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Introduction: Phosphorus (P) is a vital nutrient for food production, yet a 
significant pollutant when mismanaged.

Methods: This study analyzes the phosphorus flow of the food system in 
the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in 2020, using 
a Substance Flow Analysis framework. The research examines natural and 
anthropogenic inputs, outputs and accumulation of phosphorus.

Results: Results reveal that the GBA is heavily dependent on external phosphorus 
inputs, with a total input of 187.69 Gg. The two largest sources of phosphorus 
inputs are aquaculture (36%) and food consumption (33%). The phosphorus use 
efficiency (PUE) in crop production, animal husbandry, and aquaculture were 
approximately 48.8, 32.37, and 10.01%, respectively. However, only 7.89% of 
phosphorus is recycled, while substantial losses (76% to soil and 24% to water 
bodies) exacerbate environmental pressures. Spatial analysis highlights distinct 
patterns between production-oriented cities (e.g., Jiangmen and Zhaoqing) and 
consumption-oriented cities (e.g., Shenzhen and Hong Kong).

Discussion: Policy recommendations include enhancing aquaculture 
management, improving phosphorus recycling technologies, and fostering 
intercity collaboration to create a sustainable phosphorus management 
framework. These findings provide critical insights for addressing phosphorus-
related challenges in urban agglomerations.
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1 Introduction

Phosphorus (P) is a critical nutrient for the growth of organisms, but excessive application 
can lead to overaccumulation, particularly in aquatic environments, causing severe and 
persistent eutrophication (Conley et al., 2009; Guo et al., 2024). This issue is exacerbated by 
the fact that phosphorus is a non-renewable resource; thus, its overuse can cause long-term 
environmental damage (Zou et al., 2022). Agricultural phosphorus use is inefficient, with 
seasonal fertilizer use efficiency being less than one-fifth, which contributes to phosphorus 
accumulation in soils and subsequent water pollution (Carpenter and Bennett, 2011). Only 
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about 15% of phosphorus input is converted into animal products, 
while approximately 40% is lost to the environment as waste. This loss 
not only represents a resource inefficiency but may also lead to 
environmental degradation (Yuan et  al., 2019). Furthermore, the 
phosphorus-use efficiency (PUE) in aquaculture in China ranges 
from 8.7 to 21.2%, indicating significant environmental loss rates 
(Zhang et al., 2015). Therefore, managing phosphorus application 
and comprehensively understanding its metabolic pathways are 
essential for sustaining agricultural productivity and protecting 
aquatic ecosystems.

Phosphorus plays a pivotal role in human society and exerts a 
profound environmental influence during its utilization. At the global 
scale, research on the spatiotemporal dynamics of phosphorus 
metabolism has provided valuable insights into its implications for 
resource sustainability. For example, Koppelaar and Weikard (2013) 
analyzed the consumption of phosphate rock and the feasibility of 
recycling, highlighting the risks of global phosphorus resource 
depletion. Similarly, Bouwman et al. (2013) explored the historical 
evolution of nitrogen and phosphorus cycles in agriculture from 1900 
to 2050, emphasizing the significant influence of livestock production 
on phosphorus metabolism. At the regional scale, studies have 
focused on the spatial distribution and driving mechanisms of 
phosphorus flows. Liu et al. (2022) examined the characteristics of 
phosphorus emissions in the Yangtze River Economic Belt, while 
Chen et  al. (2024) investigated phosphorus flows within waste 
systems in the Poyang Lake Basin. Additionally, Chen et al. (2021) 
analyzed the effects of urban characteristics on phosphorus 
metabolism in the Greater Bay Area. In food systems, research has 
primarily centered on phosphorus metabolism pathways and 
recycling strategies. Roy et al. (2019) and Tasmeea et al. (2021) used 
material flow analysis to uncover the patterns of phosphorus 
metabolism in Bangladesh’s food system, whereas Yang and Zhang 
(2023) identified food processing as the dominant source of 
phosphorus outflows in multiple regions of China. Esculier et al. 
(2019) addressed the sustainable management of nitrogen (N) and 
phosphorus (P) within the water-agriculture-food system in the Paris 
metropolitan area, revealing that most phosphorus remains 
unrecovered during incineration and ultimately exists as ash. 
Collectively, these studies demonstrate the multi-scale complexity of 
phosphorus flows. Although significant progress has been made in 
understanding phosphorus flows within socio-economic systems, 
there is still a lack of research on phosphorus flows and related 
environmental issues at the scale of urban agglomerations, 
particularly in the context of food systems. Moreover, the varying 
contributions of different city types within urban agglomerations 
remain understudied. These gaps underscore the need for further 
investigation to better understand and address the complexities of 
phosphorus metabolism at this scale.

Therefore, by employing Substance Flow Analysis (SFA), 
we  construct a phosphorus metabolism model to systematically 
analyze the process of phosphorus flows within the food system. 
Through integrating various sectors involved in both natural and 
anthropogenic processes, the study evaluates the characteristics of 
phosphorus metabolism specific to the GBA urban agglomeration. 
The primary objective is to elucidate differences in phosphorus flow 
patterns and their underlying mechanisms among cities in the GBA 
urban agglomeration, enhancing regional phosphorus management 
strategies and promoting sustainable development.

2 Materials and methods

2.1 Study area

The GBA comprises eleven cities: Guangzhou, Shenzhen, Zhuhai, 
Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen, Zhaoqing, Hong 
Kong, and Macao. In 2020, the GBA accounted for approximately 
0.6% of China’s total land area but attracted 5% of the national 
population. Over the past decade, the region has witnessed a 35% 
increase in population, leading to a significant rise in population 
agglomeration within the urban cluster. Consequently, the demand for 
food has surged dramatically. Meanwhile, the production of 
phosphorus pollutants has been substantial, yet the effectiveness of 
pollution control measures remains inadequate (Cross-media, 2022). 
The surface water quality in the Pearl River Delta river network is 
lower than the average level of Guangdong Province, and seawater 
below Class IV standards is primarily distributed in estuarine bays 
such as the Pearl River Estuary, with active phosphate being the 
primary pollutant (Guangdong Provincial Department of Ecology and 
Environment, 2020). With the further expansion and intensification 
of urbanization in the GBA, there is an urgent need to conduct 
in-depth research on phosphorus metabolism processes within the 
urban agglomeration’s food system from a systemic perspective. This 
research is essential for improving phosphorus pollution control 
measures and exploring pathways that contribute to enhancing the 
overall ecological and environmental quality of the GBA.

2.2 Phosphorus metabolism framework

This study focuses on the phosphorus flow in the urban 
agglomeration food system of the GBA in 2020, including 11 cities 
within the area. The study constructs a phosphorus metabolism model 
of the urban agglomeration food system (shown in Figure 1). The aim 
is to comprehensively analyze and quantify the phosphorus flow in 
various cities and sectors within the region. The constructed model 
employs the administrative boundaries of each city as its horizontal 
boundary, sets the upper vertical boundary at 1,000 meters above 
ground level, and defines the lower boundary as the bedrock (Gu 
et al., 2015). It covers the natural and anthropogenic input processes 
of phosphorus, as well as its migration, transformation, and output 
processes among various sectors within urban agglomeration.

This study establishes a multi-sectoral phosphorus metabolism 
model framework for urban agglomeration food system, covering four 
stages: agricultural production, agricultural product processing, food 
consumption, and waste treatment. These stages are further divided 
into seven sectors, including (1) Crop production; (2) Animal 
husbandry; (3) Aquaculture; (4) Agricultural product processing; (5) 
Food consumption; (6) Wastewater treatment and (7) Solid waste 
disposal. To ensure the accuracy of the analysis, the material inputs 
and outputs of each sector and metabolic process are balanced based 
on the substance flow analysis method.

The crop production sector quantifies phosphorus flows from 11 
major crop types, including rice, soybeans, tubers, corn, sugarcane, 
peanuts, rapeseed, other tubers, vegetables, fruits, and tea. The animal 
husbandry sector includes five primary livestock categories: cattle, 
sheep, pigs, poultry, and rabbits. The aquaculture sector comprises four 
main groups: fish, crustaceans (e.g., shrimp and crab), mollusks, and 
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other aquatic products. The agricultural product processing sector 
considers three key activities that utilize harvested crops and livestock: 
oil production, slaughtering, and feed processing. The food 
consumption sector represents household dietary intake, which 
generates both solid waste and wastewater. Wastewater treatment refers 
to the centralized removal of contaminants from both household and 
agricultural product processing effluents. Solid waste disposal involves 
the treatment of diverse solid waste streams through landfilling, 
incineration, and other treatments such as stockpiling and composting.

2.3 Calculation of the phosphorus flows

Based on the established framework for phosphorus metabolism 
analysis, the calculation of phosphorus flows primarily employs two 
computational methods. One method involves calculating individual 
phosphorus flows through relevant data and parameters, as shown 
in Equation1.

 = ×i i iP M β  (1)

where, iP  represents the phosphorus amount in material flow i, iM  
is the total mass of the flow i and βi is the corresponding phosphorus 
coefficient of the pathway. For each sector or where data and 
coefficients are difficult to obtain, the corresponding flow is calculated 
based on the substance balance method, as shown in Equation2.

 ∑ =∑ −∑ac in outP P P  (2)

Where, inP  and outP  represent the phosphorus input and output 
flows, respectively. acP  represents the accumulation of phosphorus.

Phosphorus enters the system mainly through four pathways: as 
chemical fertilizers, pesticides, atmospheric deposition and irrigation 
into the crop production sector; as animal feed into the animal 
husbandry sector; as aquaculture feed into the aquaculture sector; and 
as food into the food consumption sector. Phosphorus loss from the 
system mainly occurs through the following pathways: straw from the 
crop production sector, animal manure from the animal husbandry 
sector, wastewater from the aquaculture sector, animal slaughtering 
and oil production wastewater from agricultural product processing, 
domestic sewage from the food consumption sector, effluent from the 
wastewater treatment sector, and incineration ash and landfill waste 
from the solid waste disposal sector. The detailed computing equations 
of the P flows in each sector are in Supporting Information.

Within the food system, two key indicators were utilized to assess 
nutrient use efficiency: Phosphorus use efficiency (PUE) and the 
phosphorus recycling rate. PUE is defined as the ratio of P output in 
harvested products to total P inputs within a system (Biswas 
Chowdhury and Zhang, 2021; Huang et al., 2019). The phosphorus 
recycling rate was defined as the ratio of total recycled phosphorus 
(P) to total new P inputs within the food system (Huang et al., 2019). 
Here, recycled P specifically denotes phosphorus recovered from crop 
residues, animal excreta, and kitchen residues. Total new P inputs 
encompass a broader range of sources, including atmospheric 
deposition, chemical fertilizers, seeds, irrigation water, net feed 
inputs by livestock and aquaculture, and net food imports.

2.4 Data collection

The data sources for this study include: (1) statistical yearbooks 
published by the Chinese government, such as China Statistical 
Yearbook, Guangdong Statistical Yearbook, Guangdong Rural 

FIGURE 1

Framework of the phosphorus flows model of the urban agglomeration food system.
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Statistical Yearbook, China Urban Construction Statistical Yearbook, 
etc.;(2)other statistical reports published by the Chinese government, 
such as Hong Kong Agriculture, Fisheries and Conservation 
Department Annual Report, China Population Census County-Level 
Data – 2020, Guangdong Province Water Resources Bulletin, etc.; (3) 
official reports or databases from other national governments or 
international organizations, such as Food and Agriculture 
Organization of the United Nations(FAO);(4)published literature, 
mainly to obtain some phosphorus-related coefficients or other 
production and consumption-related coefficients for accounting. The 
primary data operations were conducted using Microsoft Excel. 
Figure 2 was created using e! Sankey 5, while all spatial distribution 
maps were generated using ArcGIS Pro.

3 Results and discussion

3.1 Phosphorus flow patterns in the GBA

Figure 2 illustrates the phosphorus metabolism process in the 
food system of the GBA in 2020. Due to the absence of local 
phosphorus ore resources and mining industries, the GBA relies 
heavily on external phosphorus inputs. In 2020, the total external 
phosphorus input to the GBA food system reached 187.69 Gg. Among 
this, 67.22 Gg (36% of the external P input) was supplied to the 
aquaculture sector in the form of feed. This high input is largely 
attributed to Guangdong being the largest aquaculture producer in 
China. Its major aquatic product hubs—Jiangmen, Foshan, Zhuhai, 
and Zhongshan, all within the GBA—drive significant demand for 
aquaculture feed. Additionally, 61.27 Gg of phosphorus (33% of the 
external P input) was directly supplied to the food consumption 

sector, reflecting the high urbanization level and large population in 
the GBA, where local agricultural production cannot fully meet the 
food demands of residents. The phosphorus input into the crop 
production sector in the form of chemical fertilizers and pesticides 
was 37.6 Gg, accounting for 20% of the total external phosphorus input.

The food system of the GBA heavily relies on external phosphorus 
resources, making it vulnerable to fluctuations in the global 
phosphorus market (Yang et al., 2019), posing potential food security 
risks. Guangdong, as the largest aquaculture production area in China 
(accounting for 14.3% of the national total), has a high demand for 
feed, especially in cities like Jiangmen, Foshan, Zhuhai, and 
Zhongshan, which exacerbates the region’s dependence on external 
phosphorus resources. Moreover, the phosphorus recycling rate is 
only 7.89%, indicating a very low proportion of phosphorus that can 
be recycled from waste (Huang et al., 2019), leading to significant 
resource waste. This low recovery rate further intensifies the region’s 
reliance on external phosphorus supplies and places additional 
pressure on the environment (Zhang et al., 2023). Therefore, future 
efforts should focus on improving the efficient use and recycling 
technologies of phosphorus resources to reduce external dependence 
and promote the sustainable development of the regional food system.

The total phosphorus output from the food system in GBA to the 
environment is as high as 105.62 Gg, of which 80.63 Gg of phosphorus 
is lost to the soil, accounting for 76% of the total discharge. The 
remaining 25Gg of phosphorus is lost to water bodies, accounting for 
24% of the total discharge. The phosphorus entering the soil mainly 
comes from the solid waste disposal sector, which is 75.42 Gg, 
accounting for 93.5% of soil phosphorus loss. Within the solid waste 
disposal sector, phosphorus primarily originates from sludge in 
wastewater treatment, kitchen waste from food consumption, and 
food processing waste. It ultimately enters the soil through 

FIGURE 2

Overall phosphorus flows in the food system of the GBA in 2020.
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incineration and landfilling. Phosphorus entering water bodies 
primarily originates from the aquaculture sector (10.21 Gg, accounting 
for 40.9% of the loss), followed by effluent from the wastewater 
treatment sector (6.04 Gg, 24.2% of the loss).

The total phosphorus accumulation in the food system of the GBA 
amounts to 81.37 Gg, with the majority accumulating in the 
aquaculture and crop production sectors, accounting for 61.9 and 
23.5% of the total accumulation, respectively. Specifically, 50.33 Gg of 
phosphorus accumulates in aquaculture sediment, while 19.14 Gg 
accumulates in agricultural soils. The aquaculture-derived P 
accumulation primarily originates from unconsumed feed inputs and 
metabolic waste excretion. The sediment–water interface exhibits 
dynamic P migration patterns governed by multiple environmental 
parameters, including thermal stratification, pH variations, and 
dissolved oxygen gradients (Ye and Shu, 2021). Additionally, the 
enrichment of organic matter in sediments can lead to bottom oxygen 
depletion, thereby promoting a significant increase in ammonia-
oxidizing bacteria. This consequently results in elevated levels of 
ammonium and nitrite in water bodies, causing toxic effects on 
aquatic organisms (Liu et al., 2018).

In 2020, the PUE in the crop production, animal husbandry, and 
aquaculture sectors of the GBA was 48.8, 32.37, and 10.01%, 
respectively. Compared to the findings of Chen et al. (2021), the PUE 
values for the crop production and animal husbandry sectors were 
higher than those reported in 2017 (33 and 27.8%, respectively). The 
PUE values for crop production and animal husbandry are comparable 
at China’s national levels of 36–41% and 21–37.95%, respectively (Liu 
et al., 2016; Wu et al., 2015; Ma et al., 2010). In contrast, the PUE of 
the aquaculture sector was lower than that reported by Chen et al. 
(2021) (26.7%). The improvement in PUE for the crop production and 
animal husbandry sectors may be attributed to government policies 
targeting both pollution source reduction (e.g., fertilizer quotas) and 
end-of-pipe treatment (e.g., wastewater regulations). For instance, the 

Three-Year Action Plan for Pollution Prevention and Control in 
Guangdong Province (2018–2020) promoted the reduction of 
agricultural non-point source pollution, and the World Bank Loan-
funded Guangdong Agricultural Non-Point Source Pollution Control 
Project (2020) aimed to reduce the application of fertilizers and 
pesticides within the project areas. The significant discrepancy in 
aquaculture PUE is primarily due to differences in the calculation 
methods of feed conversion efficiency. This study refined the feed 
conversion ratios and phosphorus content for different aquaculture 
species, resulting in findings that align more closely with the national 
aquaculture PUE range of 8.7 to 21.2% in China (Zhang et al., 2015; 
Huang et al., 2019).

3.2 Distribution patterns and regional 
characteristics of phosphorus metabolism

Figure 3 provides a detailed overview of the external phosphorus 
inputs across cities in the GBA. Jiangmen has the highest external 
phosphorus input, reaching 33.29 Gg, 61% of which is directed to the 
aquaculture sector as feed. This highlights Jiangmen’s large-scale 
aquaculture industry, which accounts for 22% of the total aquaculture 
production in the GBA. Guangzhou follows with an external 
phosphorus input of 31.37 Gg, 46% of which is allocated to the food 
consumption sector, underscoring the city’s limited local agricultural 
production and heavy reliance on external food supplies. Zhaoqing, 
which has an external phosphorus input of 28.88 Gg, allocates 45% of 
this input to the crop production sector in the form of fertilizers, 
reflecting its agricultural advantage given that its arable land constitutes 
26% of the GBA’s total. In cities such as Foshan, Zhuhai, and 
Zhongshan, which are major aquaculture hubs, external phosphorus 
inputs are primarily directed to the aquaculture sector. In contrast, in 
consumer-oriented cities such as Shenzhen, Dongguan, Hong Kong, 

FIGURE 3

External P input by city in the GBA, 2020.
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Macao, and Guangzhou, external phosphorus inputs are mainly 
allocated to food consumption sector. In terms of food consumption, 
90% of the phosphorus demand in Shenzhen, Dongguan, Hong Kong, 
and Macao relies on external inputs, indicating a high dependence on 
external food sources. Conversely, Jiangmen and Zhaoqing have 
sufficient local food phosphorus supply to meet their demand, with 
surplus available for export to other cities. The differences in 
phosphorus input structures across GBA cities reflect their distinct 
industrial characteristics and urbanization levels. Zhaoqing and 
Jiangmen have the highest contributions of primary industry to their 
GDP, at 18.9 and 8.6% respectively, whereas in Shenzhen, Dongguan, 
Hong Kong, and Macao, this contribution is below 2%. Moreover, the 
urbanization levels of Zhaoqing and Jiangmen are the lowest in the 
GBA, at 51 and 68%, respectively, whereas the urbanization levels of 
Shenzhen, Dongguan, Hong Kong, and Macao exceed 90%.

The total phosphorus (P) losses across cities in the GBA are 
illustrated in Figure 4A. Guangzhou exhibits the highest phosphorus 
loss, with emissions reaching 19.07 Gg, accounting for 18% of the total 
P emissions in the GBA. Shenzhen follows with 16.18 Gg, contributing 
15%, while Macao has the lowest P loss at only 1.08 Gg, representing 
1% of the total.

As shown in Figure 4B, phosphorus losses to soil are closely related 
to urban population size. In densely populated cities such as Guangzhou, 
Shenzhen, Dongguan, Foshan, and Hong Kong, P emissions to soil are 
primarily attributed to solid waste management practices, including 

incineration and landfill disposal. In contrast, in food production-
oriented cities such as Jiangmen and Zhaoqing, a considerable 
proportion of phosphorus loss originates from the animal husbandry 
sector, mainly due to the landfilling of untreated animal manure.

Figure  4C depicts phosphorus losses to water bodies, which 
exhibit a spatial pattern where upstream cities experience higher P 
losses compared to downstream areas. In aquaculture-intensive cities 
such as Jiangmen, Foshan, Zhaoqing, Zhongshan, and Zhuhai, 
aquaculture wastewater is the primary contributor to waterborne 
phosphorus pollution. On the other hand, in food consumption-
oriented cities such as Shenzhen, Dongguan, Hong Kong, and Macao, 
the main source of P emissions to water bodies is the effluent from 
wastewater treatment plants.

Phosphorus emission management in the GBA varies significantly 
between food production-oriented and food consumption-oriented 
cities. In cities such as Jiangmen and Zhaoqing, which resemble 
typical agricultural regions (Huang et al., 2019; Huang et al., 2019; Xu 
et  al., 2016), major sources of phosphorus emissions include 
aquaculture wastewater, animal manure, and agricultural runoff, 
largely driven by excessive feed input and fertilizer application. 
Effective mitigation measures include optimizing feed utilization 
efficiency, promoting aquaculture tailwater treatment technologies, 
and implementing precision fertilization and manure recycling. In 
contrast, in food consumption-oriented cities such as Shenzhen, Hong 
Kong, and Macao, similar to international cities such as Paris (Esculier 

FIGURE 4

Distribution of phosphorus loss by city in the GBA, 2020 (A) P loss to environment; (B) P loss to soil; (C) P loss to water.
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et  al., 2019) and Dar es Salaam (Xiong et  al., 2020), phosphorus 
emissions mainly stem from municipal solid waste and wastewater 
treatment systems. Enhancing phosphorus removal processes in 
wastewater treatment plants and promoting food waste recycling are 
effective strategies to reduce phosphorus emissions in these cities.

As shown in Figure 5, the average phosphorus (P) emissions per 
unit area across the GBA are 18.89 kg/ha. Notably, Shenzhen, Hong 
Kong, and Macao exhibit phosphorus emission intensities that are 
more than four times higher than the regional average, while 
Jiangmen, Zhaoqing, and Huizhou demonstrate lower emissions 
compared to the GBA average, highlighting significant intercity 
variations. The spatial distribution of phosphorus emission intensities 
presents a pattern of high values in the central region and lower values 
in the surrounding areas. The high-emission areas are primarily 
concentrated in the food consumption-oriented central cities of the 
GBA. The observed trends can be attributed to several interrelated 
factors, notably constrained urban areas coupled with high population 
density and intensive economic activities, as well as limited 
agricultural production capacity. These conditions collectively impede 
local phosphorus recycling efforts, creating a challenge in achieving 
reuse within the same city. Specifically, higher population density 
exacerbates phosphorus emissions at the consumption end, while 
smaller urban areas and limited agricultural output further complicate 
local phosphorus recovery. This combination of factors results in 
significant barriers to regional phosphorus reuse.

3.3 Policy implications

Phosphorus (P) management in the food system of the GBA is a 
complex and systematic endeavor. The metabolic processes of high-
density P consumption and high-intensity P pollution emissions occur 
within various sectors of the food system, while P undergoes 
migration and transformation between these sectors. Additionally, the 
continuous spatial interactions among cities further shape an 
interdependent and highly interactive P metabolism system across the 
region. Based on the research findings, this study proposes policy 
recommendations at three levels: within sectors, between sectors, and 
among cities in the GBA food system.

First, priority should be given to addressing P emissions in key 
sectors. Regarding P losses to water bodies, the aquaculture sector has 
the lowest phosphorus use efficiency (PUE) at only 10.01%, indicating 
substantial P losses. Optimizing feed conversion ratios, reducing excess 
feed inputs, and improving aquaculture techniques are essential to 
mitigate environmental impacts. For instance, in freshwater aquaculture, 
site-specific tailwater treatment systems such as the “three-pond-
two-dam” system, the “two-dam-three-zone” system, and the rice field 
coupling system can achieve total phosphorus (TP) removal rates of 50, 
99.3, and 32%, respectively (Chen et  al., 2023). Implementing 
recirculating aquaculture systems, integrating permitted aquaculture 
production with reduced feed usage, and promoting new business 
models where farms use waste as fertilizer for vegetable cultivation can 

FIGURE 5

Distribution of area intensity of phosphorus loss by city in the GBA in 2020.
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also be effective strategies (Nielsen et al., 2016). Regarding P losses to soil, 
sewage sludge from wastewater treatment plants constitutes the largest 
source of P emissions from the solid waste disposal sector. Phosphorus 
recovery can be  achieved from sludge dewatering effluent, digested 
concentrated sludge, and incineration fly ash (Lin et al., 2022).

Second, efforts should be  intensified to enhance food waste 
recycling, thereby replacing a portion of chemical fertilizers with 
organic fertilizers. Food waste is also a significant source of P in the 
solid waste disposal sector. By adopting microbial aerobic 
fermentation techniques, organic fertilizers can be produced with a P 
recovery rate of 49.7% (Fang et  al., 2023). If implemented, this 
approach could recover 8.52 Gg of P from solid waste disposal, which 
could then be  applied to the crop production sector, potentially 
reducing chemical P fertilizer inputs by 24%.

Finally, the GBA should be regarded as an integrated whole, and 
intercity collaboration is essential. Cities such as Zhaoqing and 
Jiangmen serve as major food production hubs within the regional 
division of labor and bear the environmental pressure of intensive 
agricultural activities imposed by food consumption-oriented cities, 
posing a significant threat to soil quality. Moreover, runoff carrying soil 
pollutants, leaching, and aquaculture water exchange continuously 
contribute to the risk of eutrophication in downstream water bodies 
(Cross-media, 2022), undermining the overall environmental quality 
of the GBA. Thus, food production-oriented cities such as Zhaoqing 
and Jiangmen should adopt measures such as precision fertilization, 
establishing buffer zones, and applying stubble mulching tillage 
techniques to effectively reduce non-point source P pollution and 
prevent pollution transfer to downstream cities (Li et al., 2020). On the 
other hand, consumption-oriented cities have limited primary 
industry capacity and lack application scenarios for resource-based P 
waste utilization. Transferring organic waste from consumption-
oriented cities to production-oriented cities for resource recovery 
could further enhance the overall P management efficiency of the GBA.

4 Conclusion

This study provides a comprehensive analysis of phosphorus 
metabolism in the food system of the GBA, revealing its heavy reliance 
on external phosphorus inputs and significant phosphorus losses to the 
environment. In 2020, the total phosphorus input to the GBA was 
187.69 Gg, with 36% directed to aquaculture and 33% to food 
consumption. The phosphorus recycling rate was only 7.89%, while 
76% of phosphorus losses were to soil and 24% to water bodies, thereby 
imposing notable environmental pressures. The study also highlights 
distinct phosphorus metabolism patterns between production-oriented 
cities (e.g., Jiangmen and Zhaoqing) and consumption-oriented cities 
(e.g., Shenzhen and Hong Kong). These findings offer new insights into 
phosphorus dynamics in urban agglomerations and provide a basis for 
optimizing resource use and reducing environmental pollution. The 
research underscores the importance of cross-city collaboration and 
multi-sectoral coordination for sustainable phosphorus management.

However, the study has limitations, such as issues with data 
precision and its focus on a single year, which constrain the assessment 
of temporal dynamics and the generalizability of the results. Future 
research should explore phosphorus recovery technologies, evaluate 
the long-term impacts of policy interventions, and examine the 
potential of behavioral changes in phosphorus management. 
Additionally, policy recommendations include strengthening 

cooperation between production-oriented and consumption-oriented 
cities and promoting phosphorus recycling along with sustainable 
agricultural practices to achieve regional phosphorus sustainability.
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