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Early maturing rice varieties are crucial for climate-resilient agriculture, yet nitrogen 
optimization in these varieties remains under-explored. Most existing studies focus 
on conventional varieties and lack an integrated approach combining agronomic 
traits, remote sensing, and statistical modeling. The objective of this study was to 
determine evaluation criteria and develop a model to predict the productivity of 
short-season rice varieties. Experiments were conducted in different seasons at 
two locations in Sidenreng Rappang and Maros, South Sulawesi, using a nested 
split-plot design with three replicates. The main plots consisted of five nitrogen 
levels, while the subplots included five early maturing rice varieties and two 
moderate age as control. Key findings of this study is that the stepwise regression 
model combining NDVI and yield per clump showed strong performance, with 
R2 = 0.65/0.73, RMSE = 0.65/0.61, and MAPE = 9.72%/10.81% for training/testing, 
respectively. This regression model effectively evaluates how rice growth responds 
to varying nitrogen fertilizer doses, particularly in early-maturing varieties. Therefore, 
it can be reliably used to predict the future yield of these varieties.
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1 Introduction

Rice is a crucial cereal crop, alongside wheat and maize, and serves as a primary food source 
for more than 50% of the global population, particularly in Asia, where it is a dietary staple 
(Ashraf et al., 2024). The importance of rice is further emphasized by the fact that the five 
leading rice-producing countries are all located in Asia, including the three most populous 
nations (Schneider and Asch, 2020). This underscores the vital role that rice plays in ensuring 
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global food security (Jamal et al., 2023). However, rice production is 
facing substantial challenges due to population growth and climate 
change (Hashim et al., 2024), which have contributed to a decline in 
optimal agricultural land (Nazir et al., 2024). These factors threaten 
food availability worldwide. Consequently, countries—especially in 
Asia—actively pursue initiatives to enhance food security and 
sovereignty through intensified rice production efforts. The 
development of rice intensification in response to climate change can 
be  achieved by selecting appropriate varieties and fertilization 
technologies. Variety selection plays a crucial role in optimizing genetic 
potential during the cultivation process (Zhang J. et  al., 2024). 
Generally, the choice of varieties and quality seeds can determine 
production potential by as much as 45–60%, making variety selection 
one of the key aspects of rice cultivation (Musa et al., 2023). This is 
particularly important when crops are intended to adapt to dynamic 
climate changes (Li et al., 2024).

Climate change can negatively impact rice growth and production, 
so selecting well-suited varieties is essential (Bacelar et al., 2024). One 
approach to variety development in response to climate change, especially 
concerning rainfall patterns, is to create early maturing rice varieties 
(Musa et al., 2023; Anshori et al., 2024b). Early maturing varieties have a 
shorter lifespan, which helps plants avoid significant stress due to 
unpredictable rain patterns (Rezvi et al., 2023). This concept has been 
supported by several studies, which have focused mainly on rice plants 
(Musa et al., 2023; Anshori et al., 2024a,b). In Indonesia, several early 
maturing rice varieties have been developed, including Cakrabuana 
(Noviana et al., 2021; Musa et al., 2023; Anshori et al., 2024a,b), Inpari 19 
(Mu’min et  al., 2024), Padjajaran (Musa et  al., 2023; Anshori et  al., 
2024a,b), Inpari 13 (Anshori et al., 2024a,b), and M70D (Sutrisna et al., 
2024). Early maturing rice varieties have distinct growth patterns and 
shorter developmental phases, which can alter nutrient uptake dynamics 
compared to longer-duration varieties. As a result, standard nitrogen 
recommendations may not be  suitable, and specific optimization 
strategies are needed to match their accelerated life cycle (Musa et al., 
2023; Anshori et al., 2024a,b). This is especially true when comparing 
moderate aged rice of different types to early maturing varieties. Some 
moderately aged rice varieties focus on increasing the number of seeds 
per panicle, resulting in distinct characteristics (Dwiningsih, 2023; Hang 
et al., 2024). Owing to these differences in growth patterns and fertilization 
needs, there is a pressing need to develop fertilization technologies to 
optimize the production of early maturing rice varieties.

The optimization of fertilization technology for early maturing rice 
can be  achieved through several approaches, one of which involves 
adjusting nitrogen fertilization dosages. Nitrogen is an essential 
macronutrient for plant growth (Musa et al., 2023). It plays a crucial role 
in processes such as protein and enzyme formation, cell division, 
chloroplast development, and various metabolic activities (Jiang et al., 
2024). These functions make nitrogen a vital component in supporting 
rice growth (Shrestha et al., 2020). However, there is an optimal threshold 
for nitrogen application. If the nitrogen content of a plant is below this 
threshold, its growth will slow, leading to a decline in productivity (Zhang 
X. et  al., 2024). Conversely, excessive nitrogen can increase the 
susceptibility of rice plants to disease (Zhang et al., 2022) and increase the 
risk of cracking (Zhang et  al., 2020). This can negatively impact 
productivity, as excess nitrogen may divert potential assimilates away 
from productive growth.

Different crops, growth types, and varieties present varying 
thresholds for nitrogen tolerance (Ding et  al., 2021). Thus, 

understanding the appropriate nitrogen fertilization pattern for early 
maturing rice is crucial for effective cultivation. Comprehensive 
studies on the genetic interactions related to nitrogen fertilization are 
necessary. This research must be  conducted systematically and 
thoroughly. Additionally, the evaluation process should 
be straightforward to facilitate accurate assessments, making precision 
patterns essential for analysis. One approach that can be used is the 
modeling of rice plants. Modeling can be  used to predict the 
characteristics of a complex main character on the basis of a set of 
secondary characters (Ashraf et  al., 2024). This approach is also 
applicable to crops, where productivity is influenced by various 
supporting components or independent characteristics (Anshori et al., 
2021; Wijayanti et  al., 2024). The concept of modeling has been 
extensively applied in crop evaluation processes, including fertilizer 
technology (Gao et  al., 2023). A key factor in the effectiveness of 
modeling is the selection of secondary criteria and the development 
of the model itself (Chakrabarty et al., 2024).

Agronomic criteria are among the most commonly used criteria 
in crop modeling. Productivity results from an accumulation of 
various agronomic criteria, making it familiar to use these metrics in 
modeling (Tang et al., 2024). However, relying solely on agronomic 
characteristics is often considered inadequate. The incorporation of 
alternative criteria, such as the vegetation index, can increase the 
precision and accuracy of models. The vegetation index is a parameter 
that helps identify the potential performance of plants through color 
image processing and is applied to both individual plants and 
populations (Ortiz-Torres et al., 2024). This effectiveness has also been 
demonstrated in rice (Indriasari et al., 2024). However, these studies 
focused on conventional rice and were lacking integration with 
predictive models. In contrast, this study focused on early maturing 
rice varieties and combined vegetation index obtained from UAVs 
with agronomic traits and BLUE estimates to develop a reliable yield 
prediction model across the nitrogen gradient.

The role of the vegetation index in evaluating early maturing rice 
varieties has not been thoroughly investigated, particularly regarding 
its interaction with nitrogen fertilization. Additionally, integrating the 
vegetation index with agronomic criteria has yet to be explored in 
depth. Therefore, combining agronomic criteria and the vegetation 
index presents a promising opportunity for modeling the interaction 
of early maturing rice varieties with nitrogen fertilization doses. The 
assessment of model effectiveness is closely linked to the process of 
model development (Fikri et al., 2023a). This involves several statistical 
techniques, including the best linear unbiased estimator (BLUE) and 
multivariate analysis. BLUE is a method that optimizes the fixed 
potential of a factor while minimizing the random influences resulting 
from variations in a dataset (Croci et  al., 2023). This approach is 
essential for reducing the chances of underestimating or overestimating 
predictions made by the model (Chan et al., 2022). The application of 
the BLUE concept in crop evaluation has been documented 
(Kleinknecht et al., 2013; Alvarado et al., 2020). On the other hand, 
multivariate analysis serves to partition, reduce, or simplify the 
variances within large dimensions of data (Abduh et al., 2021). This 
technique allows for easier identification of key characters that 
significantly contribute to data diversity concerning a primary 
character (Fikri et al., 2023b). The use of multivariate analysis has been 
reported frequently, particularly in rice studies (Farid et  al., 2021; 
Anshori et al., 2024a,b; Nasaruddin et al., 2024). While both BLUE and 
multivariate analyses hold promise for establishing evaluation criteria, 
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the combined use of these methods has not been extensively reported, 
especially regarding early maturing rice varieties. Integrating BLUE 
analysis with multivariate analysis is anticipated to enhance the 
development of a model that effectively evaluates the responses of early 
maturing rice varieties to varying nitrogen fertilization doses.

Therefore, this study has two main objectives: (1) to establish 
evaluation criteria and develop a predictive model for short-season 
rice productivity using agronomic traits and vegetation indices 
through BLUE analysis and multivariate analysis, and (2) to compare 
the effectiveness of these models in capturing the interaction patterns 
between rice varieties and nitrogen fertilization doses.

2 Materials and methods

2.1 Site description

The research was conducted at two locations during different 
seasons in Sidenreng Rappang and Maros Regency, South Sulawesi 
Province, Indonesia (Figure 1). The first environment was in Uluale, 
Wattang Pulu District, Sidenreng Rappang Regency, 10 m above sea 
level, with coordinates 03°90,507″S 119°74,614″E. This research was 
conducted from June to September 2023, with an average rainfall 

value of 92 mm/day, classified as low. In contrast, the second study was 
conducted from May to August 2024 at the Experimental Farm of the 
Agency for Standardization of Agricultural Instruments (BSIP), 
Allepolea Village, Lau District, Maros Regency, at an altitude of 3 m 
above sea level, with coordinates of 4°58′55.8″S 
119°34′27.9″E. Sidenreng Rappang and Maros Regency were selected 
to represent contrasting lowland rice agroecosystems in South 
Sulawesi. Sidenreng Rappang has alluvial soils, moderate fertility, and 
low rainfall during the dry season (Alfath, 2023; Hidayah et al., 2021). 
Farmers typically followed conventional practices with locally timed 
nitrogen application. In contrast, Maros lies near the coast, with 
higher humidity, silty clay loam soils, and greater rainfall (Safitri et al., 
2021; Saleng et al., 2025). Cultivation was more technology-driven, 
with certified seeds and synchronized planting schedules. These 
contrasting conditions provided a diverse environmental basis for 
evaluating varietal responses and model robustness (Li et al., 2016).

2.2 Experimental design

This study was designed with a nested split-plot design, where the 
replicates were nested in the environment. The main plot at each 
location consisted of five levels of nitrogen (0, 50, 100, 150, and 

FIGURE 1

Studies location and condition in South Sulawesi.
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200 kg·ha−1). The subplots included seven varieties consisting of five 
early maturing rice varieties (Cakrabuana, Inpari 13, Inpari 19, 
Padjajaran Agritan, and M70D) and two as controls (Ciherang and 
Inpari 32) for moderately maturing rice. Each combination from each 
location was repeated three times, resulting in 210 experimental units. 
Each experimental unit had a plot size of 12 m2.

2.3 Plant materials characteristic

2.3.1 Early maturing rice varieties
Cakrabuana is a mutant-derived rice cultivar developed through 

gamma irradiation of the Inpari 13 variety, utilizing induced 
mutagenesis to enhance targeted phenotypic traits. Cakrabuana is an 
early maturing rice variety characterized by a relatively short growth 
duration of approximately 104 days from planting to harvest, though 
it may reach maturity in under 100 days under optimal tropical 
conditions. The plants exhibit an upright growth habit, with an average 
stature of around 105 cm. Agronomically, Cakrabuana demonstrates 
high yield potential, producing an average of 7.5 tons·ha−1. Inpari 13, 
from which Cakrabuana was originally derived, is a high-yielding 
variety developed through a cross between OM606 and IR18348-36-
3-3. It also displays a short growth cycle of about 103 days, and similar 
to Cakrabuana, may mature earlier under high-temperature tropical 
conditions. The variety is characterized by a sturdy, slightly rough and 
upright leaves. Inpari 13 can produce an average yield of 6.59 tons 
ha−1, with maximum yield potential reaching up to 8 tons ha−1 
(Balitbangtan, 2021; Baharuddin et al., 2025).

Inpari 19 and Padjadjaran Agritan are two early maturing rice 
varieties that have shown promising performance under lowland 
conditions. Inpari 19, derived from a cross between BP342B-MR-1-3 
and BP226E-MR-76, completes its growth cycle in about 104 days. It 
grows upright with good resistance to lodging and delivers an average 
yield of 6.7 tons ha−1, with potential production reaching up to 9.5 
tons ha−1 in optimal conditions. Meanwhile, Padjadjaran Agritan, 
which was developed through a hybridization of Inpari 5 and IR66, 
matures around 105 days after planting and features a moderately 
erect plant stature. It typically grows to 97 cm and has good 
standability in the field. Yield potential is slightly higher than Inpari 
19, averaging 7.8 tons ha−1 under standard conditions and reaching up 
to 11 tons ha−1 with improved management (DPKP DIY, 2023).

M70D is a lowland rice variety resulting from the cross between 
Genjah Rawe Malang and Cempo Banyuwangi. It has an upright 
growth form and a remarkably short growth cycle, reaching maturity 
in just 70 days after planting. The variety delivers a strong yield 
performance, averaging 7.6 tons ha−1, and can achieve up to 9.4 tons 
ha−1 under favorable conditions. M70D is tolerant to lodging and 
offers good resistance against brown planthopper and rice tungro 
virus, making it ideal for intensive, quick-rotation cropping systems. 
It is best adapted to lowland environments, particularly at elevations 
ranging from 0 to 300 m above sea level (DPKP DIY, 2023).

2.3.2 Moderately maturing rice varieties
Ciherang is a rice variety developed through a complex cross 

involving IR18349-53-1-3-1-3/3IR19661-131-3-1-3//4IR64. It has a 
growth duration ranging from 116 to 125 days after transplanting. The 
plants exhibit an erect growth habit and are well adapted to both wet 
and dry seasons, particularly in lowland areas situated below 500 m 

above sea level. Under optimal conditions, Ciherang typically yields 
between 5 and 7 tons ha−1 (DPKP DIY, 2023). Inpari 32 is a high-
yielding variety derived from a cross between Ciherang and IRBB64. 
It matures approximately 120 days after direct seeding and produces 
upright plants with strong structural traits. The average yield of Inpari 
32 is around 6.30 tons ha−1, with a maximum potential yield reaching 
up to 8.42 tons ha−1. This variety is highly suitable for cultivation in 
lowland paddy fields (DPKP DIY, 2023).

2.4 Crop cultivation and field management 
procedures

This experiment followed the standard rice cultivation protocol 
established by the Rice Plant Standardization and Instrumentation 
Agency. Land preparation included two plowings and flooding. Seeds 
were soaked for 24 h, then germinated for an additional 24 h, and then 
planted in seedbeds according to variety. A mixture of ZA and Furadan 
fertilizers was applied at a rate of 10 g/m2 to the seedbed. Seedlings were 
transplanted to prepared soil on the 20th day after planting, with a 
planting distance of 20 × 20 cm, totaling 300 plants per plot. Routine 
crop management included replanting (within two weeks), mechanical 
and chemical weed control (glyphosate application at weeks 3 and 6), 
and irrigation according to growth stage. The vegetative phase followed 
the alternate wetting and drying (AWD) method, while the generative 
phase was irrigated weekly until 80% panicle maturity (IRRI, 2016). 
Fertilization is carried out in three separate applications: 7, 28, and 
35 days after planting. Phosphate (P2O5) and potassium were each 
applied at 100 kg·ha−1, while nitrogen doses vary according to treatment 
(Table 1). Pest and disease control included molluscicide spraying for 
snails, plastic barriers for rats, and insecticide and fungicide applications 
tailored to each plot. Harvesting began when two-thirds of the panicles 
reached physiological maturity. Manual harvesting, threshing, and 
packaging were carried out, and agronomic data were collected before 
and after harvest based on predetermined parameters.

2.5 Observation parameters and data analysis

The observed data included agronomic criteria and vegetation 
indices. The agronomic characteristics measured were plant height 
(cm), number of tillers (stems), number of productive tillers (stems), 
flag leaf length (cm), flag leaf width (cm), days to flowering (day after 
planting (DAP)), days to harvest [day after planting (DAP)], panicle 
length (cm), number of grains per panicle (grains), percentage of filled 

TABLE 1  Nitrogen application dosage.

Nitrogen 
doses

Doses per plot (g) Total

I (1 
WAP)

II (4 
WAP)

III (5 
WAP)

200 kg·ha−1 (n4) 266 200 200 666

150 kg·ha−1 (n3) 200 150 150 500

100 kg·ha−1 (n2) 133 100 100 333

50 kg·ha−1 (n1) 67 50 50 167

Control (n0) 0 0 0 0

WAP, week after planting.
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grains per panicle (%), panicle density (grains/cm), weight of 100 
grains (g), yield per clump (g), and yield per hectare (tons·ha−1). All 
parameters were observed using 10 plants per plot, except yield per 
hectare. The vegetation indices observed included the normalized 
difference vegetation index (NDVI), normalized green and red 
difference index (NGRDI), and visible atmospherically resistant index 
(VARI). Technical aspects of vegetation index observations were 
suited by Fikri et al. (2023a), which were modified.

2.6 Vegetation index measurement

The drone used in this experiment was the DJI P4 Multispectral, 
equipped with The Phantom 4 Multispectral (P4M) is equipped with a 
six-camera imaging system, consisting of one RGB camera and a 
multispectral array of five cameras. Each camera features a 1/2.9-inch 
CMOS sensor, capturing specific spectral bands including blue 
(450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge 
(730 ± 16 nm), and near-infrared (840 ± 26 nm). Images were captured 
at a flight altitude of 50 meters above the ground surface. The raw 
imagery was processed into high-resolution orthomosaics using 
Agisoft Metashape, which included photogrammetric reconstruction 
and atmospheric correction. The resulting outputs were georeferenced 
and exported in GeoTIFF (.tif) format for further analysis. It was then 
analyzed using ArcGIS Pro software. The ortho-mosaic image was 
segmented according to the experimental plot plan. To evaluate 
vegetation characteristics from drone-acquired imagery, three 
vegetation indices were computed using reflectance data from specific 
spectral bands. These bands were extracted from the multispectral or 
RGB images after pre-processing. After that, the segmentation results 
were analyzed according to the expected vegetation index (Table 2). A 
general view of the vegetation index analysis is shown in Figure 2.

2.7 Statistical and predictive modeling 
approach

Statistical analysis was performed using R version 4.3.1. The 
observed data were first analyzed using analysis of variance (ANOVA) 
to identify traits that were significantly influenced by environmental 
variation and genotype. To minimize environmental effects and 
replication, the Best Linear Unbiased Estimator (BLUE) values were 
calculated using the Rstudio with agricolae package, with a focus on 
fixed genotype effects. Traits showing a strong relationship with yield 
were identified through correlation analysis and further evaluated 
using multivariate techniques such as factor analysis and path analysis 
to determine key predictors of productivity.

For predictive modeling, three regression approaches, stepwise, 
ridge, and LASSO, were applied using the glmnet and caret packages. 
Model selection was based on prediction accuracy, simplicity, and 
multicollinearity diagnostics. Stepwise regression was prioritized due 
to its optimal balance between readability and performance. Regression 
analysis began with agronomic traits, followed by the addition of 
vegetation indices to enhance predictive power. All models were 
trained using data from two replicates (65%) and tested on one 
replicate (35%), based on pooled data across multiple rice varieties. 
Assumptions such as residual normality and multicollinearity were 
evaluated, and model performance was assessed using R2, RMSE, and 
MAPE to validate the robustness of the final model.

Once the productivity prediction model was constructed, the 
prediction criteria were analyzed for their interaction with actual 
productivity through 3D plot analysis. This analysis aimed to explore 
the response patterns of each variety with respect to the three 
evaluation criteria. Data from both locations were combined into a 
single dataset. From each experimental unit, two out of three 
replications were used to form the training set, while the remaining 
replication was allocated for testing. This method allowed for a 
representative training process while maintaining independent data 
for model validation. After evaluating the model for both 
performance and interaction, it was compared with actual 
productivity to understand the interaction response between 
varieties and different nitrogen fertilization dosages. Linear 
regression analysis was also employed to investigate these interaction 
patterns. Overall, this comprehensive approach was crucial for 
assessing the effectiveness of the model developed to predict the 
interaction patterns of early maturing rice varieties in response to 
nitrogen fertilization.

3 Results

3.1 Estimation of agronomic 
character-based evaluation criteria for the 
interaction of nitrogen dose and genetics 
of early maturing rice varieties

The analysis of variance revealed a varied pattern of significant 
effects of sources of diversity on rice growth parameters (Table 3). 
The single effect of the environment significantly affected the number 
of total tillers, number of productive tillers, flowering age, harvesting 
age, flag leaf width, panicle density length, 100-grain weight, yield per 
clump, and productivity. A single source of variation in nitrogen 
fertilizer dose significantly affected all growth characteristics, except 
flowering age, harvest age, and panicle density. The interaction effect 
of environment and nitrogen dose significantly affected the total tiller 
number, productive tiller number, flag leaf width, panicle length, 
100-grain weight, and productivity. The single source of diverse 
varieties and their interaction with the environment significantly 
affected all the rice growth characteristics. The source of diversity of 
the interaction of nitrogen dose and variety had a significant effect 
on almost all the characteristics, except flowering age, harvest age, 
flag leaf length, and panicle length. Moreover, the source of diversity 
of the interaction between the three variables (ExNxV) also had a 
significant effect on almost all growth characteristics, except plant 
height, harvest age, and panicle length.

TABLE 2  Vegetation indices applied in multispectral image analysis.

Vegetation index Equation Reference

Normalized Difference 

Vegetation Index (NDVI)
(NIR − R)/(NIR + R) Zhao and Qu (2024)

Normalized Green-Red 

Difference Index (NGRDI)
(G − R)/(G + R) Coswosk et al. (2024)

Visible Atmospherically 

Resistant Index (VARI)
(G − R)/(G + R + B) Coswosk et al. (2024)

NIR, Near-Infrared; R, Red; G, Green; B, Blue.
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The heritability data supported the analysis of variance 
data to determine the genetic potential (Table 3). Based on this 
potential, the number of productive tillers, flowering age, 
harvesting age, yield per clump, and productivity were categorized 
as high. The characteristics of total tiller number, flag leaf length, 
flag leaf width, and 1,000-grain weight were classified as 

moderate. In contrast, these characteristics were 
categorized as low.

The results of the BLUE-based correlation analysis were shown 
in Table 4. This correlation analysis focused on productivity as the 
primary dependent characteristic in this study. Based on the 
correlations shown in Table 4, the yield per hectare was positively and 

FIGURE 2

Interface and general appearance of vegetation index analysis using ArcGis Pro.

TABLE 3  Analysis of variance was used to analyze the effects of growth on rice characteristics, nitrogen fertilizer dosage, and crop variety.

Characters Pr(>F) Heritability

E N ExN V N*V E*V ExNxV

PH (cm) 0.242 0.000** 0.404 0.000** 0.003** 0.000** 0.126 0.15

NTT (stems) 0.003** 0.000** 0.003** 0.000** 0.001** 0.000** 0.000** 0.45

NPT (stems) 0.003** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.50

DF (DAP) 0.000** 0.284 0.391 0.000** 0.291 0.000** 0.007** 0.51

DH (DAP) 0.000** 0.526 0.727 0.000** 0.289 0.000** 0.358 0.78

FLL (cm) 0.928 0.000** 0.301 0.000** 0.254 0.000** 0.010* 0.39

FLW (cm) 0.029* 0.000** 0.000** 0.000** 0.000** 0.049* 0.000** 0.29

PL (cm) 0.217 0.048* 0.043* 0.000** 0.084 0.000** 0.358 0.00

NTG (grains) 0.963 0.000** 0.998 0.000** 0.000** 0.000** 0.000** 0.00

PFG (%) 0.996 0.003** 0.533 0.007** 0.045* 0.000** 0.009** 0.15

PD (grain/cm) 0.003** 0.167 0.263 0.000** 0.006** 0.000** 0.000** 0.00

W1000G (g) 0.000** 0.000** 0.002** 0.000** 0.002** 0.000** 0.000** 0.41

YPC (g) 0.182 0.000** 0.285 0.000** 0.000** 0.000** 0.000** 0.74

Yield (tons·ha−1) 0.000** 0.000** 0.015* 0.000** 0.000** 0.000** 0.000** 0.82

*Significant effect at the 5% error level; **significant effect at the 1% error level.  
PH = plant height; NTT, number of total tillers; NPT, number of productive tillers; DF, days to flowering; DH, days to harvest; FLL, flag leaf length; FLW, flag leaf width; PL, panicle length; NTG, 
number of total grains; PFG, percentage of filled grains; PD, panicle density; W100G, weight of 100 grains, YPC (yield per clump), yield (productivity). Bolded values indicate high heritability.
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significantly correlated (<0.001) with plant height (0.66), total 
number of tillers (0.75), number of productive tillers (0.67), flag leaf 
length (0.56), flag leaf width (0.65), panicle length (0.44), percentage 
of filled grains (0.53), 1,000-grain weight (0.70) and yield per clump 
(0.78). The panicle density (0.37) was only significantly correlated 
with yield per hectare. Moreover, the characteristics of total tiller 
number, 1,000-grain weight, and yield per clump also presented 
relatively similar correlation patterns as those of yield with other 
growth characteristics.

The factor analysis results showed that three-factor dimensions 
can represent the diversity of the growth data in this study (Table 5). 
Based on this analysis, factor 1 had the most significant factor loading 
value compared with the other factor dimensions. In addition, for this 
factor, the factor loading value of the yield (0.66) was the highest 
compared with the other factor dimensions. The characteristics with 
large loading values (>0.5) and in the same direction as productivity 
were the total number of tillers (0.81), the number of productive tillers 
(0.92), the 1,000-grain weight (0.80), and yield per clump (0.84).

The path analysis was shown in Table  6 and focuses on 
productivity characteristics. Based on the table, the total number of 
tillers (0.56) was the characteristic with the most significant direct 
effect, with a value of 0.56. The characteristics of plant height (0.30) 
and yield per clump (0.29) also had good direct effects on productivity. 
Moreover, the characters of flag leaf width, panicle length, percentage 
of filled grains, and 1,000-grain weight had positive direct effects but 
were not too large compared with the previous three characters. In 
contrast, the number of productive tillers (−0.39) and flag leaf length 
(−0.33) negatively affected productivity.

3.2 Model comparison and performance of 
potential evaluation criteria in yield prediction

Modeling was performed in phases, utilizing agronomic evaluation 
criteria and vegetation indices. The modeling process employed both 
simple linear and multiple regression techniques. Table 7 presented a 

summary of the performance of the four models that incorporated 
agronomic components (NTT and YPC). Among the single regression 
models, YPC (Yield = 0.577 + 0.186 YPC) exhibited superior regression 
potential compared to NTT across all metrics, particularly for the test 
dataset (R2 = 0.806, RMSE = 0.518, MAPE = 9.77%). When combining 
NTT and YPC, LASSO regression demonstrated the most favorable 
overall performance, achieving the lowest RMSE (0.489), MAPE 
(8.96%), and R2 (0.828) on the test dataset. The performance of this 
combination was not significantly different from that of YPC alone.

Modeling based on vegetation indices (NDVI, NGRDI, and VARI) 
was detailed in Table 8. The analysis concept also used simple linear 
regression and multiple regression. Among these models, NDVI 
exhibited the highest performance among the single-vegetation-index 
models (R2 = 0.49). However, stepwise multiple regression that integrated 
YPC and NDVI yielded the most reliable performance (R2 = 0.73, 
RMSE = 0.61, and MAPE = 10.81%) (Figure  3). Ridge and LASSO 
variants showed comparable but slightly inferior performance relative to 
the stepwise approach. To facilitate visual interaction, Figure 4 illustrated 
a 3D plot of the yield response based on the combination of traits. The 
consistent diagonal trend indicated a strong interaction effect, 
particularly for the Inpari 32 variety, which displayed the greatest 
variation in yield prediction across all three dimensions. On the other 
side, Inpari 19 was the lowest variation across all three dimensions.

3.3 Validation of predicted vs. actual yield 
across nitrogen and variety interactions

The results of the interaction analysis regarding varietal effects of 
different doses of nitrogen fertilization on productivity were presented 
in two forms: the modeling version (Figure 5) and the actual yield 
(Figure  6). According to the modeling version, all varieties 
demonstrated a strong interaction pattern with a determination value 
above 0.8, except for Inpari 13, which has a value of 0.719. 
Furthermore, the most significant interaction occurred between 50 
and 100 kg ha−1 nitrogen at all nitrogen doses. From a variety-specific 

TABLE 4  Correlation analysis of growth characteristics in rice with respect to nitrogen fertilizer dosage and variety treatments.

Traits PH NTT NPT FLL FLW PL NTG PFG PD W100G DF DH YPC

NTT 0.63

NPT 0.44 0.92

FLL 0.70 0.67 0.44

FLW 0.51 0.54 0.35 0.62

PL 0.51 0.43 0.29 0.62 0.44

NTG 0.46 0.06 −0.21 0.52 0.63 0.53

PFG 0.16 0.49 0.46 0.41 0.63 0.05 0.01

PD 0.49 0.11 −0.18 0.52 0.65 0.32 0.92 0.15

W100G 0.39 0.64 0.67 0.35 0.36 0.14 −0.08 0.54 0.06

DF −0.02 0.07 0.23 −0.13 −0.36 −0.14 −0.31 −0.07 −0.35 0.18

DH 0.13 0.21 0.30 0.01 −0.20 −0.02 −0.15 −0.04 −0.17 0.21 0.93

YPC 0.55 0.84 0.86 0.55 0.53 0.40 0.00 0.53 0.06 0.77 0.06 0.14

Yield 0.66** 0.75** 0.67** 0.56** 0.65** 0.44** 0.30 0.53** 0.37* 0.70** 0.16 0.31 0.78**

PH, plant height; NTT, number of total tillers; NPT, number of productive tillers; DF, days to flowering; DH, days to harvest; FLL, flag leaf length; FLW, flag leaf width; PL, panicle length; 
NTG, number of total grains; PFG, percentage of filled grains; PD, panicle density; W100G, weight of 100 grains; YPC (yield per clump), yield (productivity).
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standpoint in the modeling version, Inpari 32 had the highest gradient 
value of 0.0167, supported by a determination value of 0.92. 
Additionally, among the early maturing varieties, Cakrabuana had the 
highest gradient value of 0.139, with a determination value of 0.89. In 
contrast, Inpari 13 presented the lowest regression gradient value 
at 0.0082.

All the tested varieties presented high yield values, except for 
Cakrabuana (0.75) and Padjajaran (0.603). In addition, the highest 
interaction point of the two factors was also the same as that in the 
modeling, where the point was between 50 and 100 kg ha−1 nitrogen. 
Based on the variety-specific potential in the actual version, Inpari 32 
had a higher gradient response than the other varieties, with a value 
of 0.0162 and a determination of 0.95. Moreover, concerning early 
maturing rice, the M70D variety was the early maturing rice variety 
with the highest gradient value, which is 0.0145, with a determination 
value of 0.914. In contrast, the variety with the lowest gradient value 
was the Padjajaran variety, which is 0.0087, with a determination value 
of 0.603.

4 Discussion

The analysis of variance (ANOVA) revealed a single source of 
diversity in the environment, and nitrogen fertilization dose and 
variety had a significant effect on almost all agronomic 
characteristics. The effect of variety is the single most dominant 
effect related to rice growth characteristics. This is also inseparable 
from selecting the comparison varieties Inpari 32 and Ciherang 
(moderate-aged varieties) for evaluating the growth of this early 
maturing rice variety. According to Musa et al. (2023) and Anshori 
et  al. (2024a), early maturing rice varieties differ in age from 
moderate to long-maturing rice and present very different growth 
patterns. This causes the significance pattern of the analysis of 
variance always to be significantly affected when the two types of rice 
are combined in the test. The growth pattern becomes more complex, 

including different fertilizer doses and planting locations (Musa 
et al., 2023). The combination of the two factors produces a specific 
growing environment for the growth of a variety, so the combination 
of the three factors creates specific interactions in the growth 
characteristics of the rice being evaluated (Garbanzo et al., 2024). 
The interaction pattern complicates the assessment of the evaluation 
process, so the reduction in the interaction potential and 
environment (location) needs to be minimized when evaluating the 
potential of varieties to nitrogen fertilization doses. The concept can 
be applied with the best linear unbiased estimator (BLUE) approach. 
The BLUE approach can minimize random influences from 
interactions and the environment (Seck et al., 2023). This causes the 
potential of the fix (variety) to be optimized in the evaluation process 
so that the evaluation process becomes more precise (Grinberg et al., 
2020). This includes modeling the productivity of each variety 
against nitrogen fertilization doses based on secondary criteria. 
Therefore, all growth data were analyzed with BLUE 
(Supplementary material 1) to determine the prediction criteria used 
in this evaluation.

Determining evaluation criteria is conducted systematically 
through several multivariate analyses, specifically correlation analysis, 
path analysis, and factor analysis. These analyses have been reported to 
identify evaluation criteria in different studies effectively. For example, 
Anshori et al. (2018), Anshori et al. (2021), and Anshori et al. (2022) 
demonstrated the effectiveness of correlation analysis in determining 
secondary characteristics in rice. Similarly, Semeskandi et al. (2024) 
demonstrated the effectiveness of path analysis in establishing selection 
criteria for rice. Additionally, Farid et  al. (2020) highlighted the 
successful application of factor analysis for the same purpose. These 
three analyses aim to increase the precision of determining evaluation 
criteria. Generally, correlation analysis is widely employed to identify 
the potential of a character as an evaluation or selection criterion 
(Prakash et al., 2024). This method helps filter out characters whose 
diversity patterns do not align with the primary criterion, which is 
productivity (Abdulla and Mustafa, 2024). The results from this 
reduction can then be further refined through path analysis and factor 
analysis, which can be performed concurrently (Anshori et al., 2022). 
Path analysis aims to partition correlation analysis into direct 
influences that affect the diversity of the main criteria (Singh Yadav et 
al., 2024). On the other hand, factor analysis is employed to examine 
the dimension-based distribution of variance, reducing low internal 
covariance within each dimension. This helps identify criteria with a 
high variance contribution in each dimension (Rocha et  al., 2018; 
Anshori et al., 2022; Anshori et al., 2024a). The integration of path 
analysis and factor analysis enhances the assessment of evaluation 
criteria that determine the potential diversity of key criteria. This 
combined approach has also been documented by Anshori et al. (2022) 
and Kumar et al. (2024). Therefore, utilizing all three analyses can 
provide effective recommendations for evaluation and selection criteria 
in the modeling of this study.

This study identified the total number of tillers and yield per 
clump as potential agronomic traits for evaluation criteria. The 
effectiveness of these criteria has been supported by Limbongan et al. 
(2023) and Sary et al. (2022). Generally, early maturing rice varieties 
depend on the potential of productive tillers as a key component in 
increasing rice yield (Anshori et al., 2024a). However, the potential for 
productive tillers also relies on the total number of tillers in the early 
maturing variety (Takai, 2024). This relationship is evident in the 

TABLE 5  Factor analysis of rice growth characteristics correlated with 
yield per hectare.

Variable Factor1 Factor2 Factor3 Communality

PH 0.39 −0.77 −0.07 0.75

NTT 0.81 −0.45 −0.20 0.89

NPT 0.92 −0.21 −0.11 0.91

FLL 0.27 −0.78 −0.34 0.80

FLW 0.18 −0.53 −0.75 0.88

PL 0.12 −0.86 −0.03 0.75

PFG 0.39 0.01 −0.88 0.92

W100G 0.80 −0.07 −0.35 0.76

YPC 0.84 −0.33 −0.28 0.89

YIELD 0.66 −0.45 −0.39 0.79

Variance 3.70 2.78 1.86 8.34

% Var 0.37 0.28 0.19 0.83

PH, plant height; NTT, number of total tillers; NPT, number of productive tillers; FLL, flag 
leaf length; FLW, flag leaf width; PL, panicle length; PFG, percentage of filled grains; W100G, 
weight of 100 grains; YPC (yield per clump). Characteristics with a loading value above 0.5 
(high) are indicated in bold.
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indirect effect of the total number of productive tillers; thus, more 
total tillers lead to a greater likelihood of productive tillers. 
Additionally, the yield potential per clump indicates the economic 
value that each individual plant can provide (Sudaryono et al., 2023). 
A more significant potential in this trait enhances the overall 

population weight of the variety, making it an integral part of the yield 
components (Beding et al., 2023). This is further validated by research 
conducted by Anshori et  al. (2024a,b). Therefore, this study 
recommends the total number of tillers and yield per clump as 
evaluation criteria.

TABLE 6  Path analysis of selected growth characteristics in rice based on factor analysis.

Characters Direct 
effect

Indirect effect

PH NTT NPT FLL FLW PL PFG W100G PPC

PH 0.30 0.36 −0.18 −0.23 0.06 0.08 0.03 0.08 0.16

NTT 0.56 0.19 −0.36 −0.22 0.06 0.07 0.09 0.13 0.24

NPT −0.39 0.14 0.52 −0.15 0.04 0.05 0.09 0.14 0.25

FLL −0.33 0.21 0.38 −0.18 0.07 0.09 0.08 0.07 0.16

FLW 0.11 0.16 0.31 −0.15 −0.21 0.07 0.12 0.09 0.16

PL 0.15 0.16 0.25 −0.13 −0.21 0.05 0.02 0.04 0.12

PFG 0.18 0.06 0.28 −0.19 −0.14 0.07 0.01 0.11 0.16

W100G 0.20 0.13 0.36 −0.27 −0.12 0.05 0.03 0.10 0.22

YPC 0.29 0.17 0.47 −0.34 −0.18 0.06 0.06 0.10 0.16

PH, plant height; NTT, number of total tillers; NPT, number of productive tillers; FLL, flag leaf length; FLW, flag leaf width; PL, panicle length; PFG, percentage of filled grains; W100G, weight 
of 100 grains; YPC (yield per clump). Bold indicates a high direct effect on productivity.

TABLE 7  Performance metrics of regression models for rice yield production using agronomic components.

Regression type Model Dataset RMSE MAPE R2

Linear regression Yield = 1.263 + 0.312 NTT
Train 0.799 12.5 0.469

Test 0.626 10.956 0.717

Linear regression Yield = 0.577 + 0.186 YPC
Train 0.771 11.349 0.505

Test 0.518 9.771 0.806

Ridge regression
Y = 1.188 + 1.334 NTT + 0.094 

YPC

Train 0.764 11.722 0.514

Test 0.535 9.936 0.794

Lasso regression
Y = 0.809 + 0.114 NTT + 0.119 

YPC

Train 0.758 11.337 0.522

Test 0.489 8.957 0.828

The bold is the best performance model in Table 7. RMSE, root mean square error; MAPE, mean absolute percentage error; R2, determination value.

TABLE 8  Performance metrics of regression models for rice yield prediction using production component and vegetation indices.

Regression type Model Dataset RMSE MAPE R2

Linear regression Y = 2.355 + 7.900 NDVI
Train 0.71 11.16 0.58

Test 0.84 13.85 0.49

Linear regression Y = 2.387 + 14.130 NGRDI
Train 0.74 12.05 0.54

Test 0.80 14.10 0.54

Linear regression Y = 4.598 + 13.137 VARI
Train 0.93 13.98 0.12

Test 1.32 28.20 −0.13

Stepwise regression
Y = 0.877 + 0.093 YPC + 5.363 

NDVI

Train 0.65 9.72 0.65

Test 0.61 10.81 0.73

Ridge regression
Y = 1.528 + 0.086 YPC + 4.254 

NDVI

Train 0.67 10.22 0.63

Test 0.61 11.03 0.73

Lasso regression
Y = 1.254 + 0.085 PPR + 5.016 

NGRDI

Train 0.65 9.89 0.64

Test 0.61 11.08 0.73

RMSE, root mean square error; MAPE, mean absolute percentage error; R2, coefficient of determination. The best-performing model results, based on testing dataset metrics, are bolded and 
highlighted in yellow.
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Based on the analysis of drone-based vegetation indices, the 
normalized difference vegetation index (NDVI) demonstrated stronger 
performance than other approaches in modeling. This index generally 

utilizes the near-infrared approach as a corrector of the green band. 
This concept enhances the sensitivity of the index in recognizing leaf 
greenness and biophysical and physiological changes of plants (Lai and 

FIGURE 3

Yield actual vs. yield prediction based on stepwise regression of YPC and NDVI.

FIGURE 4

Interaction relationships between the evaluation criteria and yield.
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Lin, 2021; Wang et al., 2025). This makes NDVI often reported as an 
effective vegetation index in predicting crop yield potential, including 
in rice (Lai and Lin, 2021; Islam et al., 2023; Quille-Mamani et al., 
2025). However, this study’s model evaluation results on NDVI linearly 
did not reach R2 0.7. This is different from the research of Lai and Lin 
(2021) and Wang et al. (2025) which showed R2 values above 0.7 in 
modeling. This difference is based on the agroclimatic conditions of the 
research and the type of varieties used. The research climate was 
conducted in the tropics with dynamic rainfall patterns in the two 
planting sequences. In addition, the modeling of rice in this study uses 
early maturing rice, which has a different phenology from general rice. 

Hence, optimization of the cultivation of other fertilizers needs to 
be done first. Both of these make the accuracy of the model unable to 
reach 0.7. Nevertheless, the R2 value above 0.5 is an indication that the 
model has worked well in predicting yield indirectly (Quille-Mamani 
et al., 2025). Therefore, utilizing NDVI can be a good indication in 
modeling early maturing rice in response to nitrogen dosage. This 
concept still needs to be  improved in terms of efficiency, that can 
be done by utilizing a stepwise multiple regression analysis on other 
selection criteria. The current model was developed using pooled data 
across multiple varieties to capture generalizable yield prediction 
patterns under diverse conditions. However, the performance of the 

FIGURE 5

Fertilizer response to variety based on modeling.

FIGURE 6

Fertilization response to varieties based on actual yield.
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model was not assessed separately for each variety. Future studies may 
explore developing individual or cluster-based models to improve 
prediction accuracy for specific genetic backgrounds, particularly for 
varieties with unique phenotypic or physiological traits.

This index showed significant values in a stepwise multiple 
regression analysis with yield per clump. The performance metrics 
from the stepwise regression were also superior to those obtained 
from the ridge and LASSO regression. However, an R2 value below 
0.7  in the training data set likely reflects limited variation in the 
characteristics of early maturing rice varieties due to its short growth 
duration. This narrower range may limit the model’s ability to capture 
broader productivity trends. In addition, this model relies on a small 
number of predictors that may not fully account for the complexity 
of yield formation. To improve the robustness of the model, future 
studies should consider the use of additional predictors, data 
collection at various growth stages, and expansion of the study to 
more diverse environments.

Although the R2 value of the model did not reach 0.7  in the 
training data, the root mean square error (RMSE) and mean absolute 
percentage error (MAPE) were within acceptable standards for 
assessing the model’s effectiveness. Specifically, an RMSE below 1% 
(Ko et  al., 2024) and a MAPE below 10% (Paul et  al., 2024; 
Baharuddin et  al., 2025). They are considered indicators of an 
effective model. Additionally, the difference in performance metrics 
between the training and testing data was minimal, indicating that 
this model is reliable. The interaction observed in the 3D plot analysis 
further illustrates the distribution of dimensional diagonal lines for 
each variety, enhancing the understanding of how the two evaluation 
criteria contribute to productivity. According to Wang et al. (2024), 
a 3D plot can effectively validate the interaction between three tested 
characteristics; this finding was also supported by Farid et al. (2021). 
Consequently, a stepwise model based on yield per clump and the 
NDVI is recommended for estimating potential productivity 
interactions via a model-based approach.

Based on the modeling analysis and its comparison with actual 
productivity, the model demonstrated a better determination value in 
response to nitrogen fertilization doses than actual productivity. Both 
approaches produced relatively similar interaction points at 
50–100 kg ha−1 nitrogen doses. These findings indicate that, compared 
with actual productivity, the modeling concept can more reliably 
assess the fertilizer response, especially for early maturing rice 
varieties. This advantage will facilitate the prediction of productivity 
across large planting units. Additionally, the results of this modeling 
align with those reported by Anshori et al. (2024a,b), which confirmed 
the stability of the Cakrabuana and Padjajaran varieties. In contrast, 
these varieties are considered less adaptive to environmental changes 
based on their actual yield. The correlation between this modeling and 
(Anshori et al., 2024a) further supports the potential of the developed 
model to evaluate the stability and response to nitrogen fertilization. 
However, this research concept should be tested with a larger number 
of varieties to apply machine learning techniques to the model fully. 
Machine learning approaches that utilize big data can enhance 
prediction models (Zhang J. et al., 2024).

Conducting research across different years and locations was a 
strategic effort to capture a broader spectrum of agro-ecological 
conditions. The resulting environmental variation reflects the real-world 
scenarios faced by farmers across seasons and sites, particularly in 

tropical regions such as Indonesia. This diversity enhances the strength 
and robustness of the model, contributing to greater accuracy and 
applicability under varying field conditions. However, the limitation of 
this model is still focused on Indonesia, which is one of the characteristics 
of a tropical climate, so the application of this concept and model needs 
to be done in several countries with varying climates. This will make the 
model more robust in predicting potential productivity, especially for 
early maturing rice. Nevertheless, the findings from this research 
represent an essential initial step in improving the modeling of rice 
productivity prediction, particularly for early maturing rice varieties. 
Therefore, the modeling concept developed in this study is recommended 
for predicting productivity and assessing nitrogen fertilization responses 
in these rice varieties.

5 Conclusion

The findings of this study underscore the potential of combining 
agronomic traits with vegetation indices data to model nitrogen response 
in early-maturing rice. Yield per clump, identified as a key trait, and 
NDVI were successfully integrated into a regression model. This 
regression model effectively captures the growth response of early 
maturing rice to varying nitrogen fertilization doses. The formulated 
model is represented as follows: Yield per hectare = 0.877 + 0.093 (yield 
per clump) + 5.363 (NDVI). This model offers practical relevance for 
precision agriculture by providing early, non-destructive, data-driven 
crop yield estimates at the farm scale. By combining measurable field 
characteristics with remotely sensed vegetation indices, the model 
supports nitrogen management adjusted to the physiological 
characteristics of early maturing rice varieties. It facilitates more efficient 
fertilizer use, reduces the risk of over- or under-application, and improves 
input use efficiency—key objectives in sustainable rice intensification. At 
the farm level, it can aid in informed fertilization decisions during critical 
growth stages, thereby increasing yield potential while minimizing 
environmental impacts. To strengthen its application, future research 
should validate this model across a broader range of genotypes and 
agroclimatic zones. Integrating time-series spectral data and applying 
machine learning approaches could also enhance the model’s adaptability 
and predictive capability under varying field conditions.
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