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How does digital inclusive finance 
improve the climate resilience of 
food production?
Liangcan Liu  and Xiang Li *

School of Business Administration, Guizhou University of Finance and Economics, Guiyang, China

Introduction: Developing climate resilient agriculture is particularly important to 
reduce food security and climate risks in the context of frequent climate extremes 
disrupting food production systems.

Methods: Based on the provincial panel data of China from 2011 to 2022, 
this paper uses dual machine learning model to explore the effect of digital 
inclusive finance (DIF) on climate resilience of food production (CRFP) and its 
transmission mechanism.

Results: DIF can significantly improve CRFP, and the conclusion is still valid after 
endogeneity and robustness tests. The mechanism of action shows that DIF can 
enhance CRFP by promoting agricultural technology innovation, agricultural 
industry agglomeration and agricultural socialized services. Heterogeneity 
analysis show that DIF has a significant effect on promoting CRFP in the eastern 
region, the main grain-producing areas and the regions with high digital 
infrastructure.

Discussion: It is necessary to strengthen the construction of digital infrastructure 
and improve the ecological compensation mechanism to give full play to 
the role of DIF in improving the climate resilience of grain production. This 
study provides evidence-based support for the realization of climate-smart 
agriculture, with policy implications for cracking the food crisis trap in low- and 
middle-income countries.
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1 Introduction

In recent years, global climate change has intensified and extreme weather events have 
occurred frequently, posing severe challenges to food production security. According to the 
Global Food Crisis Report released by the Food and Agriculture Organization of the United 
Nations (FAO) in 2024, the incidence of global food insecurity has risen sharply. By 2023, more 
than 200 million people around the world will face severe food insecurity, and about 72 million 
people will be affected by extreme climate events, accounting for 25.6%. In particular, the spatial 
compound events of heat waves occurring in the same growing season in many parts of the 
world have a greater impact on global food security. The cumulative intensity of heat waves in 
the growing season in the global cropland area continues to increase, and the heat wave 
exposure of total primary productivity of vegetation continues to increase. As a major food 
producer, China is also one of the countries most affected by climate change-related extreme 
weather events in the world. In 2022, China’s Yangtze River basin will experience a “flood season 
reverse drought” due to intensified heat waves, reducing the yield of major crops by at least 20% 
(Chan et al., 2024). In the summer of 2023, China suffered severe flooding when Typhoon 
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Dokouri hit the North China Plain, producing more than 744.8 mm of 
precipitation, the highest on record. Building climate-resilient 
agricultural systems has become a critical issue in light of increasing 
extreme climate events (Juhola et al., 2017). To achieve this goal is not 
out of reach. The key is to develop strategies for agricultural adaptation 
to climate change from a top-level design perspective, supported by 
science and technology (Bushell et al., 2017; Dookie et al., 2024). In 
2022, the Ministry of Ecology and Environment and other ministries 
jointly issued the National Climate Change Adaptation Strategy 2035, 
which pointed out that mitigation and adaptation are the two major 
strategies to cope with climate change, and agriculture should focus on 
enhancing its adaptability and improving its “resilience” to cope with 
various adverse climate conditions. Driven by modern scientific and 
technological innovation and structural transformation, China 
advocates the development of climate-smart agriculture. These nature-
based production solutions, along with agriculture that is resilient to 
vulnerability, shocks and stress, will be  an important direction for 
global agricultural development.

Digital inclusive finance is a new financial service model that 
integrates digital technology with the concept of inclusive finance. By 
using big data, artificial intelligence, blockchain and other information 
technologies, it can achieve low-cost, efficient and economical 
financial services, aiming to improve the quality of financial products, 
break the time and space constraints, and promote the inclusive 
financial services (Zhou et al., 2023). With the popularization and 
penetration of DIF in agriculture, its practical role in improving CRFP 
has become more and more obvious. Especially in climate-changing 
regions, farmers use digital financial platforms to obtain timely funds, 
adjust production plans, purchase emergency supplies and introduce 
disaster resilience technologies, which effectively alleviate the losses 
caused by extreme weather such as drought and flood (Prasad and 
Sud, 2019). This innovative form of financial inclusion directly 
enhances farmers’ financial liquidity, risk response ability and access 
to resources, enabling them to flexibly adjust production activities in 
the face of climate disturbances, and ensuring the stability and 
sustained growth of food production.

In food security research, the concept of resilience has gradually 
become the core framework to analyze the response of agricultural 
systems to uncertainty. Some scholars define agricultural resilience as the 
ability of regional agricultural economy to resist, adapt, recover and 
transform under external shocks (Volkov et al., 2022; Yao et al., 2024; 
Yang et al., 2025), which mostly relies on macroeconomic indicators or 
social network resilience index. However, these studies mostly focus on 
the mitigation of conventional market risks, often simplify climate risks 
into homogeneous external variables, and lack in-depth discussion on 
the particularity of climate shocks and their systemic impacts. Climate 
resilience of food production refers to the ability of food production 
system to maintain output, adapt to shocks and recover quickly under 
extreme climate disturbances (Fang et al., 2024). However, much of the 
existing research on the climate of food production focuses on the 
economic consequences of the role of climate change on food security, 
and there is relatively little quantitative and empirical research on how to 
improve the climate resilience of food production, which is basically 
case-based and qualitative.

Digital technologies are becoming an important tool for 
agricultural systems to cope with climate change (Bhawra et al., 2024; 
Pappa, 2024). Firstly, digital technologies can monitor key variables 
such as meteorological changes and environmental humidity in real 
time by means of sensor networks and remote sensing data (Quarshie 

et al., 2023), thus improving the ability of agricultural systems to take 
precautions in the early stages of agricultural production (Goel et al., 
2021; Richards et al., 2024). Secondly, models built based on intelligent 
algorithms can dynamically obtain information on soil moisture and 
crop growth status (Kalantzopoulos et al., 2024), which can assist 
farmers to quickly adjust sowing, irrigation and fertilization strategies 
to enhance the adaptive capacity of agricultural production to climate 
anomalies (Iaksch et  al., 2021). Digital inclusive finance not only 
continues the basic concept of traditional inclusive finance of “low 
threshold, low cost and wide coverage” in the financial system, but also 
takes digital technology as the core driving mechanism, embedding 
in all aspects of agricultural production, financing and transaction. It 
has been found that digital inclusive finance in agriculture, on the one 
hand, reduces farmers’ credit constraints through diversified financing 
channels (Benami and Carter, 2021), activates farmers’ entrepreneurial 
vitality (Li et al., 2023; Fu et al., 2024), and enhances farmers’ risk-
resistant ability by smoothing consumption and investment with the 
help of capital (Yi et al., 2023; Lu et al., 2024); On the other hand, DIF 
relies on digital technology to promote precision farming practices 
(Mao et al., 2024), optimize machinery substitution (Li and Zhang, 
2024), factor allocation (Zheng and Li, 2022; Hong et al., 2024), and 
low-carbon technology adoption (Liu et al., 2023; Li et al., 2024), 
thereby realizing environmental benefits and total factor productivity 
(Guo et al., 2024).

China spans multiple climatic zones, and the types and frequencies 
of climate disasters vary significantly among provinces, which 
provides a natural experimental scenario for studying CRFP. At the 
same time, the provincial DIF level showed a gradient distribution of 
“leading in the eastern region and catching up in the central and 
western regions,” which was convenient to analyze the effect 
differences in different infiltration stages. As a global pioneer in digital 
financial inclusion, China’s rural mobile payment coverage rate 
exceeds 86%, and the policy level continues to promote “digital 
countryside” and “climate-smart agriculture” pilots, providing a rich 
institutional background for mechanism research. By 2024, China’s 
digital financial user scale has reached 960 million people, the Internet 
of Things (IoT) equipment covers more than 40 million mu of 
farmland, and the coverage rate of drone plant protection services in 
major agricultural provinces exceeds 60%. At the policy level, the 
“New Agricultural Digital Infrastructure” plan aims to achieve full 
coverage of digital finance in counties by 2025, and the No. 1 
document of the central government has emphasized the resilience of 
technology-enabled agriculture for five consecutive years. These 
advances both highlight the uniqueness of using China as a case study 
and provide replicable financial solutions for climate adaptation in the 
global food system. There is a lack of empirical analysis to verify how 
digital inclusive finance can enhance climate resilience through 
financial instrument innovation and technology penetration. 
Therefore, can DIF enhance CRFP? If so, how does it enhance CRFP?

In order to answer the above questions, based on China’s 
provincial panel data from 2011 to 2022, this paper integrates the 
financial function and technology enabling effect of DIF into the 
climate resilience analysis framework, reveals the internal mechanism 
of DIF enabling CRFP, and fills the research gap mentioned above. 
Firstly, the dual machine learning model was used to empirically test 
the direct impact of DIF on CRFP. Secondly, the transmission 
mechanism of DIF in improving CRFP was comprehensively revealed 
from the three core mechanisms of agricultural technology innovation, 
agricultural industry agglomeration and agricultural socialized 
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service. Finally, in order to further identify the impact of DIF on 
CRFP in different regions, food functional zones and digital 
infrastructure levels, the heterogeneity test was conducted.

The main contributions of this paper are as follows: firstly, this 
study breaks through the comprehensive risk analysis paradigm of 
traditional resilience research and focuses on the targeted impact of 
extreme climate events on food production. At the same time, this 
study incorporates DIF into the analysis perspective to explore how it 
reshaped the climate response logic of food production system, and 
fill the gap of the interdisciplinary research on fintech and climate 
resilience. Secondly, this paper also explores the transmission 
mechanism of agricultural technology innovation, agricultural 
industry agglomeration and agricultural socialized services between 
DIF and CRFP, and expands the channel of DIF’s effect on 
CRFP. Finally, we also discussed the different impacts of DIF on CRFP 
in different regions, food functional zones and digital 
infrastructure levels.

2 Theoretical analysis and research 
hypotheses

2.1 Direct effect of DIF on CRFP

With the dual characteristics of inclusiveness and digitization, DIF 
has important structural enabling effects in dealing with extreme 
weather disruptions to food production systems. First, DIF enables 
financial services to have strong spatial penetration through channels 
such as online account opening, identity authentication, and platform 
access, which can effectively expand the boundaries of financial 
services and thus enhance financial accessibility in rural areas (Carter, 
2022). With the help of digital platforms, inclusive financial services 
are able to realize cross-regional financial resource dispatch after 
regional disaster outbreaks, thus enhancing the collaborative recovery 
capacity of food production systems (Agyekumhene et  al., 2018). 
Secondly, traditional agricultural insurance products have certain 
shortcomings in terms of claims timing and payout accuracy, making 
it difficult to adequately match high-frequency and sudden-onset 
extreme weather events, etc. DIF can promote the transformation of 
agricultural insurance products from the traditional model to a new 
form of data-driven, platform-docking (Kirchner and Musshoff, 
2024). With the help of remote sensing technology, blockchain, 
internet and other digital infrastructures, digital agricultural insurance 
products can more accurately obtain meteorological, geographic, price 
and other information about the food growing region, thus reducing 
the risk of adverse selection and improving the science of risk pricing 
and the timeliness of claims (Richards et al., 2024).

Thirdly, based on digital technology, DIF can effectively alleviate 
the information asymmetry problem in rural financial services through 
big data analysis and intelligent risk control (Benami and Carter, 2021). 
By collecting unstructured information such as farmers’ historical 
transactions and plot operations, financial institutions are able to 
establish a multi-dimensional credit evaluation system, thus enabling 
farmers to obtain low-threshold and high-efficiency financing support 
(Yu et al., 2020). In the event of extreme climate shocks, farmers can 
quickly access liquidity funds for key aspects such as replanting, 
restoration, and replanting, shortening the recovery cycle of the food 
production system and strengthening its resource deployment capacity 
in the face of climate perturbations. Fourthly, DIF can effectively 

improve the transaction efficiency and resource matching capacity 
within the agricultural system through mobile payments and smart 
contracts (Ky, 2025). In the event of climate extremes, farmers can use 
real-time payment tools to complete key links such as agricultural 
procurement and logistics scheduling to ensure that production inputs 
are in place in a timely manner. The efficient connectivity of the 
payment network and the data precipitation effect are also conducive 
to improving the coordination of the food production chain, thus 
enhancing the recovery speed of the food production system. In 
summary, this paper proposes the following core hypotheses:

H1: DIF can significantly improve CRFP.

2.2 Mediating effect of DIF on CRFP

2.2.1 Mediating effect of agricultural 
technological innovation

By providing financial resources, DIF not only lowers the threshold 
for farmers to adopt new technologies (Mao et al., 2024), but also 
accelerates the spread of agricultural technologies among farmers. 
Through the financial inclusion platform, farmers can access advisory 
services, training and policy guidance related to agricultural 
technology. In addition, DIF provides financing support for agricultural 
technology startups through the online platform, accelerating the R&D 
and promotion of innovative products (Xue et al., 2024).

Agricultural technology innovation has become the core driving 
force for improving CRFP by optimizing the resource adaptation and 
risk response of production system. First, the breeding of stress-
tolerant varieties directly enhances the physiological resistance of 
crops. For example, drought-resistant gene editing technology can 
extend the water use cycle of crops and enable them to maintain 
basic productivity in the event of sudden changes in precipitation 
patterns (Wigboldus et al., 2016). At the same time, high temperature 
resistance can alleviate the inhibitory effect of abnormal temperature 
on photosynthesis (Clay and Zimmerer, 2020). Second, deeper 
resilience is due to the redundant design of the system brought about 
by technology integration, such as the coupling of conservation 
tillage and intercropping technology, which can not only reduce soil 
erosion through vegetation cover, but also use biodiversity to spread 
the risk of disease and insect outbreak, forming a multi-level buffer 
barrier. Finally, agricultural green technology reduces the carbon 
footprint of agricultural production by reducing the dependence of 
agricultural production on chemical fertilizers and pesticides (Li and 
Gao, 2024), promoting the development of organic agriculture and 
ecological agriculture. The core value of technological innovation is 
to transform discrete climate threats into predictable and 
intervenable control objects, so that agricultural production can shift 
from vulnerability accumulation to sustainable development path 
with endogenous resilience. Therefore, the following hypothesis is 
put forward:

H2a: DIF can enhance CRFP by promoting agricultural 
technological innovation.

2.2.2 Mediating effect of agricultural industrial 
agglomeration

On the one hand, DIF can be  a key link in the process of 
investment in the agriculture industry chain, such as agricultural 
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products processing, warehousing, logistics, promote the link to 
concentrate in a particular area, the formation of the agricultural 
industry cluster area. At the same time, the DIF can also support the 
construction of modern agricultural facilities, improve agricultural 
production efficiency and quality, can attract more concentrated 
agricultural enterprises and farmers to industrial concentration area, 
further promote the development of agricultural industry cluster 
(Xue et al., 2023). On the other hand, agricultural agglomeration can 
improve the climate resilience of food production through large-
scale, specialized and intensive production methods. Specifically, 
agro-industrial agglomeration can maximize the efficiency of 
resource use and reduce the waste of resources due to climate change 
by implementing unified irrigation systems or resource allocation 
mechanisms. The agricultural industry cluster can bring economies 
of scale, by focusing on production and the division of labor 
cooperation, reduces the production cost, improve the enterprises 
and farmers in the face of climate impacts of economic capacity 
(Zhang et al., 2022). Secondly, the agglomeration effect promotes the 
rapid diffusion of technology. New technologies and management 
experience can spread rapidly in industrial clusters, and the 
cooperation and knowledge sharing among farmers can shorten the 
cycle of technology promotion (Wu et al., 2020). Finally, agricultural 
agglomeration can accelerate the integration of upstream and 
downstream industrial chains, making supply chains more resilient. 
For example, grain processing companies can quickly adjust their 
acquisition plans to cope with grain supply fluctuations caused by 
climate change and avoid widening yield losses. In addition, 
agricultural industry agglomeration can often create synergistic 
effects in ecological protection and restoration, which can help 
improve the regional ecological environment and enhance CRFP 
through the promotion of green production models such as organic 
agriculture and sustainable cultivation (Huang et al., 2022). As a 
result, put forward the following hypothesis:

H2b: DIF can enhance CRFP by promoting agricultural 
industrial agglomeration.

2.2.3 Mediating effect of agricultural socialization 
service

DIF improves the level of agricultural socialization service 
through service supply expansion and demand response activation 
(Xu and Yang, 2025). On the supply side, DIF provides financing 
tools such as equipment mortgage loan and accounts receivable 
factoring for professional service subjects to ease their liquidity 
constraints in asset-heavy operation and expand the service 
coverage radius. And on the demand side, the digital payment 
platform service search with the execution of the contract to 
reduce costs, enable small farmers to on-demand purchase 
services, disaster prevention and mitigation alternatives to 
traditional purchasing equipment of the high fixed cost model. In 
addition, the digital platform integrating various data generation 
dynamic service recommendation, improve the service efficiency 
of supply and demand matching (Liu and Yan, 2024). Social 
services enhance climate resilience through the advantages of 
specialization and system response agility. Professional level, the 
service provider focused investment efficient disaster relief 
equipment, and through practice while learning to accumulate 
experience in response to specific disasters, decentralized farmers 
access to marginal cost frontier art technology. At the agility level, 
IoT devices collect field data in real time, and AI models predict 
the probability of disaster occurrence and automatically trigger 
service scheduling, greatly reducing the time lag from risk 
identification to action intervention. DIF in this mechanism 
friction by cutting the costs of services trade credit and 
information, the network embedded in social division of labor and 
financial instruments to make production system from static 
disaster to dynamic adaptive management. As a result, put forward 
the following hypothesis:

H2c: DIF by promoting agricultural socialization service level to 
enhance CRFP.

The research framework of this paper is shown in Figure 1.

FIGURE 1

Theoretical framework.
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3 Research design

3.1 Model setting

In order to test the effect of DIF on CRFP, this paper selects the 
dual machine learning model for regression. The traditional linear 
regression model often has limitations in dealing with nonlinear 
relationships, and the machine learning model can better capture the 
nonlinear patterns and interactions in data. At the same time, the 
model can adapt to different types and sizes of data sets, and has a 
stronger ability to deal with complex data structure and eliminate bias, 
thus providing more robust causal inference. Therefore, to build dual 
machine learning model is as follows:

 ( )it 0 it it itCRFP g X UDIF= θ + +
 (1)

 ( ) =it it itE U |, |,X 0DIF  (2)

In the above formula, CRFP  represents the level of climate 
resilience of food production, DIF  represents the level of digital 
inclusive finance, and X  represents various control variables; i and t  
denote individual and year, respectively; Let θ  represents the 
coefficient of DIF and U represents the random error term.

The direct use of machine learning algorithm to estimate models 
(1) and (2) is easy to cause the estimation bias, resulting in the θ̂  
estimation error caused by the function regularization bias. In order 
to alleviate the above problems, this paper constructs 
auxiliary regression:

 ( )= +it it itDIF m X V  (3)

 ( ) =it itE V |X 0 (4)

In the above equation, ( )itm X  is the regression function of the 
disposal variable to the high-dimensional control variable. First, the 
machine learning algorithm is used to estimate the specific form of 
( )itm X  as ( )ˆ itm X , and then the estimated value of its residual is 

calculated as îtV = ( )− ˆit itDIF m X . Secondly, the machine learning 
algorithm is used to estimate the specific functional form of ( )itg X  in 
Equation 1 as ( )ˆ itg X , and at the same time, the functional form of the 
main regression becomes ( ) θ− = +0ˆit it it itCRFP g X DIF U ; Finally, îtV  
is used as the instrumental variable of the disposal variable ( itDIF ) for 
regression, and unbiased estimates are obtained:

 
( )θ

−

∈ ∈ ∈ ∈

 
 = −
 
 

∑ ∑
1

0 it it it it it
, ,

1 1V DIF V (CRFP g Xˆ ˆ ˆ
n

ˆ
n i I t T i I t T  

(5)

3.2 Measurement of CRFP

3.2.1 Non-expected super-efficiency SBM model
Compared with the traditional DEA model, the non-expected 

super-efficiency SBM-DEA model considers the slack variables of 
input and output, and directly incorporates the slack variables into 
the objective function, which can overcome the problem that the 

traditional DEA model ignores the environmental and resource 
factors when measuring efficiency, and improve the accuracy of 
efficiency calculation. Secondly, the model can handle contains the 
expected output efficiency evaluation. In the actual production 
process, in addition to the expected output, there are often some 
outputs with negative environmental externalities. By incorporating 
these undesirable outputs into the efficiency evaluation system, the 
model can more comprehensively reflect the real efficiency of 
production activities. At the same time, the model can not only 
evaluate the efficiency of DMUs, but also further decompose and 
rank the effective DMUs, which breaks through the limitation in 
the traditional DEA model that when the efficiency value of 
multiple DMUs is 1 at the same time, the advantages and 
disadvantages cannot be distinguished. In this study, the climate 
resilience evaluation system of food production covers multiple 
inputs, desired outputs and non-desired outputs. In order to further 
clarify the spatial and temporal variations of climate resilience of 
food production between regions, this paper adopts the 
non-expected super-efficiency SBM-DEA model with the 
following formula:

 

ρ
= = =

    
    = + − +
    +     
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1 2
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11 0
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 λ≥ ≥ ≥ ≥0, 0, 0, 0yx z
i jk ls s s  (6)

In the above equation, ρ  is the efficiency value, that is, the climate 
resilience indicator of food production. The larger ρ  is, the higher the 
climate resilience of food production is; m denotes the quantity of 
inputs, 1s  denotes the quantity of desired outputs, and 2s  denotes the 
quantity of undesired outputs; x

is , y
ks  and z

ls  are slack variables of input, 
desired output and undesired output, respectively, and λ 
represents constraints.

3.2.2 The calculation of CRFP index system
The CRFP indicators are shown in Table  1. Referring to the 

practice of Fang et al. (2024), the input indicators are composed of 
climate disasters, disaster environment and disaster burden. Climate 
disasters including four extreme temperature indicators: the highest 
and lowest temperatures, extreme number of days in high temperature 
and frost days; Four extreme precipitation index: annual rainfall, 
rainfall intensity and precipitation days and days of continuous 
drought. Forest coverage was used as a proxy indicator for disaster 
environment. Grain sown area density was selected as the proxy index 
for disaster undertaking. Output index consists of disaster intensity 
and disaster recovery. Disaster intensity as unexpected disaster loss 
rate to measure output indicators selected crops, disaster recovery as 
expected output indicators using per unit area grain yield and total 
grain production growth to measure.
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TABLE 1 CRFP measuring index system.

Types of indicators Specific indicators Indicator description

Input indicators

Maximum temperature Daily maximum temperature of the year (°C)

Minimum temperature Daily minimum temperature of the year Minimum (°C)

High temperature extreme days Number of days of the year with daily maximum temperature >35°C (d)

Number of frost days Number of days of the year with daily minimum temperature <0°C (d)

Annual precipitation Total annual precipitation of more than 1 mm in a year (mm)

Precipitation intensity Total annual precipitation divided by the number of wet days in a year (precipitation >1 mm) (mm/d)

Days of heavy precipitation Number of days in a year with daily precipitation >25 mm (d)

Consecutive dry days Maximum number of consecutive days with daily precipitation <1 mm (d)

Forest cover Forest area/administrative area * 100 (%)

Grain-sown area density Grain-sown area/administrative area * 100 (%)

Undesired output Crop damage rate Crop affected area/sown area of crops * 100 (%)

Desired output
Grain yield per unit area Total Grain output/grain sown area (kg/ha)

Growth rate of total Grain production (Total grain output of the current year − Average of total grain output of the previous 6 years)/Average of total grain output in the previous 6 years * 100 (%)
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3.3 Variable definition

3.3.1 Dependent variable
Climate resilience of food production (CRFP). From the above, 

this study calculated the CRFP level based on the input-output index 
of CRFP and through Formula (6).

3.3.2 Independent variable
Digital inclusive finance (DIF). Using the “Peking University 

Digital Inclusive Finance Index” compiled by the Center for Digital 
Studies of Peking University (Ren et al., 2023; Hong et al., 2024), in 
order to ensure that the estimated coefficient value of regression 
results is appropriate, the digital inclusive financial index is reduced 
by 100 times.

3.3.3 Mechanism variables
Agricultural Technology innovation (ATECH). The number of 

agricultural invention patents authorized is used to measure the level 
of agricultural technology innovation; Agriculture industry 
agglomeration (AIA). We use the ratio of agricultural output to GDP 
for the region in that year divided by the ratio of agricultural output 
to GDP for the whole country in that year to represent (Billings and 
Johnson, 2012; Zhang et al., 2022); Agricultural socialization service 
(ASS). The level of agricultural socialization service is expressed as the 
ratio of the gross value of agricultural services to the number of people 
employed in agriculture.

3.3.4 Control variables
Considering that the climate resilience of food production will 

be affected by other factors, this paper refers to the practice of Fang 
et al. (2024) and selects the following variables as control variables. (1) 
Grain sown area (AREA), which is represented by the total grain sown 
area and taken as logarithm; (2) Effective irrigation (IRR), which is 
expressed as the ratio of effective irrigation area to crop sown area; (3) 
The amount of agricultural fertilizer (FERT), using the amount of 
agricultural fertilizer per unit area; (4) Pesticide dosage (PEST), 
expressed as pesticide dosage per unit area, and taken logarithm; (5) 
The amount of agricultural plastic film (PLASTIC) was expressed by 
the amount of agricultural plastic film per unit area, and the logarithm 
was taken; (6) Rural electricity consumption (ELEC), which is 
expressed as rural electricity consumption per unit area; (7) 
Agricultural diesel use (DISEL), which is expressed as the amount of 
agricultural diesel used per unit area; (8) The proportion of 
agricultural output (FIRST), which is expressed by the proportion of 
agricultural output considering the government’s support for 
agriculture; (9) Extreme high temperature (HEAT) and annual 
precipitation (PRCP): climate change will lead to fluctuations in the 
climate resilience of food production, so the extreme maximum 
temperature and annual precipitation are used to control and take 
the logarithm.

3.4 Data sources and descriptive statistics

Considering the availability of data, this paper selects panel 
data from 30 provinces in China, excluding Tibet Autonomous 
Region and Hong Kong, Macao and Taiwan, from 2011 to 2022 as 
the research sample, and explores the impact of digital financial 

inclusion on climate resilience of food production. The relevant 
climate indices are from the National Meteorological Information 
Center, and the agriculture-related indicators, grain sown area, 
crop damage area, and total grain output are from the China 
Statistical Yearbook, China Agricultural Yearbook, China Rural 
Statistical Yearbook, and China Science and Technology Statistical 
Yearbook. The digital inclusive financial index is from the Digital 
Inclusive Financial Index of Peking University. Table 2 shows the 
descriptive statistical results of each variable. The value of CRFP 
ranges from 0.02 to 2.49, with mean and standard deviation of 0.71 
and 0.58, respectively. The value of DIF ranges from 18.33 to 475.8, 
with mean and standard deviation of 242.6 and 106.3, respectively. 
This indicates that there are large differences in CRFP and DIF 
levels among different regions in China. The statistical values of the 
above control variables are within a reasonable range, which can 
be used for further analysis.

4 Empirical results

4.1 Impact of DIF on CRFP

To explore the relationship between DIF and CRFP this study 
utilized the random forest algorithm of dual machine learning to 
estimate the parameters of Equations (1–5), and divided the sample 
ratio into 1:4. The regression results of DIF on CRFP are reported in 
Table 3, where Column (1) is the regression result when both the year 
and the province are not fixed, Column (2) is the regression result after 
fixing only the year, Column (3) is the regression result after fixing only 
the province, and Column (4) are the regression results after both year 
and province are fixed. The results show that the estimated coefficients 
of DIF are all significantly positive, indicating that DIF has a significant 
enhancing effect on CRFP. Hypothesis 1 is verified.

TABLE 2 Descriptive statistical results.

Variables Observations Mean SD Min Max

CRFP 360 0.710 0.580 0.020 2.490

DIF 360 242.600 106.300 18.330 475.800

ATECH 360 0.280 0.440 0.020 2.850

AIA 360 0.997 0.159 0.682 1.409

ASS 360 0.453 0.685 0.002 4.690

AREA 360 3,818 3,079 46.500 14,683

IRR 360 0.440 0.180 0.170 1.230

FERT 360 0.360 0.130 0.080 0.800

PEST 360 11.280 8.770 1.300 55.950

PLASTIC 360 19.920 14.870 3.810 86.900

ELEC 360 1.510 5.050 0.050 42.600

DIESEL 360 0.170 0.170 0.020 1.040

FIRST 360 52.480 8.350 35.780 72.110

HEAT 360 63.890 14.850 22.700 119.600

PRCP 360 1,497 3,040 141.300 21,890
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4.2 Robustness test

4.2.1 Replace variable
To ensure the robustness of the results, in this paper, the entropy 

method is used to re-assign weights to each index of CRFP. The 
entropy method is an objective weighting method that can determine 
the index weights based on the amount of information of each index 
value. The CRFP level calculated by the entropy method is used as the 
surrogate variable. The results are shown in Table 4. The regression 
coefficient of DIF in column (1) is 0.011, which is significantly positive 
at the 1% level, and the regression results are still robust, again 
verifying hypothesis 1

4.2.2 Instrumental variable
Although many variables and years and provinces have been 

controlled for in the regressions above, there is still the possibility of 
endogeneity problems due to omitted variables. Since the core vehicle 
of DIF is highly dependent on Internet access capacity, and regional 
Internet coverage directly affects the likelihood of farmers’ access to 
digital financial services, Internet penetration is highly correlated with 
DIF, whereas Internet penetration is not directly correlated with CRFP, 
and this paper draws on existing research (Ren et al., 2023; Wang, 
2023) to select Internet penetration rate as an instrumental variable is 
appropriate. Meanwhile, we estimate a partially linear instrumental 
variable regression model using dual machine learning. Column (2) 
of Table 4 reports the regression results of the instrumental variables, 
and the regression coefficient of CRFP remains significantly positive 
at the 1% level, indicating that the result passes the endogeneity test.

4.2.3 Replacing the machine learning model
Since the random forest model is used for regression in the 

previous section, in order to avoid inconsistent conclusions caused by 
different dual machine learning model algorithms, this paper carries 
out the following processing: first, change the sample segmentation 
ratio in the benchmark regression model, that is, 1:2 and 1:7; The 
second is to change the Boost model and the Net model for regression 
comparison. Columns (3) and (4) of Table  5 show the regression 
results after changing the segmentation ratio, and the regression 
coefficients of DIF are 0.108 and 0.095 respectively, which are 
significantly positive at the statistical level of 1 and 5%, respectively. 
Columns (5) and (6) of Table 5 show the estimated results of the two 
models, and the regression coefficients of DIF are 0.115 and 0.144, 

respectively, which are significantly positive at the level of 1 and 5%, 
respectively. It can be seen that DIF can still significantly improve 
CRFP after changing the sample splitting ratio and the estimation 
model, indicating that the above results are reliable to some extent.

4.3 Test of influence mechanism

To explore potential mechanisms of DIF effects on CRFP, this study 
selected agricultural technological innovation, agricultural industrial 
agglomeration, and agricultural socialized services as mediating 
variables. The previous theoretical analysis has shown that DIF can 
improve the climate resilience of food production by promoting 
agricultural technology innovation, agricultural industry agglomeration 
and agricultural socialized services. Table 6 reports the results of the 
mechanism test. Column (1) shows the regression results of DIF’s 
impact on agricultural technological innovation. The estimated 
coefficient of DIF is 0.111, which is significantly positive at the level of 
1%, indicating that DIF can significantly promote agricultural 
technological innovation. Column (2) the regression results of CRFP 
influence for agricultural technology innovation, agricultural technology 
innovation of estimated coefficient is 0.167, the 10% significant level is 
positive, according to the column (1) and (2) the results of the analysis 
of DIF helps promote agricultural technology innovation, and enhance 
CRFP, empirical results and theoretical analysis; In the same way, the 
results of columns (3)–(6) show that DIF has a significant promotion 
effect on agricultural industry agglomeration and agricultural socialized 
service level, and agricultural industry agglomeration and agricultural 
socialized service level also have a significant promotion effect on 
CRFP. It shows that DIF can improve CRFP by promoting agricultural 
technology innovation, agricultural industry agglomeration and 
agricultural socialized services. In conclusion, hypothesis 2 is verified.

4.4 Heterogeneity analysis

4.4.1 Heterogeneity analysis of regional division
Due to differences in geographical location, climate conditions and 

resource endowments, the impact of DIF on CRFP may 
be  heterogeneous in different regions. According to the regional 
division of China, this paper divides the samples into four regions: 
eastern, northeastern, central, western and northeastern regions. 
Table 7 shows the results of DIF’s impact on CRFP in these regions. 
According to the results of columns (1)–(4), DIF plays a significant role 
in promoting CRFP in the eastern, central and northeastern regions, 
and the regression coefficient of DIF is the largest in the eastern region 
(0.12 > 0.085 > 0.073). The reason is that the eastern region has a higher 
level of climate resilience than other regions, and the development of 
DIF is relatively fast. Thus, it effectively promoted CRFP. Secondly, the 
impact of DIF on CRFP in the western region is not significant, which 
may be due to the backward financial development level, the diverse 
climate and the relative lack of agricultural resources in this region, 
which may affect the effect of DIF on CRFP.

4.4.2 Heterogeneity analysis of the division of 
grain functional zones

Because of the different functional planning and economic 
structure of each functional area, the grain production situation of each 

TABLE 3 Benchmark regression results.

Variables (1) (2) (3) (4)

CRFP CRFP CRFP CRFP

DIF
0.104*** 0.120*** 0.106*** 0.116***

(3.91) (3.12) (4.15) (3.14)

Controls YES YES YES YES

Cross fitting 5 5 5 5

Province-FE NO YES NO YES

Year-FE NO NO YES YES

N 360 360 360 360

*, **, and *** indicate that the regression results are significant at the levels of 10, 5 and 1%, 
respectively. t-values are in parentheses.
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functional area is quite different. This paper divides each province into 
main grain producing area, main grain marketing area and balanced 
grain production and marketing area. From the results of Table 8 (1)–
(3), it can be seen that only the DIF in major grain-producing areas and 

regions with balanced grain production and marketing has a significant 
increase in the impact on CRFP, and the promotion effect in major 
grain-producing areas is greater. Although the regression coefficients 
of grain main selling areas are all positive, they are not significant. This 

TABLE 4 Robustness test.

Variables Replace 
variable

Instrumental 
variables

Changing the split ratio Boost model Net model

CRFP CRFP CRFP CRFP CRFP CRFP

(1) (2) (3) (4) (5) (6)

DIF
0.011*** 0.173*** 0.108*** 0.095** 0.115*** 0.144**

(2.86) (3.51) (2.97) (2.35) (3.26) (2.29)

Cross fitting 5 5 3 8 5 5

Controls YES YES YES YES YES YES

Province-FE YES YES YES YES YES YES

Year-FE YES YES YES YES YES YES

N 360 360 360 360 360 360

*, **, and *** indicate that the regression results are significant at the levels of 10, 5 and 1%, respectively. t-values are in parentheses.

TABLE 5 Robustness test.

Variables Sample 
adjustment

Instrumental 
variables

Changing the split ratio Boost model Net model

CRFP CRFP CRFP CRFP CRFP CRFP

(1) (2) (3) (4) (5) (6)

DIF
0.117*** 0.173*** 0.108*** 0.095** 0.115*** 0.144**

(3.93) (3.51) (2.97) (2.35) (3.26) (2.29)

Cross fitting 5 5 3 8 5 5

Controls YES YES YES YES YES YES

Province-FE YES YES YES YES YES YES

Year-FE YES YES YES YES YES YES

N 312 360 360 360 360 360

*, **, and *** indicate that the regression results are significant at the levels of 10, 5 and 1%, respectively. t-values are in parentheses.

TABLE 6 Mechanism test results.

Variables (1) (2) (3) (4) (5) (6)

ATECH CRFP AIA CRFP ASS CRFP

DIF
0.111*** 0.024*** 0.214***

(7.18) (4.91) (4.70)

ATECH
0.167*

(1.94)

AIA
1.002**

(2.14)

ASS
0.162**

(1.99)

Cross fitting 5 5 5 5 5 5

Controls YES YES YES YES YES YES

Province-FE YES YES YES YES YES YES

Year-FE YES YES YES YES YES YES

N 360 360 360 360 360 360

*, **, and *** indicate that the regression results are significant at the levels of 10, 5 and 1%, respectively. t-values are in parentheses.
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TABLE 8 Heterogeneity analysis II.

Variables CRFP CRFP CRFP CRFP CRFP

(1) (2) (3) (4) (5)

Main producing 
area

Main sales 
area

Production and 
sales balance area

digitization (low) digitization (high)

DIF
0.102*** 0.101 0.064* 0.046 0.110**

(3.17) (1.40) (1.93) (0.92) (2.48)

Controls YES YES YES YES YES

Cross fitting 5 5 5 5 5

Province-FE YES YES YES YES YES

Year-FE YES YES YES YES YES

N 156 84 120 180 180

*, **, and *** indicate that the regression results are significant at the levels of 10, 5 and 1%, respectively. t-values are in parentheses.

may be related to the agricultural characteristics and development 
priorities of these regions. Major food marketing regions usually have 
less arable land and agricultural resources, and agriculture accounts for 
a lower share of economic activity in these regions. Therefore, the 
improvement effect of DIF on CRFP is not obvious. The grain 
production and marketing balance area is between the main producing 
area and the main selling area, and its agricultural resources are 
relatively rich, but agriculture is not its main economic pillar. These 
regions may be more focused on the development of other industries, 
so the impact of DIF on CRFP is also relatively weak.

4.4.3 Heterogeneity analysis of digital 
infrastructure

With the development of digital technology, it plays an important 
role in the field of agricultural development. Therefore, the difference in 
the development of digital infrastructure also determines the effect of 
DIF on CRFP. In this paper, digital infrastructure level is measured 
comprehensively from three aspects: digital infrastructure construction, 
digital infrastructure application and digital infrastructure utilization, 
and the sample is divided into two groups of low level and high level 
according to the median of digital infrastructure level. Table 8 reports 
the regression results of the effect of DIF on CRFP for the two groups. 
According to the results of columns (4)–(5), in the group with high level 
of digital infrastructure, DIF has a significant effect on promoting CRFP, 

and the regression coefficient of DIF is 0.11, which is significantly 
positive at the level of 5%. In the digital infrastructure, low level group, 
DIF regression coefficient is 0.046, but not significant. The reason is that 
the difference of digital infrastructure may affect the efficiency of 
information circulation, the accessibility of technology and the 
responsiveness of agricultural producers to digital inclusive financial 
policies. In regions with a high degree of digitalization, agricultural 
producers can more easily access market information, technical 
guidance and financial support, so as to cope with the challenges 
brought by climate change more effectively. However, in less digitized 
regions, these resources may be relatively scarce, limiting the utilization 
and response of agricultural producers to digital financial 
inclusion policies.

5 Discussion and conclusion

5.1 Discussion

Based on the reality of global climate change aggravation 
threatening food security and the pain point that the traditional 
financial system is difficult to effectively empower the 
transformation of agricultural climate adaptation, this study uses 
China’s provincial panel data from 2011 to 2022 to explore the 
impact of DIF on CRFP and its mechanism through the 
comprehensive use the super-efficient SBM-DEA model and dual 
machine learning methods. The direct effect showed that DIF can 
significantly improve CRFP. This shows that DIF can break through 
the physical network restrictions through mobile payment, 
blockchain and other tools, so that marginal farmers can have low 
threshold access to climate adaptation technology (Mao et  al., 
2024). At the same time, by integrating multi-source data such as 
meteorological and soil data, the big data risk control model can 
realize the precise drip irrigation of credit resources to climate-
vulnerable areas, which is in sharp contrast to the risk-averse 
tendency of traditional finance.

From the perspective of action mechanism, agricultural 
technology innovation, agricultural industry agglomeration and 
agricultural socialized services constitute the core transmission path 
between DIF and CRFP. On the one hand, DIF by accurate docking 
agricultural development demand and financial resources, effectively 

TABLE 7 Heterogeneity analysis I.

Variables CRFP CRFP CRFP CRFP

(1) (2) (3) (4)

East Central West Northeast

DIF
0.120** 0.073* 0.046 0.085**

(2.27) (1.73) (1.19) (2.13)

Controls YES YES YES YES

Cross fitting 5 5 5 5

Province-FE YES YES YES YES

Year-FE YES YES YES YES

N 120 72 132 36

*, **, and *** indicate that the regression results are significant at the levels of 10, 5 and 1%, 
respectively. t-values are in parentheses.
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promoted the water-saving irrigation, art varieties, such as technology 
innovation, and Xue et al. (2024) the conclusion; On the other hand, 
with the help of digital platforms, DIF optimizes the resource 
allocation of industrial chain, promotes the agglomeration of 
agricultural industry, and forms large-scale climate risk response 
capacity. At the same time, DIF activates the technology diffusion 
capacity of agricultural machinery cooperatives, plant protection 
service providers and other entities through supply chain finance 
tools, forming an ecological transmission chain from financial 
resources to service network and then to resilience gain, which 
provides a new perspective for understanding the synergy mechanism 
between fintech and agricultural organization innovation. 
Heterogeneity analysis results further reveal the policy effectiveness of 
boundary conditions. The significant promotion effect of the eastern 
region and the main grain-producing areas may be due to their high 
penetration rate of digital infrastructure and advantages of industrial 
clusters. It is important to note that the threshold of the digital 
infrastructure effect suggests the necessity of hardware, namely simply 
increasing digital financial coverage and not improve rural network 
conditions or digital literacy, could fall into trap “technical suspension.”

This paper makes the following contributions compared with 
previous studies: firstly, this study breaks through the comprehensive 
risk analysis paradigm of traditional resilience research and focuses 
on the targeted impact of extreme climate events on food production. 
At the same time, this study incorporates DIF into the analysis 
perspective to explore how it reshaped the climate response logic of 
food production system, and fill the gap of the interdisciplinary 
research on fintech and climate resilience. Secondly, this paper also 
explores the transmission mechanism of agricultural technology 
innovation, agricultural industry agglomeration and agricultural 
socialized services between DIF and CRFP, and expands the channel 
of DIF’s effect on CRFP. Finally, we also discussed the different impacts 
of DIF on CRFP in different regions, food functional zones and digital 
infrastructure levels.

Although this study provides a rich and valuable theoretical 
analysis and empirical test on the impact of DIF on CRFP, there are 
still some limitations. (1) The limitations of the empirical method. 
This paper only uses the dual machine learning model to discuss the 
direct effect and indirect effect of DIF on CRFP, without considering 
the possible spatial spillover effect of DIF and CRFP. In the future, 
spatial econometric model can be used to further discuss the spatial 
spillover effect of DIF on CRFP. (2) Data level and availability 
limitations. In this paper, the research sample for the Chinese 
provincial data, the empirical results possible data gathered deviation, 
county level fails to reflect the DIF with CRFP real interaction. Future 
studies can explore further from county-level data and empirical data 
from other developing countries.

5.2 Conclusion

In this study, we select China’s provincial panel data from 2011 
to 2022, and use the super-efficient SBM-DEA model and dual 
machine learning model to explore the role of digital inclusive 
finance on the climate resilience of food production and its intrinsic 
mechanism. The results show that DIF can significantly improve 
CRFP, and the conclusion is still valid after endogeneity and 

robustness tests. The mechanism of action shows that DIF can 
enhance CRFP by promoting agricultural technology innovation, 
agricultural industry agglomeration and agricultural socialized 
services. Heterogeneity analysis show that DIF has a significant effect 
on promoting CRFP in the eastern region, the main food-producing 
areas and the regions with high digital infrastructure. Based on the 
above conclusions, the following suggestions are put forward:

Firstly, the government should promote the differentiated 
development of digital inclusive financial service models in 
accordance with local conditions. In the eastern region, efforts 
should be made to further promote the deep integration of fintech 
and agricultural production and enhance the ability of risk 
identification and dynamic response. The central region should 
enhance the matching degree between financial products and the 
actual demands of grain production and improve the service 
supply system. The western regions should give priority to 
strengthening infrastructure construction, including Internet 
access, the deployment of payment terminals, and the 
popularization of digital financial knowledge among farmers, to 
enhance the accessibility, usability and effectiveness of digital 
financial services.

Secondly, encourage the development of tools such as agricultural 
digital credit, climate-indexed insurance and precision subsidies to 
strengthen farmers’ resilience in the pre-disaster financing, disaster 
response and post-disaster recovery phases. Government departments 
in major production areas should promote the deep integration of 
digital financial services with farmers’ actual business activities, and 
enhance the ability of financial services to support the full cycle of 
agriculture. For the main marketing areas, services such as information 
docking, storage and transportation management and market early 
warning can be strengthened to enhance the circulation efficiency and 
coordination capacity of the grain supply chain under climate shocks.

Thirdly, accelerating the layout of rural 5G networks, the Internet 
of Agricultural Things, remote sensing monitoring systems and 
disaster early warning platforms, and improving the ability of 
agricultural systems to sense and respond to extreme climate change. 
It will also strengthen infrastructure construction in central and 
western regions and marginalized areas through financial investment 
guidance, public service decentralization and government-enterprise 
collaboration, and promote the full embedding of digital information 
systems in agricultural production, credit services and 
insurance claims.
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