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Introduction: This study provides a novel, system-wide framework that 
integrates food and economic systems using networked input–output.
Methods: We demonstrate this framework in analyzing food system resilience 
to real and simulated sector-level shocks, yielding insights into how structural 
vulnerabilities within the economy can compromise the food system and vice 
versa. The nested and networked approach of considering the food system as 
embedded within the overall economic system, enables predictions within and 
across both systems as they relate to one another. We focus on recovery and 
resiliency after a shock by evaluating the U.S. food and economic system in 2007 
and 2012, a period covering a major financial downturn.
Results and Discussion: We find that between 2007 and 2012, the majority (82.2%) 
of food systems sectors increased in centrality compared to other sectors within 
the economy, showing how the food system became more integral in the overall 
economic system during and after the financial crisis. Further, we demonstrate that 
simulated removal of sectors with the highest centrality in the economic system 
leads to a decrease in overall network density, clustering, degree, and weighted 
degree—highlighting vulnerabilities within each economic sector with the potential 
to propagate system-wide. We draw timely attention to the critical role of scientific 
research as an important sector within the economy that requires relatively little 
funding input but amplifies economic outputs across the food system and other 
economic sectors. We conclude by warning about the bias produced in analyzing 
food system dynamics outside of overall economic systems and urge future 
research to consider a nested food-economic model.
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Introduction

Why focus on food system resilience?

As election debates continuously highlight, the price of groceries remains a salient 
motivator at the polls. Urban riots reveal how political combustible any food insecure 
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populations can be, and political volatility in one city can lead to 
further destabilization and food insecurity well beyond. One of the 
key analytical tools for safeguarding food and economic security is to 
predict areas of vulnerability and their networked, interdependence 
with the greater universe of allied economic sectors. Predictions of 
various failure scenarios provide insights into overall resilience and 
recovery from shocks within particular sectors.

Scholars and policymakers are increasingly recognizing the need 
to model how shocks propagate across economic and food systems. 
For its part, the food system encompasses the processes that require 
inputs to generate outputs involved in feeding a population, including 
growing, harvesting, processing, packaging, transporting, marketing, 
consuming, and disposing of food (Hawkes, 2009; Sobal et al., 1998; 
Ericksen, 2008; Tu et al., 2019). Each aspect of the food system is 
subject to climate, social, and economic disruption through pricing, 
policies, or localized disaster. For example, localized failure can result 
from crop disease (as in the potato famine of 1845) or closure of 
central processing plants (as in the closure of slaughter houses during 
COVID-19). Changes induced by various economic, political, climate, 
markets, and infrastructural factors can also disrupt food supply at 
multiple levels, from growing food to distributing supplies (Davis 
et al., 2021; Watson et al., 2017). Even when components of the food 
system are resilient in the face of different shocks and crises, expected 
outcomes such as food and nutrition security are not always 
guaranteed for all (Piters et al., 2021)—a finding we explain is due to 
the food system being nested within the overall economic system 
where some communities cannot afford to access the food that is 
produced and delivered.

Given the increasing occurrence of political, socio-economic, and 
environmental instability with climate change and extreme weather 
events (Cottrell et al., 2019), it is critical to understand how food 
systems react to shocks and stressors, as a food-insecure population 
can rapidly cause disruption in many other sectors. We define food 
system resilience as the capacity to withstand shocks or rapidly recover 
in the face of stressors.

This research advances the field by demonstrating that food 
system resilience requires conceptualizing the food system as an 
integral part of the broader economic, political, and environmental 
systems. The intensification of modern scientific and engineering 
methods in farming, processing, and distribution technologies further 
reinforces the connection between the food system and the rest of the 
economic system (Matson et al., 1997). Yet, a review by Tendall et al. 
(2015) shows that most studies on food system resilience lack a 
systems approach, focusing instead on selected segments such as 
agricultural production or specific stages in the food value chain (Van 
Apeldoorn et al., 2011; Soane et al., 2012) or particular components 
of resilience like adaptability and transformability (Walker et  al., 
2009), cascading effects in regime shifts (Kinzig et  al., 2006), or 
specific outcomes and contexts, e.g., food security in emergency 
situations (Pingali et al., 2005). Given that resilience varies across 
locations, time, and scales, vulnerability to shocks should 
be  correspondingly analyzed over time and across food system 
components (Tendall et al., 2015; Konar et al., 2018).

Measuring the resilience of food systems through simulated 
shocks is a critical approach to understanding the ability to withstand 
and recover from various disruptions. By subjecting food systems to 
simulated shocks, researchers can assess vulnerabilities and identify 
strategies to enhance resilience. Several studies have employed this 

methodology, modeling the food system as a network (Karakoc and 
Konar, 2021; Lin et al., 2019; Gephart and Pace, 2015; Brinkley et al., 
2025). Building on such network studies, Burkholz and Schweitzer 
(2019) explore the impacts of cascading shocks on global crop trade 
networks from 176 countries across 21 years. Their findings highlight 
the role of higher order trade interactions, and they note that 
“networks reveal hidden dependencies between countries” that are 
likely the result of economic and trade agreements beyond crops 
(Burkholz and Schweitzer, 2019, p. 1). Similarly, in modeling 
commodity price shocks related to the Ukraine-Russia war, Laber 
et  al. (2023) demonstrate how a localized shock to agricultural 
production in one country can create food shortages well beyond 
immediate trade partners. While such simulated shocks help assess 
losses from weather events like drought to identify critical 
vulnerabilities, authors note that networked food supply models often 
treat each commodity in isolation of the broader food system, 
neglecting how products may be further processed or used. Along 
these lines, studies do not always nest the food system within the 
broader economic system and therefore miss the buffering and 
propagating impacts of economic sectors that feed into the 
food system.

Similarly, recent studies leverage input–output (IO) frameworks 
to quantify food-system resilience under shocks. For example, 
Revoredo-Giha and Dogbe (2023) applied a dynamic inoperability IO 
model (DIIM) to Scotland’s economy, simulating a ~ 60% demand 
collapse in hospitality and tracking recovery paths. They computed 
sectoral “resilience coefficients” and inoperability trajectories, finding 
that preserved meats and agriculture recovered fastest (high 
coefficients) while soft drinks and other food processors recovered 
slowest (coefficients ≈0.1). This dynamic IO approach explicitly 
models how an initial shock cascades through intermediate demand, 
incorporates adaptive strategies (e.g., telework or inventory buffers as 
higher resilience parameters), and yields recovery times and 
cumulative losses for each sector. Huang et al. (2025) synthesize 26 
empirical studies to assess how global food supply systems (FSS) 
respond to sudden shocks like COVID-19 and natural disasters, 
emphasizing that systems with strong operational, relational, and 
structural attributes are best positioned for recovery, adaptation, and 
transformation. However, they find that while many FSS display short-
term adaptability, few convert these coping mechanisms into long-
term structural reforms, especially in resource-constrained settings. 
Rocha Aponte (2024) used Leontief–Ghosh IO analysis on Norway’s 
seafood sector, revealing strong backward/forward linkages and low 
import dependence. The fisheries/aquaculture sector remained stably 
connected to food, beverage and tobacco industries even amid 
COVID, suggesting adaptive supply-chain policies that maintained 
resilience. Together, these modeling studies—from Scotland to 
Norway (and by extension U.S. analyses using similar DIIM 
methods)—show how systemic shocks propagate through food 
networks. They identify vulnerable sectors and quantify recovery 
dynamics, informing policies (e.g., diversification or local sourcing) 
to bolster cross-sector resilience.

In building from these studies, this research combines methods 
in input–output modeling with a network approach to understand 
value creation and economic functionality of the food system within 
the broader economic system. We utilize the concept of the input-
supply network, where an economy is described through a set of 
specialized production units or nodes, each relying on the flow of 
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inputs from their suppliers to produce their own output, which in 
turn is routed towards other downstream units, forming a production 
network (Carvalho and Voigtländer, 2014; Lin et  al., 2014). 
Production units are measured in dollar value. While a production 
network approach does not include household food consumption, 
Taschereau-Dumouchel (2019) points out that understanding the 
structure of the production network is key to determining whether 
and how microeconomic shocks affecting only a particular node 
propagate throughout the economy and shape network outcomes. 
Such shock propagation will ultimately affect the main outcome of 
the food system, which is food and nutrition security, by impacting 
the availability and pricing of food. Further, our dataset covers the 
global food crisis of 2008, when a convergence of different market 
shocks and disruptions in food production caused dramatic increases 
in global food prices and food shortages (Headey, 2011).

Input–Output (I-O) captures the interdependence of different 
sectors in an economic system. This interdependence is critical for 
understanding how shocks propagate through the system (Miller and 
Blair, 2009). Several studies have applied I-O models to measure 
economic resilience. For example, Hallegatte (2008) used an I-O 
model to simulate the economic impacts of natural disasters, finding 
that the resilience of an economy largely depends on its ability to 
substitute inputs, which can be measured using I-O tables. Koks and 
Thissen (2016) extended this approach by considering the resilience 
of global supply chains, showing how I-O tables can capture the global 
propagation of local shocks. Infrastructure systems are also 
increasingly being studied using I-O models. Haimes (2009) argued 
that I-O models can measure the resilience of infrastructure systems 
by capturing their interdependence. This approach was later applied 
by Ouyang and Dueñas-Osorio (2012), who used an I-O model to 
measure the resilience of interconnected infrastructure systems after 
a natural disaster. I-O models have also been used to measure the 
resilience of ecological systems. Finnoff and Tschirhart (2008) used an 
I-O model to capture the interaction between economic and ecological 
systems and measure their resilience. Avelino and Hewling (2019) 
used I-O tables to examine the resilience and adaptability of regional 
economies, highlighting the role of economic concentration and 
activity outflow in shaping regional resilience. Inoue and Todo (2019) 
used I-O tables to examine how shocks propagate at the firm level 
through supply-chain networks, providing valuable insights into the 
resilience of individual firms and their supply chains, and by extension, 
the resilience of the systems in which they operate. Contreras and 
Fagiolo (2014) found that (i) the more a sector is globally central in 
the country network, the larger its impact; and (ii) the largest 
European countries, such as those constituting the core of the 
European Union’s economy, are more vulnerable to economic shocks. 
The model developed by Carvalho (2014) explicitly highlights the role 
of input-supply linkages, where an idiosyncratic shock affecting a 
single sector is transmitted to its downstream neighbors in the 
network and, via the latter, propagates further downstream to other 
production nodes indirectly connected with the original sector.

Despite these promising applications, several challenges remain 
in using I-O tables to measure system resilience. For one, I-O models 
are linear, which may not adequately capture the non-linear behavior 
of real-world systems (Dietzenbacher and Los, 1997). Furthermore, 
I-O tables are typically static, making it difficult to capture dynamic 
changes in system resilience (Acemoglu et al., 2012). Addressing these 

challenges will require the development of more advanced I-O models 
and the integration of I-O models with other modeling approaches.

To address these shortcomings, we combine the standard input–
output (I-O) framework developed by Leontief (1949) with a network 
approach. In the context of complex networks, by combining food and 
non-food sectors, the use of I-O tables avoids truncation bias as 
explicit food system nodes may have multiple linkages with nodes or 
sectors outside the mainstream food system. For example, chemistry 
(for fertilizers and pesticides) and machinery (for agricultural 
equipment) are critical to farming activities. By using a networked I-O 
approach, we are also able to quantify the bias in more truncated 
systems measures of resilience that focus only on the food system and 
not the greater economic system. Studies on other sectors of the 
economy note that node or sector removal simulations based on 
highest degree (Albert et al., 2000; Callaway et al., 2000; Cohen et al., 
2001) or highest betweenness centrality (Magoni, 2003) have the 
ability to propagate.

We use a network centrality approach, which allows for multiple 
features of the system to be observed by implementing node deletion 
scenarios. Deng et  al. (2007) argue that node deletion does not 
necessarily destroy the connectedness of a growing network if the 
increasing rate of edges is not excessively small. Early studies on 
network resilience focusing on node deletion assume that once the 
system has fallen apart, some key functions or features may be lost 
(Albert et al., 2000); for example, it is expected that once a critical 
number of server nodes are down, the internet will collapse. This study 
explores how the food system operates without the overall economic 
system and vice versa. We also highlight vulnerable sectors that can 
drastically change system functionality.

While node deletion simplifies the complex nature of economic 
systems, it is employed here as a stress-testing tool to identify 
structurally fragile sectors within the network. Crucially, removing a 
node inherently eliminates all of its associated edges—effectively 
severing that sector’s connections to the rest of the network. This 
means that node deletion can also be interpreted as a form of targeted 
edge deletion, representing the abrupt disruption of critical 
intersectoral linkages such as supply chain dependencies or 
technological collaborations. From this perspective, the approach 
offers a useful proxy for simulating realistic economic shocks without 
the need to model every potential mode of partial failure explicitly. 
This interpretation addresses concerns about the realism of node 
deletion by situating it within a broader framework of network 
disruption analysis.

Methods

Any system can be represented as a network of graphs where a 
given graph G is a pair of sets ( ),V E  of nodes (or agents) V  and edges 
(or relationship) E  with their cardinality denoted by V  and E , 
respectively. Weighted and oriented networks can be described using 
an adjacency matrix ( )= ijw , ∀ = …, 1, ,i j n , where ijw represents the 
level of interaction between nodes i and j . In our study, each edge in 
the network represents an actual financial transaction between two 
sectors, as reported in the U.S. Input–Output (I-O) tables. Specifically, 
the weight of a directed edge from sector i to sector j corresponds to 
the dollar value of intermediate goods or services that sector i provides 
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to sector j.1 This approach allows us to simulate the structural 
importance of sectors based on their actual economic footprint, rather 
than relative proportions, thereby offering a more realistic view of 
systemic vulnerability and resilience.

It follows that a network can also be defined by ( )= ,N V W . A 
generic k-path with starting node ∈0i V  is given by 
( ) { }−= → → → →

0
0 1 1

k
k kip i i i i , where −0 1 1, , , ,k ki i i i  are distinct 

nodes in V  and arcs − → ∈ ∀ = …1 , 1, , .h hi i E h k
All the k-paths of network N  starting from node 0i can 

be assembled as shown in Equation (1):

	
( ) ( )

∈=


00

kk
ii VP p

	
(1)

Following Carvalho (2014), Acemoglu et al. (2016) and Acemoglu 
and Guerrieri (2008), in Equation (2), we assume that each node of 
the network is approximated by the following constant return to 
scale technology:

	 ( )ββ β−
=

= ∏1
1

ijn w
i i i i ijjX b A l X

	
(2)

where iA  is the corresponding productivity shock, the amount of 
production input used by node i is given by il , while β−1  is the share 
of input in production; ib  is a given constant; ijX  denotes the amount 
of good from node j  supplied to node i while the exponent ( )≥ 0ijw , 
element of adjacency matrix W , represents the share of good from 
node j  in the total intermediate input used by node i.

In this context, the adjacency matrix W  is defined by three 
main elements (Carvalho, 2014): (i) a collection of n nodes, each 
node corresponding to one of the sectors in the economy; (ii) a 
collection of directed edges, where an edge between any two nodes 
denotes an input-supplying relationship between two nodes; and 
(iii) a collection of weights, each of which is associated with a 
particular directed edge and given by the exponent ijw  in the 
output function.

We assume a representative consumer with Cobb–Douglas 
preferences, as shown in Equation (3):

	 ( ) =
… = ∏

1

1 1, , n nn iiu c c b c 	 (3)

where ic  is the amount of good i consumed and b is some 
positive constant.

The first-order conditions of the firm’s problem at node i are given 
in Equations (4) and (5), representing input allocation and labor 
choice, respectively:

	 β= /ij ij i i jX w p X p 	 (4)

1  This differs from traditional input–output technical coefficients, which 

normalize these flows by the total inputs or outputs of a sector. In contrast, 

we preserve the raw monetary transaction values to capture the true magnitude 

and strength of interdependencies in the economic network. These transaction-

based weights are directly embedded in the adjacency matrix W, which is used 

throughout the analysis.

	 ( )β ω= −1 /i i il p X 	 (5)

where ω and ip  represent, respectively, the wage market and the 
price of good i. Since 

=
= +∑ 1

n
i i ijjX c X , it follows that the optimal 

production for node i is given by Equation (6)

	
( ) ( )βββφ β β φ−

=
= − ∏1

11 / ijwn
i i i ij i ji jX b A w X

	
(6)

for some constant φ j.
Given a constant ib , Taking the log-linear transformation of the 

production function yields Equations (7) and (8), simplifying 
downstream aggregation:

	
β β∈

=
= +∑ 1 ,orn

i ij j ijx w x
	

(7)

	
β ∈−= −  

11x W
	 (8)

where ( )∈ = logi iA .
As pointed out by Acemoglu et al. (2017), because of constant 

return to scale assumption, nodes make zero profits in equilibrium; 
hence, value added is simply equal to the market wage ω. Assuming 
( )… =


1
1 1nn

n p p
b

 with φω= /i i ip X , the log real value of the economy 

is derived in Equation (9), capturing system-wide output adjusted 
for productivity.

	
( ) ( )ω φ

= =

 
= − +   

 
∑ ∑



1 1
1 1log log logn n

i ii i
blog X

n n n 	
(9)

For an appropriate choice of b, as shown in Equation (10), 
aggregate output is computed as the mean of node-level logs:

	 =
= ∑ 1
1 n

iiy x
n 	

(10)

As shown in Equation (11), without loss of generality, Carvalho 
(2014) shows that aggregate output, y, is simply a weighted sum of the 
(logarithm of) nodes-level shocks, ∈ :i

	
ν ∈

=
=∑ 1

n
i iiy

	 (11)

where the weights, iv , are determined by the network 

matrix W , ( )β β −−
= − ′ 11 1v I W

n
.

Equation 11 states that aggregate output might fluctuate over time 
due to shocks from individual nodes; the magnitude of these aggregate 
fluctuations can be  traced back to the network structure through 
adjacency matrix W  using network centrality measures such as the 
Katz–Bonacich centrality measure.

The Katz–Bonacich centrality vector is expressed in Equation (12), 
which links adjacency matrix W to centrality θ. The Katz–Bonacich 
eigenvector centrality measure is derived by assigning to each node j ,  
a centrality weight θ > 0j , which is defined by some baseline centrality 
levelŋ, equal across all nodes, plus a term which is proportional to the 
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weighted sum of the centrality weights of its downstream nodes: 
θ λ θ= +∑ 1j ij iiw ŋ for some parameter λ > 0. In matrix form, this 
implies that the vector of centralities is given by:

	 ( )θ λ −′= − 11I Wŋ
	 (12)

where θ  is the vector of Katz–Bonacich centralities given an 

input–output network W  where 
β−

= ;1
n

ŋ  λ β= , the share of 
intermediate inputs in Equation 2.

It follows that Equation 11 can be written as

	
θ ∈

=
=∑ 1

n
i iiy

	 (13)

Hence, Equation 13 establishes the link between aggregate 
network outcome and its centralities. Finally, Acemoglu et al. (2016) 
show that in any given interaction network, node or agent i’s Bonacich 
centrality can be written as

	
θ β θ

=
= + ∑ 11 n

i j ijj w
	

(14)

Equation 14 implies that node i has a higher centrality (and hence 
a more pronounced impact on the rest of the nodes) if it interacts 
strongly (if β  is close to 1) with nodes that are themselves central. In 
other words, “a shock to an agent with a higher Bonacich centrality 
impacts the states of other relatively central agents, which in turn 
propagates the shock further to other agents, and so on, eventually 
leading to a larger aggregate impact” (Acemoglu et al., 2016, p. 586). 
Therefore, network centrality measures can be used to assess overall 
system resilience.

Finally, network volatility can also be measured by

	
σ σ θ

=
= ∑ 2

1
n

y iiò 	
(15)

Equation 15 can be decomposed into economy-wide sub-systems 
which include the food system.

While complete sectoral collapse is rare, node deletion serves as a 
stylized tool for stress-testing the network, identifying structurally 
critical sectors, and mapping the propagation of failures. The method 
is conceptually aligned with existing literature in complex networks 
and systemic risk modeling (e.g., Albert et al., 2000; Acemoglu et al., 
2016), where node or edge deletion simulates extreme disruptions like 
strikes, natural disasters, or policy shutdowns. This modeling 
experiment provides insights into fragility and interdependence that 
real-world variability might obscure.

Data and metrics

The empirical implementation of a simple analytical framework 
laid out in the previous section is conducted by using 2007 and 2012 
Input–Output Tables (IOTs) of the United States of America (USA) 
from the Bureau of Economic Analysis (BEA) as networks that 

describe, for a given period, transactional flows within an economy. 
The 2007 and 2012 time points were selected to capture pre- and post-
2008 financial crisis dynamics. This interval allows examination of 
how economic shocks affect intersectoral dependencies and which 
sectors gained or lost influence as a result. This implies that that 
economic shocks—such as the 2008 financial crisis—impact not only 
the volume of sectoral production but also the structural position of 
sectors within the broader economic network. In other words, beyond 
measurable changes in output, shocks can reconfigure intersectoral 
dependencies by altering how sectors are interconnected and how 
influential they are within the system.

The US has I-O tables over 1997–2021 period but with a 
maximum of 71 industries compared to 405 industries for 2007 
and 2012. In addition to their disaggregated structures, the choice 
of 2007 and 2012 I-O tables allows for an assessment of system 
resilience after the 2008 food and financial shocks. The estimates 
are available at four levels of detail (see Howells et al., 2018): sector 
(21 industry groups), summary (71 industry groups), underlying 
summary (138 industry groups), and detail (405 industry groups). 
Sectors are presented according to the 2012 North American 
Industry Classification System (NAICS) code structure. In this 
paper, after cleaning data to remove negative entries and isolated 
nodes, the resulting network comprises 363 nodes and 43,599 
edges for 2007, and 362 nodes and 42,906 edges for 2012.2 In a fully 
connected network where every node/sector has a connection to 
all other nodes, the overall system would have 131,406 edges for 
the 2007 sector (N*(N−1)). Thus, the US economic system has 
many, differently weighted, interdependencies, but not every sector 
is connected to every other sector, opening interesting 
opportunities to model resiliency. To comply with network analysis 
requirement, the diagonal of adjacency matrix W  was set to zero 
for each network.

Following the North American Industry Classification System 
(NAICS) (Horowitz and Planting, 2006), the selection of food sector 
includes processing (for example, flour milling and malt 

2  In constructing the input–output networks for 2007 and 2012 from the 

U.S. Bureau of Economic Analysis (BEA) detailed I-O tables (comprising 405 

sectors), we undertook the following data cleaning steps:

	 Removal of negative entries: Negative transaction values (arising 

from adjustments, returns, or imputed transactions in I-O tables) were excluded, 

as they can distort the representation of positive economic flows in a 

network model.

	 Exclusion of isolated nodes: Nodes (sectors) that had no incoming 

or outgoing financial transactions (i.e., rows and columns with all zeros) were 

removed, as they represent non-participating sectors within the active 

economic network in the specified year.

	 Food industry nodes: Using NAICS codes, we identified 43 nodes 

as food-system related in both 2007 and 2012 networks. This classification 

includes agricultural production, food processing, distribution, retail, and related 

services (e.g., restaurants).

These steps ensure an analytically tractable and representative economic 

network where each node has economic activity. Removing inactive or 

anomalous nodes improves network robustness and the interpretability of 

results, especially under simulations like node deletion.
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manufacturing) and non-processing (for example, grain farming) food 
activities, and related supporting activities/services (for example, full-
service restaurants, farm machinery and equipment manufacturing, 
and support activities for agriculture and forestry). To assess the 
resilience of US food system to shocks, we run a series of simulations 
by deleting nodes with the highest degree centrality. Furthermore, the 
volatility of the system is assessed by using a measure developed by 
Acemoglu et  al. (2016, equation 15  in Supplementary material). 
We look also at the impact of shocks in the form of nodes deletion on 
the network outcome (here, production). Finally, we assess the bias of 
analyzing food system resilience based on truncated food system as in 
most previous studies. We define a truncated food system as a network 
of food sectors disconnected from non-food sectors in the overall 
economic system. In a way, food system truncation corresponds to an 

extreme case of the deletion of non-food nodes. The complete list of 
deleted nodes for each scenario is presented in Table 1.

A brief description of network metrics in the analysis is provided 
in in Table 2. These metrics include betweenness centrality, clustering 
coefficient, density and total degree centrality.

Results

Network centrality

We find that over the study period, the U.S. food system 
consolidated nearly twice as much as the overall economic system. In 
2007, the US economic network had a density (the number of existing 

TABLE 1  List of scenarios and deleted nodes.

Node deletion scenario Nodes deleted

Removal of top 10 sectors with highest centrality measure 1.	 Scientific research and development services

2.	 Other amusement and recreation industries

3.	 Nonresidential maintenance and repair

4.	 Architectural, engineering, and related services

5.	 Civic, social, professional, and similar organizations

6.	 Limited-service restaurants

7.	 Accommodation

8.	 Full-service restaurants

9.	 Management of companies and enterprises

	10.	 Other motor vehicle parts manufacturing

Removal of bottom 10 sectors with lowest centrality 1.	 Carbon and graphite product manufacturing

2.	 Independent artists, writers, and performers

3.	 Electric lamp bulb and part manufacturing

4.	 Household refrigerator and home freezer manufacturing

5.	 Manufacturing and reproducing magnetic and optical media

6.	 Automatic environmental control manufacturing

7.	 Support activities for agriculture and forestry

8.	 Photographic and photocopying equipment manufacturing

9.	 Audio and video equipment manufacturing

	10.	 Electronic computer manufacturing

Removal of top 10 food sectors with highest centrality 

measure

1.	 Limited-service restaurants

2.	 Full-service restaurants

3.	 All other food and drinking places

4.	 Food and beverage stores

5.	 Grocery and related product wholesalers

6.	 Bread and bakery product manufacturing

7.	 Fruit and vegetable canning, pickling, and drying

8.	 Soft drink and ice manufacturing

9.	 Cookie, cracker, pasta, and tortilla manufacturing

	10.	 Fluid milk and butter manufacturing

Removal of bottom 10 food sectors with lowest centrality 1.	 Wet corn milling

2.	 Flour milling and malt manufacturing

3.	 Flavoring syrup and concentrate manufacturing

4.	 Fruit and tree nut farming

5.	 Soybean and other oilseed processing

6.	 Support activities for agriculture and forestry

7.	 Greenhouse, nursery, and floriculture production Support activities for agriculture and forestry

8.	 Fishing, hunting and trapping

9.	 Coffee and tea manufacturing

	10.	 Beef cattle ranching and farming, including feedlots and dual-purpose ranching and farming
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connections relative to the potential connections (PC3) of 0.332 
compared to 0.328 in 2012; in other words, between the two periods, 
the US economy lost 1.6% of its edges and 1.2% of its density. The food 
subnetwork (Figure 1) also saw a reduction in density from 0.357 in 
2007 to 0.346 in 2012, losing 3% of its edges and density over the two 
time points. Such consolidation can be protective against shock or give 
added exposure to shock depending on network realignments and 
dependencies, as we describe next.

We also observed significant shifts in the centrality rankings of 
sectors, providing insights into their relative systemic importance. 
Specifically, 58% of sectors increased in centrality, indicating that 
they became more embedded and influential within the economic 
network (Figures 2–5). In contrast, 37% of sectors experienced a 
decline in their centrality rankings, suggesting reduced integration 
or weakening connections to the rest of the economy. These changes 
highlight that sectors do not respond uniformly to shocks; instead, 
some become more dominant while others diminish in systemic 
relevance. For example, the “Internet publishing and broadcasting” 
sector rose by 92 ranks, while “Newspaper publishing” dropped 61 
places, showing how the shock reshaped economic hierarchies. The 
maximum increase in ranking was 92 spots (“Internet publishing 
and broadcasting and Web search portals”) and the largest decrease 
was 96 rank spots (“Broadcast and wireless communications 
equipment”). Thus, “intersectoral dependencies” are not static—
they evolve with macroeconomic events, and our centrality analysis 
captures that dynamic.

Notably, the top 25 sectors in the economy did not experience a 
large degree of change in either rank or eigenvector centrality 
(Figure 4). The apparent stability of these top sectors in face of the 
2008–2009 food and financial crisis may be a sign of the US economy 

3  PC = n*(n−1)/2, where n is the number of nodes in the network.

capacity to absorb such shock. Only the “Scientific research and 
development services” sector remained unchanged and held onto its 
ranking as the most central sector in the economic system. 
Interestingly, despite the overall decline in eigen centrality, 62% of 
nodes in the economic system saw an increase in its production 
between 2007 and 2012.

Like the overall economic system, the food system experienced 
significant movement in ranking and centrality between 2007 and 
2012 (Figure 6). Though unlike the economic system (Figure 4), the 
change in ranking among the food sectors was minor Figure 5). While 
42% (18 nodes) of the food sector nodes experienced an increase in 
ranking (Figure 5), the range of rank increase was 3, followed by no 
change in ranking (32% of nodes), and only a quarter of nodes (11) 
experienced a decline in ranking. Again, the decline was relatively 
small compared to rank changes in the economic system (range of 10, 
Figures 2–4). Changes in rank are commensurate with changes in 
eigenvector centrality. Of the food sectors, “Breakfast cereal 
manufacturing” achieved the largest gain in eigen centrality, increasing 
14.2% between 2007 and 2012 (Figure  5). In contrast, “food and 
beverage stores” sector saw the largest slump, dropping 44.3% in eigen 
centrality between 2007 and 2012 (Figure 5). Followed closely by the 
“grocery and related product wholesalers” sector experiencing a 41.9% 
reduction in their eigen centrality over the same period (Figure 5). 
With the financial crisis and less disposable income available, food 
purchasing and thereby sectors involved in food retail became less 
central to the economy (Figure 6 c-d). Despite these notable 
exceptions, 60% of the 43 food sector nodes increased in (eigen) 
centrality between 2007 and 2012 (Figures 5 and 6c-d) The production 
value 4 of 88% of the food sectors experienced an increase during the 
same period (Figures 5 and 6c-d). Between 2007 and 2012, 24 food 

4  Production value, is the total value of goods and services measured in USD.

TABLE 2  Selected network metrics.

Network 
metric

Definition and application to US trade input–output matrix

Betweenness 

centrality

Betweenness centrality captures a node’s role in allowing information to pass from one part of the network to the other. It captures how much a given node 

is in-between others. This metric is measured with the number of shortest paths (between any couple of nodes in the graphs) that passes through a given 

node.

Clustering 

coefficient

In many studies, a network’s clustering coefficient was identified as a good indicator for network robustness. It captures how nodes are embedded in their 

respective neighborhoods. First proposed by Watts and Strogatz (1998), it is defined as the average of the local clustering coefficient of its nodes. A node’s 

clustering coefficient measures how close its neighborhood is to a complete network in terms of the relative density of links in its neighborhood. Our 

findings confirm that node deletion may decrease the network’s robustness.

Density By design, the top 10 sectors (overall and food) are sets of central and densely connected nodes, while the bottom 10 are noncentral and sparsely connected 

nodes, namely, the periphery. In a way, the top 10 sectors belong to the “rich-club,” a set in which the highest degree nodes show a high density of 

connections. It then follows that the removal of central nodes will likely decrease the density of a network and ultimately affect its resilience. Similarly, 

because of their sparseness, removal of noncentral nodes will likely increase the density of a network by reducing the size of its periphery; therefore, 

reinforcing its resilience.

Eigenvector 

centrality

Eigenvector centrality is a measure of the influence of a node in a network. It assigns relative scores to all nodes in the network based on the concept that 

connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes. In this paper, we use 

Katz-Bonacich centrality for eigenvector centrality

Total degree 

centrality

The degree of a node is the number of incoming and outgoing relations (edges) the node has; it is weighted by the value of each edge. Contend that 

resilience centrality is mainly determined by the degree and weighted nearest-neighbor degree of the node, in which weighted nearest-neighbor degree 

plays a prominent role.
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FIGURE 1

Network of the overall US economic system nodes and edges (light blue) with the food system nodes and edges (dark blue). Note that some more 
central nodes in the food system are also more central to the overall economic system (2007 I-O data).

FIGURE 2

Sectors with the greatest rank change from 2007 to 2012.
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sectors experienced an increase in both production value and in 
centrality (Figures 5 and 6c-d).

Overall, as shown in Figures  6a,b, we  find a positive 
correlation between sector centrality and production as derived 

in Equation 13. This is an important feature as a negative shock 
that affects a central sector is likely to reduce its production and 
propagate the shockwave throughout the network by creating an 
aggregate disruption. As pointed out by Carvalho (2014), in a 

FIGURE 3

Change in ranking for the top 25 economic sectors between 2007 and 2012.

FIGURE 4

Economic sectors with the greatest increases (25 in total) and decreases (25 in total) in eigen centrality from 2007 to 2012.
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production network that stresses the role of input-supply linkages, 
“an idiosyncratic shock affecting a single sector will be transmitted 
to its downstream neighbors in the network and, via the latter, 
propagate further downstream to other production nodes which 
are only indirectly connected with the original sector” (p. 38). 
Hence, the resilience of a given food system is more likely to rest 
on the sectors that exhibit strong correlation between production 
and centrality.

Figure 7 presents the level of volatility5 with respect to centrality 
between the two periods. The results suggest that the volatility is much 
higher for the overall economic system compared to the food system. 
Given that the overall economic system has more nodes compared to 
the food system, the law of large numbers, where aggregate output 
becomes increasingly concentrated around a constant value, does not 
hold here. As pointed out by Gabaix (2011), when some sectors play 
a disproportionately important role (due to their much larger size 
relative to others), the standard central limit theorem no longer holds. 
As a result, aggregate fluctuations may result from sector-level 
(idiosyncratic) shocks (Acemoglu et al., 2017). Over time, though not 
significant, volatility was on average slightly lower in 2012 compared 
to 2007 which might be related to the recovery from the 2008–2009 
crisis as mentioned earlier. It is probable that the higher volatility in 

5  Metric defined in Equation 14 assuming = 1 (see Supplementary material).

both the networks in 2007 is indicative of the global financial crisis 
that preceded the 2008 crisis.

Sector failure scenarios

Highly centralized networks, like the U.S. economic system, rely 
heavily on the most central nodes for overall connectivity and 
functionality such that impacts on these nodes will have cascading 
effects across the network. We show that deletion of the bottom 10 
economic and food nodes tends to boost density, clustering, degree, 
and weighted degree of the overall economic network (see 
Figures 8a–c). While deletion of the most central 10 economic nodes 
negatively impacts the same network characteristics.

We also find that betweenness centrality is affected but has a 
reverse relationship with the node deletion scenarios described above 
indicating that influences on the many smaller sectors that act as 
bridges to other sectors are more likely result in cascading effects. 
Both deletion scenarios demonstrate different types of fragility in the 
overall food and total economic system. In general, we expect that the 
impact of a shock to a system defined by a network of interconnected 
nodes would not be  linear as the direction of the impact clearly 
depends on the place of each node in the network. However, the larger 
point remains that a shock in the form of node deletion is likely to 
disrupt the system resilience and ultimately its outcome.

As presented in Table 3, overall, the results show that dropping a 
node (sector) is likely to decrease the system’s overall outcome (as 

FIGURE 5

Change in eigen-centrality and production value in the food sector between 2007 and 2012.
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measured in Equation 13). Compared to the baseline, deleting the 
bottom 10 economic nodes decreased the production outcome of the 
overall system by 0.9 percent. When considering only the food 
sectors, removing the top food nodes produced the largest drop in 

production outcome: 3.6% demonstrating the overall economic 
system’s reliance on the food system. In comparison, deletion of the 
bottom 10 food nodes led to a 0.75 percent decrease in the 
production outcome.

FIGURE 6

(a) Production and centrality for the overall economy in 2007. (b) Production and centrality for the overall economy in 2012. (c) Production and 
centrality for the food system in 2007. (d) Production and centrality for the food system in 2012.
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Paradoxically, we  also find that deleting the top  10 economic 
nodes increased production outcome of the overall network relative to 
baseline by 27% (Table 3). In disaggregating these sectors, we show 
that only the “Scientific research” sector is related to such increases in 
production, with a 24% increase. This sector is also the only top 10 
sector whose outdegree value is higher than its indegree value, likely 
because relatively few “research and development” dollars can result 
in major innovation and economic returns. In this sense, “Scientific 
research” is an amplifier of economic returns for the entire system. In 
explanation, deleting central nodes in a network can disrupt the flow 
of funding, isolating sections of the network, and making them appear 
as though the remaining nodes are receiving more input and 
producing more output than before.

Impact of evaluating the food system in 
isolation

Next, we compare the impact of analyzing resilience based on a 
truncated food system to further demonstrate the value of considering 
food system dynamics more wholistically within the full economic 
system. We present the truncated food system in Table 4, showing the 
impact of removing non-food sectors from the economy. Using the 
US 2012 I-O table, truncation leads to a reduction of the weighted 
values of incoming and outgoing connections by 53.0 and 21.6%, 
respectively. This is a dramatic change in food system network 
functionality would render inaccurate any finding drawn from 
evaluating the food system in isolation of the rest of the economic 
system. The most affected sectors include “All other food and drinking 
places,” “Breweries,” “Farm machinery and equipment manufacturing,” 
“Food and beverage stores” and “Full-service restaurants”.

As expected, truncation also affects the clustering of the food 
system which is reduced by 22.5% on average. Except for “Wineries” 
whose clustering coefficient increases by 15.1%, all the other sectors 
experience reduction in their clustering coefficient. The top five 
sectors most affected include: “Fruit and tree nut farming” (−33.8%), 
“Fruit and vegetable canning, pickling, and drying” (−34.1%), “Animal 
(except poultry) slaughtering, rendering, and processing” (−34.2%), 

“Soybean and other oilseed processing” (−34.3%), and “Wet corn 
milling” (−38.0%). Such changes in clustering and centrality likely 
bias predictions of overall food system function when considering the 
food system as separate from the overall economic system.

The most striking effect of truncation is on centrality values. As 
discussed earlier, centrality is used to identify sectors which are critical 
for both the network performance and resilience. Table 4 shows how 
the ranking of sectors with respect to their central role in the network 
shifted as a result of truncation. Out of 43 food sectors, only 5 kept 
their central ranking (“Limited-service restaurants,” “Full-service 
restaurants,” “All other food and drinking places,” “Fluid milk and 
butter manufacturing,” and “Fishing, hunting and trapping”), 18 
experienced a decrease in their rankings (for example, “Grocery and 
related product wholesalers” moved from 5th to 39th position), and 
20 climbed in ranking (for example, “Flavoring syrup and concentrate 
manufacturing” moved from 37th to 12th position). In short, by 
considering only the food sector, centrality measures become 
unreliable in terms of capturing the key features and functionality of 
the food network—including measuring its resilience. These findings 
add caution to any interpreting the results of any study that uses an 
incomplete economic system to evaluate performance.

Discussion and conclusion

The primary objective of this research is to assess the resilience of 
the overall food system to cope with shocks in any of its sectors by 
considering the food system as nested within the broader network of 
the overall economic system. Our findings offer caution when 
interpreting findings from studies that analyze food system dynamics 
in isolation from the economic system. Specifically, we demonstrated 
that truncating the food system reduced the weighted values of 
incoming and outgoing connections by 53.0 and 21.6%, respectively. 
Moreover, the centrality rankings of food sectors shifted due to 
truncation, demonstrating that even centrality measures become 
unreliable when not considering the broader economic context. Such 
substantial changes render inaccurate any findings if the food system 
functionality is analyzed in isolation. Future research should take heed 

FIGURE 7

Volatility of food and overall economic systems between 2007 and 2012.
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FIGURE 8

(a) Impact of node deletion on the average degree (left) and average betweenness centrality (right) of the overall economic network. (b) Impact of 
node deletion on the density(left) and average clustering (right) of the overall economic network. (c) Impact of node deletion on the average weighted 
degree of the overall economic network.
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and construct models that connect the food system to the broader 
economic system.

We also draw the conclusion that the resilience of the food system 
enhances the resilience of the overall economic system based on 
several strands of empirical evidence. Most notably, between 2007 and 
2012—a period that includes the global financial crisis—82.2% of 
food-related sectors increased in centrality. This indicates that food 
sectors became more influential and better connected within the 
broader economic network, suggesting their growing importance in 
sustaining intersectoral flows during a time of systemic stress. We also 
show that the volatility of the overall economic system was higher 
than that of the food system during the 2007–2008 financial crisis, 
indicating a buffering effect within the nested food system sectors. The 
lower volatility in the food system compared to the broader economy 
suggests that the U.S. food system is a stabilizing force in the overall 
economy. Rather than amplifying volatility, as some central sectors 
might, the food system appears to have acted as a buffer, helping to 
preserve the continuity of production across the economic network. 
Further supporting this conclusion is the simulation of node deletion 
scenarios. While the most central food sectors are unlikely to ever 
be  fully removed from the economy in a real-world scenario, the 
simulated removal of the most central food-related sectors—those 
involved in food retail and processing, for example—generated a 3.6% 
decline in overall system output. This impact was significantly larger 
than the decline resulting from the removal of the least central food 
sectors (0.75%) or the bottom-ranked economic sectors more broadly 
(0.9%). The fact that the removal of key food sectors resulted in a more 
substantial systemic loss to the overall economic system underscores 
the food system’s structural importance and the extent to which other 
sectors depend on it for their own functioning. This finding is crucial 
for modeling food system resilience in other countries where 
economic contexts differ and reliance on food systems for core 
economic functions may be even greater.

Our findings imply that maintaining food system functionality 
during crises is not only essential for food security but also contributes 
to overall macroeconomic stability. Taken together, these findings 

offer robust evidence that the food system contributes positively to 
systemic resilience. Its rising centrality during a crisis, the 
disproportionate impact of its disruption, and its relative stability all 
point to its essential role not just in food security, but in safeguarding 
macroeconomic functionality during and after major shocks. Such 
findings support the prioritization of food system investments in 
economic recovery planning.

More broadly, our research also found a positive correlation 
between sector centrality and production, implying that shocks 
reducing the production of central sectors are likely to propagate and 
cause system-wide disruption. For example, we show that between 
2007 and 2012, the network centrality measures of many sectors 
changed due to the financial shock; 37% (135) of economic sectors 
experienced a drop in centrality rankings, while 58% (211) saw an 
increase. For instance, the centrality increase of food sectors like 
“breakfast cereal manufacturing” post-2008 mirrors increased 
consumer demand for lower-cost staples during economic downturns. 
Conversely, the decline in centrality of retail nodes aligns with income 
constraints affecting food purchases. Interestingly, the top 25 sectors 
in the economy remained relatively stable in their centrality rankings, 
suggesting either the resilience of these core sectors or that they are 
foundational to the U.S. economy and were thus buffered from the 
shock. As various sectors within the food system and broader 
economy continued to consolidate (e.g., Hendrickson et al., 2001; 
Hendrickson et al., 2020; Howard, 2014; Howard, 2015), networked 
I-O modeling techniques like those we demonstrate in this research 
can help show where such centralization will be  stabilizing or 
destabilizing under a variety of shock scenarios. Future studies can 
also assess how emergency policies that support essential sectors help 
mitigate shock propagation or further spur centralization 
and vulnerability.

To this end, our results confirm that the removal of nodes with 
high centrality measures leads to a decrease in network metrics such 
as density, clustering, degree, and weighted degree, emphasizing the 
importance of central nodes in maintaining overall system resilience. 
These findings underscore the often-overlooked role of natural 

TABLE 3  Impact of nodes deletion on production of overall economic system.

Network Scenario (node deletion) Production Percent change

1 Baseline 171.118

2 Top 10 economic sectors 217.537 27.13

3 Bottom 10 economic sectors 169.547 −0.92

4 Top 10 food sectors 164.956 −3.60

5 Bottom 10 food sectors 169.824 −0.76

6 Scientific Research 211.896 23.83

7 Accommodations 169.582 −0.90

8 Architectural Services 169.458 −0.97

9 Civic 169.746 −0.80

10 Full service restaurant 169.459 −0.97

11 Management Service 169.599 −0.89

12 Limited service restaurant 169.471 −0.96

13 Non-residential 169.384 −1.01

14 Other amusement 169.936 −0.69

15 Other motor 169.888 −0.72
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TABLE 4  Comparing 2012 food network measures between full and truncated food systems.

Weighted indegree Weighted outdegree Clustering Eigen centrality

Sectorsa Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

All other food 

and drinking 

places 78,756 8,487 −89.2 39,351 1946 −95.1 0.4372 0.3417 −21.9 0.6983 0.9500 36.0

All other food 

manufacturing 16,668 10,496 −37.0 4,442 3,541 −20.3 0.6448 0.4318 −33.0 0.4767 0.7880 65.3

Animal (except 

poultry) 

slaughtering, 

rendering, and 

processing 100,515 81,769 −18.6 21,221 13,848 −34.7 0.6465 0.4253 −34.2 0.4382 0.3708 −15.4

Animal 

production, 

except cattle 

and poultry 

and eggs 9,175 4,205 −54.2 28,042 26,330 −6.1 0.5916 0.4160 −29.7 0.3808 0.5116 34.4

Beef cattle 

ranching and 

farming, 

including 

feedlots and 

dual-purpose 

ranching and 

farming 31,776 14,335 −54.9 56,325 56,063 −0.5 0.6643 0.5147 −22.5 0.3086 0.3746 21.4

Bread and 

bakery product 

manufacturing 28,459 16,625 −41.6 3,200 2,193 −31.5 0.7094 0.5433 −23.4 0.5240 0.6887 31.4

Breakfast cereal 

manufacturing 7,708 5,250 −31.9 20 10 −50.0 0.7678 0.5917 −22.9 0.4103 0.4892 19.2

Breweries 18,219 4,938 −72.9 7,645 4,947 −35.3 0.7285 0.6091 −16.4 0.4661 0.2421 −48.0

Cheese 

manufacturing 24,656 19,779 −19.8 8,900 8,533 −4.1 0.7244 0.6275 −13.4 0.4751 0.4543 −4.4

Coffee and tea 

manufacturing 10,383 6,697 −35.5 2,441 1,583 −35.1 0.8158 0.6964 −14.6 0.3132 0.1802 −42.5

(Continued)
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TABLE 4  (Continued)

Weighted indegree Weighted outdegree Clustering Eigen centrality

Sectorsa Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

Cookie, 

cracker, pasta, 

and tortilla 

manufacturing 19,079 12,205 −36.0 1713 1,581 −7.7 0.7064 0.4915 −30.4 0.5075 0.6785 33.7

Dairy cattle 

and milk 

production 29,584 15,382 −48.0 36,157 36,149 0.0 0.6022 0.4723 −21.6 0.4256 0.4974 16.9

Dry, 

condensed, and 

evaporated 

dairy product 

manufacturing 17,403 11,753 −32.5 4,568 3,641 −20.3 0.6961 0.5541 −20.4 0.4753 0.4876 2.6

Farm 

machinery and 

equipment 

manufacturing 24,107 49 −99.8 4,190 3,301 −21.2 0.6500 0.5275 −18.9 0.5631 0.1959 −65.2

Fats and oils 

refining and 

blending 11,231 9,349 −16.8 9,489 6,925 −27.0 0.6932 0.4815 −30.5 0.3631 0.2855 −21.4

Fishing, 

hunting and 

trapping 2,413 91 −96.2 10,252 9,581 −6.5 0.6400 0.5192 −18.9 0.3180 0.1921 −39.6

Flavoring 

syrup and 

concentrate 

manufacturing 4,619 2,532 −45.2 11,748 11,253 −4.2 0.7158 0.5216 −27.1 0.3566 0.5348 50.0

Flour milling 

and malt 

manufacturing 16,548 12,307 −25.6 14,088 13,672 −3.0 0.7347 0.5163 −29.7 0.3598 0.3057 −15.0

Fluid milk and 

butter 

manufacturing 27,372 19,746 −27.9

5,115 4,650 −9.1 0.7155 0.5736 −19.8 0.5066 0.5393 6.5

(Continued)
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TABLE 4  (Continued)

Weighted indegree Weighted outdegree Clustering Eigen centrality

Sectorsa Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

Food and 

beverage stores

69,481 2050 −97.0 2,257 1,186 −47.5 0.5535 0.4400 −20.5 0.6307 0.4970 −21.2

Frozen food 

manufacturing

19,979 14,706 −26.4 2,632 2,282 −13.3 0.6964 0.4801 −31.1 0.4763 0.4969 4.3

Fruit and tree 

nut farming

8,313 2,959 −64.4 16,382 16,354 −0.2 0.6416 0.4249 −33.8 0.3546 0.3316 −6.5

Fruit and 

vegetable 

canning, 

pickling, and 

drying

22,971 13,363 −41.8 4,814 4,211 −12.5 0.6832 0.4501 −34.1 0.5210 0.6234 19.6

Full-service 

restaurants

114,701 23,067 −79.9 50,341 1909 −96.2 0.3263 0.3188 −2.3 0.7426 0.9789 31.8

Grain farming 63,300 11,871 −81.2 76,002 55,777 −26.6 0.6206 0.4292 −30.8 0.4174 0.3559 −14.7

Grocery and 

related product 

wholesalers

59,026 488 −99.2 48,234 39,558 −18.0 0.3655 0.3362 −8.0 0.5785 0.2135 −63.1

Ice cream and 

frozen dessert 

manufacturing

4,874 2,965 −39.2 1715 1,492 −13.0 0.7189 0.5789 −19.5 0.4200 0.5677 35.2

Limited-

service 

restaurants

145,793 30,743 −78.9 18,577 799 −95.7 0.3337 0.3182 −4.6 0.7651 1.0000 30.7

Oilseed 

farming

17,410 3,547 −79.6 22,593 22,020 −2.5 0.6167 0.5026 −18.5 0.4019 0.3608 −10.2

Other animal 

food 

manufacturing

33,703 24,771 −26.5 32,711 32,060 −2.0 0.7112 0.4921 −30.8 0.4476 0.4363 −2.5

Other crop 

farming

9,082 2069 −77.2 9,316 7,328 −21.3 0.5741 0.4167 −27.4 0.4031 0.3606 −10.6

Poultry and 

egg production

30,022 17,744 −40.9 27,727 27,662 −0.2 0.6342 0.4383 −30.9 0.3727 0.4377 17.5

(Continued)
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TABLE 4  (Continued)

Weighted indegree Weighted outdegree Clustering Eigen centrality

Sectorsa Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

Full Truncated Change 
(%)

Poultry 

processing

38,751 29,259 −24.5 7,740 7,319 −5.4 0.7540 0.6667 −11.6 0.4502 0.3486 −22.6

Seafood 

product 

preparation 

and packaging

7,951 5,801 −27.0 3,892 2,941 −24.4 0.7747 0.6439 −16.9 0.3762 0.2495 −33.7

Seasoning and 

dressing 

manufacturing

14,027 7,246 −48.3 5,876 4,903 −16.6 0.6872 0.4723 −31.3 0.4538 0.6768 49.2

Snack food 

manufacturing

22,718 11,260 −50.4 3,534 3,281 −7.2 0.6812 0.5127 −24.7 0.4747 0.6243 31.5

Soft drink and 

ice 

manufacturing

34,696 9,722 −72.0 4,080 3,150 −22.8 0.7315 0.7182 −1.8 0.5208 0.4044 −22.4

Soybean and 

other oilseed 

processing

28,817 23,650 −17.9 27,726 25,175 −9.2 0.6448 0.4234 −34.3 0.3406 0.2343 −31.2

Sugar and 

confectionery 

product 

manufacturing

18,418 7,082 −61.5 8,300 7,938 −4.4 0.6594 0.4484 −32.0 0.4835 0.4673 −3.3

Support 

activities for 

agriculture and 

forestry

6,437 724 −88.8 25,625 21,097 −17.7 0.6706 0.4762 −29.0 0.3219 0.2433 −24.4

Vegetable and 

melon farming

6,522 1,476 −77.4 2,693 2,581 −4.2 0.6875 0.5261 −23.5 0.3718 0.3333 −10.4

Wet corn 

milling

10,571 7,680 −27.3 13,459 9,561 −29.0 0.7040 0.4368 −38.0 0.3605 0.1818 −49.6

Wineries 10,029 3,040 −69.7 4,003 2,947 −26.4 0.8211 0.9500 15.7 0.4144 0.2167 −47.7

aFor comparison purpose, we kept only food sectors.
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systems, upon which the food system and economic system draws. 
Like many studies, this study did not incorporate the many unpriced 
natural sectors that underpin the overall food and economic system. 
Should our model be expanded to integrate natural systems into I-O 
models, the overall assessment could enhance the accuracy of 
resilience results and help to more accurately model environmental 
degradation externalities across economic sectors.

On the one hand, high-degree nodes might increase the resilience 
of a network because these nodes can disperse information or influence 
to many other nodes in the network. For example, a study by Albert 
et al. (2000) found that the Internet’s resilience to random failures was 
due to its scale-free topology, characterized by a few hubs with high 
outdegree values that can “pick up the slack” when other clusters of 
nodes fail. On the other hand, these nodes could also decrease network 
resilience if targeted themselves. If a node with a high outdegree fails 
or is removed, this could disrupt a significant proportion of the 
network, as many nodes might depend on the high outdegree node. 
This idea is supported by a study by Callaway et al. (2000), who found 
that removing high-degree nodes could cause a rapid disintegration of 
the network. Nodes with higher outdegree than indegree also play a 
crucial role in cascading failures. Further, a study by Motter and Lai 
(2002) demonstrated that the failure of a single node can lead to a 
cascade of failures in other nodes, particularly in scale-free networks 
with high-degree nodes. Finally, high out-degree nodes also have a 
substantial impact on the diffusion process in the network. For 
instance, Kempe et al. (2003) demonstrated how more central nodes 
significantly affect the speed and reach of diffusion in social networks. 
In sum, nodes with a higher outdegree value than an indegree value 
can both increase and decrease network resilience, depending on 
the context.

This study uncovered the critical role of “Scientific research” in both 
the overall economic system and the food system. This sector buffers 
from shocks in other sectors, but when deleted itself can result in a 
cascading failure. The finding that a simulated deletion of “Scientific 
research” results in an overall increase in economic productivity of 24% 
can be  explained with an analogy. If one were to think of funding 
towards “Scientific research” as the budget for a maintenance department 
that takes care of a rental property, it is easy to understand how firing the 
maintenance staff would reduce costs and produce a higher return on 
investments. Yet, such a decision would ultimately devalue the assets and 
cut into long term costs. In this sense, as political budget-making leans 
towards austerity measures, cuts to higher education and similar 
research sectors may achieve greater economic outcomes, but with 
depreciation of both the value of the underlying system and its longer-
term potential returns.

This research has important implications for economic policy and 
resilience planning. We demonstrate how policymakers could design 
strategies that enhance the resilience of both food and non-food 
sectors, recognizing their interdependence. Going forward, our nested 
food-economic systems model can aid predictive modeling to test the 
impacts of localized shocks. For instance, during the COVID-19 
pandemic, labor shortages in U.S. meat packing houses likely impacted 
several other economic sectors. Using our model, such vulnerabilities 
could be  anticipated and managed more effectively during crises. 
Investments in statistical systems are necessary to build such 
comprehensive databases that capture the full spectrum of participants 
and activities within the food system. Identifying vulnerable sectors, 
populations, and supply chain locations can help target interventions 
more effectively.

While the primary empirical focus of this study centers on the 
period surrounding the 2008 financial crisis, the nested food-economic 
system model is designed for broader application across a wide range of 
systemic disruptions. Recent events—such as the Ukraine war’s impact 
on global grain markets (FAO, 2024; Glauber and Laborde Debucquet, 
2023), the 2023–2024 El Niño-induced agricultural volatility, and the 
Red Sea shipping crisis disrupting critical trade flows (Glauber and 
Mamun, 2024)—illustrate the continuing relevance of a network-based 
resilience framework. These shocks reinforce the importance of 
analyzing food system resilience within the broader economic structure, 
as disruptions in non-food sectors (e.g., shipping, energy, fertilizer) can 
propagate into food systems with severe consequences. Thus, the insights 
and simulations in this study are not only historically grounded but also 
have direct applicability for current and future crisis scenarios. 
Additionally, countries with significant informal economies likely rely on 
truncated economic models, leading to biased results similar to those 
demonstrated in our model of the truncated food system.
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