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Introduction: Sichuan province serves as a vital grain production hub in 
southwestern China, where corn planting industry plays a critical role in 
maintaining regional food security. Understanding the sustainability of corn 
production ecosystems is essential for optimizing agricultural resource allocation 
and ensuring long-term food security in this economically important region.

Methods: This study employed an emergy analysis framework to assess the 
sustainability of Sichuan’s corn planting ecosystems in 2022. An evaluation system 
comprising 18 indicators was developed, encompassing natural resource emergy, 
industrial support energy, and purchased renewable resources. Moving weighted 
trend surface analysis was applied to identify spatial patterns in environmental 
sustainability, while partial least squares discriminant analysis was used to 
categorize regions and identify key driving factors of regional differences.

Results: The analysis revealed significant regional disparities across multiple 
dimensions. In terms of emergy input and output, Chengdu city exhibited the 
highest emergy input density 10.59 × 1011 sej·m−2, nearly double that of Garzê 
Tibetan Autonomous Prefecture (5.36 × 1011 sej·m−2), while Aba Tibetan and Qiang 
Autonomous Prefecture showed the lowest emergy output density, reaching only 
40% of Dazhou city’s levels. Regarding investment benefits, Chengdu city maintained 
the highest emergy investment ratio (4.13) but demonstrated the lowest net emergy 
yield ratio (1.17), contrasting with Ziyang city’s highest net emergy yield ratio (2.07). 
Management and environmental impact assessments revealed substantial regional 
variations, with Suining city achieving the highest scale management degree (59.8) 
compared to mountainous regions averaging only 21.64. Environmental loading 
ratios remained below 1 in 67% of regions, while high-level areas averaged 1.71, 
indicating significant ecological pressure. Spatial analysis demonstrated a northeast-
to-southwest declining pattern in environmental sustainability index (R2 = 0.63, 
p < 0.05). Four distinct regional groups were identified, with net emergy yield ratio, 
emergy output density, and scale management degree emerging as the three key 
factors driving regional differences.

Discussion: These findings reveal the combined influence of natural resource 
availability and human energy inputs on agricultural sustainability across Sichuan 
province. The significant regional imbalances in resource input and output 
efficiency, coupled with obvious topographical influences on management 
practices, highlight the need for differentiated agricultural development 
strategies. The identification of key driving factors provides a scientific foundation 
for formulating regionally targeted policies to optimize resource allocation and 
enhance the overall sustainability of corn production systems in southwestern 
China.
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1 Introduction

Amidst global climate change, resource scarcity, and 
environmental degradation, agricultural systems face significant 
challenges to sustainable development (Fei, 2018; Pandey and Pandey, 
2023). The United Nations Food and Agriculture Organization (FAO) 
predicts that global food demand will increase by 60% by 2050, 
whereas climate change could reduce major crop yields by 20–30% 
(Brown et  al., 2016). In this context, scientific assessment of the 
sustainability of agricultural production systems has become an 
urgent priority. Traditional agricultural evaluation systems have 
tended to emphasize economic outputs while neglecting the 
quantification of ecosystem service values and environmental costs 
and may not adequately reflect the true performance of agricultural 
systems (Zadgaonkar et al., 2022). Emergy analysis is an effective 
ecological-economic analysis method proposed by Odum (1996) and 
has evolved into an important tool for evaluating the sustainability of 
complex systems (Odum, 1996). By uniformly converting different 
forms of energy, material flows, and information flows into solar 
emergy joules (sej) and subsequently analyzing and assessing the 
system’s ecological and economic benefits, it provides a systematic 
methodological framework for the sustainability assessment of 
agricultural systems (Brown and Ulgiati, 2016).

The core of emergy theory lies in constructing a common currency 
that connects natural and human economic systems, overcoming 
limitations in traditional economic evaluation that neglect 
environmental contributions (Amaral et al., 2016). Xiao et al. (2022) 
pointed out through a systematic review that the application of emergy 
analysis in agriculture has demonstrated three significant trends over 
the past decade: first, expansion from single crop systems to complex 
agricultural ecosystems; second, evolution from static analysis to 
spatiotemporal dynamic evolution research; and third, development 
from single indicators to multidimensional comprehensive evaluation 
systems (Xiao et  al., 2022). These trends essentially reflect the 
systematic refinement of the emergy analysis theoretical framework. In 
recent years, important breakthroughs have been achieved in the 
application of emergy analysis to assess the sustainability of agricultural 
systems. Houshyar et al. (2018), based on emergy analysis, discovered 
that while intensive agricultural production significantly increased 
food yields, its high dependence on external energy inputs led to 
increased system vulnerability, with the environmental loading ratio 
rising by an average of 47.3% (Houshyar et al., 2018). In research on 
China’s food production system, Liu et  al. (2024) further revealed 
significant regional differences in resource utilization efficiency, with 
developed regions generally attaining emergy investment ratios 2–3 
times higher than underdeveloped regions, yet they had lower net 
emergy yield ratios (Liu et al., 2024). This ‘high input-low efficiency’ 
paradox has prompted profound academic reflection, posing 
theoretical challenges to traditional agricultural modernization 
pathways. By constructing an emergy-ecological footprint coupling 
model, Wang et al. (2020) indicated that balancing the input structure 
between natural and purchased emergy is key to resolving this paradox 
(Wang et al., 2020). The innovation of this coupling method lies in its 

ability to simultaneously quantify both the resource consumption 
intensity and ecological carrying pressure of agricultural systems.

In agricultural systems emergy research, Su and Wang et al. (2020) 
investigated the relationship between emergy input structure and 
environmental load across different cultivation methods, finding that 
while intensive agricultural systems demonstrate higher economic 
efficiency, their environmental loading ratio is significantly higher 
than traditional agricultural systems (Su et al., 2020). Wang et al. 
(2022), by constructing an emergy-material flow analysis framework, 
quantified the environmental externalities of pesticides and chemical 
fertilizers, and proposed resource input thresholds based on emergy 
optimization (Wang et al., 2022). Xie et al. (2017) revealed significant 
regional heterogeneity in the ecological efficiency of China’s food 
production, with southwestern regions exhibiting particularly 
pronounced spatial differentiation in emergy investment ratios and 
the emergy environmental sustainability index due to complex terrain 
conditions and resource endowment differences (Xie et al., 2017). 
However, existing research predominantly focuses on macro or meso 
scales and lacks systematic analysis of regional microscale differences, 
making it difficult to guide the formulation of regionally differentiated 
agricultural policies (Streimikis and Baležentis, 2020).

As the largest food production area in southwest China, Sichuan 
features a complex terrain, diverse climate, and significant regional 
differences in resource endowments and socioeconomic development 
levels, providing a typical case for studying the spatial differentiation 
of emergy characteristics in agricultural systems (Liu et al., 2019). 
Since 2000, Sichuan Province’s corn industry has achieved remarkable 
development, with cultivated area expanding by 50% and total 
production increasing by 44.4%. Meanwhile, per-unit yield levels have 
improved from 375 kg per mu to 420 kg per mu (Xiong et al., 2022; 
Zhang et al., 2024). Beyond ensuring food security, the corn sector has 
stimulated growth in related industries including feed, food 
processing, and biochemical industry. The industry generates over 
60 billion yuan in annual output value and provides direct employment 
for 2 million people, significantly contributing to rural income growth 
and regional economic prosperity. Additionally, the industry has made 
substantial progress in implementing environmentally sustainable 
practices, particularly in conservation tillage and green pest 
management technologies (Wang et al., 2022; Xiang et al., 2024). A 
study by Li et al. (2023) on rice planting systems in the Chengdu Plain, 
the largest plain in southwestern China, found that intensive 
production significantly improved emergy utilization efficiency (Li 
et al., 2023). Francis and Clegg (2020), by analyzing food production 
systems in basin regions, identified terrain differences as key factors 
causing spatial heterogeneity in resource utilization efficiency (Francis 
and Clegg, 2020). This provides important biophysical foundations for 
understanding spatial heterogeneity of agricultural systems. It was 
found that resource utilization efficiency in mountainous agricultural 
areas is generally 30–50% lower than in plain regions, while there were 
increased ecological risks from soil and water erosion (Li et al., 2023). 
Particularly when faced with global climate change, frequent extreme 
weather events pose even greater challenges to vulnerable 
mountainous agricultural systems (Tripathi et al., 2024).
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As the second largest food crop in Sichuan, the corn production 
system encompasses multiple topographical conditions, including 
plains, hills, and mountainous areas, effectively reflecting the resource 
and environmental impacts of regional agricultural production. 
However, there is a lack of sustainability assessment research on 
Sichuan’s corn planting systems based on emergy analysis, particularly 
systematic analyses of its spatial heterogeneity and influence 
mechanisms. Referencing emergy theory and spatial analysis methods, 
this study constructs a comprehensive evaluation system containing 
18 indicators, aiming to: (1) analyze the emergy input–output 
characteristics of Sichuan’s corn planting system and regional 
differences; (2) reveal the spatial differentiation patterns of regional 
emergy sustainability and their driving mechanisms; and (3) study the 
evolution trends of corn production systems in climate change 
scenarios and propose differentiated optimization strategies.

2 Materials and methods

2.1 Study area

Sichuan is located in southwestern China in the upper reaches of 
the Yangtze River (Figure 1), with a regional range of 97°21′E–108°31′E 
and 26°3′N–34°19′N. The topographical structure is ‘high around the 
edges, low in the middle’, with the central area characterized by typical 
basin terrain. This region has a subtropical humid monsoon climate, 

with significant monsoon and vertical zonal characteristics. Annual 
average temperatures range from 16 to 18°C, while annual 
precipitation varies between 800 and 1,200 mL, distributed uniformly 
across space and time. The frost-free period extends for 240–300 days, 
with abundant light and heat and sufficient heat accumulation, 
providing favorable climatic conditions for crop growth. Soil types 
primarily consist of paddy and purple soil, with deep soil layers and 
high organic matter content, offering good water and fertilizer 
retention. These soil characteristics have established a necessary 
foundation for achieving high and stable grain crop yields. This region 
is not only one of China’s important commercial grain production 
areas but also a crucial ecological barrier in the upper reaches of the 
Yangtze River.

From 2000 to 2023, Sichuan Province’s economic and agricultural 
development shows distinct phases and notable regional variations 
(Zhang et al., 2024). The agricultural planting industry exhibits clear 
regional development disparities, with leading modernization levels 
but facing “high input-low efficiency” issues, while the central plains 
face considerable ecological pressure. Since 2016, the province has 
entered a period of structural adjustment, shifting its development 
focus from quantity growth to quality and efficiency improvement 
(Liu et al., 2024; Xiang et al., 2024). This indicates that Sichuan is 
transforming from an agricultural big province to an agricultural 
strong province, though it still faces challenges related to grain 
production and demand gaps. Coordinated regional development and 
green transformation will be crucial for future development.

FIGURE 1

Terrain map (A) of Sichuan Province, and its location in China (B).
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2.2 Research methods

2.2.1 Assessment method and indicators
The emergy accounting method is a system assessment method 

based on the emergy theory proposed by Odum (1996), with the core 
objective of quantifying the supply side value of natural systems for 
human economic activities (Odum, 1996). This method, through the 
unit emergy value, achieves a standardized integration of multi-
dimensional resource flows, converting factors with different 
dimensions, such as energy flows, material flows, monetary flows, 
labor, and services, into comparable quantities based on solar emergy. 
The basic mathematical model can be expressed as Equation (2–1):

 = ∗    Solar emergy Unit emergy value Unit energy (2-1)

The unit emergy value refers to the solar transformity, which is the 
sunlight equivalent contained in a unit of energy (1 j) or material (1 g).

The emergy flow diagram for corn in Sichuan is illustrated in 
Figure 2. The inputs to the corn production system can be classified into 
four categories: local renewable resources (R, including sunlight, wind, 
earth cycle, and rain), local non-renewable resources (N, net loss of 
topsoil), renewable organic energy (FR, including irrigating water, labor, 
seeds, and organic fertilizer), and non-renewable artificial auxiliary 
energy (FN, including chemical fertilizer, plastic mulch, diesel, pesticides, 
power, agricultural machinery, and compound fertilizer). The output of 
this system is represented by the corn output emergy Y. As shown in 

Table 1, the main assessment indicators in this study include: emergy 
input density, emergy output density, emergy investment rate, net 
emergy yield rate, scale management degree, environmental loading 
ratio, and emergy sustainable development coefficient. Through an 
evaluation system comprising 18 indicators, this study applied an emergy 
analysis to assess the sustainability of Sichuan’s corn planting ecosystems 
in 2022. The abbreviations for the administrative divisions of Sichuan are 
provided in Table 2. We used the natural breaks method to divide the 21 
prefectural-level cities/autonomous prefectures into four groups (high 
level, medium-high level, medium-low level, and low level) on a spatial 
scale. A difference analysis was conducted on these administrative units 
using a one-way analysis of variance and effect size methods.

2.2.2 Moving weighted trend surface analysis
Using the moving weighted trend surface analysis (Oliveira, 1979; 

Eppler and Full, 1992; Wang and Zuo, 2015), we conducted a trend 
analysis of the sustainable development of corn cultivation 
ecosystems across 21 prefecture-level cities/autonomous prefectures 
in Sichuan. The details of this process are provided in 
Supplementary material (Appendix S1).

2.2.3 Partial least squares discriminant analysis
Partial least squares discriminant analysis (PLS-DA) is a robust 

discriminant analysis method. This method is particularly suitable for 
datasets with numerous explanatory variables, multicollinearity issues, 

FIGURE 2

Emergy flow diagram of the corn planting ecosystem in Sichuan Province.
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and small sample sizes. The method begins by converting the sample 
categories into dummy variables, as Equation (2–2):

 {δ − ∈ −
− ∈ −= 1

0
Where the i th sample to the j th category

ij Where the i th sample does not to the j th category  
(2-2)

Subsequently, PLS regression is applied to establish a 
relationship model between the explanatory and dummy variables 
(Jiang and Xia, 2003). The sample classification is determined by 
comparing the magnitudes of the predicted values. If a particular 
dummy variable component has the highest predicted value, the 
sample is assigned to the category corresponding to that variable 
(Figure 3).

In 1994, Wold introduced the Variable Importance in 
Projection (VIP) index, which screens variables according to their 
influence intensity of explanatory variables. This index is a 
statistical measure of how well explanatory variables account for 

the response variables (categories) (Jiang et  al., 2004). VIP is 
defined as Equation (2–3):
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(2-3)

where p is the number of independent variables, m represents the 
number of components extracted from the original variables, ht  
represents the h-th component, ( ), hRd Y t  represents the coefficient of 
determination between Y and the h-th principal component, ωhj 
represents the h-th component of the weight vector for the j-th principal 
component, and ( )1, , , mRd Y t t  represents the sum of coefficients of 
determination between Y and the first m principal components. When 

>1VIP , it indicates that the variable makes a large contribution to the 
sample classification, suggesting that it can be identified as a key factor 
influencing the response variable. In this study, we employed PLS-DA to 
evaluate the environmental sustainability index of corn at spatial scale in 
prefecture-level cities/autonomous prefectures of Sichuan.

2.3 Data sources

The primary data sources include the Sichuan Provincial Bureau 
of Statistics (2023), as well as local statistical yearbooks from cities 
and prefectures in Sichuan, such as the Chengdu Municipal Bureau 

TABLE 1 Emergy indicators: calculation formulas and their conceptual 
meanings.

Indicator Formula Meaning

Emergy input 

density  
R NR N F F

Crop planting area
+ + + Reflects the level of local economic 

development. Higher values indicate 

higher levels of local economic 

development.

Emergy 

output density   
Y

Cron planting area

Evaluates the economic benefits of 

crop production. Higher values 

indicate greater yield returns per unit 

of cultivated land area.

Emergy 

investment 

ratio

N RF F
R N
+
+

Measures the degree of economic 

development and level of 

environmental load. Higher values 

indicate a higher degree of economic 

development in the system and 

reduced dependence on the 

environment.

Net emergy 

yield ratio N R

Y
F F+

Measures the magnitude of the 

system’s economic contribution and 

production efficiency. Higher values 

indicate higher emergy output, 

increased production efficiency, 

enhanced competitiveness, and 

greater economic benefits.

Scale 

management 

degree

R NR N F F
Workforce
+ + + Evaluates the degree of scale 

management in the system. Higher 

values indicate reduced labor input 

and more scaled-up management 

approaches.

Environmental 

loading ratio
N

R

N F
R F
+
+

Evaluates the environmental pressure 

on the system through non-

renewable resources input and usage. 

Higher values indicate greater stress 

on the natural environmental system.

Environmental 

sustainability 

index

( )
( )( )

R

N R N

Y R F
F F N F

+
+ +

Higher values indicate better system 

sustainability.

TABLE 2 The abbreviations for the prefectural-level cities/autonomous 
prefectures of Sichuan.

Number Prefectural-level city/
autonomous prefecture

Abbreviation

1 Aba Tibetan and Qiang Autonomous 

Prefecture

AB

2 Bazhong City BZ

3 Chengdu City CD

4 Deyang City DY

5 Dazhou City DZ

6 Guang’an City GA

7 Garzê Tibetan Autonomous Prefecture GZ

8 Guangyuan City GY

9 Leshan City LS

10 Liangshan Yi Autonomous Prefecture LSYZ

11 Luzhou City LZ

12 Meishan City MS

13 Mianyang City MY

14 Nanchong City NC

15 Neijiang City NJ

16 Panzhihua City PZ

17 Suining City SN

18 Ya’an City YA

19 Yibin City YB

20 Zigong City ZG

21 Ziyang City ZY
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of Statistics (2023), Zigong Municipal Bureau of Statistics (2023), 
Sichuan Climate Resources, and Sichuan Provincial Profile. The 
details are provided in Supplementary Tables S1–S5. To address 
missing data in the yearbooks, we  supplemented them using 
statistical data published on the official websites of local agricultural 
bureaus, meteorological bureaus, water affairs bureaus, and other 
institutions. We performed sensitivity analyses on the data to assess 
the robustness and quantify uncertainty. Additionally, this research 
used an emergy baseline of 1.583 × 1025 sej/a (Odum and Odum, 
2000), while the emergy conversion coefficients and transformation 
rates were based on Wu (Wu, 2016). Refer to Table 3 for indicators 
used in emergy analysis evaluation. The details of conversion rate are 
provided in Supplementary Table S6. The emergy analysis research 
framework is shown in Figure 4.

3 Results

3.1 Regional distribution and difference 
analysis of emergy input and output 
density

A high emergy input density indicates greater energy investment 
per unit of farmland, although excessive inputs may result in resource 
wastage and significant environmental impacts. As illustrated in 
Figure 5A, our analysis showed that regions with high emergy input 
density were concentrated in central Sichuan. Chengdu had the highest 
density (10.59 × 1011 sej·m−2), while Garzê showed the lowest 
(5.36 × 1011 sej·m−2), which was merely half of Chengdu’s level. The 
Chengdu Plain offers flat terrain ideal for large-scale mechanization, 
resulting in high emergy intensity levels. In contrast, the complex 
western terrain of Garzê severely limits mechanical farming. Our 
statistical analysis (Figure 5B) revealed that data dispersion was large 
in high-level and medium-high-level regions, suggesting diversity and 
complexity in emergy input practices. Meanwhile, the medium-low 
and low-level regions displayed more concentrated data patterns. 
We  observed a significant overlap between adjacent categories, 
particularly between high and medium-high levels, as well as between 
medium-low and low levels, indicating gradual transitions in regional 
emergy input density. One-way analysis of variance confirmed 

significant differences among the four groups (F = 120.6, p < 0.001). 
The large effect size (η2 = 0.96) suggests that regional grouping explains 
a substantial portion of emergy input density variations.

The emergy output density reflects the output benefits of crop 
production, with higher values indicating a higher emergy output per 
unit area, that is, higher returns. Our spatial analysis, as illustrated in 
Figure 5C, reveals that high-level and medium-high-level regions are 
concentrated in central and eastern Sichuan, whereas medium-low 
and low-level regions were mainly found in western Sichuan. Aba 
showed the lowest density at 5.16 × 1011 sej·m−2, representing only 
40% of Dazhou’s output. As shown in Figure 5D, from high-level to 
low-level regions, the emergy output density showed a clear decreasing 
trend, potentially reflecting more diverse economic structures in these 
areas. We observed minor differences between the medium-high and 
medium-low level regions. One-way analysis of variance confirmed 
significant differences between groups (F = 71.45, p < 0.001), with an 
effect size (η2 = 0.94) indicating that regional grouping accounts for a 
substantial portion of variations in emergy output density.

3.2 Regional distribution and difference 
analysis of emergy investment ratio and 
net emergy yield ratio

A higher emergy investment ratio indicates a more advanced level 
of economic development, whereas a lower ratio suggests less 
development and greater environmental dependence. As illustrated in 
Figure 6A, Chengdu showed the highest emergy investment ratio at 
4.13, primarily because of its substantial input of purchased auxiliary 
emergy relative to the total emergy input. In contrast, Garzê had the 
lowest ratio of 1.67, just 40% of Chengdu’s value, mainly because of its 
low proportion of renewable organic emergy input to total emergy. 
Regions with high development levels typically demonstrate superior 
emergy investment efficiency, likely because of their advanced 
technology, well-developed infrastructure, and effective resource 
allocation systems (Figure 6B). However, significant variations within 
these high-level regions suggest room for further optimization. 
Medium-low level regions showed the least internal variation, while 
low-level regions displayed greater differences, suggesting that 
medium-low level regions have more consistent energy utilization 

FIGURE 3

Basic principle of PLS-DA.
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patterns, whereas low-level regions showed more variability and 
potential for improvement. Statistical analysis using one-way analysis 
of variance revealed significant differences between the four groups 
(F = 168.37, p < 0.001), with an effect size (η2 = 0.97) indicating that 
group classification strongly influences observed variations.

The net emergy yield ratio is a standard measure of system 
productivity, with higher values reflecting greater system production 
efficiency. As shown in Figure 6C, only two regions, Deyang and 
Chengdu, were in the low-level category, with Chengdu showing the 
lowest net emergy yield ratio at 1.17, indicating a highly-level lack of 
coordination between crop production and economic development. 
Among the high-level regions, Ziyang demonstrated the highest net 

emergy yield ratio at 2.07, representing a 76% increase over Chengdu’s 
value. Both high- and low-level regions showed small data 
fluctuations, with high-level regions displaying more concentrated 
data distribution, suggesting that these areas may have achieved 
stable energy efficiency (Figure 6D). In contrast, medium-high and 
medium-low level regions indicated more scattered data patterns, 
potentially indicating that they are at a crucial stage of improving 
energy efficiency, with substantial potential for improvement. 
Statistical analysis using one-way analysis of variance revealed 
significant differences among the four groups (F = 455.7, p < 0.001), 
with an effect size (η2 = 0.98) demonstrating that group differences 
account for almost all net emergy yield ratio variations.

TABLE 3 Indicators and calculation formulas for emergy analysis.

Indicator Formula Data source

Local renewable resources

Sunlight emergy ( )× ×Average solar radiation intensity planting area 1 reflectivity乚 Wu (2016), Sichuan Provincial Bureau of Statistics (2023)

Wind emergy × × × ×    Density geostrophic wind speed drag coefficient planting area time Wu (2016), Sichuan Provincial Bureau of Statistics (2023)

Rain emergy × × ×    Acreage average rainfall rainfall density Gibbs free energy Sichuan Provincial Bureau of Statistics (2023)

Earth cycle emergy ×  Acreage heat flux Lan et al. (1998), Sichuan Provincial Bureau of 

Statistics (2023)

Local non-renewable resources

Net loss of topsoil × ×
× ×
Erosion rate planting area organic matter content

organic matter energy energy content

Wu et al. (2013), Sichuan Provincial Bureau of 

Statistics (2023)

Renewable organic energy

Irrigation water emergy × × ×   Usage acreage density Gibbs free energy Sichuan Provincial Bureau of Statistics (2023)

Labor emergy × ×
× ×

       

  

Number of working population daily working hours number of days

energy consumption per hour energy content

Sichuan Provincial Bureau of Statistics (2023)

Seeds emergy ×   Planting area energy content per unit area Jiang et al. (2007), Sichuan Provincial Bureau of 

Statistics (2023)

Non-renewable artificial auxiliary energy

Nitrogen fertilizer emergy ×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023)

Phosphate fertilizer emergy ×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023)

Potassium fertilizer emergy ×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023)

Compound fertilizer emergy ×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023)

Pesticide emergy ×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023), 

Chengdu Municipal Bureau of Statistics (2023), 

Nanchong Statistical Yearbook (2023)

Plastic film ×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023), Chengdu 

Municipal Bureau of Statistics (2023), Zigong Municipal 

Bureau of Statistics (2023)

Agricultural diesel emergy ×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023)

Agricultural machinery 

power emergy
×Average quality acreage Wang et al. (2014), Sichuan Provincial Bureau of 

Statistics (2023)

Agricultural electricity 

emergy
×  Application rate energy content Sichuan Provincial Bureau of Statistics (2023)

Output of corn production system

Output emergy ×  Total yield energy content Yueyin and Xingchang (2009), Sichuan Provincial Bureau 

of Statistics (2023)
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3.3 Regional distribution and comparative 
analysis of scale management degree and 
environmental loading ratio

Labor input is the primary factor that influences the scale 
management degree. Within the same crop production system, a higher 
labor input typically correlates with a lower scale management degree. 
Additionally, labor requirements are strongly correlated with farmland 
topography, with flat terrain facilitating large-scale farming. In Figure 7A, 
low-level regions included Garzê and Aba, averaging 21.64, primarily due 
to their hilly terrain, uneven farmland, and heavy reliance on manual 
farming methods. High-level regions averaged 57, with Suining showing 
the highest scale management degree at 59.8, largely because of its central 
location in the Sichuan Basin, with flat terrain and concentrated corn 
cultivation that enables mechanized production and large-scale 
management. High-level regions consistently demonstrated elevated and 
uniform scale management degrees, while medium-high level regions 
showed more dispersed data distribution. As the level decreases, both the 
overall scale of management degree declines and regional differences 
widen (Figure 7B). Statistical analysis using one-way analysis of variance 
revealed significant differences between the four groups (F = 66.89, 
p < 0.001), with an effect size (η2 = 0.92) indicating that group classification 
strongly influences variations in the scale management degree.

Excessive use of non-renewable resources by humans can lead to 
severe ecological degradation, with environmental loading increasing 
as the consumption of non-renewable resources increases. As shown 
in Figure  7C, low-level and medium-low level regions have 
environmental loading ratios below 1, accounting for 67% of Sichuan, 
indicating that corn cultivation in these cities did not significantly 
impact the environment. The average environmental loading ratio is 
1.29 for medium-high level regions and 1.71 for high-level regions, 
suggesting that it is important to emphasize non-renewable resource 
inputs in corn planting systems within these areas. High-level regions 

showed concentrated data, with a narrow distribution range 
(Figure  7D). The medium-high level regions demonstrated the 
greatest data dispersion, with the widest distribution range. In 
contrast, the medium-low and low-level regions maintained lower and 
stable environmental loading ratios. One-way analysis of variance 
revealed significant differences between the four groups (F = 185.96, 
p < 0.0001), with an effect size (η2 = 0.97) indicating that group 
classification profoundly impacts result variation, showing substantial 
and significant differences across all levels.

3.4 Analysis of sustainability trends in corn 
planting ecosystems

To identify the optimal trend surface model, we spatially applied 
first-, second-, third-, fourth-, and fifth-order trend surface models to 
simulate the environmental sustainability index of Sichuan’s corn 
planting ecosystem (Figure 8A). The first-order trend surface model 
demonstrated the highest goodness of fit (R2 = 0.63). Consequently, this 
model was used to evaluate spatial variation in the environmental 
sustainability index of Sichuan’s corn planting ecosystem. It represents 
patterns that emerge after eliminating random and local fluctuations. In 
Figure 8B, despite local undulations and fluctuations in central Sichuan, 
the overall environmental sustainability index showed a decreasing 
gradient from northeast to southwest, displaying an inclined plane-
shaped spatial distribution pattern. This model’s parameters were 
statistically significant (F = 121.15, p < 0.05) and the regression model 
exhibited a high goodness of fit for the cross-sectional data (R2 > 0.5).

According to the loading plot (Figure 9A), the goodness of fit 
(R2 = 0.89) demonstrated that the PLS-DA model effectively 
differentiated the environmental sustainability index of corn planting 
ecosystems across the province. The 21 prefecture-level cities/
autonomous prefectures were distinctly categorized into four groups: 
Group 1 (YA, CD, DY, PZ, and MS), Group 2 (GA, NJ, SN, DZ, and 

FIGURE 4

Emergy analysis research framework.
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ZY), Group 3 (GY, BZ, NC, LZ, ZG, YB, LS, and SN), and Group 4 
(AB, LSYZ, and GZ). Group  1 showed a strong correlation with 
emergy input density, emergy investment ratio, and environmental 
loading ratio, indicating that this group exhibited higher values in 
these metrics. Group 2 correlated strongly with emergy output density, 
net emergy yield ratio, and scale management degree, suggesting that 
this group demonstrated higher performance in these aspects. 
Group  3 showed a weak correlation with all emergy indicators, 
including the emergy investment ratio, environmental loading ratio, 
emergy input/output densities, scale management degree, and net 
emergy yield ratio, exhibiting a greater distance from these metrics. 
Group  4 was the most distant from these emergy indicators, and 
showed the weakest correlation. VIP is an indicator for measuring the 
importance of explanatory variables, with values exceeding 1, typically 
indicating a significant influence on the response variables. In 

Figure 9B, the net emergy yield ratio, emergy output density, and scale 
management degree all show VIP values greater than 1, indicating that 
variations in these indicators contribute to significant spatial 
differences in corn sustainability across Sichuan.

4 Discussion

The emergy analysis method provides a quantitative valuation of 
environmental resources, revealing the intrinsic relationship between 
natural environmental resources and the economy—which purely 
traditional energy and economic analyses cannot achieve. This approach 
is significant in challenging the long-standing misconception that 
environmental resources lack value simply because they are not products 
of labor (Zhai et al., 2017; Zhai et al., 2018; Zhao et al., 2019; Asgharipour 

FIGURE 5

Emergy input and output density patterns: spatial heterogeneity and statistical analysis. The units for emergy input density and emergy output density 
are *1011 sej/m2. Different capital letters (A–D) indicate extremely significant differences. The same is depicted below.
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et  al., 2020). While prioritizing the economic development of food 
production, we  use emergy analysis to assess the balance between 
environmental resources and economic growth, highlighting 
environmental protection and the improvement of ecological benefits 
(Jafari et al., 2018; Ali et al., 2019). The main innovations of this research 
were as follows: First, it integrated moving weighted trend surface analysis 
and PLS-DA into an emergy evaluation system, constructing a novel 
analytical framework to identify the driving mechanisms behind regional 
differences. Second, based on Sichuan complex terrain and significant 
regional development disparities, we  established a comprehensive 
evaluation system covering 18 core indicators. This system deeply aligned 
with the typical characteristics of agricultural ecosystems in Southwest 
mountainous regions, enhancing both the regional representativeness and 
applicability of the evaluation results. Finally, the findings directly 
addressed the needs of differentiated agricultural development strategies, 

providing solid scientific support for the precise formulation and 
optimization of regional agricultural policies, achieving effective 
integration between theoretical research and practical applications.

4.1 Regional variations in emergy 
characteristics of corn planting systems in 
Sichuan Province

This study uses an emergy analysis methodology to evaluate the 
sustainable development of corn planting systems across 21 prefecture-
level cities/autonomous prefectures in Sichuan. In terms of emergy 
input and output, Dazhou exhibits low emergy input density but high 
emergy output density, indicating efficient resource utilization with 
high yields, despite low resource investment per unit area. Located in 

FIGURE 6

Emergy investment ratio and net emergy yield ratio patterns: spatial heterogeneity and statistical analysis. Different capital letters (A–D) indicate 
extremely significant differences. The same is depicted below.
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eastern Sichuan’s basin’s peripheral mountains with a well-developed 
environment, Dazhou benefits from favorable ecological conditions 
and optimal planting density, resulting in high corn productivity. 
Regarding emergy investment and net yield, Chengdu and Deyang had 
high emergy investment ratios but low net emergy yield ratios, 
reflecting advanced economic development with reduced 
environmental dependence and low production efficiency, indicating 
a significant imbalance between crop production and economic 
development. In terms of scale management degree and environmental 
loading ratio, Suining and Ziyang demonstrated high scale 
management with low environmental loading ratios, characterized by 
minimal labor input, efficient management, and reduced 
environmental impact, making them ideal regions for corn cultivation. 
Conversely, Aba and Ya’an show a low scale management degree but 
high environmental loading ratios, indicating limited mechanization, 
inefficient management, and significant environmental pressure, 

necessitating adjustments in resource utilization, particularly 
non-renewable resources. By 2025, the grain production and 
consumption gaps are projected to reach 14.7343  million tons, 
requiring an additional 2,644.58 thousand hectares of cultivation area, 
based on Sichuan’s current grain yield. Amidst resource constraints, 
meeting the growing demand for diverse, high-quality grain remains 
the primary challenge for Sichuan’s food security (Yusha, 2021).

Natural emergy inputs to corn production systems (including solar 
energy, wind energy, and precipitation) remained regionally stable, 
providing baseline energy support for system operations. However, 
significant regional variations exist in purchased emergy inputs such as 
fertilizers, pesticides, and machinery. These human energy interventions 
create distinct ecological and economic characteristics for the same crop 
across different regions (Asgharipour et al., 2019; Nan et al., 2020). For 
example, corn production systems in the Chengdu Plain (including 
Chengdu, Deyang, Mianyang, Meishan, Leshan, Yibin, Zigong, Neijiang, 

FIGURE 7

Scale management degree and environmental loading ratio patterns: spatial heterogeneity and statistical analysis. Different capital letters (A–D) 
indicate extremely significant differences. The same is depicted below.
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Ziyang, Suining, and Nanchong) demonstrate significantly higher 
emergy investment and environmental loading ratios compared to 
mountainous regions (including Aba, Garzê, Liangshan, and Panzhihua), 
due to higher purchased emergy inputs (2.97 × 1021 sej/ha/year). These 
variations are key drivers of ecosystem differentiation, providing a 
theoretical foundation for optimizing regional agricultural production 
structures and reducing environmental loading (Lu et al., 2017; Liu et al., 
2019). Based on the results of this study, we propose specific policy 
recommendations and technical improvement measures to help each 
region achieve efficient and sustainable agricultural production (Table 4).

4.2 Spatial differentiation patterns of 
emergy sustainability in corn planting 
systems

The emergy environmental sustainability index provides a 
comprehensive measure of a system’s capacity for sustainable 
development, and regional variations in these indices reveal how 
different combinations of energy inputs affect system sustainability. 
Higher environmental sustainability index values indicate that a system 
has achieved favorable economic benefits and ecological balance while 

FIGURE 9

Loading plot (A) and VIP (B) from PLS-DA of environmental sustainability index in corn planting ecosystems. The first loading coefficient (w*c[1]); the 
second loading coefficient (w*c[2]); and the third loading coefficient (w*c[3]). net emergy yield ratio (NEYR); emergy output density (EOD); scale 
management degree (SMD); emergy investment ratio (EIR); emergy input density (EID); environmental sustainability index (ESI); environmental loading 
ratio (ELR).

FIGURE 8

Selection of optimal trend surface model (A) and first-order trend surface model for environmental sustainability index of corn planting ecosystem (B).
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maintaining its core stability (Sha et al., 2015; Cheng et al., 2017). The 
sustainable development of Sichuan’s corn planting systems exhibits 
distinct spatial heterogeneity patterns, aligning with the ecosystem core 
hypothesis regarding the impact of purchased emergy inputs on 
ecosystem evolution (Wang and Zhai, 2019). Trend surface analysis 
revealed a decreasing gradient in the sustainable development index 
from northeast to southwest (R2 = 0.63, p < 0.05), reflecting the 
combined effects of natural resource endowment and purchased emergy 
inputs. As noted, under identical climatic conditions, the coexistence of 
different ecosystem types depends on the relationship between natural 
and purchased emergy (Wang and Zhai, 2019). The higher sustainable 
development index in northeastern Sichuan likely results from a better 
balance between favorable natural conditions and moderately purchased 
emergy inputs. Conversely, the lower index in the southwest may 

indicate an overreliance on purchased emergy inputs in pursuit of high 
yields. In the northern farming-pastoral ecotone, cash crops required 
the highest purchased emergy input (101.04–147.67 × 1014 sej/ha/year), 
while natural grasslands were able to maintain functionality with 
minimal purchased emergy input (3.53–4.21 × 1014 sej/ha/year). Higher 
purchased emergy inputs may compromise long-term ecosystem 
sustainability (Wang and Zhai, 2019). By regulating purchased emergy 
inputs, we can guide the system’s evolution toward greater sustainability 
while maintaining the stability of the natural emergy core.

Sensitivity analysis results indicated that FN and N showed 
significant negative correlations with ESI, while FR and R 
demonstrated positive correlations with ESI (Figure 10). FN has the 
most significant impact on ESI, with a 20% increase leading to a 13.7% 
decrease in ESI, showing the strongest negative sensitivity. The 

FIGURE 10

Impact of different emergy types on ESI. FN, non-renewable artificial auxiliary energy; FR, renewable organic energy; N, local non-renewable 
resources; and R, local renewable resources.

TABLE 4 Implementing precision-targeted policy measures across four functional zone categories.

Functional zone Region Specific measure

High-input low-efficiency zones Chengdu and Deyang Implement “reduction and efficiency enhancement” initiatives: reduce fertilizer use; integrate 

slow-release fertilizer technologies; promote precision fertilization practices; establish soil 

nutrient databases; set emergy efficiency red lines.

High-efficiency sustainable zones Ziyang and Suining Create demonstration showcases: build smart agriculture demonstration bases, promote the 

“Ziyang Model”: scaling + ecologicalization; develop technical standards and promotion 

pathways.

Potential enhancement zones Dazhou and Guang’an Address infrastructure deficiencies: enhance agricultural mechanization capabilities; establish 

modern agricultural industrial parks; train new-type professional farmers.

Ecological conservation zones Aba Tibetan and Qiang 

Autonomous Prefecture and Garzê 

Tibetan Autonomous Prefecture

Ecological compensation + moderate development: establish ecological compensation 

standards; develop specialized eco-agriculture and agri-tourism integration; strict 

environmental access thresholds: environmental load rate <0.8.
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sensitivity of variables affecting ESI ranked as follows: 
FN > R > N > FR. Changes in FN produced the maximum fluctuation 
in the sustainable development index, while the impact of FR was 
relatively moderate. Reducing dependence on FN and N while 
increasing the use of FR and R will significantly enhance sustainable 
development levels. In particular, controlling FN usage should become 
the priority strategy for improving ESI.

4.3 Spatiotemporal evolution 
characteristics and optimization strategies 
for corn production systems

From 2000 to 2022, corn production in Sichuan increased from 
5.474 million tons to 10.4622 million tons, a total increase of 91.13% 
(Figure  11A). The cultivation area expanded from 1.2355  million 
hectares to 1.855 million hectares, an increase of 50.15% (Figure 11B). 
Sichuan’s corn cultivation exhibited distinct developmental phases: 
Initial Growth Phase (2000–2007), with production increasing by 
18.97% and area by 10.84%, demonstrating preliminary scale 
expansion; Rapid Development Phase (2008–2015), with production 
growing by 47.06% and area by 29.57%, showing significant 
intensification; and Stable Adjustment Phase (2016–2022), with 
marginal decreases in both production (1.12%) and area (0.59%), 
indicating structural optimization trends. The minor decline in both 
production and area post-2016 suggests a transition toward quality-
oriented and efficiency-focused production, reflecting the impact of 
agricultural supply side structural reform policies. The multi-indicator 
emergy analysis framework provides comprehensive theoretical 
support for optimizing regional agricultural production (Amiri et al., 
2019; Lewandowska-Czarnecka et al., 2019). By rationally regulating 
purchased emergy inputs while maintaining the stability of the natural 
emergy core, we can guide the system toward greater efficiency and 
sustainability (Patrizi et al., 2018).

This study has several limitations that require improvement. First, 
regarding the completeness of the indicator system, while 18 evaluation 

indicators were established, the study did not consider factors such as 
climate change and extreme weather events affecting corn planting 
systems. Additionally, the lack of long-term monitoring data for 
ecological elements, including soil quality evolution and groundwater 
level changes, may have led to underestimations of the actual 
environmental carrying capacity pressures. Regarding temporal scale 
limitations, owing to data availability constraints, the study lacks a long-
term dynamic assessment. Although corn yield and area changes from 
to 2000–2022 were analyzed, emergy indicators for these years were not 
incorporated into the analytical framework, preventing a comprehensive 
understanding of sustainability evolution patterns in Sichuan’s corn 
planting systems. Regarding spatial scale limitations, the analysis using 
prefectural-level cities/autonomous prefectures as basic units overlooks 
county-level heterogeneity. Future research should focus on the system 
vulnerability at additional microscales. While this study identified 
significant regional heterogeneity in corn agroecosystem patterns, the 
underlying socio-economic and biophysical drivers remain poorly 
understood. The relative contributions of anthropogenic factors 
(agricultural policies, market dynamics and farmer decisions) versus 
environmental determinants (soil properties, climate variability, 
landscape structure) require systematic quantification. In the future, 
we  should adopt integrated socio-ecological approaches to: (1) 
determine the relative importance of these driver categories, (2) identify 
threshold effects and interactions, and (3) develop predictive models 
for agroecosystem sustainability under varying conditions. Such 
mechanistic insights would advance both theoretical understanding 
and evidence-based management strategies for sustainable 
corn production.

Acknowledging these limitations, recent technological advances 
offer promising solutions for future research. Remote sensing data 
integrated with artificial intelligence models have demonstrated 
significant potential in agricultural monitoring and assessment, 
providing dynamic, high-resolution spatiotemporal information that 
can overcome the constraints of static statistical data (Omia et al., 
2023; Correa et al., 2024; Neri et al., 2024; Song et al., 2024a; Song 
et al., 2024b). Machine learning algorithms applied to satellite imagery 

FIGURE 11

Corn cultivation area (A) and production (B) in Sichuan Province from 2000 to 2022.
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can accurately estimate crop yields, monitor real-time agricultural 
practices, and assess environmental impacts at fine spatial scales, 
thereby enabling more comprehensive and timely sustainability 
evaluations. These emerging technologies could complement emergy 
analysis by providing continuous monitoring capabilities and reducing 
reliance on annual statistical compilations.

5 Conclusion

This study used emergy analysis methodology to systematically 
evaluate the sustainable development of corn planting ecosystems in 
Sichuan, yielding the following key conclusions: (1) Sichuan’s corn 
planting systems demonstrate significant regional variation. While 
Chengdu shows the highest emergy input density (10.59 × 1011 
sej·m−2), it has the lowest net emergy yield ratio (1.17), indicating an 
imbalance between resource investment and output efficiency. In 
contrast, Ziyang exhibits the highest net emergy yield ratio (2.07), 
demonstrating superior production efficiency; (2) Scale management 
degrees displayed distinct spatial variations. Plain regions (such as 
Suining, with a value of 59.8) achieve higher scale management 
degrees due to favorable topography, while mountainous areas 
(averaging 21.64) show lower levels due to terrain constraints. These 
differences directly impact the progress of regional agricultural 
modernization; (3) Environmental loading ratios reveal regional 
stratification, as 67% of the regions maintain environmental loading 
ratios below 1, suggesting controlled ecological impacts from corn 
production in most areas. However, central plain regions (averaging 
1.71) face considerable environmental pressure, necessitating 
optimization of resource input structures; (4) The system’s 
environmental sustainability index shows a decreasing gradient from 
northeast to southwest (R2 = 0.63, p < 0.05). This spatial heterogeneity 
primarily results from the combined influence of natural resource 
endowments and purchased emergy inputs, reflecting regional 
development disparities. These findings provide a scientific 
foundation for the development of differentiated agricultural 
strategies. Future research should integrate remote sensing and 
artificial intelligence technologies with emergy analysis frameworks 
to achieve dynamic, real-time assessment of agricultural 
sustainability, thereby providing more timely and accurate guidance 
for policy formulation.
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