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Water and nitrogen conservation 
enhance summer soybean 
(Glycine max) yield via improved 
photosynthesis and pod 
formation traits
Huangcheng He 1, Rui Guo 1, Kaihong Deng 2, Shuhao Pang 1 and 
Jianguo Liu 1*
1 Department of Agriculture, Shihezi University, Shihezi, Xinjiang, China, 2 Xinjiang Production and 
Construction Corps 7th Division Institute of Agricultural Sciences, Kuitun, Xinjiang, China

In arid Xinjiang, high crop yields depend on substantial water and nitrogen inputs, 
but this leads to inefficient resource use. This study investigated whether water 
and nitrogen inputs could be reduced without compromising yield in post-wheat 
relay-cropped soybean, aiming for more efficient resource utilization. In 2023 
and 2024, a field experiment was conducted at the Experimental Station of the 
College of Agriculture, Shihezi University. The experiment employed a two-
factor split-plot design, with irrigation amount as the primary factor with three 
levels: W1 (3,360 m3·hm−2, 33.3% reduction from W3), W2 (4,200 m3·hm−2, 16.6% 
reduction from W3), and W3 (5,040 m3·hm−2, conventional irrigation). Nitrogen 
application rate (pure nitrogen) was the secondary factor with four levels: N1 
(0 kg·hm−2), N2 (105 kg·hm−2, 46.2% reduction from N4), N3 (150 kg·hm−2, 23.1% 
reduction from N4), and N4 (195 kg·hm−2, conventional application) – totaling 
12 treatments. Among all treatments, only the water-saving (W2) and nitrogen-
saving (N3) combination (W2N3) achieved agronomic traits, pod formation, and 
yield components statistically equivalent to conventional practice (W3N4). W2N3 
maintained near-equivalent yield to W3N4 (reduction of 0.84–1.32%) while conserving 
water and N. This reduction lowers environmental risks (e.g., N leaching, salinity) 
and has the potential to improve soil health through optimized organic matter 
input. Economically, it reduced production costs by 483.91 CNY·hm−2, increasing 
net profit by 350.10–408.79 CNY·hm−2. Reducing irrigation by 16.6% and N by 
23.1% optimizes resource efficiency, supports agricultural sustainability, and offers 
viable strategies for arid agroecosystems.
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1 Introduction

Soybean is a significant oilseed and grain crop in China. Rising domestic demand has 
resulted in expanded cultivation, yet yield per unit area remains relatively low, making current 
production insufficient to meet market needs (Xu C. et al., 2020). Xinjiang possesses favorable 
solar-thermal resources. Post-wheat relay-cropping soybean systems have been proposed to 
enhance overall yields (Ran et al., 2023). The northern Xinjiang region remains conducive to 
crop growth after wheat harvest. The region’s abundant light and heat resources provide an 
efficiency advantage for post-wheat relay-cropped soybean systems (Wang et al., 2020).
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The growth and development of crops is significantly influenced 
by water availability and nitrogen fertilizer (Hoffmann et al., 2021). A 
notable correlation exists between moisture and plant morphology 
(Desclaux and Roumet, 1996). Soybean plant height, stem thickness, 
chlorophyll concentration, and yield formation are all influenced by 
water application rates (Bellaloui and Mengistu, 2008; Jha et al., 2018; 
Sandoval-Villa et  al., 2002). Optimal irrigation facilitates 
photosynthesis and grain-filling rates in soybeans (Cao et al., 2022). 
Water deficit inhibits plant growth, reduces chlorophyll content, and 
limits photosynthesis (Xu Q. et al., 2020). Excessive moisture induces 
exaggerated shoot elongation, redirecting dry matter allocation 
toward vegetative organs and impairing reproductive development, 
thereby suppressing soybean yield (Cheng et al., 2019; Li X. et al., 
2021; Zeng et al., 2020). Nitrogen is an essential nutrient that facilitates 
chlorophyll and protein synthesis (Bellaloui et al., 2015; Kong et al., 
2017). The formation of leaves, pods, and seeds is associated with the 
application of nitrogen fertilizer (Gai et al., 2017; Hou et al., 2022; 
Namvar et al., 2011; Noor et al., 2021). It has been demonstrated that 
Optimal nitrogen application enhances net photosynthetic rate, 
carbon assimilation, and grain formation, thereby increasing soybean 
yield. Excessive nitrogen application suppresses yield-related 
parameters and reduces nitrogen use efficiency (NUE) (Li et al., 2019; 
Zhang et al., 2020).

A substantial body of research confirms that water-nitrogen 
interactions synergistically enhance crop uptake and utilization of 
both resources, stimulate growth, and increase yields (Gonzalez-Dugo 
et al., 2010; Hammad et al., 2015; AlShamary et al., 2025). Research 
has found that optimal nitrogen application enhances agronomic trait 
development, photosynthetic parameters, and yield components 
(Hammad et  al., 2012; Si et  al., 2020); under certain nitrogen 
application levels, moderate drought enhances grain yield and 
nitrogen use efficiency (NUE) (Wang Z. et al., 2016). Under drought 
conditions, low nitrogen application reduces crop yield. Conversely, 
high nitrogen rates promote yield-related trait development, accelerate 
vegetative-reproductive transition, and enhance assimilate 
partitioning to economic yield components (e.g., grains) (Rathore 
et al., 2017).

The Xinjiang region experiences high temperatures and minimal 
precipitation, particularly during the months of July and August 
following the wheat harvest. This period is characterized by further 
aridity and water scarcity (Wan et al., 2022a). Applying 173 kg·hm−2 
nitrogen to wheat enables subsequent cultivation of post-wheat relay-
cropped soybeans at 69 kg·hm−2 N, achieving high yields in Xinjiang 
(Fu et al., 2020). In the context of production, however, the quantity 
of nitrogen applied to soybean crops is considerably higher than the 
figure of 69 kg·hm−2 (Che et  al., 2021). Water insufficiency and 
excessive nitrogen application impede crop growth, reduce yields, and 
waste resources (Wan et al., 2022b). It has been established by related 
research that the implementation of water-saving and nitrogen-
reducing measures has the potential to optimize both yield and 
resource utilization (Zhou et al., 2011). Consequently, assessing water-
nitrogen reduction impacts on post-wheat relay-cropped soybean 
yield advances resource conservation, yield stability, and fertilizer 
optimization theories.

Current research on soybean growth under water-fertilizer 
regimes in arid regions is extensive. However, comprehensive studies 
on post-wheat relay-cropped soybeans in Xinjiang remain limited. To 
enhance yield, we recommend reducing water and nitrogen inputs. 

This study examines water-nitrogen coupling effects on agronomic 
traits, photosynthetic parameters, pod formation, and yield 
components. Our findings elucidate soybean responses to 
conservation measures, establishing a theoretical basis for optimized 
water-nitrogen management in northern Xinjiang relay-
cropped systems.

The study objectives were to test: (1) Reduced water and nitrogen 
inputs improve relay-cropped soybean growth and photosynthetic 
capacity; (2) Reduced inputs promote pod and seed formation; (3) 
Reduced inputs increase yield.

2 Materials and methods

2.1 Biological material and field experiment

The experiment was conducted from April 2023 to October 2024 
at the Experimental Station of the College of Agriculture, Shihezi 
University (44°18’N, 85°59′E). The site features a typical continental 
climate, with multi-year averages of 7.5–8.2°C temperature, 208 mm 
precipitation, and 1,660 mm evapotranspiration. The soil was irrigated 
tillage gray desert soil with a medium loamy texture. Figure 1 shows 
temperature and precipitation during July–October 2023. Basic 
physicochemical soil properties before sowing are presented in Table 1.

The experiment employed a two-factor split-plot design, with 
the primary factor being the amount of irrigation water, with three 
distinct irrigation levels established: The experimental units were 
designated as W1 (3,360 m3·hm−2, a reduction of 33.33% compared 
to conventional irrigation), W2 (4,200 m3·hm−2, a reduction of 
16.67% compared to conventional irrigation), and W3 
(5,040 m3·hm−2, representing the conventional irrigation); the 
secondary factor is the quantity of nitrogen applied (pure nitrogen), 
with four nitrogen application levels established: N1 (0 kg·hm−2), 
N2 (105 kg·hm−2, representing a 46.15% reduction compared to 
conventional), N3 (150 kg·hm−2, representing a 23.08% reduction 
compared to conventional) andN4 (195 kg·hm−2, conventional 
nitrogen application). All 12 treatments received uniform 
applications of P₂O₅ (102 kg·hm−2) and K₂O (69 kg·hm−2). Each 
treatment was replicated three times in 20 m2 plots (4 m × 5 m). 
The preceding spring wheat crop and subsequent relay-
intercropped soybean (“Haojiang 35” variety) were established 
using no-till methods. Soybeans were planted at 30 cm row spacing 
and 5 cm plant spacing. Drip irrigation mirrored the spring wheat 
system, with one irrigation belt servicing four soybean rows. Eight 
irrigation events occurred at 7–10 day intervals during the growing 
season. Nitrogen fertilizer was applied via irrigation water in split 
doses according to treatment requirements (Table 2).

2.2 Sampling and measurement

2.2.1 Agronomic trait
Five plants were randomly selected at the R6 (full seed stage) for 

measurement of soybean plant height. This was done using a scale with 
1 mm accuracy. The leaf area of individual soybean plants was quantified 
using a LI-3100C (LI-COR: Lincoln, Nebraska, United States) digital 
leaf area meter, and subsequently converted to leaf area index (LAI).
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2.2.2 Photosynthesis indicators
The inverted trifoliate leaves of soybean were measured at R6 (full 

seed stage) of growth and development. The measurements were taken 
using a portable SPAD-502 (Minolta Camera Co. Ltd., Osaka, Japan) 
chlorophyll meter and a Li-6400 (Licor Biosciences, Lincoln, NE, 
United  States) photosynthesizer. The SPAD values were obtained 
along with the net photosynthetic rate (Pn), transpiration rate (Tr), 
stomatal conductance (Gs) of the leaf blades and the intercellular CO2 
concentration (Ci). Five replicate measurements were averaged 
per parameter.

2.2.3 Number of flowers and pods
From R1 (the onset of soybean flowers stage), five soybean plants 

exhibiting uniform growth were identified and the number of flowers 
was quantified at two-day intervals until the conclusion of the 
flowering stage. From R3 (the onset of soybean pod formation stage), 
three plants with uniform growth were selected and labeled. The 
number of pods was counted from the time that they reached 2 cm, 
and a count was made at intervals of 5 days until the number of pods 
remained constant.

2.2.4 Determination of dry matter mass 
accumulation

At the R6 (full seed stage), five representative plants were 
selected and subsequently divided into four distinct sections: 
leaves, stalks, pods and seeds. Each plant part was then subjected 

to a series of treatments. The fresh and dry weights were 
determined, and the quantity of dry matter in the various parts 
was calculated.

2.2.5 Measure yield components
Ten plants were randomly selected from each plot to determine 

yield components, following variables were recorded: plant height, 
number of fertile pods per plant, number of grains per plant, and 
100-grain weight of soybeans. The mean values of these indexes were 
then calculated.

2.3 Statistical analysis

The data was processed using Microsoft Excel 2016 software, and 
graphs were plotted using Origin 2022 software. Statistical analyses 
were conducted using SPSS 27.0, and one-way ANOVA and Duncan’s 
method were employed for analysis of variance and 
multiple comparisons.

3 Results

3.1 Changes in agronomic traits

Under W1 and W2 irrigation, soybean plant height increased 
quadratically with nitrogen application over 2 years, peaking at N3 
before declining (Figure  2). In 2023, plant height under W1N3 
exceeded W1N2 and W1N4 by 27.85 and 35.20%, respectively, 
whereas W2N3 showed 8.15 and 4.17% greater height than W2N2 and 
W2N4. Similarly in 2024, W1N3 showed 17.98 and 16.19% greater 
height than W1N2 and W1N4, with W2N3 surpassing W2N2 and 
W2N4 by 12.53 and 7.07%. At W3 irrigation, W3N4 produced the 
tallest plants (61.85 cm in 2023; 57.87 cm in 2024), significantly 
exceeding other treatments.

Over both years, LAI exhibited a unimodal response to nitrogen 
under each irrigation level, peaking at N3 (Figure 3). In 2023, LAI 
showed a quadratic response to irrigation, reaching a maximum of 
2.60 under W2N3. In 2024, LAI increased significantly with irrigation, 
attaining 2.24 under W3N3.

FIGURE 1

Daily precipitation and mean temperature during the 2023–2024 growing seasons. Dashed lines indicate monthly averages.

TABLE 1 Basic physical and chemical properties of 0~60 cm soil in 
experimental farmland.

Year Soil 
death 
(cm)

Bulk 
density 
(g·cm−3)

organic 
matter 
(g·kg−1)

pH Conductivity 
(μS·cm−1)

2023

0–20 1.32 15.16 7.6 195.1

20–40 1.36 14.40 7.7 184.2

40–60 1.46 8.72 7.8 174.3

2024

0–20 1.64 22.01 7.5 213.5

20–40 1.65 16.14 7.7 206.4

40–60 1.34 13.94 7.9 195.2

https://doi.org/10.3389/fsufs.2025.1614074
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


He et al. 10.3389/fsufs.2025.1614074

Frontiers in Sustainable Food Systems 04 frontiersin.org

3.2 Changes in dry matter accumulation 
and distribution

Above-ground biomass (AGB) of relay-cropped soybean 
increased with irrigation under all fertility conditions (Figure 4). In 
both years, AGB exhibited a quadratic response to nitrogen 
application, peaking at N3, except under W3 irrigation in 2023. At the 

W3 irrigation level in 2023, AGB increased linearly with nitrogen 
application, peaking at N4 (W3N4 treatment).

During late-season growth, vegetative biomass accumulation 
(stems + leaves) decelerates as nutrients are substantially remobilized 
from vegetative to reproductive organs, driving rapid pod biomass 
growth. Total dry matter accumulation was significantly higher for 
W1N3, W2N3, and W3N4 than for the other treatments.

TABLE 2 Application of water and nitrogen application at full growth stage of relay-cropped soybean.

Treatment The amounts of drip irrigation Nitrogen application 
rate

P2O5 rate K2O rate

(m3·hm−2) (kg·hm−2) (kg·hm−2) (kg·hm−2)

VE-R1 R1-R3 R3-R5 R5-R7 R1-R3 R3-R5 R1-R5 R1-R5

W1N1 300 1,380 1,380 300 0 0

102 69

W1N2 300 1,380 1,380 300 48 57

W1N3 300 1,380 1,380 300 69 81

W1N4 300 1,380 1,380 300 90 105

W2N1 375 1725 1725 375 0 0

W2N2 375 1725 1725 375 48 57

W2N3 375 1725 1725 375 69 81

W2N4 375 1725 1725 375 90 105

W3N1 450 2070 2070 450 0 0

W3N2 450 2070 2070 450 48 57

W3N3 450 2070 2070 450 69 81

W3N4 450 2070 2070 450 90 105

The term “VE” denotes the soybean seedling phase. “R1” indicates the onset of soybean flowers stage. “R3” denotes the onset of soybean pod formation stage. “R5” signifies the onset of 
soybean grain development, while “R7” denotes the early maturation stage of soybeans.

FIGURE 2

Plant height of relay-cropped soybean under different water and nitrogen treatments. Different letters denote significant differences (p < 0.05) within 
the same year.
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3.3 Changes in photosynthetic 
characteristics

Chlorophyll SPAD values under different treatments are presented 
in Table 3. In 2023, SPAD values peaked under W2 (W3 > W1). In 
2024, SPAD values increased significantly with irrigation 
(W3 > W2 > W1). Across both years, SPAD values showed a quadratic 
response to nitrogen (initial increase followed by decrease), with values 
ranked N3 > N4 > N2 > N1. ANOVA indicated significant main effects 
of irrigation, nitrogen, year, and their three-way interaction on SPAD 
values (p < 0.05), but no significant irrigation × nitrogen interaction.

Figure 5 shows photosynthetic parameter changes in soybean 
leaves after 2 years of differential treatments. The net photosynthetic 
rate (Pn) consistently showed a quadratic response to nitrogen 
application across both years: increasing then decreasing. Values 
peaked under N3 (N3 > N4 > N2 > N1), reaching maxima at W2N3 
(30.3 μmol·m−2·s−1 in 2023; 25.58 μmol·m−2·s−1 in 2024).

The transpiration rate (Tr) generally increased with nitrogen 
application across irrigation levels, peaking at N4. However, under W3 
irrigation in 2024, Tr showed a parabolic response to nitrogen, 
peaking at N3 (8.88 μmol·m−2·s−1). In 2023, W2N4 recorded the 
highest Tr (10.66 μmol·m−2·s−1).

FIGURE 3

Leaf area index (LAI) of soybean under different water and nitrogen treatments. Different letters denote significant differences (p < 0.05) within the 
same year.

FIGURE 4

Dry matter weight and distribution proportion in the above-ground part of single soybean plants under different water and nitrogen treatments. 
Different letters denote significant differences (p < 0.05) for total dry matter within the same year.
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Stomatal conductance (Gs) typically exhibited a parabolic 
response to nitrogen application across years, peaking at N3. 
Exceptions occurred under W1 and W2 irrigation in 2023, where Gs 
increased linearly with nitrogen and peaked at N4.

Intercellular CO₂ concentration (Ci) generally showed inverse 
patterns to Gs. Trends varied by treatment: W3 (2023) & W1/W3 
(2024): Ci showed a U-shaped trend during growth progression. W1/
W2 (2023): Ci decreased with nitrogen application. W2 (2024): Ci 
increased with nitrogen application.

3.4 Changes in flowering and pod 
formation characteristics

Under consistent nitrogen application, both effective flower and 
pod numbers per plant exhibited a quadratic response to increasing 
irrigation over 2 years (initial increase followed by decrease; Table 4). 
Optimal values occurred at W2 irrigation, with W2 and W3 showing 
no significant difference. Under constant irrigation, pod numbers 
peaked at N3.

For flower numbers in 2023, N3 increased values by 15.06% 
versus N1 and 0.77% versus N4. In 2024, N3 produced 32.57% 
more flowers than N1, 13.14% more than N2, but 10.96% fewer 
than N4.

ANOVA indicated significant main effects of irrigation, nitrogen, 
and their interactions with year (p < 0.05) on reproductive parameters, 
but no significant irrigation × nitrogen interaction.

Flower and pod abortion patterns remained consistent across 
both years (Figure 6). The abortion rate showed a U-shaped response 
to irrigation: highest under W1, followed by W3 and W2. With 
increasing nitrogen application, abortion rates reached a minimum at 
N3, then increased in the order N1 < N2 < N4.

Total flowers and pods showed positive correlations with 
irrigation levels in both years (Figure 7). At W1 and W3 irrigation, 
flower numbers increased with nitrogen application. Under W2 
irrigation, flowers exhibited a quadratic response to nitrogen, 
peaking at N3.

Upper-canopy flowers consistently outnumbered lower-canopy 
flowers. In both years under W2N3: 2023: Flower numbers exceeded 
W2N1, W2N2, and W2N4 by 37.17, 10.03, and 4.25%, respectively. 
2024: Values surpassed W2N1, W2N2, and W2N4 by 45.41, 15.10, 
and 6.52%.

Pod numbers under W1/W2 irrigation showed quadratic 
responses to nitrogen (N3 > N4 > N2 > N1), while W3 showed linear 
increases. W2 level showed both the greatest temporal variation in 
pod development and the highest fertile pod numbers (W2N3: 25.67 
pods/plant in 2023; 30.67 in 2024).

3.5 Changes in the composition of yield 
and water-nitrogen use efficiency

Soybean yield components are presented in Table 5. At W1 and 
W2 irrigation, pod number per plant under N3 surpassed N1 and N2 
by 38.2–52.6% (p < 0.01) and N4 by 6.3–11.7% (p < 0.05). N4 
consistently reduced these components relative to N3. Under 
conventional irrigation (W3), values peaked at N4.

Analysis revealed: Significant main effects of nitrogen on all yield 
components (p < 0.05). Significant main effects of irrigation on all 
components except grain number per plant (p < 0.05). Significant 
water × nitrogen interactions for 100-grain weight and grain yield 
(p < 0.05).

Soybean yield responses are shown in Table 6. Under W1 and W2 
irrigation, grain yield showed a quadratic response to nitrogen, 
peaking at N3 (significantly different from other N levels: p < 0.05). 
N4 reduced yields relative to N3. At W3 irrigation, yields peaked at N4.

Optimal yields occurred at: W1N3: 3047.47 kg·ha−1 (2023); 
2795.83 kg·ha−1 (2024). W2N3: 4418.82 kg·ha−1 (2023); 
3909.17 kg·ha−1 (2024). W3N4: 4477.00 kg·ha−1 (2023); 
3941.83 kg·ha−1 (2024).

No significant yield difference existed between W2N3 and W3N4 
(p > 0.05). ANOVA indicated significant main effects of nitrogen, 
irrigation, year, and their interactions on yield (p < 0.05).

4 Discussion

4.1 Effect of water conservation and 
nitrogen application on growth and 
development

Growth metrics directly reflected the physiological responses of 
relay-cropped soybean to water and nitrogen inputs. Appropriate 
management enhances crop growth, while excess application inhibits 
development (Zhang et al., 2022). Studies confirm that moderate 
water and nitrogen increases promote soybean growth, elevating 
above-ground biomass and leaf area index (Liao et  al., 2022). 
However, excessive nitrogen prolongs vegetative growth, delays 
maturity, increases plant height, and suppresses reproductive 
structure development while raising lodging risk (Gebre and Earl, 

TABLE 3 Effects of different water and nitrogen combinations on 
chlorophyll SPAD value of relay-cropped soybean.

Treatment 2023 2024

Irrigation level

W1 37.22 ± 2.5b 37.04 ± 1.51a

W2 42.43 ± 1.21a 38.63 ± 2.19a

W3 38.81 ± 2.34b 39.14 ± 1.26a

Nitrogen level

N1 36.52 ± 2.99c 35.62 ± 0.42c

N2 38.83 ± 2.51bc 37.52 ± 1.11bc

N3 41.73 ± 1.71a 40.61 ± 1.09a

N4 40.86 ± 1.52ab 39.32 ± 1.63ab

Analysis of variance

W ***

N ***

Y ***

W × N ns

W × N × Y **

W = Irrigation level; N = Nitrogen level. Different lowercase letters within a column and 
factor indicate significant differences (P < 0.05). ns, *, **, *** represent non-significant or 
significant differences at p < 0.05, 0.01, and 0.001 levels, respectively.
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FIGURE 5 (Continued)
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2021; Lawlor et al., 2001). Our results align with predecessor (Chi 
et al., 2023): Moderate nitrogen reduction maintains soybean plant 
architecture while extending dry matter allocation to pods, thereby 
enhancing yield. Reproductive-stage nitrogen timing critically 
influences growth dynamics. Specifically, plant height, leaf area index, 
and above-ground biomass exhibited quadratic responses to nitrogen 
under W1/W2 irrigation, peaking at N3. Conversely, under W3 
irrigation, plant height peaked at N4, exceeding N3-level performance.

N3 optimized dry matter accumulation (Figure 4), likely due to 
enhanced nitrogen partitioning to reproductive organs under 
moderate resource constraints (Worku et al., 2012). In contrast, W3 
required higher nitrogen (N4) to achieve similar biomass, indicating 
luxury consumption. At W1 and W2 irrigation, N3 maximized dry 
matter accumulation. Coordinated reduction (W2N3) maintained 
vegetative and reproductive development, achieving yield parity with 
W3N4 while enhancing resource efficiency and grain yield potential.

4.2 Effects of water conservation and 
nitrogen application on photosynthetic 
characteristics

The leaf area index (LAI) reflects photosynthetic area size and 
indicates photosynthetic capacity (Adams et al., 2016; He et al., 2024). 
Enhanced photosynthetic parameters—including Pn, Tr, Gs, Ci, and 
chlorophyll content—improve photosynthetic efficiency and increase 
yield potential (Anten, 2005; Hu et al., 2020). Studies demonstrate 
that: At fixed irrigation levels, soybean photosynthetic parameters 
increase with nitrogen application to an optimal threshold, beyond 
which excess nitrogen reduces chlorophyll concentration and Pn (Gai 
et al., 2017b). Under optimal nitrogen, photosynthetic parameters 
increase with irrigation but decline with excessive water (He et al., 
2017). Our findings align with this pattern: photosynthetic parameters 
(Pn, Tr, Gs) decreased or stabilized across treatments except W2N3, 
which showed significant increases. This response correlates with 
chlorophyll dynamics, which naturally decline during maturation 
(Locke and Ort, 2014). Moderate water and nitrogen reduction may: 
Maintain leaf integrity and delay senescence. Sustain photosynthetic 
activity (Shafii et al., 2011). Offset yield losses while improving water/
nitrogen use efficiency (Ru et al., 2022).

Soybean under W2N3 achieved optimal photosynthetic efficiency 
at R6, outperforming W3N4 and other treatments. Reduced inputs 
(relative to high-input regimes) prolonged leaf functional lifespan, 
maintained higher green leaf area at R6, and sustained superior 

FIGURE 5

Photosynthetic parameters of relay-cropped soybean leaves: net photosynthetic rate (Pn), transpiration rate (Tr), intercellular CO₂ concentration (Ci), 
and stomatal conductance (Gs). Different letters denote significant differences (p < 0.05) within the same year and irrigation level.

TABLE 4 Effects of different water and nitrogen combinations on 
flowering and its components of relay-cropped soybean.

Factor Number of fertile 
flowers per plant 

(pcs)

Number of fertile 
pods per plant (pcs)

2023 2024 2023 2024

Irrigation level

W1 28.75c 35.3c 16.00b 19.50b

W2 37.75ab 41.3ab 21.45a 24.65a

W3 39.4a 44.1a 21.20a 23.80a

Nitrogen level

N1 28.06c 30.27d 14.87c 16.67c

N2 34.07b 35.47c 18.6b 19.50b

N3 39.2a 40.13b 22.93a 24.83a

N4 38.9a 45.07a 21.8a 23.88a

Analysis of variance

W *** ***

N *** ***

Y ns ns

W × N ns ns

W × N × Y ** **

See Table 3 for statistical notation. Different letters within a column and factor indicate 
significant differences (p < 0.05).
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photosynthetic capacity, enhancing yield potential while 
conserving resources.

4.3 Effects of water conservation and 
nitrogen application on photosynthetic 
characteristics

The effective number of flower pods is a key indicator of soybean 
yield (Board and Kahlon, 2011). Reduced irrigation decreases floral 
node formation and promotes flower abscission (Atti et al., 2004). 
Fertilizer application combined with increased irrigation enhances pod 
development in soybeans (Basal and Szabo, 2020), consistent with our 
findings. Fertile flower counts in W1 and W2 were significantly lower 
than in W3 by 27.03 and 5.46%, respectively. Fertile pods decreased by 
24.53% in W1 compared to W3 but increased by 1.18% in W2. This 
reversal resulted from excessive irrigation in W3 prolonging vegetative 
growth, thereby shortening the reproductive phase and increasing 
flower abortion. Nitrogen application significantly reduced floral 
abscission, explaining the enhanced pod formation under optimized 
W2 inputs. Furthermore, elevated nitrogen rates under reduced 
irrigation stimulate soybean pod formation (Kinugasa et al., 2012; Li 

et al., 2024). Similarly, relay-cropped soybean exhibited significantly 
higher fertile flower and pod counts at N3 and N4 nitrogen levels than 
at N1 and N2 (p < 0.05). While fertile flower numbers did not differ 
significantly between N3 and N4 (p > 0.05), pod counts were 
significantly higher (p < 0.05). This divergence may result from 
excessive nitrogen inhibiting pod development (Ohyama et al., 2017).

4.4 Effects of water conservation and 
nitrogen application on yield and yield 
components

Crop growth and development depend on synergistic water-
nitrogen interactions. Imbalanced inputs compromise both yield and 
quality (Du et  al., 2017), making optimal water-nitrogen ratios 
essential. Appropriate irrigation enhances nitrogen-use efficiency 
(NUE), while balanced nitrogen application maximizes water-use 
efficiency (WUE) (Liu et  al., 2020; Ye et  al., 2013). Prior research 
confirms that nitrogen application rates must be adjusted precisely 
according to irrigation levels to maximize soybean yield (Sun 
et al., 2012).

FIGURE 6

Soybean floral pod abscission rate under different water and nitrogen treatments.

https://doi.org/10.3389/fsufs.2025.1614074
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


He et al. 10.3389/fsufs.2025.1614074

Frontiers in Sustainable Food Systems 10 frontiersin.org

In this experiment, under consistent irrigation, all three yield 
components of relay-cropped soybean—pods per plant, grains per 
plant, and 100-grain weight—exhibited quadratic responses to 
increasing nitrogen, peaking at the N3 application rate. These findings 
align with previous studies showing that under water-limited 
conditions (W1/W2), nitrogen application increases both yield index 
(YI) and water-nitrogen use efficiency (WNUE). Conversely, excessive 
irrigation (W3) impairs nitrogen efficacy, reducing soybean yield and 
WNUE (Purcell and King, 1996; Ray et al., 2006; Salvagiotti et al., 
2008; Tamagno et al., 2018).

Relay-cropped soybean yield was optimal under W2N3 and 
W3N4 treatments, reaching 4477.00 and 4418.82 kg·hm−2 in 2023, and 
3909.17 and 3941.83 kg·hm−2 in 2024, respectively. The yield parity 
between W2N3 and W3N4 demonstrates that resource conservation 
need not compromise productivity (Zhou et al., 2011b). Reducing 
inputs conserves resources while maintaining comparable yields with 
higher water-nitrogen utilization efficiency.

5 Implications for soil health and 
sustainability

The demonstrated benefits of the W2N3 regime (16.6% water 
saving, 23.1% N reduction) on soybean productivity and resource use 
efficiency hold significant promise not only for farm economics but 

also for environmental sustainability, particularly concerning soil 
health. Reducing nitrogen fertilizer inputs (N3 vs. N4) directly lowers 
the risk of residual soil nitrate accumulation, thereby mitigating 
potential leaching to groundwater and emissions of nitrous oxide 
(N2O)(Min et al., 2012; Yang et al., 2017; Lu et al., 2021). Concurrent 
water reduction (W2 vs. W3) decreases the total salt load introduced 
via irrigation water—a critical consideration in Xinjiang’s arid, 
evaporative environment where secondary salinization is a persistent 
threat (Liu et al., 2012; Wang Q. et al., 2016). While drip irrigation 
(used in this study) offers superior control over water and salt 
movement compared to flood methods, careful monitoring of root 
zone salinity under reduced irrigation remains essential.

Furthermore, sustaining high crop biomass production, as 
achieved under W2N3, ensures substantial inputs of root residues and 
senesced plant material into the soil. Although direct soil health 
parameters were not measured, the high crop biomass under W2N3 
(Figure 4) suggests potential for increased organic matter input, which 
may improve soil structure and carbon sequestration (Novelli et al., 
2017; Shahbaz et al., 2017). Adequate, but not excessive, water and 
nitrogen availability (as in W2N3) generally supports microbial 
communities responsible for nutrient cycling and organic matter 
stabilization. In contrast, severe water stress (W1) can suppress 
microbial activity, while excessive N (N4) might accelerate SOC 
mineralization in some contexts (Bogati and Walczak, 2022; Li G. et al., 
2021; Murphy et al., 2017).

FIGURE 7

Soybean flower number and pod number dynamics under different water and nitrogen treatments. Different letters denote significant differences 
(p < 0.05) for total flowers/pods within the same year and canopy position.
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TABLE 5 Effects of different water and nitrogen combinations on yield-related traits of relay-cropped soybean.

Treatment Pod number per plant (pcs) Grain number of single plant 
(pcs)

Weight of 100-seeds (g)

2023 2024 2023 2024 2023 2024

W1N1 8.20 ± 1.54e 23.00 ± 0.82de 28.00 ± 4.40de 40.33 ± 1.7d 16.19 ± 0.24f 14.18 ± 0.38ef

W1N2 11.90 ± 2.43de 25.00 ± 1.41de 28.80 ± 4.17cde 45.33 ± 2.49c 16.59 ± 0.25ef 16.20 ± 0.52bcd

W1N3 17.60 ± 2.20bc 29.00 ± 2.94bc 36.90 ± 4.82abc 56 ± 3.74b 20.10 ± 0.19b 16.72 ± 1.21bc

W1N4 16.20 ± 3.09bc 26.33 ± 1.25de 35.10 ± 6.68abcd 55.33 ± 3.09b 18.31 ± 0.27 cd 15.26 ± 0.86de

W2N1 11.30 ± 1.27de 24.00 ± 2.16de 31.50 ± 5.93bcde 47.67 ± 2.87c 17.98 ± 0.32d 15.62 ± 1.11cde

W2N2 14.10 ± 3.36 cd 27.00 ± 2.94bc 33.40 ± 6.95bcde 65 ± 1.41a 18.73 ± 0.15c 13.08 ± 0.28f

W2N3 22.60 ± 3.24a 30.33 ± 0.94ab 42.20 ± 7.25a 68 ± 0.82a 20.87 ± 0.36a 19.17 ± 0.66a

W2N4 17.60 ± 2.20bc 23.33 ± 0.47de 38.50 ± 8.25ab 59 ± 2.45b 18.78 ± 0.13c 19.81 ± 0.83a

W3N1 10.60 ± 1.74de 22.00 ± 1.70e 25.70 ± 3.52e 54.67 ± 1.7b 16.99 ± 0.22e 13.07 ± 0.66f

W3N2 11.10 ± 3.30de 24.33 ± 2.94de 31.90 ± 4.93bcde 53.67 ± 2.05b 17.70 ± 0.14d 15.02 ± 0.53e

W3N3 17.80 ± 2.38bc 29.00 ± 1.41bc 38.00 ± 8.06ab 57.67 ± 1.7b 18.99 ± 0.13c 17.01 ± 0.31b

W3N4 20.00 ± 3.00ab 34.00 ± 2.16a 42.60 ± 8.30a 67 ± 2.16a 20.90 ± 0.74a 19.64 ± 0.83a

Analysis of variance

W ** ns **

N ** ** **

Y ns ns ns

W × N ns ns **

W × N × Y ** ** ***

See Table 3 for statistical notation. Different lowercase letters within a column indicate significant differences (P < 0.05).

TABLE 6 Effects of soybean crop yield and water-nitrogen use efficiency on the efficacy of different treatments in varying years.

Treatment Yield (kg·hm−2) WNUE (%)

2023 2024 2023 2024

W1N1 2650.53 ± 91.42def 1714.17 ± 34.3f 0 0

W1N2 2849.66 ± 46.86cde 2200.20 ± 80.96e 23.024 ± 0.75c 13.74 ± 1.01bc

W1N3 3047.47 ± 98.46bcd 2795.83 ± 46.74c 18.45 ± 1.18b 15.51 ± 0.52de

W1N4 2828.52 ± 35.74cde 2530.15 ± 157.18d 12.21 ± 0.31e 9.81 ± 1.25f

W2N1 2441.51 ± 134.34ef 2224.75 ± 47.15e 0 0

W2N2 3294.30 ± 230.13b 2550.10 ± 23.54d 24.73 ± 3.46bc 14.75 ± 0.27b

W2N3 4418.32 ± 246.99a 3909.17 ± 121.76a 31.91 ± 3.44a 24.28 ± 1.53a

W2N4 3450.20 ± 471.40b 3500.83 ± 16.50b 14.81 ± 3.85bc 14.96 ± 0.14ef

W3N1 2317.53 ± 113.70f 2140.03 ± 49.67e 0 0

W3N2 2767.28 ± 20.17cde 2415.17 ± 65.68d 14.47 ± 0.21de 11.03 ± 0.6ef

W3N3 3168.43 ± 10.55bc 2940.83 ± 54.63c 13.28 ± 0.09d 11.44 ± 0.43f

W3N4 4477.00 ± 46.13a 3941.83 ± 47.49a 19.87 ± 0.42b 15.81 ± 0.38 cd

Analysis of variance

W *** ns

N *** ***

Y *** **

W × N *** ***

Y × W × N *** *

WNUE, Water-Nitrogen Use Efficiency. See Table 3 for statistical notation. Different lowercase letters within a column indicate significant differences (P < 0.05).
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We acknowledge that this study focused on plant responses and 
did not directly measure changes in soil physicochemical properties 
(e.g., SOC, salinity, mineral N residues), microbial biomass, or 
community structure. Therefore, the discussed soil health implications 
are inferred from treatment effects on plant growth and established 
soil science principles. To conclusively evaluate the long-term 
sustainability and environmental footprint of the W2N3 water-
nitrogen management strategy, future research must incorporate 
comprehensive monitoring of key soil health indicators, including 
SOC dynamics, nutrient balances (especially nitrogen), salinity levels, 
and microbial functional diversity, over multiple cropping cycles.

5.1 Economic feasibility and farmer 
adoption potential

W2N3 demonstrates compelling economic viability for Xinjiang 
farmers. Direct cost reductions of 483.91 CNY·hm−2 —primarily from 
water (210.00 CNY·hm−2) and nitrogen fertilizer (273.91 CNY·hm−2) 
savings—outweighed minor yield-related revenue losses (75.12–133.81 
CNY·hm−2), generating a net profit gain of 350.10–408.79 CNY·hm−2 
(urea: 2,800 CNY·t−1; water: 0.25 CNY·m−3). These water savings can 
be achieved using existing drip irrigation infrastructure, widely used 
in Xinjiang (Li et al., 2022; Lin et al., 2024; Wang et al., 2018). Scaled to 
Shihezi City’s 13,400 hectares of wheat fields suitable for soybean relay-
cropping, W2N3 could reduce regional water withdrawals by 11,300 m3 
annually while maintaining near-equivalent soybean production.

6 Conclusion

This two-year study demonstrates that reducing irrigation by 
16.6% (4,200 m3·hm−2) and nitrogen by 23.1% (150 kg·hm−2) in 
post-wheat relay-cropped soybean (W2N3 regimen) enhances 
photosynthetic efficiency and pod formation while maintaining 
yield (≤1.32% reduction vs. conventional W3N4). It boosts 
economic viability through reduced water and fertilizer costs (net 
profit increase: 350.10–408.79 CNY·hm−2) and demonstrates 
scalability in Xinjiang’s drip-irrigated systems. W2N3 is 
recommended as an optimal strategy for balancing yield, resource 
conservation, and economic returns in arid regions.
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