into neighboring regions through direct 
geographical radiation, forming significant spatial spillover effects. 
Under the W2, however, after introducing the factor of economic 
distance, the pure spatial transmission mechanism of geographical 
proximity is weakened. When economic similarity and geographical 
proximity are not fully compatible, the basic spillover effects brought 
by geographical proximity will be diluted due to the intervention of 
economic factors. (2) Economic similarity has a complex moderating 
effect on spatial spillover. Under the W2, the interaction between 
geographical distance and economic distance makes the transmission 
of spatial spillover effects need to cross a dual threshold simultaneously. 
On the one hand, regions with similar economic development levels 
may have industrial isomorphism or resource competition, which 
inhibits the complementary flow of digital economic resources across 
regions. On the other hand, there is a gap in technological absorption 
capacity between regions with significant economic disparities. 
Agricultural green technological innovations in economically 
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developed regions may rely on high-intensity capital investment and 
high-quality labor, while neighboring regions with weak economic 
foundations find it difficult to undertake such technological spillovers 
due to differences in factor endowments. This “screening mechanism” 
of economic similarity makes the spillover effects based on the W2 
bear higher adaptation costs, ultimately leading to spillover effects 
slightly lower than those of the W1, which only relies on 
geographical proximity.

We report the results of robustness tests in Supplementary Table 14. 
Three methods are employed to validate the reliability of the above-
mentioned research findings. Notably, we replace the spatial weight 
matrix with W3, a matrix in which economic scale directly enters the 
weight calculation in a multiplicative form, thus placing more 
emphasis on the dominant role of economic factors in spatial spillover 
effects. In Column (5), the indirect effect of W3 and its proportion are 
0.0848 and 42.58% respectively, both of which are less than those of 
W1 (0.0988 and 47.89%) and W2 (0.0886 and 46.88%). This 
phenomenon can be  interpreted as follows: The W3 excessively 
highlights the role of economic factors while underestimating the 
fundamental support of geographical location. In other words, 
geographical proximity serves as the primary driver of the spatial 
spillover effect of DE on AGTFP, whereas economic similarity, as a 
regulator, can enhance or inhibit the spillover effect, depending on its 
interaction with geographical factors.

7 Discussion

This study confirms the significant promoting effect of the DE on 
AGTFP through a multi-period DID model and spatial econometric 
analysis, which aligns with the conclusions of Hong et al. (2023) and 
Zeng et al. (2024) at the provincial level. Notably, using city-level panel 
data and a quasi-natural experiment design, this study for the first 
time quantifies the causal effect of the “Broadband China” Strategy on 
AGTFP, mitigating the potential aggregation bias in provincial-level 
data. Meanwhile, we reveal that the policy effect shows a trend of 
marginal increase over time, with a two-year latency period. This 
delayed effect is consistent with the cyclical characteristics of digital 
infrastructure deployment and agricultural technology adoption 
(Zhao et al., 2020; Aker, 2011).

In terms of mechanism analysis, most existing literature focuses 
on the perspectives of industrial evolution and production factors. 
This study also emphasizes the key roles of green technological 
innovation and environmental regulation, while incorporating 
financial development into the analytical framework represents a 
significant contribution. It is worth noting that financial development 
exhibits a complete mediating effect, indicating that the DE does not 
enhance efficiency in isolation. Instead, it transforms “data factors” 
into “capital factors” supporting green practices through deep 
integration into financial system reforms, thereby optimizing the 
allocation of agricultural production factors. This finding confirms the 
importance of finance as the core hub for resource allocation, 
supplements the research of Gao et  al. (2022) on digital inclusive 
finance, and provides a “digital technology + financial innovation” 
paradigm for developing countries.

The heterogeneity characteristics provide new empirical evidence 
for targeted policy implementation. For example, in non-humid areas 

with stronger water resource constraints, the water-saving and 
efficiency-enhancing effects of digital technology are more significant, 
which verifies the hypothesis of “resource endowment driving 
technology adoption” (Schulz and Börner, 2022). In contrast, humid 
regions are restricted by the “natural condition dividend,” reducing the 
urgency of digital adoption. This finding contrasts with the “resource 
curse” theory in agricultural production and emphasizes the criticality 
of technology adapting to local conditions. Higher financial literacy 
regions have a stronger capability to optimize the green allocation of 
agricultural resources through digital tools, thereby further amplifying 
policy effects, echoing the perspective of Abdul-Rahim et al. (2024). 
These conclusions are consistent with the assertion in existing 
literature that the effectiveness of the DE depends on regional 
endowments, but they further refine insights based on natural 
geographic and socio-economic factors.

This study identifies the positive externality of DE on AGTFP and 
finds that geographical proximity is more explanatory than economic 
similarity. We emphasize the dominant role of geographical factors in 
spatial spillover, with economic factors serving as a regulator, which 
deepens the spatial econometric research of Lu S. et al. (2024).

Despite some valuable findings, it is essential to recognize the 
existing limitations: First, this study reveals the relationship between 
China’s DE and AGTFP, but its conclusions are constrained by specific 
policy environments, agricultural structures, and the level of digital 
infrastructure. The universality of these conclusions for other 
developing countries remains to be verified. Second, this study focuses 
on narrow-sense agriculture (i.e., crop farming), excluding broad-
sense agricultural sectors (e.g., forestry, animal husbandry, and 
fisheries). Significant differences in production cycles, technological 
applications, and pollution emissions across different agricultural 
sub-sectors may lead to the conclusions lacking persuasiveness for the 
overall green development of agriculture. Third, this study employs a 
comprehensive indicator of FD but does not deeply identify the 
independent impacts of its secondary indicators. The transmission 
pathways of various links in the financial system still need to 
be clarified. Additionally, this study focuses on the command-and-
control environmental regulations led by the government, while the 
mechanisms of market-incentive and voluntary environmental 
regulations deserve further exploration. Fourth, although this study 
verifies the spatial spillover effect, analyzing the underlying 
mechanism from a spatial perspective remains a key direction for 
future research.

8 Research conclusions and policy 
recommendations

8.1 Research conclusions

Based on panel data from 286 Chinese cities spanning 2011 to 
2023, this study employs the “Broadband China” Strategy as a quasi-
natural experiment and utilizes a multi-period DID model to analyze 
the impact of DE on AGTFP, while revealing its underlying 
mechanisms, heterogeneous characteristics, and spatial spillover 
effects. The main findings reveal that: (1) DE has a significant positive 
effect on AGTFP, with the results remaining robust across a series of 
robustness tests. (2) The promotion mechanism primarily operates by 
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green technology innovation, environmental regulation, and financial 
development. (3) The impacts of the DE on AGTFP exhibit 
heterogeneous characteristics across dimensions. In terms of natural 
geographical factors, the effects are strongest in the eastern regions, 
followed by the central, and the weakest and statistically insignificant 
in the western. The effects are significant in non-humid areas but 
insignificant in humid areas. Lower terrain relief areas demonstrate 
better effects than higher relief areas. In terms of socio-economic 
factors, the effects are more significant in non-major grain-producing 
areas than in major grain-producing areas. The policy effects are 
significant in regions with higher levels of digitization and financial 
literacy. (4) DE exerts positive spatial spillover effects on AGTFP, with 
the geographical distance matrix captures these spillovers 
more effectively.

8.2 Policy recommendations

Based on the foregoing conclusions, we propose the following 
policy recommendations:

 (1) Strengthen rural digital infrastructure and technological 
applications to promote full-chain digital transformation of 
agriculture. First, relying on the “Broadband China” Strategy, 
implement the “Rural Digital Infrastructure Tackling Plan,” 
prioritize optical fiber networks, 5G base stations, and 
agricultural IoT facilities in rural areas of the central and 
western regions, and explore a diversified investment model of 
“government subsidies + operator concessions + social capital 
participation” to narrow the regional digital divide. Second, 
establish an “Agricultural Digital Technology Innovation 
Center,” collaborate with research institutions and enterprises 
to develop lightweight tools tailored for smallholder farmers, 
such as an AI-powered pest and disease identification system 
based on WeChat mini-program, to lower the threshold for 
technology adoption. Construct an “integrated space-air-
ground” digital monitoring network to collect real-time data 
through satellite remote sensing, drone patrols, and field 
sensors, achieving dynamic optimization of resource input. 
Third, implement the “Farmer Digital Literacy Enhancement 
Project,” cultivate “new agricultural talents” with both 
agricultural knowledge and digital skills through field schools 
and practical workshops, and establish an incentive mechanism 
for “digital demonstration households” to improve farmers’ 
digital adoption rate from point to area. Finally, encourage 
e-commerce platforms to set up dedicated sections for green 
agricultural products, improve the blockchain-based 
traceability system for agricultural products from production 
to sales, strengthen consumer trust in green agricultural 
products, and use market demand to drive the green 
transformation of the production side.

 (2) Deepen the “digital + finance” coordination system to unleash the 
intermediary efficiency of finance. In terms of financial scale, 
establish a national special fund for agricultural green 
development, and accelerate the formulation of a unified support 
catalogue for agricultural green finance. Guide financial 
institutions to expand green credit issuance through means such 

as financial discounting and risk compensation. Encourage the 
inclusion of environmental protection indicators in the 
assessment of rural financial institutions, and provide tax relief 
for those that meet the standards. In terms of financial structure, 
promote the “blockchain + supply chain finance” model. Taking 
core enterprises as the fulcrum, provide credit loans based on 
order data for upstream and downstream small and medium-
sized farmers. Explore the pledge loan model for agricultural 
carbon sink income rights. Pilot the “insurance + futures + 
digitization” combination tool, develop index insurance products 
for climate-sensitive crops, and use satellite remote sensing data 
to dynamically adjust premium and claim settlement standards, 
reducing the impact of natural risks on green production. In 
terms of financial efficiency, accelerate the digital transformation 
of rural credit cooperatives, rural banks and other institutions. 
Improve the “digital finance + credit evaluation” mechanism, 
establish “digital credit profiles” based on farmers’ production 
data and e-commerce transaction records, simplify the approval 
process for small loans, and alleviate the financing constraints of 
agricultural green transformation. According to the 
characteristics of small farmers, design a repayment mechanism 
of “quarterly principal repayment and flexible borrowing and 
repayment,” and develop supporting mini-programs for financial 
knowledge popularization to enhance farmers’ ability to use 
financial tools through gamified interactions.

 (3) Implement differentiated strategies for digital agriculture to 
overcome natural and geographical constraints. In eastern and 
central regions, promote high-end models such as “Digital 
Twin Farms” and “vertical agriculture.” Leverage the advantages 
of flat terrain and complete infrastructure to create smart 
agriculture demonstration belts. In western regions, explore 
hybrid network solutions combining “low-altitude networking 
+ satellite communication” to improve the coverage of digital 
services in remote areas. Meanwhile, establish a “digital 
ecological compensation mechanism” in ecologically fragile 
areas. Monitor farmers’ green production behaviors through 
remote sensing and provide digital credit rewards. These 
credits can be  redeemed for agricultural input subsidies or 
financial services to address the real dilemma of “high input, 
low return” in the western. In humid areas with abundant 
precipitation, strengthen digital supervision of agricultural 
non-point source pollution. Establish a linkage model between 
“agrochemicals input  – water quality monitoring” to urge 
production entities to reduce pollution emissions. In 
non-humid areas, focus on efficient water resource utilization. 
Dynamically adjust irrigation volumes based on monitoring 
data and support digital platforms for agricultural water rights 
trading to alleviate water resource bottlenecks. For regions with 
complex terrains, develop lightweight and adaptable digital 
tools (e.g., portable soil moisture detectors and mountain 
agricultural robots) to reduce geographical barriers to 
technological application.

 (4) Conduct targeted optimization of the industrial ecology 
and institutional supply to activate the endogenous 
momentum of socio-economic factors. In major grain-
producing areas, it is necessary to strengthen the dual-goal 
orientation of stabilizing production and promoting 
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transformation. Optimize the planting structure through 
digital technologies and establish a linkage mechanism of 
“yield forecasting—reserve regulation—price insurance” to 
ensure farmers’ income from grain cultivation. In 
non-major grain-producing areas, it is essential to support 
the development of new business forms such as “digital 
agricultural adoption” and “live-streaming farming 
experience” in concentrated economic crop areas. Leverage 
e-commerce platforms and social media to create “digital 
landmark products” and expand market premium space. In 
highly digitized regions, encourage exploration of frontier 
fields such as “artificial intelligence + agricultural breeding” 
and “metaverse-based agricultural science popularization,” 
and promote the formulation of digital agriculture 
standards and international cooperation. In regions with 
lagging digitization, implement the “digital infrastructure 
gap-filling project,” focusing on constructing agricultural 
IoT demonstration bases and rural e-commerce public 
service centers to lower the initial threshold for digital 
applications. In higher financial literacy regions, promote 
the “e-CNY + green points” consumption model to guide 
farmers to participate in the carbon inclusive system. In 
lower financial literacy regions, launch the special initiative 
of “bringing financial knowledge to rural areas,” and 
popularize green financial products and raise risk 
prevention awareness through digital financial service 
stations, mobile publicity vehicles and other forms.

 (5) Establish a regional linkage network to share the dividends 
of digital development. First, develop a “National 
Agricultural Digital Cloud Platform” to integrate green 
production technology solutions, agricultural product 
market information, carbon sink transaction data, etc., from 
various regions, thereby achieving cross-regional optimal 
allocation of resources. Second, promote the establishment 
of a “digital technology benefit-sharing mechanism” between 
eastern and central-western regions. Specifically, provide 
ecological compensation or land use index incentives for 
technology exporters, and offer supporting subsidies for 
technology adopters, forming a collaborative pattern of 
“eastern R&D, central-western application” to ultimately 
achieve the “ripple effect” of AGTFP improvement. Third, 
rely on regional development strategies such as the Yangtze 
River Economic Belt and the Yellow River Basin to establish 
a “Provincial Digital Agriculture Alliance,” promoting 
cooperation among neighboring provinces in technical 
standards, data sharing, and talent mobility, and jointly 
formulating regional agricultural green development plans. 
Fourth, in rural areas around urban agglomerations, develop 
a “Metropolitan Digital Agriculture Community,” and 
leverage geographical proximity to share intelligent 
warehousing and cold-chain logistics facilities. 
Simultaneously, advance the digital upgrading of leisure 
agriculture, and create an “online adoption + offline 
experience” model. Finally, build on the “Belt and Road” 
agricultural cooperation platform and create cross-border 
digital agriculture demonstration zones. These zones will 
export China’s digital agriculture technologies and 

experiences to neighboring countries, while introducing 
international advanced green production standards and 
management models.
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