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Introduction: The increasing frequency of extreme weather events poses 
significant challenges to global food security, while the rapid development of 
the digital economy offers new pathways for mitigation.
Methods: This study constructs a Household Food Insecurity Experience Scale 
and a Digital Economy Indicator System based on survey data from 1,066 
households in Sichuan Province, China, collected in 2024. Using publicly 
available extreme weather data from official websites, the research examines 
the impact of extreme weather on farmers’ food security across different terrains 
and explores the moderating role of the digital economy.
Results: Contrary to conventional understanding, an increase in the extreme 
weather index was found to enhance household food security, with the effect 
varying by topography. In plain areas, where extreme weather events occur more 
frequently, households exhibited higher food security indices compared to non-
plain areas. Specifically, a one-unit increase in the extreme weather index raised 
the food security index by 28.2% in plain areas but reduced it by 9.7% in non-
plain areas. This divergence stems from differences in food access mechanisms 
shaped by terrain. In plains, extreme weather increased households’ reliance on 
external food purchases without significantly compromising self-sufficiency. 
In contrast, in non-plain areas, extreme weather substantially weakened self-
sufficiency, while complex terrain further restricted access to external food 
supplies. Moreover, the digital economy effectively mitigated the negative impact 
of extreme weather on food security in topographically disadvantaged regions. 
Under its moderating influence, a one-unit increase in the extreme weather 
index amplified the food security improvement in plain areas from 28.2 to 
68.9%, while in non-plain areas, extreme weather no longer exerted a significant 
effect. The underlying mechanism lies in the digital economy’s ability to enhance 
agricultural insurance participation, food production efficiency, and household 
income, collectively offsetting extreme weather’s adverse effects through 
increased earnings, reduced production costs, and better risk management.
Conclusion: This study highlights the terrain-dependent effects of extreme 
weather on household food security and the moderating role of the digital 
economy. The findings provide valuable insights for policymakers and 
stakeholders to strategically leverage digital economy practices in narrowing 
regional disparities in food security.
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1 Introduction

Food security is a central issue related to human wellbeing, global 
stability, and sustainable development. Despite efforts by the 
international community to address global food security challenges, 
the issue remains pervasive. In the post-pandemic era, although global 
food supply chains and international trade are gradually recovering, 
multiple factors—such as imbalances in global food supply and 
distribution and geopolitical conflicts—have increasingly complicated 
the global food trade environment. Consequently, some low- and 
middle-income countries continue to face food crises (Devereux et al., 
2020; Hellegers, 2022). Food security refers to ensuring that all people, 
at all times, have physical and economic access to sufficient, safe, and 
nutritious food to meet their dietary needs and food preferences for 
an active and healthy life. This concept encompasses four core 
dimensions: food availability (adequate production), access (economic 
and physical means to obtain food), stability (resilience against supply 
disruptions), and utilization (nutritional adequacy and food safety). 
To quantitatively assess food insecurity levels, the Food and 
Agriculture Organization (FAO) developed the Household Food 
Insecurity Experience Scale (HFIES), which classifies food insecurity 
severity through direct surveys on households’ difficulties in acquiring 
food. Furthermore, the multidimensional nature of food security is 
evaluated using dietary diversity scores and food group consumption 
frequencies to comprehensively measure dietary quality and nutrient 
adequacy. In recent years, academic research on food security has 
become increasingly in-depth. Existing studies have examined how 
factors such as urban–rural development (Liu and Zhou, 2021), 
climate change (Lee et  al., 2024), and government interventions 
(Cordonnier et  al., 2024) impact food security from an external 
perspective, and how land use (Molotoks et al., 2021) and risk aversion 
(de Raymond et al., 2021) influence it from an internal perspective. 
Although existing research has explored food security from multiple 
perspectives, it tends to focus more on systemic and structural factors, 
while giving less attention to the direct impact of climate change, 
particularly extreme weather, on food security. Extreme weather has, 
in fact, become a significant risk factor affecting food production 
efficiency and farmers’ livelihoods (Hasegawa et al., 2021; Rising et al., 
2022). This study’s food security indicator system therefore 
incorporates comprehensive considerations of both food insecurity 
and dietary diversity.

Digital economy represents an emerging economic form that 
utilizes digitalized knowledge and information as core production 
factors, leverages modern information networks as its carrier, and 
achieves efficiency improvements and economic structure 
optimization through the deep integration of information technologies 
with the real economy. Within the agricultural sector, its core 
components comprise digital infrastructure, digital production 
technologies, digitalized distribution and sales systems, and digital 
financial services—elements which have informed the construction of 
our digital economy indicator framework for this study. With the 
rapid development of the digital economy, digital technologies have 
profoundly transformed farmers’ production processes and lifestyles. 
The digital economy has deeply penetrated every aspect of food 
production. How, then, does the digital economy alleviate the impact 
of climate change on farmers’ food security? First, the digital economy 
leverages precision agriculture technologies to help farmers optimize 
production decisions, reducing uncertainties caused by climate change 

(Yao and Fu, 2023). Second, digital management enhances the 
efficiency of the agricultural supply chain, mitigating the impact of 
extreme weather on market supply and demand (Kumar et al., 2023). 
Additionally, digital finance and insurance services provide farmers 
with risk protection, alleviating the economic pressures caused by 
natural disasters (Gao et al., 2024). Through knowledge dissemination 
via digital platforms, farmers can access the latest agricultural 
technologies and coping strategies, enhancing their ability to cope 
with extreme weather.

Although existing studies have examined the relationships 
between extreme weather, the digital economy, and household food 
security from various perspectives, significant research gaps remain. 
First, current research predominantly focuses on the impact of long-
term climate change on agricultural production, overlooking the 
direct and immediate shocks of extreme weather events on household 
food security. It also fails to adequately reveal the role of the digital 
economy in mitigating sudden climate disasters and safeguarding food 
security. Second, topographic heterogeneity has not been effectively 
incorporated into analyses. Given topography’s substantial influence 
on climatic conditions, the frequency and impact mechanisms of 
extreme weather likely differ significantly across terrains. However, 
relevant studies lack in-depth comparisons of how extreme weather 
affects household food security under varying topographic conditions. 
Third, empirical evidence at the micro-level is relatively scarce. 
Existing research primarily relies on macro-level or regional aggregate 
statistics, lacking analysis based on household-level microdata. This 
limitation constrains a nuanced understanding of how the digital 
economy alleviates extreme weather shocks and ensures food security 
at the individual level. Consequently, addressing these gaps, this study 
frames its core research questions as: How do extreme weather events 
affect grain production? How does this effect vary across different 
terrains? Can the digital economy mitigate the impact of extreme 
weather events on household food security, and if so, how?

To answer these questions, utilizing the latest 2024 survey data 
from 1,066 farming households in Sichuan Province, this study aims 
to: (1) uncover the impact and mechanisms of extreme weather events 
on household food security across diverse terrains, and (2) examine 
the moderating effect of digital economic development on this impact 
under different topographic conditions. Leveraging detailed microdata 
and novel digital economy metrics, we characterize extreme weather 
events and digital economy levels, ensuring our analysis captures the 
diversity of individual households’ contexts.

This paper contributes to the literature in three primary ways. 
First, employing household-level data, we deepen the research on 
climate shocks and food security from a micro-perspective, addressing 
a blind spot in prior macro-level studies. We specifically examine 
differences in extreme weather impacts across mountainous, hilly, and 
plain areas, revealing regional characteristics of climate shocks. 
Second, our study introduces significant content innovation: by 
incorporating the digital economy variable, we test how digitalization 
aids households in coping with extreme weather—to our knowledge, 
this represents one of the first empirical efforts examining the role of 
the digital economy in mitigating extreme weather shocks on food 
security among farming households in developing regions. Third, 
we  refine the measurement system for the digital economy: 
constructing indicators via the Technology Acceptance Model (TAM), 
we comprehensively account for farmers’ acceptance and perceived 
utility/usability of digital technologies, making the digital economy 
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index more relevant to the practical needs of rural settings in low- and 
middle-income countries.

Collectively, these contributions enhance our understanding of 
how extreme weather, topographic heterogeneity, and digital 
development jointly influence household food security, providing new 
insights for enhancing agricultural risk resilience. In summary, this 
paper systematically analyzes the combined effects of extreme weather, 
topographic variation, and the digital economy on household food 
security using micro-survey data. It not only proposes solutions to 
multiple shortcomings in the existing literature but also provides 
valuable empirical evidence to inform related theoretical research and 
policy formulation.

2 Theoretical analysis

2.1 Extreme climate and farmers’ food 
security

Agricultural production is fundamentally an intertwined process 
of natural reproduction and economic reproduction. Climatic factors, 
as core natural variables, disrupt crop physiological cycles and the 
efficiency of production factor allocation through nonlinear pathways. 
Weather extremes directly destabilize the stable growth environment 
for crops by altering the spatiotemporal distribution of light, 
temperature, water, and heat resources. This triggers a cascade of effects 
including intensified pest and disease outbreaks, suppression of 
photosynthesis, and disruption of pollination processes (Lobell and 
Gourdji, 2012). These disturbances manifest as yield fluctuations at the 
micro level while escalating into regional food supply imbalances at the 
macro level. Within the theoretical framework of agricultural 
production functions, the impact of climatic shocks on output can 
be deconstructed into two primary pathways: technical efficiency loss 
and resource utilization distortion (Aragon et al., 2021). On one hand, 
anomalous precipitation or temperatures deviating from optimal crop 
growth thresholds cause soil moisture imbalances and nutrient 
depletion, reducing the marginal output elasticity of land (Shirley et al., 
2020) drought-induced irrigation water scarcity directly reduces grai. 
On the other hand, catastrophic events compel farmers to adjust their 
strategies for factor inputs. Topographic heterogeneity plays a critical 
role in this process—plains areas, with their advantages in contiguous 
cultivation and mechanization adaptability, can buffer climatic shocks 
through scale economies. Conversely, hilly and mountainous regions, 
constrained by fragmented landholdings and ecological fragility, 
experience amplified effects of climatic disturbances through 
exacerbated soil erosion and microhabitat degradation. Consequently, 
theoretical models must simultaneously capture the direct biophysical 
effects of climatic variables and their interactive effects with 
topographic features to precisely quantify the net impact of extreme 
weather on food security.

Crop production is the result of the interaction between 
socioeconomic and natural factors. Therefore, when examining the 
impact of climate factor changes on food security, the primary 
consideration is how climate factors affect crop yields and agricultural 
production efficiency. During the derivation of the production 
function, it is first necessary to separate the economic yield of food 
crops to obtain the yield determined solely by natural factors under 
climate variables, thus identifying the “fluctuating yield” influenced 

by climate. Therefore, the total yield of food crops is defined as 
Equation (1):

	 ε= + +i cY Y Y 	 (1)

In the above formula, Y represents the total grain yield in a given 
region, Yi denotes the economic yield resulting from social factors in 
that region, Yc signifies the fluctuating yield affected by climate, and ε 
represents the random error.

To accurately investigate the fluctuating yield impacted by climate, 
this study applies the Cobb–Douglas production function to calculate 
socioeconomic yield and thus assess the influence of various 
socioeconomic factors on yield as Equation (2):

	
α α= 1 2
1 2iY K K 	 (2)

Here, K1 and K2 represent two primary socioeconomic factors 
under simplified expressions, α1 and α2 are the corresponding elasticity 
coefficients of these factors, satisfying α α+ =1 2 1, which aligns with 
the assumption of constant returns to scale. Under constant factor 
inputs, grain production efficiency can be represented as the ratio of 
actual grain output to optimal output. Within a fixed period, if the 
optimal yield from arable land remains constant, production efficiency 
can thus represent actual grain output in calculations.

The stochastic frontier approach (SFA) model, introduced in 1977, 
has since undergone extensive research and development, gaining 
widespread attention for its application in measuring resource use 
efficiency and analyzing utilization patterns. Analyzing grain production 
reveals that primary constraints on output include arable land conditions 
and capital investment. This paper constructs a stochastic frontier 
production function (SFA) to calculate grain production efficiency. This 
paper constructs a stochastic frontier production function to calculate 
grain production expressed as Equation (3):

	 ( ) ( )( )= + −1 2ln ln ,iY f K K v u	 (3)

Here, v represents a random error term following a normal 
distribution ( )σ 20, vN , u is a random variable assumed to 
be non-negative due to technical inefficiency, following a truncated 
normal distribution ( )σ+ 20, uN . In the specified model, agricultural 
production efficiency (APE) with regard to socioeconomic factors can 
be defined as Equation (4):

	 ( )( )( )
=

+1 2exp ln ,
iYAPE

f K K v 	
(4)

To introduce the impact of climate factors on yield variability Yc, 
this paper selects typical climate variables C, including precipitation 
P, temperature T, and humidity H, to examine the impact of extreme 
weather on agricultural production efficiency, assuming that

	 ( ) ( )= = , ,cY g C g T P H 	 (5)

In Equation (5), ( )·g  represents a function of climate variables. At 
this point, Yc is a function of T, P and H, as these climate variables 
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influence the variability of crop yields. To incorporate the impact of 
climate factors on production efficiency into the model, climate 
variables C are introduced as additional input variables, assuming that 
the production function becomes Equation (6):

	 ( ) ( )( ) ( )( )= + + −1 2ln ln , lnY f K K g C v u 	 (6)

At this point, ( )( )ln g C  reflects the direct impact of climate factors 
on crop yield. Following the previous assumption, let 
( ) β β β= 1 2 3· ·g C T P H , where β1, β2 and β3 are elasticity coefficients 

representing the influence of temperature, precipitation, and humidity 
on crop yield, respectively. In summary, the production function is 
expressed as Equation (7):

	

( ) ( ) ( ) ( )
( ) ( )

α α β
β β

= + + +
+ + −

1 1 2 2 1

2 3

ln ln ln ln
ln ln

Y K K T
P H v u

	 (7)

At this point, in terms of total output, agricultural production 
efficiency (APE) can be redefined as Equation (8):

	

( ) ( ) ( )
( ) ( )

α α β
β β

=
 + + +
 + + 

1 1 2 2 1

2 3

ln ln ln
exp

ln ln

YAPE
K K T
P H v

	
(8)

To explain the impact of major socioeconomic factors on 
agricultural production efficiency under extreme weather conditions, 
this paper introduces a terrain impact coefficient G to differentiate the 
productive effects of various terrains. Intuitively, plains are more 
suitable for mechanized operations, making them more favorable for 
cultivation compared to hilly or mountainous areas. Thus, we assume 
that if the terrain is conducive to cultivation = >1 1G G , indicating that 
this terrain enhances agricultural production efficiency. Conversely 
= <2 1G G  suggests that such terrain conditions constrain output and 

production efficiency. Based on the original production model, this 
paper defines the adjusted crop yield Y as Equation (9):

	 ( ) ( ) −= 1 2· , · · v uY G f K K g C e 	 (9)

At this point, agricultural production efficiency is expressed as 
Equation (10):

	

( ) ( )
( ) ( ) ( )
( ) ( )

α α β
β β

−
=

 + + +
 + + 

1 2

1 1 2 2 1

2 3

· , · ·
ln ln ln

exp
ln ln

v uG f K K g C e
APE

K K T
P H v

	
(10)

If = >1 1G G : Under these terrain conditions, favorable natural 
factors such as soil quality, moisture, and slope enhance crop growth, 
increasing yield per unit area and production efficiency. >1 1G  
represents a positive impact of terrain on output. The opposite holds 
for unfavorable terrain. The terrain coefficient G directly multiplies the 
original output, either amplifying or reducing the final crop yield. Thus, 
terrain conditions alter the efficiency value, with favorable terrain 
increasing efficiency and unfavorable terrain reducing it.

2.2 The mediating role of food sources

Food security is fundamentally a function of supply stability and 
access reliability. Extreme weather indirectly threatens food security 
by disrupting the dual pathways through which rural households 
obtain food—subsistence production and market procurement. 
Subsistence production, serving as the first line of defense against risk, 
sees its output elasticity significantly suppressed by climate shocks: 
drought-induced irrigation water scarcity directly reduces grain 
setting rates, while waterlogging from heavy rainfall accelerates root 
rot and grain mold, leading to contraction in household grain reserves 
(Wheeler and von Braun, 2013). As the subsistence production gap 
widens, households increasingly rely on market procurement to meet 
consumption needs. However, extreme weather simultaneously 
distorts the agricultural supply chain—floods damaging transport 
networks increase logistics costs, while high temperatures accelerate 
the spoilage of perishables, exacerbating supply losses. This manifests 
as heightened market price volatility and supply uncertainty. These 
dual pressures create a negative cycle of “subsistence decline–market 
failure”: weakened self-sufficiency forces greater market dependence, 
while market failure increases the cost and risk of food access. 
Theoretical models must specifically identify the differing substitution 
elasticities of these two mediating pathways. In plains with developed 
infrastructure, market mechanisms can partially offset production 
losses; in high-transaction-cost mountainous areas, however, the 
combined effect of diminished subsistence output and obstructed 
procurement causes a sharp decline in food security levels. 
Consequently, the mode of food sourcing acts as the critical nexus 
transmitting climate shocks to food security outcomes, with 
transmission efficiency profoundly constrained by regional market 
development and logistical resilience.

To quantify the complementary relationship between self-
sufficient food production and external market purchases in ensuring 
food security, this paper develops a corresponding mediation effect 
model. Self-sufficiency in production and external market purchases 
are treated as two key variables affecting food security, with 
consideration given to the impact of extreme weather on both. The 
specific modeling approach is as follows:

Food security level is represented y, y a function of the quantity of 
food produced for self-sufficiency Q1 and the quantity purchased from 
external markets Q2, both influenced by extreme weather C. The 
mediation effect model can be constructed as Equation (11):

	 ( ) ( )ϕ τ τ γ δ θ ∈= + + + + + +1 1 2 2 1 2· ·y Q Q C Q C Q C
	 (11)

Here, Q1 denotes the quantity of food produced by farmers for 
self-sufficiency, which can reduce dependency on the external market. 
Q2 represents the quantity of food purchased from the external 
market, which can supplement supply when self-sufficient production 
is insufficient. C (as previously defined) represents the variable for 
extreme weather intensity. φ is a constant term representing the 
baseline level of food security. τ1 and τ2 are the direct impact 
coefficients of self-sufficient production Q1 and external market 
purchases Q2 on food security level. γ is the direct impact coefficient 
of extreme weather on food security. δ is the coefficient of the 
interaction term ×1Q C , measuring the compensatory effect of self-
sufficient production on food security under extreme weather. θ is the 
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coefficient of the interaction term ×2Q C , indicating the effect of 
extreme weather on dependency on external markets. ϵ is the error 
term, capturing unexplained random fluctuations within the model.

In this framework, the impact coefficient τ1 of Q1 on y indicates 
how an increase in self-sufficient production enhances food security. 
If τ >1 0 , it suggests that increasing the self-sufficient production Q1 
helps to improve food security levels, as self-sufficiency can stabilize 
food supply. The impact coefficient τ2 of Q2 on y represents the 
supplementary effect of external market purchases. If τ >2 0, external 
market purchases Q2 can supplement supply, mitigating shortages and 
strengthening food security. Additionally, extreme weather C impacts 
food security through the direct coefficient γ; If γ < 0, extreme weather 
has a negative effect on food security. The interaction terms ×1Q C and 

×2Q C  examine the mediating roles of self-sufficient production and 
external market purchases on food security under extreme weather 
conditions. If δ > 0, it suggests that self-sufficient production can 
mitigate the impact of extreme weather on food security, reducing 
dependence on the external market. Conversely, if θ < 0, it implies that 
external market purchases may be  adversely affected by extreme 
weather, thereby reducing food security levels.

2.3 The moderating role of the digital 
economy

Digital economy mitigates the negative impact of extreme weather 
on food security through four-dimensional restructuring. Digital 
acceptance determines the breadth of farmers’ application of digital 
tools, with high-adoption groups proactively leveraging digital 
technologies to avoid planting risks and reduce production-side 
vulnerabilities. Digital finance innovates risk-dispersing instruments, 
converting physical losses into actuarial payouts to alleviate post-
disaster capital constraints hindering grain reproduction. Digital 
production technologies optimize resource allocation by dynamically 
adjusting water, fertilizer, and pesticide inputs in real time, thereby 
suppressing yield volatility (Yu et al., 2025). Digital infrastructure 
underpins this ecosystem: logistics big data platforms dynamically 
route shipments around disaster-affected routes, while e-commerce 
markets bridge information gaps by connecting oversupplied regions 
with cross-regional demand (Giacalone, 2025). Crucially, these four 
dimensions synergistically form an “early warning-buffer-adaptation-
recovery” cycle. Digital economy not only shortens the time lag 
between climate shocks and responsive decision-making but also 
reduces climate sensitivity per unit output through precision resource 
allocation. Theoretical models must elucidate how digital economy 
reshapes the response function of “climate shock-food security” by 
reducing information asymmetry, enhancing factor mobility, and 
strengthening risk dispersion capabilities—fundamentally shifting the 
marginal effect curve of climate impacts downward through reduced 
systemic vulnerability and heightened adaptive capacity.

To further analyze the moderating effect of the digital economy 
on the relationship between food security and extreme weather, this 
paper introduces the moderating variable T to build an econometric 
model. The digital economy can mitigate the negative impact of 
extreme weather on food security by enhancing information 
transmission efficiency, optimizing supply chain management, and 
promoting precision agriculture. Extending the discussion above, the 
econometric model introduces a digital economy moderation variable, 

where food security level y has a direct relationship with Q, and 
extreme weather C and the digital economy T have a moderating effect 
on y. The model is constructed as Equation (12):

	 ( )ϕ τ γ ϑ ∈= + + + +·y Q C T C
	 (12)

In addition to the variables defined in the previous model, Q 
represents the total quantity of food (regardless of source), and τ is the 
direct impact coefficient of the total food quantity Q on food security. 
ϑ is the interaction coefficient between extreme weather and the 
digital economy, measuring the moderating effect of the digital 
economy on food security under extreme weather conditions.

If τ > 0, this indicates that increasing the food supply Q can 
directly enhance food security levels. The interaction term ×T C has a 
coefficient ϑ, representing the moderating effect of the digital 
economy on food security under extreme weather conditions. If ϑ > 0 
this suggests that the digital economy can exert a positive moderating 
effect on food security during extreme weather. Advances in the 
digital economy, such as supply chain optimization, market 
information transmission, and precision agriculture technology, can 
mitigate the negative impact of extreme weather on food security.

3 Data source, indicator selection and 
model construction

3.1 Data source

The data for this study primarily come from two sources: first, 
micro-level survey data from farmers. This survey was led by the 
research team in collaboration with the Rural Revitalization Institute 
of Sichuan Open University, focusing on agricultural production, the 
digital economy, and land use. The survey was conducted among 
farmers in Sichuan Province in the summer of 2024. Based on the 
geographical characteristics, the research team divided Sichuan 
Province into five regions: Eastern Sichuan, Western Sichuan, 
Southern Sichuan, Northern Sichuan, and Central Sichuan. Two 
prefecture-level cities were randomly selected from each region. 
Employing a combined stratified and random sampling approach, five 
distinct villages were chosen per city based on two criteria: proximity 
to urban centers (categorized as near-village [<5 km], medium-
distance village [5–10 km], and remote village [>10 km]) and 
economic development level (high, medium, low) determined by 
tertile-based pairing of village-level GDP. Using official rosters 
provided by village committees, 25 farming households were then 
randomly sampled per village for in-person household surveys. A 
total of 1,250 farmer questionnaires were collected in this survey. After 
excluding irrelevant, incomplete, or invalid responses and conducting 
several follow-up phone interviews, 1,066 valid questionnaires were 
obtained, yielding an effective response rate of 85.28%. Sichuan 
Province is located in the southwest interior of China, spanning the 
first and second steps of the Chinese mainland’s topography, 
characterized by significant elevation differences, with higher 
elevations in the west and lower elevations in the east. The region 
features diverse and complex terrain, including plateaus, mountains, 
hills, and plains. Given the varied natural resource endowments, the 
development of the digital economy and the manifestation of extreme 
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weather exhibit significant heterogeneity, making this study both 
forward-looking and highly representative. The second source is 
climate data. The extreme weather indicators used in this study were 
obtained and further processed from the China Meteorological 
Science Data Center and the U.S. National Oceanic and Atmospheric 
Administration (Figure 1).

3.2 Indicator selection

3.2.1 Extreme weather
This study uses extreme low temperatures days (LTD), extreme 

high temperatures days (HTD), extreme rainfall days (ERD), and 
extreme drought days (EDD) as indicators of the Climate Physical 
Risk Index (CPRI) for empirical analysis (Lesk et  al., 2016; 
Ummenhofer and Meehl, 2017). To obtain extreme weather data, this 
study first gathers ground-level climate data from each county in the 
survey region, including maximum temperature, minimum 
temperature, rainfall, and relative humidity. If data for a specific 
county is unavailable, data from neighboring counties or the nearest 
city is used as a substitute. Additionally, given the complex terrain and 
significant climate variability in the study area, a relative threshold 
method is applied to identify extreme weather events. Specifically, 
daily average temperatures from 2023 are sorted in ascending order, 
with the 90th and 10th percentiles used as the thresholds for extreme 
high and low temperatures, respectively. For rainfall, precipitation 
values greater than 0 are sorted in ascending order, and the 95th 
percentile is set as the threshold for extreme rainfall. Relative humidity 
is also sorted in ascending order, with the 5th percentile serving as the 

threshold for extreme drought. The min-max normalization method 
is then applied to process the data, calculating the number of days for 
each type of extreme weather during the year, and the average is used 
to form the Climate Physical Risk Index (Guo et al., 2024). Table 1 
presents the extreme weather conditions in the counties within the 
study area, showing a higher probability of extreme high temperatures 
and extreme drought.

3.2.2 Food security
This study examines food security from the perspective of farming 

households. Therefore, it uses the Household Food Insecurity 
Experience Scale (HFIES) developed by the Food and Agriculture 
Organization of the United Nations (FAO) to assess the level of food 
insecurity faced by farming households (Akim et al., 2024). Specifically, 
farming households are asked eight binary questions related to food 
insecurity, with “yes” coded as 1 and “no” coded as 0. The higher the 
score, the more severe the food insecurity experienced by the 
household. Considering the multidimensional nature of food security, 
the study further measures the Household Dietary Diversity (HDD) 
score by examining the types of food consumed by households over the 
past 7 days. Each type of food is assigned a score, and the weighted sum 
of nutritional density is used to calculate the Food Consumption Score. 
The nine food groups and their respective weights are as follows: dairy 
products, 4; animal protein, 4; legumes, 3; staple foods, 2; vegetables, 1; 
fruits, 1; fats, 0.5; sugar, 0.5 (Cordonnier et al., 2024). Finally, these 
variables are incorporated into the food security indicator system, and 
the final score is calculated using the entropy method. Table 2 reports 
the food security status of the surveyed households, indicating 
relatively good food security in the study region.

FIGURE 1

Spatial distribution of the study areas.
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3.2.3 Digital economy
There is no unified standard for constructing the digital economy 

indicator system in academia, but it primarily focuses on the external 
conditions of digital technology and farmers’ ability to apply these 
technologies (Zahoor et al., 2023). However, for the vast majority of 
low- and middle-income countries, where modernization has started 
relatively late, the key concern in the diffusion of digital technology 
should be  whether farmers are willing and able to adopt these 
technologies. With socio-economic development, the outflow of 
young labor from rural areas is inevitable. However, whether the 
elderly population remaining in villages can adapt to the changes 
brought by the digital economy to their production and lifestyle is a 
prerequisite for their use of digital technologies (Hunsaker and 
Hargittai, 2018). In summary, existing research has overlooked the 
internal factors influencing farmers’ acceptance and willingness to 
adopt digital technologies, which are often key determinants of the 
effectiveness of digital technology implementation in practice. 
Therefore, this paper incorporates the Technology Acceptance Model 
(TAM) into the traditional digital economy indicator system, using 
the concepts of perceived ease of use and perceived usefulness to 
understand farmers’ attitudes toward digital technology. Additionally, 
digital infrastructure forms the foundation of the digital economy; 
digital production examines whether farmers use digital technologies 
in agricultural production to enhance productivity; and digital 
finance enables farmers to more easily access loan information, 
alleviating financial constraints and improving their capacity to 
buffer risks. Prior to computation, diagnostic tests were conducted: 
Bartlett’s test of sphericity yielded a statistically significant result 
(p < 0.001), and the Kaiser-Meyer-Olkin measure reached 0.986, 
exceeding the recommended threshold of 0.7, collectively indicating 
high suitability for factor analysis. The analysis subsequently 
extracted four distinct factors, with all measured variables 
demonstrating high factor loadings on their respective components 
(Table 3).

3.2.4 Control variables
In addition to the main indicators mentioned above, this study 

selects individual characteristics, household characteristics, and 
village characteristics as control variables, based on the micro-level 
perspective of farmers. All indicators are detailed in Table 4.

3.3 Model construction

This paper constructs an equation to examine the impact of 
extreme weather on farmers’ food security. Based on the nature of the 
dependent variable, the Ordinary Least Squares (OLS) model is used 
for econometric analysis, and the specific expression is shown in 
Equation (13):

	 α α α µ= + + +0 1 2i i i iY CPRI X 	 (13)

In this equation, the dependent variable Yi represents the farmers’ 
food security index, the independent variable iCPRI  represents the 
Climate Physical Risk Index, and Xi represents control variables that 
may affect the dependent variable. α0, α1 and α2 are the parameters to 
be estimated; μi represents the error term.

4 Empirical analysis

4.1 The impact of extreme weather on food 
security

Before performing the regression analysis, this study uses the 
Variance Inflation Factor (VIF) to test for multicollinearity among the 
variables. The results indicate that all VIF values are below 10, indicating 
no multicollinearity. Table 5 presents the impact of extreme weather on 
farmers’ food security. For every one-unit increase in the extreme climate 
risk index, the household food security index increases by 15.2%, 
suggesting that an increase in extreme weather events is associated with 
a higher food security index for farmers. Additionally, this study employs 
extreme weather data from 2014 and the slope of the study area as 
instrumental variables to address endogeneity. First, the extreme weather 
events of 2014 are past natural occurrences, unaffected by current farmer 
behavior or food security conditions, thereby possessing exogeneity. 
Additionally, the climate system exhibits continuity, and there is typically 
a strong correlation between past extreme weather events and current 
climate conditions. Second, the slope of the study area, as a geographic 
feature, is a stable and exogenous variable that cannot be influenced by 
individual behavior. Slope affects local climate conditions, such as 
precipitation patterns, soil water retention, and erosion risk, all of which 
are closely linked to the frequency and intensity of extreme weather 
events. However, this natural feature remains unchanged by farmers’ 
decisions or food production activities. The chosen instrumental 
variables meet the assumptions of relevance and exogeneity, and pass the 
relevant tests, fulfilling the selection requirements. Additionally, when 
the 2SLS model is replaced with the LIML model for regression, the 
results remain consistent—after accounting for endogeneity and 
robustness, more extreme weather events still correspond to a higher 
food security index for farmers.

The control variables revealed significant variations in household 
food security levels. An increase in female-headed households, younger 
age demographics, and higher education attainment positively 
enhanced food security. At the household level, expanded cultivated 
land area and greater non-agricultural employment participation 
similarly improved food security outcomes. Village-level proximity to 
townships and location in plains further amplified these positive 
effects. Human capital (gender, age, education) and livelihood strategies 
(cultivated land scale, non-agricultural employment) constituted 

TABLE 1  Climate Physical Risk Index system.

Variables Mean Standard 
deviation

Extreme low temperature days 13.665 3.601

Extreme high temperature days 57.766 10.940

Extreme rainfall days 15.503 10.987

Extreme drought days 33.471 24.391

TABLE 2  Summary statistics of food security outcomes.

Variables Mean Standard 
deviation

Household food insecurity experience scale 0.084 0.337

Household dietary diversity score 6.553 1.262

Food consumption score 11.716 2.147
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TABLE 4  Description and descriptive statistics of variables.

Variables Name Definition Mean Standard 
deviation

Explained variables Food security Food security index of farmers 0.605 0.187

Explanatory variables Extreme Weather Climate Physical Risk Index 30.040 7.105

Mediating variable Food source
More of the food you get in 2023 will come from self-sufficiency: 1 = yes; 0 = no 0.488 0.497

More of your food in 2023 will come from external purchases: 1 = yes; 0 = no 0.493 0.500

Moderating variables Digital Economy Digital economy index system score 0.520 0.321

Control variables

Sex 1 = male; 0 = female 0.839 0.368

Age Actual age of the household head/years 57.713 16.923

Educational attainment Years of formal education received by the household head/years 7.551 2.759

Scale of operation Total area of family-owned land (km2) 8.443 21.233

Land transfer behavior Whether there will be land transfer behavior in 2023:1 = yes; 0 = no 0.716 0.451

Dependency ratio Ratio of household labor force to total household population (%) 0.716 0.156

Migrant work situation
The proportion of Household migrant workers in the Total household 

population (%)
0.479 0.500

Household size Number of people in the household 3.958 1.469

Distance to nearest town Distance from the village to the nearest town/km 11.206 8.592

Village terrain 1 = Non-plain; 0 = Plain 0.241 0.428

The Food Security Index and Digital Economy Index are calculated using the entropy method, while the Extreme Climate Risk Index is obtained by averaging.

foundational capacities for risk resilience, whereas geographical 
positioning (urban proximity, plain advantages) amplified protective 
effects through enhanced resource accessibility (Table 6).

However, this phenomenon is clearly counterintuitive. Typically, 
climatic shocks disrupt the natural growing conditions for crops, 
increasing uncertainty and risk in agricultural production, which in turn 
reduces crop yields and quality, weakening the stability of the food supply 
(Wineman et al., 2017; Chriest and Niles, 2018). Research also confirms 
that, from a macro perspective, climate change negatively impacts the 
stability of food security (Hasegawa et  al., 2021). Why, then, do 

conclusions from the micro perspective completely contradict those from 
the macro perspective? By comparing and reanalyzing the original data, 
significant differences between extreme weather events and farmers’ food 
security indices were observed across different topographical conditions 
(Table 6): In plain areas, despite the higher frequency of extreme weather 
events, farmers’ food security indices are also higher. In non-plain areas 
(mainly hills and mountains), although extreme weather events occur less 
frequently, farmers’ food security indices are lower.

Furthermore, Table  7 demonstrates the differences in extreme 
weather and farmers’ food security across topographies: a one-unit 

TABLE 3  Digital economy indicator system.

Variables Definition Mean Standard 
deviation

Digital acceptance

Do you believe that using digital devices can contribute to agricultural production? 1 = Yes; 0 = No 0.688 0.463

Do you believe that using digital devices can enhance market competitiveness? 1 = Yes; 0 = No 0.647 0.478

Do you believe that using digital devices can improve risk resistance? 1 = Yes; 0 = No 0.258 0.438

Do you feel confident using digital devices? 1 = Yes; 0 = No 0.674 0.469

Do you spend less time searching for information with digital devices? 1 = Yes; 0 = No 0.613 0.487

Do you find using digital devices convenient? 1 = Yes; 0 = No 0.665 0.472

Digital 

infrastructure

Do you use a mobile phone? 1 = Yes; 0 = No 0.991 0.096

Can your mobile phone access the internet? 1 = Yes; 0 = No 0.959 0.199

Are you connected to satellite television? 1 = Yes; 0 = No 0.990 0.101

Digital production

Do you obtain agricultural product prices/market information through digital devices? 1 = Yes; 0 = No 0.629 0.483

Do you acquire agricultural technical knowledge through digital devices? 1 = Yes; 0 = No 0.774 0.418

Do you use digital technology in agricultural production? 1 = Yes; 0 = No 0.864 0.343

Digital finance

Do you obtain credit through digital devices? 1 = Yes; 0 = No 0.571 0.495

Do you use digital payment methods? 1 = Yes; 0 = No 0.757 0.429

Do you use digital financial products? 1 = Yes; 0 = No 0.262 0.440
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increase in the extreme weather index raised the food security index 
by 28.2% in plain areas but reduced it by 9.7% in non-plain areas. A 
possible explanation is that plains feature flat terrain, better 
transportation and infrastructure, and more advanced digital economic 
development, which makes it easier for farmers to access disaster 
prevention information and technical support, thereby enhancing their 
ability to cope with extreme weather. Additionally, plain areas have 
higher levels of agricultural mechanization and production efficiency, 
so even though climatic shocks occur more frequently, farmers’ food 
security can still be  maintained. In contrast, non-plain areas are 
characterized by more complex terrain, poor transportation networks, 
underdeveloped infrastructure, and lagging digital economic 
development. Farmers in these regions have limited access to 
information and technical support, making them more vulnerable to 
extreme weather despite relatively stable climatic conditions.

4.2 The mediating role of food sources

Food sourcing methods (self-sufficiency and external purchasing) 
serve as complementary mediators between extreme weather and 
farmers’ food security. As shown in Table 8, extreme weather events 
have significantly different effects on farmers’ food supply sources 
across various topographical conditions. In plain areas, an increase 
in weather extremes leads farmers to rely more on external food 
purchases, while their level of self-sufficiency remains largely 
unaffected. In contrast, in non-plain areas (such as mountainous and 
hilly regions), extreme weather significantly reduces farmers’ self-
sufficiency, yet has no significant effect on external food purchases. 
The core driving factors behind this phenomenon can be attributed 
to the imbalances in agricultural production efficiency and the 
allocation of economic resources (Table 9).

First, due to favorable terrain conditions, plain areas have higher 
levels of agricultural mechanization, with production efficiency far 
surpassing that of non-plain areas. The agricultural infrastructure in 

these regions is more advanced, and farmers possess greater resilience 
to climatic shocks. The well-developed transportation networks in 
plain areas enable farmers to swiftly compensate for production losses 
through the market, while the ease of external food purchases further 
diversifies their supply structure. Therefore, although extreme weather 
increases their reliance on external food sources, the availability of 
economic resources ensures that their self-sufficiency remains largely 
unaffected (Table 9).

In contrast, in non-plain areas, complex terrain constrains the 
development of agricultural mechanization and large-scale production, 
leading to lower production efficiency for farmers. Moreover, traditional 
small-scale farming methods expose them to greater production risks. 
Additionally, the relatively underdeveloped transportation and market 
infrastructure in non-plain areas limits access to external food sources, 
further exacerbating farmers’ difficulties in coping with extreme weather. 
The low production efficiency also results in generally low household 
incomes for farmers, leaving them without sufficient economic resources 
to purchase food from the market.

4.3 The moderating role of the digital 
economy

In summary, food sourcing methods (self-sufficiency and external 
purchasing) act as mediators between extreme weather and food 
security, further highlighting the deeper influence of agricultural 
production efficiency and farmers’ income on this relationship. 

TABLE 5  The impact of extreme weather on food security.

Variables Food security (OLS) Food security (2SLS) Food security (LIML)

Std. Coeff. S.E. Std. Coeff. S.E. Std. Coeff. S.E.

CPRI 0.152*** 0.001 0.722*** 0.004 0.760*** 0.004

Sex −0.055*** 0.010 −0.047* 0.014 −0.047* 0.014

Age −0.271*** 0.000 −0.181*** 0.001 −0.181*** 0.001

Educational attainment 0.236*** 0.003 0.133** 0.004 0.133** 0.004

Scale of operation 0.000* 0.000 0.000* 0.000 0.000* 0.000

Land transfer behavior 0.005 0.008 0.043 0.012 0.043 0.012

Dependency ratio −0.021 0.027 −0.023 0.034 −0.023 0.035

Migrant work situation 0.075 0.008 0.070** 0.010 0.070** 0.010

Household size 0.008 0.003 0.016 0.004 0.016 0.004

Distance to nearest town −0.046 0.000 −0.046** 0.001 −0.046* 0.001

Village terrain −0.371*** 0.009 −0.284*** 0.016 −0.279*** 0.016

Numbers of samples 1,066 1,066 1,066

R2 0.586 0.309 0.276

***, **, and * indicate significance at the 1, 5, and 10% levels. Durbin (score) p-value = 0.0026; Wu–Hausman p-value = 0.0020; F-value = 18.1513; Sargan (score) p-value = 0.1600; Basmann 
p-value = 0.1622.

TABLE 6  Comparison of extreme weather and food security in different 
regions.

Village terrain Plain Non-plain

CPRI 31.054 26.845

Food security 0.662 0.428
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TABLE 8  Mediating role of food sources in different terrain.

Variables Plain Non-plain

Self-sufficiency External purchase Self-sufficiency External purchase

Std. Coeff. S.E. Std. Coeff. S.E. Std. Coeff. S.E. Std. Coeff. S.E.

CPRI 0.134 0.007 0.236** 0.007 −0.446** 0.015 −0.055 0.019

Other variables Yes Yes Yes Yes

Numbers of samples 809 809 257 257

R2 0.018 0.030 0.061 0.157

***, **, and * indicate significance at the 1, 5, and 10% levels.

TABLE 9  Differences in agricultural production efficiency and economic resource allocation under different terrains.

Variables Plain Non-plain

Agricultural 
productivity

Household income Agricultural productivity Household income

Std. Coeff. S.E. Std. Coeff. S.E. Std. Coeff. S.E. Std. Coeff. S.E.

CPRI −0.003* 0.144 −0.353 0.398 −0.007*** 0.317 −0.399* 0.263

Other variables Yes Yes Yes Yes

Numbers of samples 809 809 257 257

R2 0.046 0.098 0.106 0.167

***, **, and * indicate significance at the 1, 5, and 10% levels.

However, with the rapid development of the digital economy, its 
application in agriculture has profoundly impacted traditional 
production methods and farmers’ livelihoods. Therefore, it is necessary 
to further explore the moderating role of the digital economy in the 
relationship between extreme weather and food security, in order to fully 
understand its mechanisms in mitigating the impacts of extreme weather.

In plain areas, the digital economy demonstrates a clear 
moderating effect on mitigating the impact of extreme weather on 
farmers’ food security. Data in Table  10 indicate that the digital 
economy amplifies the positive impact of extreme weather on farmers’ 
food security, a one-unit increase in the extreme weather index 
amplified the food security improvement in plain areas from 28.2 to 
68.9%. Moreover, plain areas facilitate mechanized operations and the 
rapid dissemination of information technology, enabling farmers to 
more fully utilize the production tools and financial services enabled 
by the digital economy, effectively mitigating climate risks.

In contrast, Table 11 presents different dynamics for non-plain 
areas (such as mountainous and hilly regions). In non-plain areas, 
extreme weather no longer exerted a significant effect. Although the 
digital economy has mitigated the negative impact of extreme weather 
on food security to some extent, particularly in areas like digital 
acceptance, digital production, and digital finance, the moderating 

effect of digital infrastructure has had a negative impact. The 
complexity of non-plain terrains significantly limits the expansion and 
maintenance of infrastructure, not only increasing costs but also 
making it more vulnerable to damage from natural disasters. The 
fragility of digital infrastructure significantly amplifies the uncertainty 
surrounding food security during weather extremes.

From the previous analysis, it is clear that digital production and 
digital finance play crucial roles in moderating the impact of extreme 
weather on farmers’ food security. Digital finance not only helps 
farmers diversify risk by offering a range of financial tools, but also 
provides timely financial support during climatic shocks, reducing 
the economic pressure caused by climate fluctuations. At the same 
time, digital production, through the use of precision agriculture 
technologies, employs data-driven management and predictive 
models to increase production efficiency, reduce resource waste, and 
help farmers optimize production decisions, further enhancing their 
ability to cope with uncertainties. In this context, how does the 
involvement of the digital economy affect specific indicators such as 
agricultural insurance, production efficiency, and farmers’ income?

It is evident from the (Table  12) that the digital economy has a 
significantly positive impact on farmers’ adoption of agricultural 
insurance, improvement of production efficiency, and income growth, 

TABLE 7  Effects of extreme weather on food security in different terrains.

Variables Food security (Plain) Food security (Non-plain)

Std. Coeff. S.E. Std. Coeff. S.E.

CPRI 0.282*** 0.001 −0.097* 0.002

Other variables Yes Yes

Numbers of samples 809 257

R2 0.487 0.385

***, **, and * indicate significance at the 1, 5, and 10% levels.
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with an even greater effect in non-plain areas. The key reason behind this 
is that the complex terrain and higher natural risks in non-plain areas 
cause farmers to rely more heavily on digital technologies. The digital 
economy enhances farmers’ ability to access insurance and improve 
production efficiency by optimizing information transmission, risk 
management, and financial services, thereby significantly boosting their 
income levels. The digital economy plays a more significant moderating 
and facilitating role in areas with less favorable resources and conditions 
(Table 12).

4.4 Differences in the impact of various 
types of extreme weather

Extreme weather is primarily categorized into extreme low 
temperature (LTD), extreme high temperature (HTD), extreme rainfall 
(ERD), and extreme drought (EDD). These different types of extreme 

weather events show significant heterogeneity across various 
topographical features. As shown in Table 13, extreme weather events are 
significantly more frequent in plain areas than in non-plain areas, with 
extreme high temperatures and droughts being the most common. How, 
then, do different types of extreme climate affect farmers’ food security 
across various topographies? Further analysis is needed to explore this.

The estimation results in Table 14 reveal the significant impact of 
extreme weather on farmers’ food security across various topographies. 
In plain regions, a one-unit increase in HTD and EED raises the 
household food security index by 30.2 and 33.0%, respectively. 
Moderate high temperatures and droughts can enhance crop 
photosynthesis and water use efficiency, optimizing the growing 
environment, especially for heat- and drought-resistant crops. In 
contrast, a one-unit increase in LTD and RED reduces the index by 4.5 
and 7.4%, respectively. Low temperatures not only limit normal crop 
growth but also disrupt critical processes like pollination, leading to 
reduced yields. Excessive rainfall oversaturates the soil, increasing the 

TABLE 10  The regulating effect of digital economy in plain terrain.

Variables Plain

Food security Food security Food security Food security Food security

(1) (2) (3) (4) (5)

Std. 
Coeff.

S.E. Std. 
Coeff.

S.E. Std. 
Coeff.

S.E. Std. 
Coeff.

S.E. Std. 
Coeff.

S.E.

CPRI 0.000 0.002 −0.000 0.001 0.377 0.019 0.000 0.002 0.188 0.001

CPRI × Digital Economy 0.689*** 0.002

CPRI × Digital acceptance 0.531*** 0.002

CPRI × Digital infrastructure 0.098 0.019

CPRI × Digital production 0.631*** 0.002

CPRI × Digital finance 0.617** 0.002

Other variables Yes Yes Yes Yes Yes

Numbers of samples 809 809 809 809 809

R2 0.514 0.514 0.488 0.514 0.499

***, **, and * indicate significance at the 1, 5, and 10% levels. Due to space limitations, this table presents only the interaction term regression results.

TABLE 11  The moderating effect of digital economy in non-plain terrain.

Variables Non-plain

Food security Food security Food security Food security Food security

(6) (7) (8) (9) (10)

Std. 
Coeff.

S.E. Std. 
Coeff.

S.E. Std. 
Coeff.

S.E. Std. 
Coeff.

S.E. Std. 
Coeff.

S.E.

CPRI 0.001 0.002 −0.002 0.002 0.012* 0.006 −0.001 0.002 −0.003 0.002

CPRI × Digital Economy −0.572 0.016

CPRI × Digital acceptance −0.366 0.004

CPRI × Digital infrastructure −0.665** 0.007

CPRI × Digital production −0.257 0.003

CPRI × Digital finance −0.224 0.004

Other variables Yes Yes Yes Yes Yes

Numbers of samples 257 257 257 257 257

R2 0.570 0.487 0.477 0.535 0.5133

***, **, and * indicate significance at the 1, 5, and 10% levels. Due to space limitations, this table presents only the interaction term regression results.
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TABLE 12  The influence of digital economy in different terrain.

Variables Plain Non-plain

Agricultural 
insurance

Agricultural 
productivity

Household 
income

Agricultural 
insurance

Agricultural 
productivity

Household 
income

Digital economy 0.844*** (0.264) 0.012*** (0.074) 0.148*** (1.095) 0.958*** (0.510) 0.014***(0.103) 0.149**(1.700)

Other variables Yes Yes Yes Yes Yes Yes

Numbers of samples 809 809 809 257 257 257

R2 0.328 0.273 0.063 0.414 0.267 0.121

The coefficients in the table are standardized coefficient values. Standard errors in parentheses. ***, **, and * indicate significance at the 1, 5, and 10% level.

TABLE 13  Different types of extreme climate under different terrain.

Village terrain 
(days)

Plain Non-plain

LTD 13.740 13.376

HTD 58.726 54.254

RED 16.457 14.044

EED 35.295 25.707

risk of disease and negatively impacting harvests. Although irrigation 
systems can mitigate the effects of excessive rainfall, the damage caused 
by low temperatures is difficult to address through technological 
means, making its negative impact on food security more challenging.

In non-plain areas, only LTD has a significant negative impact on 
farmers’ food security, a one-unit increase in LTD reduces the index 
by 7.1%. In mountainous and hilly regions, the higher elevation and 
greater temperature variations exacerbate the inhibitory effect of low 
temperatures on crop growth. As for other types of extreme weather, 
their impact on food security in non-plain areas is not significant, 
possibly due to the relatively stable climate in these regions and the 
more dispersed nature of crop cultivation, which limits the impact of 
extreme weather on crop growth.

5 Discussion

This study, utilizing a micro-survey of 1,066 farming households 
in Sichuan Province, China, reveals for the first time a counterintuitive 
relationship between extreme weather events and household food 
security compared to macro-level findings: households in plain areas 
exhibited an increase in their food security index when exposed to 
more extreme weather, whereas those in non-plain areas showed a 
significant decrease. This finding challenges the prevailing conclusion 
among some scholars based on regional and national macro-data 
regarding the universally negative impact of extreme weather 
(Balasundram et al., 2023; Lee et al., 2024), demonstrating that under 
varying topographic conditions, geomorphological factors profoundly 
shape the transmission pathways of climate shocks by altering 
production environments, infrastructure accessibility, and market 
responsiveness. Benefiting from flat terrain, convenient transportation, 
and superior irrigation infrastructure, plain-area households can 
rapidly convert localized yield reduction risks into market purchasing 
demand, thereby maintaining or even enhancing food security levels. 
Conversely, mountainous and hilly areas, constrained by scarce arable 
land resources and low mechanization levels, experience greater 

vulnerability in production efficiency and household income to 
climate disturbances, leading to a decline in the food security index 
with shocks—a dimension of topographic heterogeneity insufficiently 
explored in prior research (Alam et al., 2024).

Critically, this study provides the first empirical examination of the 
digital economy’s moderating role in mitigating climate shocks. The 
results indicate that digital production tools and digital financial services 
significantly enhance farmers’ capacity to cope with climate risks, with 
effects particularly pronounced in non-plain areas. This finding aligns 
with Existing research regarding digital financial inclusion strengthening 
agricultural supply chain resilience (Hong et al., 2023; Gao and Gao, 
2024) and corroborates on the digital economy boosting agricultural 
resilience through total factor productivity gains (Wang et al., 2024). In 
regions with higher levels of digital production and finance, farmers not 
only gain more timely access to agricultural insurance but can also 
leverage remote weather warnings and online market platforms to 
transform potential yield losses into income security and sustainable 
production investments, thereby maintaining or even improving food 
security levels when facing extreme weather. This not only enriches the 
theoretical framework on the interactive effects between the digital 
economy and food security but also provides micro-level empirical 
support for the application of digital policies in climate adaptation. In 
summary, through in-depth analysis of micro-data, this study both 
supplements the singular conclusions of macro-research and 
recontextualizes the moderating role of the digital economy within the 
framework of topographic vulnerability, offering significant implications 
for targeted climate adaptation policies.

Despite systematically revealing the moderating mechanisms of 
topographic heterogeneity and the digital economy on household food 
security under extreme weather shocks from a micro-perspective, this 
study has limitations for further refinement. Firstly, constrained by the 
difficulty of obtaining micro-survey data, the study employs cross-
sectional data, which cannot capture the dynamic evolution of food 
security impacts from weather extremes, thus hindering the assessment 
of long-term cumulative effects. Secondly, as the survey was not a full-
coverage census, the study was unable to precisely spatially match 
individual households with high-resolution remote sensing or 
meteorological observation data, limiting a comprehensive analysis of the 
spatial distribution patterns of extreme weather and food security. Future 
research should extend the temporal dimension, expand regional samples, 
and integrate multi-source data (remote sensing, meteorological, and 
socio-economic) on the existing framework to construct an analytical 
system encompassing both spatial and temporal dimensions, thereby 
deepening the understanding of the long-term impacts of extreme 
weather, topographic heterogeneity, and the digital economy on 
household food security. Additionally, Sichuan Province’s GDP per capita 
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remains within the range typical of developing economies. Its terrain is 
highly heterogeneous, encompassing a complete spectrum of landforms. 
Consequently, the conclusions of this study exhibit significant structural 
similarity to findings applicable to developing economies characterized 
by complex topography. However, substantial differences exist between 
countries in key areas, such as the prevalence of digital infrastructure. 
Therefore, generalizing the conclusions requires rigorous verification and 
adaptive adjustments based on the specific context of the target region.

6 Conclusion and policy implication

This study, based on a questionnaire survey of 1,066 farmers in 
Sichuan Province, reveals the micro-level impact of extreme weather 
on food security and examines how the digital economy mitigates this 
impact amid rapid digitalization. The conclusions are as follows: 
Typically, extreme weather events increase uncertainty and risk in 
agricultural production, leading to lower yields and quality. However, 
our analysis indicates significant terrain-dependent differences in the 
relationship between extreme weather events and food security 
indices. In plain regions, despite a higher frequency of extreme 
weather, farmers exhibit higher food security indices; conversely, in 
non-plain areas (primarily hills and mountains), where extreme 
weather occurs less frequently, food security indices are lower.

Further analysis suggests that this paradox arises from differing 
food sourcing strategies associated with terrain. In plains, an increase 
in extreme weather prompts farmers to rely more on external food 
purchases while leaving self-sufficiency largely unaffected. In 
non-plains, extreme weather significantly reduces self-sufficiency, and 
the complex terrain further limits the ability to purchase external 
food. Fundamentally, the balance between self-sufficiency and 
external purchases reflects underlying agricultural production 
efficiency and household income. Under extreme weather, non-plain 
regions experience a more pronounced decline in both production 
efficiency and income compared to plains.

Within the context of digitalization, our findings indicate that the 
digital economy effectively mitigates the negative impact of extreme 
weather on food security. Specifically, advancements in digital 
production and digital finance significantly enhance agricultural 

insurance uptake, production efficiency, and income, with more 
evident benefits in non-plain regions. Moreover, a breakdown by 
extreme weather type reveals that while HTD and EED events are 
more prevalent in plains and contribute positively to food security, 
LTD events in non-plain regions detract from it.

Based on this analysis, the following policy recommendations are 
proposed. First, enhance terrain-specific intervention mechanisms. Given 
the differing climate responses in plains versus mountainous areas, plains 
should consolidate market circulation systems and digital financial tool 
coverage to improve external grain allocation efficiency. Mountainous 
regions should prioritize upgrading smart agricultural infrastructure and 
promoting stress-resistant crop varieties to prevent subsistence capacity 
collapse. Second, strengthen the development and application of the 
digital economy. Accelerate the penetration of digital technologies in 
mountainous areas by lowering access barriers through mobile 
agricultural technology service platforms, while concurrently developing 
inclusive digital financial tools to mitigate post-extreme weather capital 
constraints on production recovery. Third, optimize climate-resilient 
planting structures. Aligned with the distribution patterns of extreme 
weather types across terrains, plains should adopt heat- and humidity-
tolerant crop varieties, while mountainous areas focus on cold- and 
drought-resistant cultivars to reduce biophysical vulnerability through 
varietal replacement. Fourth, establish integrated market-production 
coordination networks. Develop regional digital agricultural service 
platforms consolidating weather alerts, production management, logistics 
coordination, and insurance claims processing, with particular emphasis 
on reinforcing mountainous supply chain resilience.
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TABLE 14  Effects of different extreme weather types on food security under terrain differences.

Variables Plain Non-plain

Food 
security

Food security Food 
security

Food 
security

Food 
security

Food 
security

Food 
security

Food 
security

(1) (2) (3) (4) (5) (6) (7) (8)

LTD −0.045* (0.001) −0.071* (0.002)

HTD 0.302*** (0.000) −0.042 (0.001)

RED
−0.074*** 

(0.000)

−0.061 (0.001)

EED 0.330*** (0.000) −0.109 (0.000)

Other variables Yes Yes Yes Yes Yes Yes Yes Yes

Numbers of 

samples

809 809 809 809 257 257 257 257

R2 0.420 0.481 0.429 0.472 0.380 0.377 0.378 0.380

The coefficients in the table are standardized coefficient values. Standard errors in parentheses. ***, **, and * indicate significance at the 1, 5, and 10% level.
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