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The coupled and coordinated interaction between digital economy and cultivated 
land use efficiency (CLUE) is of great practical significance for guaranteeing national 
food security. Therefore, this study constructed the evaluation index system from 
two aspects of digital economy and CLUE, and used the coupling coordination 
degree (CCD) model to measure the level of their coordination and interaction, and 
then analyzed the spatial and temporal evolution of the CCD. At the same time, the 
Tobit model is introduced to explore the driving factors and make recommendations 
accordingly. The study shows that: (1) Both the CLUE and the digital economy show 
an upward trend during the study period, but there are obvious spatial differences, 
and the development level of CLUE is better than that of the digital economy. (2) The 
CCD has steadily risen, regional differences have been narrowing, and the overall level 
has risen from mild disorder to benign coordination over the study period. Spatially, 
high value areas are mainly clustered in the eastern region and part of the central 
region. (3) The CCD has the stability of maintaining the original level state, and the 
dynamic evolution is a gradual process. There is a positive synergy effect when the 
level of neighboring regions is the same as its own level. (4) The Tobit model shows 
that economic, technical innovation and urbanization promote the CCD, while the 
urban–rural development gap and industrial structure inhibit the CCD.
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1 Introduction

According to the Global Report on Food Crises, over 280 million people worldwide experienced 
severe food insecurity in 2023 (World Food Programme, 2024), influenced by factors such as 
international political instability and public health crises. The urgency of addressing food security has 
intensified, given its direct association with national stability and socioeconomic development. 
Cultivated land represents the essential natural basis for ensuring a nation’s food security. Although 
China supports approximately 22% of the world’s population, its cultivated land accounts for only 
7.8% of the global total. The contradiction of “more people, less land” is becoming increasingly 
prominent. Traditional production models that depend heavily on excessive agricultural inputs and 
inefficient labor practices have contributed to environmental degradation, including soil pollution 
(Yang et al., 2024). These challenges present significant barriers to the sustainable use of cultivated 
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land, thereby jeopardizing national food security and impeding high-
quality economic and social development. In this context, a significant issue 
today is how to enhance agricultural productivity with scarce land 
resources, decrease the escalation of conflict among people and land, and 
promote environmental monitoring while improving cultivated land use 
efficiency (CLUE).

Since the Chinese government first proposed the goal of 
“strengthening and expanding the digital economy” in 2016, efforts 
have been made to integrate digital technologies into agricultural land 
management through a range of policy initiatives and infrastructure 
investments. These initiatives have created opportunities to enhance 
the efficiency of cultivated land use. By optimizing land resource 
allocation, supported by precise surveying and real-time monitoring 
technologies, intensive land use can be  promoted while reducing 
resource waste and environmental degradation. However, the process 
of digital transformation still faces challenges, including regional 
disparities in development and inadequate infrastructure (Xu et al., 
2023). Therefore, establishing a framework for the coordinated 
development of the digital economy and CLUE is essential to ensuring 
food security, optimizing regional land resources, and achieving both 
ecological sustainability and agricultural modernization.

The remainder of this paper is structured as follows: Sections 2 and 3 
review the existing literature and explain the theoretical mechanism 
underlying the coupling coordination between the digital economy and 
CLUE. Section 4 presents the data sources and research methodology. 
Section 5 analyzes the spatiotemporal evolution of the coupling 
coordination degree (CCD) and identifies its driving factors. Section 6 
summarizes the main findings, offers policy recommendations, discusses 
research limitations, and outlines directions for future research.

2 Literature review

2.1 Digital economy

The term “digital economy” refers to economic activities that 
generate communication and create value through digital technologies 
such as the Internet, cloud computing, and big data (Miao, 2021). 
With the rapid advancement of digital technologies, the digital 
economy has gradually become a key driver of global economic 
growth. Current research primarily focuses on measuring the digital 
economy and examining its economic and societal impacts (Subkhan 
et al., 2025; Zhang et al., 2024; Jiang and Sun, 2020). More recently, 
research has extended into the agricultural sector, seeking to uncover 
the underlying mechanisms through which the digital economy 
promotes agricultural development.

First, the digital economy utilizes technologies such as the Internet of 
Things (IoT) to convert relevant agricultural information into data, which 
is then integrated as a key production factor within agricultural systems 
(Hua et al., 2024). This process strengthens traditional production factors 
and improves the efficiency of resource allocation, including labor, capital, 
land, and information. As a result, total factor productivity is enhanced, 
accelerating the digital transformation of agriculture (Jia et  al., 2025). 
Second, the digital economy has fostered innovations in industrial 
efficiency, introduced new business models, and optimized development 
pathways (Wang et  al., 2024). These advancements have transformed 
agricultural production and rural livelihoods, continuously promoting the 
shift from extensive to high-quality agricultural development.

2.2 Cultivated land use efficiency

Cultivated land use has long been a topic of significant academic 
interest, resulting in a substantial body of research. Common 
methods for calculating CLUE include Principal Component 
Analysis (PCA) (Wu et al., 2024), Data Envelopment Analysis (DEA) 
(Xiang et al., 2023), Stochastic Frontier Analysis (SFA) (Chen et al., 
2025), and Directional Distance Function (DDF) (Khataza et al., 
2019) models. More recently, researchers have begun to examine the 
negative impacts of diesel, herbicides, and fertilizers on cultivated 
land yields (Chen et al., 2020; Zhu et al., 2022). Consequently, some 
scholars have developed the Super-SBM model to incorporate these 
unexpected outputs, such as fertilizer non-point source pollution 
and carbon dioxide emissions (Zhang et al., 2024; Pei and Chen, 
2024; Huang et al., 2024). In analyzing the factors influencing CLUE, 
commonly used analytical methods include the Tobit model (Tian 
et al., 2023), Spatial Durbin model (Luo et al., 2024), and multiple 
linear regression model (Kaiyong and Pengyan, 2013). The factors 
influencing CLUE can generally be classified into two levels: macro-
level factors and micro-level factors. Micro-level factors include 
household income characteristics (Yu et al., 2022), average years of 
education (Zhang et al., 2025), and farmers land value (Zhang et al., 
2017). Macro-level factors include the level of economic development 
(Gui et al., 2021), urbanization (Fu and Xue, 2025), and the natural 
ecosystem (Lyu et al., 2024). In addition, growing scholarly attention 
has been paid to the coupling relationship between cultivated land 
use intensity and economic development, as well as the correlation 
between cultivated land area and regional economic growth (Xiang 
et al., 2023; Han and Zhang, 2020).

2.3 Research on the digital economy and 
cultivated land use efficiency

The impact of the digital economy on the allocation of land, 
capital, and labor resources has been widely studied. Existing research 
on its relationship with land use indicates that the digital economy, 
characterized by low cost and high penetration, can be integrated with 
traditional production factors such as land (Huang and Huang, 2024). 
This integration helps mitigate land scarcity constraints and promotes 
the digital transformation of land use. Moreover, the rapid growth of 
the digital economy has influenced the scale, structure, and spatial 
patterns of land resources, thereby improving the efficiency of land 
resource allocation (Wu et al., 2024).

Currently, scholars have conducted extensive research on the 
relationship between the digital economy and cultivated land use 
systems. By applying the Super-SBM model and entropy method to 
measure agricultural land use efficiency and digital economic 
development, respectively, and using the Tobit model to assess the 
impact of the digital economy, studies have found that digital 
development significantly enhances agricultural land utilization 
efficiency. Improvements in economic development, reductions in the 
urban–rural income gap, and strengthened irrigation capacity have also 
been shown to promote land use efficiency (Li et al., 2025). Additionally, 
methods such as multi-period difference-in-differences, triple difference 
models, and threshold models have been used to evaluate the effect of 
digital economy development on urban land green use efficiency. These 
studies confirm that the digital economy positively influences urban 
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land use, mainly through technological integration and environmental 
innovation (Fan et al., 2023). Despite this progress, existing literature 
still has limitations. While prior studies have discussed the impact of 
the digital economy on cultivated land use systems, relatively little 
attention has been given to the underlying impact mechanisms within 
cultivated land use ecosystems. Further exploration of these 
mechanisms would provide valuable scientific insights for promoting 
the effective integration of the digital economy and CLUE.

Therefore, drawing on panel data from 30 provinces in China 
spanning the period from 2014 to 2022, this study employs multiple 
analytical methods to examine the relationship between the digital 
economy and CLUE. Compared with the existing literature, the 
marginal contributions of this paper are threefold. First, it 
systematically clarifies the internal mechanisms underlying the 
coupling and coordination between China’s digital economy and 
CLUE. Second, it applies coupling coordination models, Gini 
coefficients, Moran indices, and Markov chain analysis to quantitatively 
characterize the geospatial correlation and coupling relationship across 
regions. Third, it further investigates the driving factors that influence 
the interaction between the digital economy and CLUE.

3 Theoretical framework

The digital economy and CLUE function as independent systems 
while achieving synergistic evolution through circular interaction. As 
shown in Figure  1, the digital economy comprises three key 
components: digital infrastructure, digital industries, and digital 
innovation. It relies on advanced technologies such as cloud 
computing, artificial intelligence, and big data to transcend traditional 
industrial boundaries, deeply integrate the manufacturing, service, 
and information sectors, promote the development of the tertiary 
industry, accelerate the upgrading of traditionally extensive industries, 
reduce undesirable outputs, and improve ecological outcomes.

In addition, the digital economy improves resource allocation 
efficiency, reduces land resource waste, and facilitates the integration of 
fragmented cultivated land into virtually contiguous digital farms. This 
process enables both economies of scale and precision management. In 
turn, improvements in CLUE contribute to the development of the 

digital economy. On one hand, enhanced land use efficiency creates new 
market demand, encouraging the digital industry to expand its service 
scope and fostering deeper segmentation within the agricultural digital 
service sector. On the other hand, more efficient farmland use promotes 
green development, supports the digital transformation of energy-
intensive and polluting industries, improves resource utilization, 
accelerates technological innovation and factor upgrading, and advances 
sustainable development. These outcomes further stimulate digital 
economic growth and enhance its overall development level. The two 
systems will form a virtuous cycle of mutual promotion and development.

4 Data sources and research methods

4.1 Data sources

The research sample for this study is data from 30 provinces 
(municipalities and autonomous areas) in mainland China between 
2014 and 2022 (Taiwan, Hong Kong, Macau, and Tibet are not 
included in the study owing to data restrictions). The 30 provinces are 
categorized into three research regions: Eastern,1 Central,2 and 
Western3 China. The sample data is derived mostly from the China 
Statistical Yearbook, China Environmental Yearbook, China Science and 
Technology Statistical Yearbook, and the National Economic and Social 
Development Statistical Yearbook (2015–2023).

4.2 Indicator system construction

4.2.1 Digital economy
An assessment system for the digital economy was created by 

following data availability and scientific rigor guidelines, using the earlier 

1 Shanghai, Beijing, Tianjin, Shandong, Guangdong, Jiangsu, Hebei, Zhejiang, 

Hainan, Fujian, Liaoning.

2 Jilin, Anhui, Shanxi, Jiangxi, Henan, Hubei, Hunan, Heilongjiang.

3 Yunnan, Inner Mongolia, Sichuan, Ningxia, Guangxi, Xinjiang, Gansu, 

Guizhou, Chongqing, Shaanxi, Qinghai.

FIGURE 1

Coordination mechanism framework between the digital economy and cultivated land use efficiency.
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research framework and previous studies as references (Wang et al., 2025; 
Li et al., 2024). A total of 11 indicators were selected, which primarily 
reflect the overall level of digital development across regions and indirectly 
influence agricultural digitalization. The weights of each indicator were 
calculated using the entropy method, with details provided in Table 1.

4.2.2 Cultivated land use efficiency
Drawing on existing research (Zou et al., 2024; Ma et al., 2024; Tan 

et al., 2024), this study constructs an evaluation indicator system for 
CLUE, focusing on input, expected output, and unexpected output. 
Table 2 lists the 11 indicators that were chosen in total.

4.3 Research methods

The relationship among the methods and models employed in this 
study is illustrated in Figure 2. First, the development levels of China’s 
digital economy and CLUE were measured using the entropy method 
and the super-efficiency SBM model of unexpected output, respectively. 
Second, the CCD was calculated using the coupling coordination model 
based on the measured development levels. Third, Third, the Dagum 
Gini coefficient, spatial correlation test (Moran index), and Markov chain 
were applied to analyze regional disparities, assess spatial dependence, 
and predict transitions in coordination states. Finally, the Tobit model 
was used to examine the driving factors influencing the CCD.

4.3.1 Entropy method
The entropy technique circumvents the drawbacks of subjective 

weighing by using an objective methodology that determines weights 
based on the fluctuation in indicator data (Chen, 2019). Entropy is the 
method tested in this work to provide weights to the digital economy’s 
indicators and conduct a thorough evaluation of China’s level of 
growth in this area. Main calculation stages as in Equations 1–6:

The first step, the standardization of the raw data, the standardized 
data values for the positive indicators and negative indicators are 
as follows:
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The third step, calculate the weight of each indicator:
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The fourth step, calculate the Digital Economy Development Index:
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4.3.2 Super-efficiency SBM model
This investigation used the super-efficiency SBM model. The 

efficient decision-making units are further broken down and 
ranked, and unexpected outcomes are included in the efficiency 
level assessment, improving the precision and applicability of 
efficiency assessments (Wu and Wen, 2025). The expression is 
as follows:
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TABLE 1 Digital economy evaluation indicator system.

Main index Dimension Indicators Properties Weight

Digital economy Digital infrastructure Fiber optic line length + 0.0616

Number of Internet broadband access ports + 0.0591

Cell phone penetration rate + 0.0294

Internet penetration rate + 0.0252

Digital industry Software business revenue as a percentage of GDP + 0.1503

Total telecommunication services + 0.1342

E-commerce sales + 0.1501

Number of websites per 100 enterprises + 0.0127

Digital innovation Digital financial inclusion index + 0.0294

Employment in information technology services + 0.1360

Expenditure on R&D institutions + 0.2120

https://doi.org/10.3389/fsufs.2025.1617727
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Li et al. 10.3389/fsufs.2025.1617727

Frontiers in Sustainable Food Systems 05 frontiersin.org

 

λ

λ

λ

λ

−

+

−

− + −

 = +
 
 = − 
 

= + 
 
  

. .

0, 0, 0, 0

k

k
b

k
b

x X s

y Y s
s t

b B s

s s s     

(7)

In Equation 7, each province represents a decision-making unit. m  
denotes the input for each decision-making unit, 1p  represents the 
expected output, 2p  represents the unexpected output, and −s , +s , −bs  
represent the slack variables for input, expected output, and unexpected 
output, respectively. kx , ky , kb  represent the input, expected output, and 
unexpected output vectors of the decision-making unit, respectively. X, Y, 
B represent the input, expected output, and unexpected output matrices, 
respectively, and λ  denotes the weight vector.

4.3.3 Coupling coordination degree model
The two parts of the Coupling Coordination Degree Model are the 

coupling and coordination degrees. The coupling degree denotes the 
level of interaction among various systems, whereas the coordination 
degree indicates the developmental status of diverse systems according 
to a uniform measuring standard (Qindong et al., 2025). The CCD 
between the digital economy and CLUE is calculated in this study 
using the coupling coordination degree model. The following is the 
calculating formula:

 
=

+
1 2

1 2

2 U U
C

U U  
(8)

 α β= +1 2T U U  (9)

 = ×D C T  (10)

In Equations 8–10: C  represents the coupling degree, T  
represents the coordination degree, and D  represents the CCD, with 
a value range of [0, 1]. The closer D  is to 1, the greater the coordination 
between the two systems. α  and β  are the system weights, with their 
sum equal to 1. Based on existing research, the CCD is divided into 
five levels, as shown in Table 3.

4.3.4 Dagum Gini coefficient
Dagum (1997) suggested a decomposition method for the Gini 

coefficient that overcomes the drawbacks of current approaches to 
measuring regional differences. This approach makes finding the 
causes of regional discrepancies easier (Liu et al., 2025). This approach 
makes finding the causes of regional discrepancies easier. This study 
uses the Dagum Gini coefficient and its decomposition approach to 
thoroughly examine the general variations and causes of variations in 
the degree of coupling coordination regarding China’s digital economy 
and CLUE. The calculation formulas for the overall Gini coefficient G
, intra-regional Gini coefficient ijG , and inter-regional Gini coefficient 

jhG  are detailed in Equations 11–13:
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Further, in Equations 14–16, the Gini coefficient is decomposed 
into the contributions of regional differences wG , inter-regional 
differences nbG , and super-density contributions tG :
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TABLE 2 Cultivated land use efficiency evaluation indicator system.

Main index Dimension Indicators Description of indicators

Cultivated land use efficiency Input Land input Total area under crop cultivation

Agricultural machinery input Gross power of agricultural machinery

Fertilizer input Fertilizer consumption

Pesticide input Pesticide consumption

Irrigation input Effective irrigated area

Labor input Agricultural workers

Agricultural film input Agricultural film usage

Electricity input Rural electricity consumption

Expected output Economic output Gross proceeds from agriculture

Social output Total food output

Unexpected output Carbon emission Total carbon emissions from cultivated land
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4.3.5 Spatial correlation test
Adjacent regions exhibit some form of spatial interaction and 

dependence. This work uses Moran’s I index for spatial autocorrelation 
analysis to make measuring their correlation easier. While the local 
Moran’s I index is used to examine the precise locations and extent of 
the aggregation, the global Moran’s I  index is used to determine if 
spatial aggregation occurs within the region (Zhang et  al., 2025). 
Equations 17,18 are used to calculate the global and local Moran’s 
I indices:
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I  is the global Moran’s I  index. When I  > 0, it indicates a 
positive spatial correlation in the distribution of the variable, the 
larger the value, the stronger the spatial correlation. When I  < 0, 
it indicates a negative spatial correlation, and the smaller the 
value, the greater the spatial disparity. When I  = 0, it indicates no 
spatial correlation of the variable. iI  represents the local Moran’s 
I index.

4.3.6 Markov chain model
This research uses the classic Markov chain and spatial Markov 

chain analysis methods to determine the transition probability matrix 
under various scenarios (Abhinav and Rajesh, 2025). The calculation 
formulas are as follows:

 
= ij

ij
i

n
P

n  
(19)

 = ×Lag X W (20)

In Equations 19,20, ijP  represents the transition probability, Lag 
denotes the spatial lag value, X represents the observed value, and W 
denotes the spatial weight matrix.

4.3.7 Tobit model
This model selects the CCD as the dependent variable, which has 

a range of values between 0 and 1, making it a limited dependent 
variable (Zhu et al., 2025). The influence of driving factors on the CCD 
may not be well reflected in the skewed regression findings that arise 
from using OLS to estimate a constrained dependent variable. To do 
regression on the driving factors, this study uses the Tobit model, 
which has the following formula:

 β ε= + +it it i ity a x  (21)

In Equation 21: ity  is the dependent variable, itx  represents the 
driving factors, a is the constant term, βi  is the regression coefficient, 
and εit  is the random error term.

5 Empirical results and analysis

5.1 Measurement of digital economy and 
cultivated land utilization efficiency

5.1.1 Digital economy
This study applies the entropy method to construct China’s digital 

economy development index from 2014 to 2022. As shown in Figure 3, 
the national index exhibited a fluctuating upward trend, rising from 
0.0859 to 0.1998 over the study period. Regionally, the eastern area 
experienced rapid growth, with its index increasing from 0.1459 to 
0.3156, significantly outpacing other regions. The central region’s 
index rose from 0.0573 to 0.1476, while the western region, starting 
from a lower base, increased steadily from 0.0467 to 0.1219. In 2014, 
most provinces had a digital economy development index between 
0.05 and 0.10. By 2022, the index had grown substantially, particularly 

FIGURE 2

Research framework diagram.
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in the eastern region, where most provinces recorded values between 
0.20 and 0.40. Notably, Beijing and Guangdong exceeded 0.50, 
indicating leading positions in digital economic development.

In summary, the growth of China’s digital economy exhibits 
significant regional variation. The eastern region consistently leads 
due to its strong technological innovation capacity and robust 
economic foundation. Although the central and western regions have 
shown positive momentum and some advantages as late developers, 
they continue to face challenges related to uneven development and 
structural constraints.

5.1.2 Cultivated land use efficiency
To assess CLUE in China from 2014 to 2022, the study employed 

the super-efficient SBM model based on unexpected output. As shown 
in Table 4, both national and regional CLUE demonstrated a consistent 
upward trend during the study period. At the national level, efficiency 
increased from 0.4881 to 0.8736. The central region began with a 
relatively high efficiency score of 0.5377 but exhibited slower growth, 
reaching 0.7534 by 2022. In contrast, the western region experienced 
the most rapid improvement, with efficiency rising from 0.4599 to 
0.9214. Notably, most provinces in the western region recorded 
efficiency values exceeding 1.0. Although the overall efficiency in the 
central region remains lower than in the west, provinces such as Jilin, 
Hubei, and Heilongjiang surpassed the 1.0 threshold.

The steady increase in CLUE across the country and within 
regions can be attributed to the implementation of China’s cultivated 
land conservation system, strict controls on converting cultivated land 
to construction land, and reinforcement of the balance between 
cultivated land occupation and compensation. However, substantial 
regional disparities persist. The eastern and western regions have 

outperformed the central region, primarily due to advances in 
agricultural technology, improvements in farm management practices, 
and stronger policy support.

5.2 Temporal evolution law of coupling 
coordination degree

5.2.1 Trends in the change of coupling 
coordination degree

Table 5 presents a shift from mild disorder to benign coordination 
in the national CCD between the digital economy and CLUE, rising from 
0.341 in 2014 to 0.621 in 2022. The eastern region has always been at the 
forefront, with the CCD increasing from 0.404 to 0.723, indicating a 
transition from imminent disorder to benign coordination. This 
sustained advantage suggests that the eastern region is better positioned 
to integrate and coordinate the development of the digital economy and 
CLUE due to its strong infrastructure and technological foundation.

In 2014, most provinces in China had relatively low CCD, 
primarily between 0.3 and 0.4, corresponding to the mild disorder 
category. By 2018, the eastern region’s coordination levels had 
improved further, with all provinces exceeding 0.4. Notably, 
coordination degrees in Shanghai, Guangdong, and Jiangsu surpassed 
0.6. During the same period, the central and western regions also 
showed improvement, with values increasing from 0.35 to 0.50. By 
2022, the CCD had significantly increased across all regions, although 
notable regional differences remained. In the central region, most 
provinces had coordination values between 0.4 and 0.6. In the western 
region, values ranged from 0.5 to 0.7. In the eastern region, most 
provinces recorded values between 0.6 and 0.9.

FIGURE 3

Digital economy development levels in China and three major regions from 2014 to 2022.

TABLE 3 Coupling coordination degree level classification.

Coupling 
coordination

0.0 ≤ D < 0.3 0.3 ≤ D < 0.4 0.4 ≤ D < 0.5 0.5 ≤ D < 0.6 0.6 ≤ D < 1

Degree of coordination Serious disorder Mild disorder Imminent disorder Basic coordination Benign coordination
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TABLE 5 Coupling coordination degree of China and three major regions from 2014 to 2022.

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022

Nationwide 0.341 0.364 0.390 0.432 0.483 0.523 0.554 0.574 0.621

Eastern 0.404 0.434 0.460 0.494 0.556 0.597 0.624 0.666 0.723

Central 0.320 0.331 0.357 0.421 0.445 0.484 0.510 0.515 0.550

Western 0.293 0.317 0.344 0.377 0.437 0.478 0.515 0.524 0.571

5.2.2 Characteristics of coupling coordination 
degree type changes

As shown in Figure  4, the relationship between the digital 
economy and CLUE in China exhibited a steady and positive growth 
trend from 2014 to 2022. Based on CCD levels, the study period can 
be divided into two distinct stages. In the first stage, from 2014 to 
2018, the CCD rose from 0.341 to 0.483, progressing from the mild 
disorder stage to the imminent disorder stage. A key characteristic of 
this phase was a marked decline in the proportion of serious disorder, 
the initial emergence of benign coordination, and a gradual increase 
in the share of basic coordination. However, overall coordination 
remained limited, largely due to underdeveloped digital infrastructure 
and a shortage of skilled digital technology professionals during the 
early development phase. In the second stage, from 2019 to 2022, the 
CCD increased significantly from 0.523 to 0.621, reaching the benign 
coordination stage. During this period, serious disorder was 
eliminated, mild disorder declined sharply, and benign coordination 
became the dominant state. This transformation can be attributed to 
the Chinese government’s 2020 policy to accelerate digital 
development, promote the construction of a digital China, and 
advance smart agriculture and digital rural development. In this 
context, the digital transformation and upgrading of traditional 
agricultural sectors, along with the widespread adoption of 
agricultural machinery, significantly enhanced productivity and 
further improved the coupling coordination between the digital 
economy and CLUE.

5.3 Spatial distribution pattern of coupling 
coordination degree

5.3.1 Spatial distribution characteristics
From the temporal variation of the CCD, it is evident that in 2014, 

2018, and 2022, China as a whole was in different stages of coordinated 
development. These years were selected as characteristic points for 
visualization analysis using ArcGIS 10.8.1, as shown in Figure  5. 
Throughout the study period, a distinct spatial differentiation pattern 
was visible in the CCD between China’s digital economy and CLUE. In 
2018, a “multi-core” growth pole, centered around Guangdong, 
Shanghai, and Jiangsu—three provinces with benign 

coordination—radiated outward, driving the expansion of the coastal 
eastern region toward the inland central region. This ultimately 
formed a development pattern of “eastern lead, central moderate, and 
western rise.” Even though the coordination in the west and center of 
the country got better across the research, these areas still faced 
problems like uneven policy support, limited benefits from 
technological advancements, and basic industrial setups. As a result, 
the digital economy and CLUE failed to interact benignly, and a gap 
remained compared to the eastern region. Although regional 
disparities remained, the nation’s overall CCD had significantly 
improved by 2022. The eastern and some central areas were home to 
the majority of the high-coordination provinces. In 2014, 57.8% of 
provinces in the central and western regions were in a state of serious 
disorder. By 2022, the coordination types in these areas gradually 
shifted to basic coordination, with provinces such as Sichuan, Henan, 
Hubei, Guizhou, Chongqing, and Shaanxi improving to a benign 
coordination state.

5.3.2 Spatial agglomeration characteristics
This study uses Stata 17.0 to calculate the global Moran’s index 

of the CCD for the period from 2014 to 2022. As shown in Table 6, 
all estimated values of the Moran’s index are positive. In 2018, the 
p-value is greater than 0.05, indicating that the result is not 
statistically significant. In contrast, the p-values for the other years 
are all less than 0.05, suggesting statistically significant spatial 
autocorrelation. These results indicate that provinces with similar 
levels of coupling coordination, whether high or low, tend to cluster 
spatially. Moreover, the global Moran’s index follows a generally 
upward trend, rising from 0.0960 in 2014 to 0.1418 in 2022. This 
pattern shows that the spatial agglomeration of the CCD has 
gradually intensified over time.

Using the economic geographic distance matrix, the local Moran 
index for 2014 and 2022 was calculated, and the local Moran scatter 
plots for these key years were generated. As illustrated in Figure 6, the 
“high-high” (HH) areas in the first quadrant and the “low-low” (LL) 
areas in the third quadrant are the main patterns of how the digital 
economy and CLUE are connected, and this connection remains fairly 
stable over time. The “High-High” (HH) type agglomeration areas in 
the first quadrant are mainly concentrated in the central and eastern 
regions, indicating that the provinces in these areas have strong 

TABLE 4 Cultivated land use efficiency in China and three major regions from 2014 to 2022.

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022

Nationwide 0.4881 0.4772 0.4978 0.5310 0.5903 0.6284 0.6556 0.7547 0.8736

Eastern 0.5377 0.4928 0.4883 0.5853 0.5605 0.6001 0.6169 0.6802 0.7534

Central 0.4843 0.4799 0.5116 0.5170 0.6113 0.6438 0.6462 0.7839 0.9132

Western 0.4559 0.4633 0.4908 0.5054 0.5910 0.6337 0.6930 0.7798 0.9214
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spillover effects and act as important growth poles driving coordinated 
development in other regions. On the other hand, provinces in the 
western regions mostly appear in the “Low-Low” (LL) type 
agglomeration areas in the third quadrant. The number of provinces 
exhibiting the “Low-High” (LH) and “High-Low” (HL) clustering 
patterns is small and dispersed across different regions, suggesting 
weaker spatial heterogeneity in these areas. Ultimately, a spatial 
association pattern with “homogeneous features as the main 
characteristic and heterogeneous features as the supplementary” is 
formed. However, among the four spatial correlation patterns, the 
majority of provinces fall under the “Low-Low” (LL) type 
homogeneous agglomeration pattern in the third quadrant.

5.4 Spatial differences in coupling 
coordination degree

5.4.1 Intra-regional differences
Figure 7a illustrates that from 2014 to 2022, the Gini coefficient of 

regional coupling coordination exhibited a declining trend, indicating 
that disparities in internal coupling coordination levels across regions 
have gradually narrowed. The average Gini coefficient in the central 
region was lower than that in the eastern region, which in turn was lower 
than that in the western region. This suggests that the central provinces 
exhibited less variation in coordination development than the eastern 
region, while the western region showed the most pronounced 

FIGURE 4

The coupling coordination degree type proportion relationship of China from 2014 to 2022.

FIGURE 5

Spatial distribution characteristics of coupling coordination degree in 2014, 2018, and 2022.
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FIGURE 6

2014 and 2022 local Moran scatter plots. Eastern: 1, 4, 7, 10, 12, 15, 17, 19, 20, 24, 26. Central: 5, 9, 11, 16, 18, 21, 22, 30. Western: 2, 3, 6, 8, 13, 14, 23, 25, 27, 28, 29.

disparities. Notably, the central region experienced the largest decrease 
in intra-regional differences, with its Gini coefficient declining from 
0.173 in 2014 to 0.076 in 2022, marking a 56.07 percent reduction.

These differences reflect imbalances in technological innovation, 
economic development, and other structural factors among provinces 
during the promotion of the digital economy and the enhancement of 
CLUE. The implementation of the Central Region Revitalization Plan 
in 2016 provided targeted policy support, leading to industrial 
upgrading, improved infrastructure connectivity, and the integration 
of underdeveloped areas into broader regional economic systems. 
These initiatives significantly fostered coordinated development across 
eastern, central, and western regions, thereby narrowing the internal 
development gap within the central region.

5.4.2 Inter-regional differences
As illustrated in Figure  7b, inter-regional differences generally 

declined over time; however, disparities between the eastern and western 
regions have gradually widened since 2019. The average Gini coefficient 
between the eastern and western regions is 0.138, which is higher than 
the national average and thus warrants special attention. These 
differences may stem from uneven development in economic capacity, 
capital accumulation, and technological progress. The eastern region 
benefits from geographic advantages such as flat terrain and access to 
international trade through major ports, making it a hub for industrial 

clustering and global commerce. Foreign investment and advanced 
technologies are highly concentrated in this region, enabling the 
transformation of western natural resources into high value-added 
products through technological upgrading. This dynamic has created a 
pattern of “resource transfer westward, profit flow eastward,” which has 
also contributed to labor siphoning from the west to the east. As a result, 
technological talent has continuously migrated eastward, slowing the 
western region’s progress in digital economy development and CLUE.

5.4.3 Sources and contributions of differences
Figure 7c reveals that inter-regional differences have consistently 

contributed the most to the total Gini coefficient, maintaining a 
dominant share of approximately 47%. In contrast, intra-regional 
differences remain relatively stable, typically ranging between 27 and 
30%. Additionally, the declining contribution rate of hypervariable 
density suggests that developmental disparities among provinces are 
gradually narrowing. Given that inter-regional discrepancies represent 
the largest share of overall inequality, future efforts to address spatial 
imbalances in the coupling coordination between the digital economy 
and CLUE should prioritize narrowing regional gaps.

5.5 Dynamic evolution trend of coupling 
coordination degree

Spatial correlation analysis reveals a significant spatial relationship 
in the evolution of the CCD between the digital economy and 
CLUE. To further investigate the dynamic evolution of CCD under 
spatial interactions, this study constructs a spatial Markov chain 
model. Based on the classification criteria previously presented 
(Table 3), CCD is divided into five categories: severe disorder (0.0–
0.3), mild disorder (0.3–0.4), imminent disorder (0.4–0.5), basic 
coordination (0.5–0.6), and benign coordination (0.6–1). These five 
states are denoted by k = 1, 2, 3, 4, 5, where a higher value of k 
indicates a higher level of coupling coordination (Liu et al., 2018).

Excluding spatial factors, the dynamic evolution of the CCD 
between the digital economy and CLUE is presented in Table 7. The 
analysis reveals the following key characteristics: First, the CCD exhibits 
a strong “state-locking” effect, as the diagonal elements in the transition 

TABLE 6 Moran’s index from 2014 to 2022.

Year Moran’s I Z P-value

2014 0.0960 2.0781 0.0377

2015 0.1219 2.4968 0.0125

2016 0.1196 2.4252 0.0153

2017 0.1023 2.1554 0.0311

2018 0.0781 1.7986 0.0721

2019 0.0902 1.9885 0.0468

2020 0.1103 2.3308 0.0198

2021 0.1302 2.6097 0.0091

2022 0.1418 2.8085 0.0050
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matrix are consistently higher than the off-diagonal elements. This 
indicates a high probability that regions will remain in their current 
coordination state. The highest retention probabilities are observed in the 
categories of severe disorder (62.86%), basic coordination (68.42%), and 
benign coordination (100%), reflecting a tendency for stability in these 
states. Moreover, the CCD shows a clear upward convergence trend, 
consistent with the “club convergence” phenomenon, where regions tend 
to cluster at higher coordination levels. Second, upward transitions are 
more likely than downward ones, as evidenced by the higher probabilities 
above the diagonal. This pattern underscores the positive momentum in 
the coordinated development of CLUE and the digital economy in 
China. Finally, all transitions occur between adjacent states, with no 
observed leapfrog transitions across non-adjacent categories. This 
indicates that the progression in coupling coordination occurs gradually 
rather than through abrupt shifts.

Considering Spatial Factors, as shown in Table  7: First, under 
varying spatial lag types, the spatial Markov transition probabilities differ, 
suggesting that dynamic transitions in CCD are influenced by the 
coordination levels of neighboring regions. Second, the positive spatial 
spillover effects from adjacent regions are conditional. Specifically, when 
a region shares the same coordination level as its neighbors, the 

probability of transitioning to a higher state increases compared to 
scenarios without spatial considerations. This indicates that 
homogeneous regions are more likely to form effective collaborative 
networks, whereas heterogeneous regions may require tailored policy 
interventions. Consequently, inter-regional connectivity should 
be enhanced to facilitate the diffusion of best practices and technological 
innovations from more developed regions to less developed ones. 
Establishing a development framework where advanced regions support 
lagging areas can foster coordinated regional progress.

5.6 Analysis of the driving factors of 
coupling coordination degree

5.6.1 Selection of driving factors
Several elements influence the degree of cooperation between 

China’s digital economy and the efficiency of cultivated land use. 
Based on relevant studies, this paper takes the CCD as the 
dependent variable and analyzes the impact of five factors as 
independent variables: urbanization, economic level, industry 
structure, technological innovation level, and urban–rural 

FIGURE 7

Intra-regional differences, inter-regional differences, and their contribution rates for each region from 2014 to 2022. (a)–(b) merely  sorts the images 
and has no special.
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development gap, with the variable definitions provided in Table 8. 
A multicollinearity test is performed on the driving factors to 
guarantee the independence of each variable and the dependability 
of the regression findings (De La Puente Pacheco et  al., 2025). 
Further analysis may be carried out as there is no multicollinearity 
among the variables, as indicated by the VIF of all driving factors 
being less than 10.

5.6.2 Analysis of the driving factors
The driving factors of the CCD from 2014 to 2022 were examined 

by including the degree of coordination between China’s digital 
economy and CLUE into a Tobit regression model with random effects 
panel using StataMP 17 software. The regression results are shown in 
Table 9. As seen from Table 2, there are significant differences among 
the various driving factors, with the degree of impact ranked as 
follows: urbanization > technological innovation level > economic 
level > urban–rural development gap > industry structure.

Economic development, technological innovation, and 
urbanization have a positive impact on the coordination between 
China’s digital economy and CLUE. The spatial concentration of 
population, capital, and technology during urbanization accelerates 
the spread of digital technologies into agriculture, promoting a shift 
from scattered to intensive land use. Around cities, cultivated land is 
consolidated into contiguous farming areas through reclamation and 
restoration efforts. This aggregation of production factors improves 
land use efficiency, reduces the cost of technology adoption, and 
promotes the widespread application of digital tools such as land 
monitoring systems and intelligent irrigation technologies. 
Technological innovation is the fundamental driving force. The 
development of smart agricultural equipment and the integration of 
digital technologies enhance the precision of land resource 
management. Agricultural big data platforms combine meteorological, 
soil, and market information to optimize crop rotation plans, reduce 
pollution from fertilizers and pesticides, improve soil quality, and 

TABLE 7 2014–2022 coupling coordination degree transition probability matrix.

Type Lag type t/(t + 1) 1 2 3 4 5

Traditional No lag 1 0.6286 0.3714 0.0000 0.0000 0.0000

2 0.0000 0.5532 0.4468 0.0000 0.0000

3 0.0000 0.0145 0.6232 0.3623 0.0000

4 0.0000 0.0000 0.0526 0.6842 0.2632

5 0.0000 0.0000 0.0000 0.0000 1.0000

Spatial 1 1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 1.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000

2 1 0.6897 0.3103 0.0000 0.0000 0.0000

2 0.0000 0.4737 0.5263 0.0000 0.0000

3 0.0000 0.0400 0.6400 0.3200 0.0000

4 0.0000 0.0000 0.1111 0.7778 0.1111

5 0.0000 0.0000 0.0000 0.0000 0.0000

3 1 0.3333 0.6667 0.0000 0.0000 0.0000

2 0.0000 0.6000 0.4000 0.0000 0.0000

3 0.0000 0.0000 0.5263 0.4737 0.0000

4 0.0000 0.0000 0.0000 0.7143 0.2857

5 0.0000 0.0000 0.0000 0.0000 1.0000

4 1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.4444 0.5556 0.0000 0.0000

3 0.0000 0.0000 0.6957 0.3043 0.0000

4 0.0000 0.0000 0.0833 0.5833 0.3333

5 0.0000 0.0000 0.0000 0.0000 1.0000

5 1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 1.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.5000 0.5000 0.0000

4 0.0000 0.0000 0.0000 1.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000
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increase land use efficiency. These improvements help resolve the 
traditional conflict between agricultural efficiency and environmental 
protection. Economic development provides the material foundation 
for digital research and application. Economically developed regions 
are more likely to invest in digital infrastructure and promote green 
technologies, thereby supporting the intensive and ecological 
transformation of cultivated land and facilitating the integration of 
digital technologies with land resources.

In contrast, the urban–rural development gap and industrial 
structure negatively affect coordination. To enhance the synergy between 
the digital economy and land use efficiency, it is necessary to adjust the 
industrial structure and narrow urban–rural disparities. The government 
should focus on guiding industries toward high value-added activities 
that enable the diffusion of digital capabilities into the agricultural sector, 
reshaping cultivated land use models. If the urban–rural gap remains 
large, it may lead to the outflow of rural labor and capital, widen the 
technological divide, and concentrate public resources in urban areas. As 
a result, rural areas may become overly reliant on intensive land 
development to compensate for economic disadvantages, increasing 
ecological pressure and weakening ecosystems. Addressing these 
imbalances, promoting integrated urban and rural development, and 
improving the coordination between the digital economy and land use 
efficiency are essential for sustainable progress.

5.6.3 Heterogeneity analysis
The driving characteristics of the CCD between the digital economy 

and CLUE in various areas are analyzed. Table 9 columns (2) through 
(4) display the findings. First, with values of −0.6740, −0.4490, and 
−0.3590, respectively, the industry structure coefficients in the eastern, 
central, and western areas all passed the significance test, suggesting that 
the influence of industry structure varies by region. Second, urbanization 
has a significant impact on the eastern and western regions. This shows 
that urbanization promotes the efficient integration of the digital 
economy and agricultural resources through the concentration of 
population, capital, and technology in cities, thereby improving 
CLUE. Third, economic levels have a positive impact on the central and 
western regions. Economic growth can drive the development of the 
digital economy, thereby creating conditions for improving 
CLUE. Fourth, the urban–rural development gap has a negative impact 
on central and western regions. The urban–rural development gap leads 
to a long-term one-way flow of capital, technology, and talent toward 
cities, creating a digital divide. Rural areas lack digital infrastructure and 
talent, weakening the synergistic potential between the digital economy 
and farmland efficiency. Finally, technological innovation has a 
significant positive effect on the eastern region, but not on other regions. 
This shows that the eastern region may be more likely to convert science 
and technology into productivity and improve CLUE due to its high 
level of science and technology transformation. In contrast, the digital 
infrastructure level in the central and western regions is relatively 

backward, and the cost of technology diffusion is too high, thereby 
inhibiting and offsetting the promotional effect that technological 
innovation should have on the CCD.

6 Conclusion and recommendations

6.1 Conclusion

The conclusions of this paper are as follows: (1) The development of 
the digital economy shows significant regional imbalance. The gap 
between the eastern region and the central and western regions 
continues to widen. In contrast, the improvement in CLUE is more 
obvious, with significant increases in CLUE values in all regions. 
Although there are still differences between regions, the overall situation 
is better than that of the digital economy. (2) The CCD between the 
digital economy and CLUE has steadily increased, but regional 
development imbalances remain significant. Provinces with high 
coordination are mainly concentrated in the eastern region and parts of 
the central region. For example, Guangdong, Shanghai, Hubei, and other 
provinces have surpassed Gansu, Qinghai, and other provinces in terms 
of development level. (3) The difference in the CCD between the digital 
economy and CLUE continues to narrow, with significant reductions in 
both intra-regional and inter-regional differences, but inter-regional 
differences remain the main source of regional differences. (4) The CCD 
aggregation characteristics are statistically significant. High-high 
aggregation areas are mainly concentrated in the eastern and central 
regions, while low-low aggregation areas are mainly in the western 
region. The local spatial correlation pattern is dominated by low-low 
aggregation, and the degree of aggregation is further increasing. (5) The 
coordination relationship between the digital economy and CLUE 
exhibits club convergence characteristics. Spatial Markov chains 

TABLE 8 The driving factors of coupling coordination degree.

Variable Symbol VIF N

Urbanization Urb 5.55 270

Economic level Eco 5.68 270

Industry structure Ind 2.83 270

Technological innovation level Tec 2.71 270

Urban–rural development gap Gap 1.66 270

TABLE 9 Regression results of driving factors.

Variables (1) 
Nationwide

(2) East (3) 
Central

(4) West

Urb 1.2180*** 1.3136*** 0.6557 1.0107***

(6.37) (2.89) (1.63) (3.78)

Eco 0.0184*** 0.0067 0.0360*** 0.0241***

(4.76) (1.00) (4.12) (2.78)

Ind −0.2471* −0.6740* −0.4490** −0.3590**

(−1.89) (−1.83) (−2.54) (−2.15)

Tec 0.0326*** 0.0054*** 0.0006 0.0001

(5.16) (4.95) (0.70) (0.06)

Gap −0.1438*** −0.0927 −0.1310* −0.2134***

(−3.16) (−0.83) (−1.65) (−4.44)

Sigma u 0.1900*** 0.2512*** 0.0560*** 0.1216***

(7.28) (4.01) (3.11) (4.44)

sigma e 0.0403*** 0.0520*** 0.0259*** 0.0273***

(21.75) (12.98) (10.93) (13.18)

Constant 0.0570 −0.0097 0.4078 0.5304*

(0.22) (−0.02) (0.94) (1.81)

Observations 270 99 72 99

The symbols *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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supplement the conclusions of traditional Markov analysis, indicating 
that changes in coordination status are also influenced by neighboring 
areas. (6) Urbanization, technological innovation, economic 
development, urban–rural development gaps, and industrial structure 
have a significant impact on the CCD. Among these, economic 
development, technological innovation, and urbanization have a positive 
impact, while industrial structure and urban–rural development have a 
negative impact. From the perspective of regional heterogeneity, 
industrial structure is always an important factor affecting the 
coordinated development of coupling, while the impact of other factors 
on the CCD varies across different regions.

6.2 Recommendations

Based on the study’s findings, the following measures are proposed 
to promote the coordinated development of China’s digital economy 
and CLUE.

First, the “Classified Guidance, Gradient Advancement” regional 
development strategy should be implemented. The eastern region should 
prioritize technological innovation in the digital economy and the 
aggregation of high-end factors, while the central and western regions 
need to strengthen investments in digital infrastructure. Efforts should 
focus on expanding the coverage of foundational technologies such as 
the Agricultural Internet of Things (IoT) and remote sensing monitoring, 
exploring the integration of “digital technology + specialty agriculture,” 
and guiding the east-to-west diffusion of digital technologies to mitigate 
the geographical attenuation of technological spillovers.

Second, a digital agriculture collaborative development fund 
should be  established to support the joint development of digital 
agriculture demonstration zones. This initiative should facilitate cross-
regional flows of technology, capital, and land resources. High-
coordination provinces should be  encouraged to support 
low-coordination areas through technical hosting and talent exchange 
programs to reduce regional development disparities.

Third, adjustments and upgrades to the industrial structure 
should be promoted. Enterprises should be guided toward high-value-
added emerging industries, shifting away from excessive land resource 
consumption and alleviating the ecological pressures associated with 
rapid industrialization and economic growth. Finally, the mutually 
reinforcing relationship between the digital economy and CLUE 
should be fully leveraged. The transition from traditional agriculture 
to digital agriculture and integrated sectors such as eco-agriculture 
and agri-tourism should be supported, fostering a virtuous cycle of 
“advancing agriculture through digitalization and enhancing 
digitalization through agriculture.”

6.3 Limitations and outlook

This study has several limitations, despite offering valuable 
insights into the coupling and coordination between China’s digital 
economy and CLUE.

First, although a range of statistical methods was employed, the 
construction of the indicator system involved numerous variables, 
making data collection challenging. To prevent data gaps from 
influencing the results, the analysis was limited to the period from 
2014 to 2022. Future studies could extend the time span to enable 
more comprehensive evaluations.

Second, the study primarily relied on large-scale statistical data to 
assess the degree of synergy between the digital economy and 
CLUE. However, such data may not fully capture subtle interactions 
and underlying mechanisms. Future research could benefit from 
incorporating case studies and micro-level survey data.

Third, with the continued evolution of the digital economy, 
emerging technologies such as blockchain, artificial intelligence, 
and big data analytics may significantly reshape the relationship 
between digitalization and land use. Future studies should explore 
how these technological trends influence sustainable land use and 
agricultural modernization.

Finally, the current digital economy indicator system lacks 
agriculture-specific metrics. Future research should integrate agricultural 
digitalization indicators to more accurately analyze the relationship 
between agricultural digital transformation and land use efficiency.
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