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Sustainable agricultural inputs are essential for enhancing food security,

promoting development, and ensuring resilience in rapidly emerging economies;

however, studies utilizing the advanced autoregressive distributed lag (ARDL)

approach to investigate their impact on agriculture-driven economic growth

remain limited. This research aims to fill this gap by employing a dynamic ARDL

simulation model to analyze the relationship between sustainable agricultural

inputs and economic growth in the agricultural sector, utilizing annual time

series data spanning from 1983 to 2023. The analysis includes unit root tests,

which a�rm the stationarity of all variables, and the ARDL bounds test, which

reveals a significant long-run cointegrating relationship among them. Our

findings indicate that the expansion of irrigated areas and increased usage of

chemical fertilizers contribute significantly to agricultural economic growth in

both the short and long run, while agricultural mechanization only positively

a�ects growth in the short run. Notably, the variable representing crop-sown

land does not exhibit a statistically significant impact on agricultural economic

growth across both time frames. Furthermore, the results from novel DYARDL

simulations, which assess the implications of 10% positive and negative shocks,

further substantiate both short-run and long-run analysis outcomes. The insights

generated from this study highlight the critical role that sustainable agricultural

inputs play in agricultural economic dynamics and provide evidence-based

recommendations for fostering resilient, low-input systems that support global

food security and agro-environmental sustainability.

KEYWORDS

agricultural mechanization, irrigated area, chemical fertilizer consumption, crop sown

land, agricultural economic growth, DYARDL model, cointegration analysis

1 Introduction

Modern high-yield agriculture relies on inputs such as synthetic fertilizers, pesticides,

machinery, and hybrid seeds to meet global food demand (Ahvo et al., 2023). Their

unaffordability due to supply chain disruptions and climate shocks hinders productivity,

inflates costs, and destabilizes food security, particularly in import-dependent regions

(Khan et al., 2024). Overreliance also risks environmental degradation, such as soil
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depletion and water pollution, undermining long-term

sustainability (Liu et al., 2021). This intern affects the huge

efforts to transition to resilient, input-efficient systems that balance

productivity with ecological and economic stability in a climate-

uncertain future (Brunelle et al., 2024; Hou et al., 2023; Shen et al.,

2013).

The associations of different shocks, natural (climate

extremes and soil degradation, natural disasters and so on)

and anthropogenic disasters (trade constraints and unsustainable

practices), on agricultural economy are increasingly well-

understood (Holst et al., 2013; Lin and Wang, 2024; Rezaei et al.,

2023). Very little is known, however, about how positive and

negative shocks from agricultural inputs affect the agricultural

economy as a whole, whether as large scale-national or regional

scale. Few studies, for instance, Ahvo et al. (2023), use the random

forest machine learning algorithm to study the combined impact of

agricultural input shocks in high-yielding areas of the world. Based

on this study, response from a 50% reduction in key agricultural

inputs could slash global maize yields by up to 26% and wheat by

21%, exposing critical vulnerabilities in food systems. McArthur

and McCord (2017) developed an input-yield-economy nexus

framework using a combination of fixed effect and instrumental

variable specifications. In their estimate, a total positive shock from

fertilizer, water, and modern seeds could increase yields and the

economy, resulting in a structural shift in the economy.

There is a growing body of literature that estimates the impact

of policy-driven shocks on China’s agricultural input resources

and agricultural economic growth temporal associations. The

positive shocks that drive the agricultural economic growth is

mainly from ongoing land reforms, subsidy policies, technological

advancements, research and development investments, and

institutional restructuring (Fan et al., 2023; Gong, 2018; Huang

et al., 2020; Ullah et al., 2024; Zhang et al., 2011). Studies in the

field of agricultural input shocks have only focused on single

input shocks (excessive chemical fertilizer, and so on) on specific

outcomes (for example, grain production; Xu et al., 2023). The

increase in electricity consumption, mechanization, and crop land

area has also been positively associated with agricultural-driven

economic growth (Zeng et al., 2022). Liu and Wang (2005)

revealed that the practice of mechanized farming, plastic film

inputs, and education contributes to agricultural economic growth.

Similarly, research conducted in Pakistan by Chandio et al.

(2019a,b) demonstrated a long-term positive correlation between

fertilizer use, water availability, and crop area with growth in

agricultural production.

In an investigation into the recent decline of China’s agricultural

economy, Zhao and Tang (2018) identified a decrease in the

growth rate linked to negative shock arising from factors such as

land, water, technology, and energy. Their study underscores the

importance of investing in technological progress that optimizes

the use of energy, water, and land to promote agricultural growth

in China. Similarly, a study conducted in Pakistan demonstrated

a long-term positive correlation between fertilizer use, water

availability, and crop area with growth in agricultural production

(Chandio et al., 2019a,b).

Despite the existing body of literature, significant research

gaps persist regarding the comprehensive impact of agricultural

input shocks on the national agricultural economy. Specifically,

it remains unclear how these input shocks exert both positive

and negative effects at the macroeconomic level. Furthermore,

prior studies have largely overlooked the application of advanced

time-series analysis, which is essential for accurately assessing how

distinct agricultural inputs influence China’s economic growth over

both short- and long-time horizons. This gap in understanding

hinders effective policy formulation and highlights the need for a

robust analytical framework to elucidate these complex dynamics.

Addressing these deficiencies is crucial for developing targeted

strategies to optimize agricultural productivity and economic

resilience. We selected China as the focus of our study due to

its immense agricultural sector, which features a wide range of

climates, terrains, and farming practices, from smallholder farms

to large-scale mechanized operations. This rich diversity provides

a unique opportunity to analyze the effects of various agricultural

inputs on economic growth in distinct contexts. Furthermore,

China’s significant role in global food production and its ongoing

transformation toward sustainable agricultural practices make it a

critical case for understanding the interplay between agriculture

and economic development. By examining China, we aim to derive

insights that can inform policies and strategies applicable both

domestically and globally.

Consequently, the questions come into play: (1) In what ways

do the combined temporal effects of both positive and negative

shocks to agricultural machinery, land, fertilizer, and irrigation

interact to affect agricultural economic growth? (2) Do positive

and negative shocks from various critical agricultural inputs have

reinforcing effects on agricultural economic growth? (3) What

is the relative significance of positive and negative shocks from

each critical agricultural input in influencing the overall effect

on agricultural economic growth? (4) What policy measures

can be proposed to improve agricultural resilience and promote

sustainable growth while addressing the potential trade-offs

between positive and negative shocks to various critical agricultural

inputs regarding resource allocation and policy implementation for

agricultural economic growth? The resolution of an issue should

be achieved through investigations employing advanced models,

specifically ARDL. Therefore, this investigation aims to examine

the combined impacts of the positive and negative shocks from

critical agricultural inputs (machine, land, fertilizer, and irrigation)

on agricultural economic growth. We also estimate the short- and

long-run effect of the change/shocks in individual inputs from the

combined effect to identify the inputs that would most affect the

economy. We used a novel dynamic autoregressive distributive lag

model (ARDL) simulation to conduct the assessment using China’s

41 years of data spanning 1983–2023. The model enabled us to

estimate the input shocks at different levels (used ±10% for this

study). The simulation approach allowed for capturing key inputs

shock and time-sensitive growth impacts.

This study offers important theoretical and practical

contributions to agricultural economics. (1) Theoretical

contribution: By using advanced dynamic Autoregressive

Distributed Lag (DYARDL) methods, it enhances our

understanding of how different inputs affect growth in the

short and long run. This challenges traditional views and enriches

theoretical frameworks in agricultural production. (2) Practical
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contribution: The research aids policymakers in China by

highlighting the need for sustainable input efficiency to ensure

food security and resilience in low-input farming. By promoting

strategies that balance synergies, address diminishing returns,

and support sustainability, this study provides valuable insights

for creating effective, environmentally friendly agricultural

policies. This study informs policies that balance synergies,

diminishing returns, and sustainability through spatiotemporal

optimization to mitigate input-driven risks. Furthermore, we

contribute to adjustments to align China’s rural revitalization with

the sustainable development goals (SDGs) (No. 8: decent work

and economic growth, particularly related to 8.4: efficiency in

consumption and production toward economic growth) through

balanced input-growth-sustainability pathways.

The study is organized to facilitate a clear and logical

progression of ideas, ensuring that readers can easily follow the

research narrative. Section 2 provides a comprehensive review of

the existing literature on agricultural inputs and economic growth,

effectively establishing the research context and highlighting

the critical gaps in current knowledge. Section 3 outlines the

methodology in detail, including a rigorous explanation of the

advanced ARDL bounds testing, the dynamic ARDL simulation

approach, and the specific data sources and variables utilized in

the analysis. Section 4 presents and analyzes the empirical findings,

encompassing necessary unit root tests, cointegration results,

short-run and long-run effects of inputs, and DYARDL shock

simulations, thereby providing a thorough examination of the data.

Finally, Section 5 synthesizes the key conclusions and articulates

actionable policy implications based on the findings, ensuring

that the research is relevant and applicable for policymakers. This

structured approach not only enhances clarity but also strengthens

the manuscript’s contribution to the field.

2 Literature review

The topic of agricultural economic growth (AEG) has drawn

extensive attention from scholars worldwide. Thus, this study

emphasizes three issues. The first issue is the quantification and

calculation method of AEG (Lin et al., 2021; Bi et al., 2022; Mei

et al., 2022; Wang, 2022). The second issue focuses on the factors

either driving or influencing AEG. Studies in this issue can be

dissected into four perspectives.

First, only few studies examined the association of land tenure

and AEG (Kuang et al., 2022; Liu and Wang, 2005; Sun and

Chen, 2020). Second, there are several studies focusing on the

association between farmers’ agricultural practices and their effect

on AEG (Abdul-Rahim et al., 2018; Gupta and Kannan, 2024).

These studies argued that soil and water conservation practices,

crop diversification, cropping intensity, and proper fertilizer use,

enhance productivity and thereby improve AEG. Third, the effect

of energy consumption and CO2 emission on AEG is the foremost

important area of studies in many countries, such as China,

Pakistan, Iran, Ghana, and Europe (Ali et al., 2019; Chandio

et al., 2019a,b; Najafi Alamdarlo, 2016; Zafeiriou and Azam, 2017).

Fourth, how natural disaster influence AEG is also an important

area of prior research (Lin and Wang, 2024; Yuan et al., 2022).

Recent studies identify the association between agricultural

input factors and AEG to examine how this association

promotes sustainable agricultural development. For instance,

agricultural input factors, including the increase in rural electricity

consumption, total power of agricultural machinery, and crop-

sown area, also increased AEG (Zeng et al., 2022). A study by

Liu and Wang (2005) found that the practice of mechanized

farming, plastic film inputs, and education contribute to AEG.

Seeking to understand why AEG in China is declining recently,

Zhao et al. (2018) found the decline in AEG associated with a

scarcity of land, water, technology, and energy, and argued that

investment to enhance technology progress that save energy, water,

and land enables the sustainable development of agriculture in

China. A study in Pakistan explored that fertilizer use, water

availability, and cropped area have long-term positive relationship

with agricultural production growth (Rehman et al., 2019). A study

by Khan et al. (2022) used dynamic ARDL model to investigate

the long- and short-run nexus between chemical fertilizers, area

under greenhouses, and renewable energies and AEG, finding

that increasing the use of renewable energy and the expansion of

greenhouse areas contribute to the growth of AEG.

The third issue is the application of the ARDL model to AEG,

which is the focus of several studies. While ARDL applications

across diverse contexts (Asumadu-Sarkodie and Owusu, 2016;

Najafi Alamdarlo, 2016; Warsame et al., 2023; Zafeiriou and Azam,

2017) consistently model AEG-environment linkages, they suffer

from two critical limitations: (1) an over-reliance on aggregate

variables (e.g., total CO2 emissions and undifferentiated resource

use) that masks how specific inputs (fertilizer and mechanization)

differentially drive growth and degradation, and (2) an inability to

translate broad correlations (long-run equilibria) into actionable

insights for input-level management within distinct agricultural

systems, despite contextual nuances (e.g., wheat’s mitigation role

in Somalia).

Considering the existing body of evidence, understanding the

factors influencing agricultural economic growth has garnered

significant attention from researchers. While existing literature

extensively employs the ARDL approach to model agricultural

dynamics, critical gaps persist. Studies by Bambi and Pea-Assounga

(2024, 2025), Derouez and Alqattan (2025), Hasan et al. (2023),

Karasoy (2024), and Zhang et al. (2024) predominantly focus on

ARDL’s capacity to analyze environmental impacts, multifactor

interactions, or aggregate production outcomes. However, these

applications often treat agricultural inputs implicitly within

broader models or prioritize environmental consequences over

direct, disaggregated economic growth linkages. Crucially, they

lack investigation into how specific, discrete inputs (irrigation,

fertilizer, machinery, and land) distinctly drive agricultural

economic growth in both the short and long run, particularly

within rapidly emerging economies such as China. Furthermore,

the study seldom utilizes advanced simulations, such as dynamic

ARDL, to forecast input-specific shocks. This study directly

addresses this gap by applying dynamic ARDL to isolate and

quantify the differential growth contributions of individual inputs.

This study distinguishes itself by offering new insights into

the relationship between agricultural input resources, specifically

agricultural mechanization, irrigated area, chemical fertilizer use,

crop sown land, and agricultural economic growth. It employs a
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novel dynamic ARDL model, which has not been applied in prior

studies on this topic. This allows for a deep understanding of

the long- and short-term dynamics of agricultural input resources

and their impact on agricultural economic growth. The findings

of this study will contribute critical evidence for shaping input

resource strategies aimed at advancing agricultural development.

This is particularly relevant for China’s 2035 plan to create modern

agriculture and revitalize rural areas. By examining both positive

and negative shocks of input resources, this study provides valuable

knowledge that can guide future research into the environmental

aspects of agricultural development and help bridge existing gaps

in the literature (Table 1).

3 Methodology and data source

3.1 Data sources and processing

The main goal of this study is to examine the impact of

agricultural mechanization (AM), irrigation area (IA), chemical

fertilizer consumption (CF), and crop sown land (CL) on

agricultural economic growth (AEG) in China. To this end, the

data used in this study come from the China Agricultural Statistical

Yearbook (https://data.stats.gov.cn). This study used secondary

annual time series data for China covering a period of 41 years,

from 1983 to 2023. The dependent variable in this study is AEG. It is

represented by the value-added of the agriculture, forestry, animal

husbandry, and fishery industries (originally it was in Chinese

yuan and converted into the current USD value). Existing research

uses various indicators as a measure of AEG, such as agricultural

total factor productivity (Kuang et al., 2022), gross output value

of agriculture, forestry, animal husbandry, and fishery (Guo et al.,

2021; Yuan et al., 2022; Zeng et al., 2022).

In this study, the logarithm of the value-added of the

agriculture, forestry, animal husbandry, and fishery industries serve

as a comprehensive measure of AEG, which reflect the value

realized by the whole industrial chain of agricultural production,

processing, logistics, marketing, and services (Lin et al., 2021;

Bi et al., 2022; Mei et al., 2022; Wang, 2022). It represents the

development level of the agricultural economy. Including AEG as

a dependent variable is motivated by the increasing recognition

of the agriculture sector’s critical role in achieving food security,

enhancing farmers’ livelihoods, promoting rural development, and

stabilizing the national economy in the face of global challenges.

Additionally, the total power of agricultural mechanization

(AM; 10,000 kW) is used as a measure of agricultural

mechanization level (Zou et al., 2024). It is a useful available

variable that can be used to assess the level of mechanization.

Theoretically, AM accelerates AEG by increasing productivity and

efficiency, allowing farmers to achieve higher yields with less labor

and time (Lu and Huan, 2022; Lu et al., 2024; Meng et al., 2024).

Moreover, it reduces production costs and encourages investment

and frees farmers to look for off-farm employment which further

enhances the competitiveness and sustainability of the agricultural

sector (Ma et al., 2023).

The other independent variable in this study is irrigation

area (IA), hectares of cultivated land. It serves as a crucial

indicator of water conservation efforts in farmland throughout

China. It refers to the total extent of fields that are watered and

those equipped with irrigation systems or equipment for regular

irrigation purposes. Theoretically, IA of cultivated land directly

influences crop yields and resource efficiency, thereby enhancing

agricultural productivity (Liu et al., 2024). Existing studies support

that expanding IA supports food security and rural development,

making it a vital factor for sustainable economic growth (Li et al.,

2024). Furthermore, consumption of chemical fertilizers (CFs;

10,000 tons), an independent variable, refers to the amount of

chemical fertilizer used in farming during a given year. While a

study by Khan et al. (2022) highlighted that chemical fertilizer

consumption does not show direct long-term or short-term effects

on AEG, Yousaf et al. (2017) reported that chemical fertilizer

improves crop production, thereby contributing to AEG.

Another important independent variable in this study is crop

sown land (CL; 1,000 hectares). It refers to the total land area,

whether cultivated or uncultivated, that is planted or transplanted

with crops intended for harvest within a given calendar year by

agricultural producers. Existing studies revealed the association

between CL and AEG. The amount of cultivated crop land in

China declined due to land use change driven by urbanization,

which imposes a reduction in agricultural production, thereby

affecting the overall agricultural growth (Lu et al., 2024; Xiao

et al., 2018). A study by Doll (2021) highlighted that the decline

of arable land caused by land waste imposes huge pressure on

agricultural development. Establishing a foundation on existing

studies, this study evaluates the association of these input resources

with AEG for building illustrations for the realization of the

agricultural modernization goal of the Chinese government as early

as the 2050s.

3.2 Model estimation

This study employed Autoregressive Distributed Lag (ARDL)

modeling and a novel Dynamic Autoregressive Distributed Lag

(DYARDL) simulation forecast to explore both long- and short-

term relationships between agricultural economic growth (AEG)

and four independent variables: agricultural mechanization (AM),

irrigation area (IA), chemical fertilizer consumption (CF), and

crop sown land (CL). To address potential heteroskedasticity and

mitigate the impact of extreme values or outliers, all variables

were transformed into their natural logarithmic forms. The

research utilized a log-linear regression model to analyze how

AM, IA, CF, and CL influence AEG in China, highlighting the

intricate interdependencies among these factors. Figure 1 shows the

analytical frameworks of this study. This comprehensive approach

not only clarifies the individual contributions of each variable

to agricultural economic growth but also provides insights into

their collective impact, thereby enhancing the understanding of

agricultural development dynamics in the region. The log-linear

regression model in Equation 1 is as follows:

LnAEG = β0 + β1LnAM + β2LnIA+ β3LnCF + β4LnCL+ εt

(1)

Where t stands for time period, Ln denotes natural log, β1, β2,

β3, and β4 represent coefficients, and ε is an error term.
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TABLE 1 Summary of existing studies on factors a�ecting agricultural economic growth.

References Sample Period Methodology Main findings

Mei et al. (2022) China 2014–2018 FGLS ↑Internet finance and rural finance-↑AEG

Guo et al. (2021) China 2001–2018 MS(M)-AR(p) model ↑Agricultural Support Policies-↑AEG

Kuang et al. (2022) China 2005–2018 Intermediary effect test model ↑Farmland transfer-↑AEG

Lin and Wang (2024) China 2004–2020 Fixed-effect model ↑Natural disasters-↓AEG

Liu and Wang (2005) China 1991–1999 Extended production model ↑Technological progress-↑AEG

Nan et al. (2019) China 1997–2014 Two-step generalized method ↑Rural credit cooperatives’-↑AEG

Zeng et al. (2022) China 2007–2019 Random effects model ↑Agricultural insurance-↑AEG

Wang (2022) China 1985–2019 ARDL ↑CO2 emissions, ↑AGExp, ↑OILC, and

↑GASC-↑↓AEG

Sun and Chen (2020) China 1970–1987 OLS method ↑Household responsibility system-↑AEG

Hu et al. (2023) China 2000–2019 Logarithmic Mean Divisia index method ↑Agricultural energy consumption-↓AEG

Zhao et al. (2018) China 1978–2015 Modified production function model ↑Capital-↑AEG

Abdul-Rahim et al.

(2018)

China 2003–2012 Cobb–Douglas production function ↑Soil and water conservation-↑AEG

Gao et al. (2014) China 1978–2010 Provincial index approach ↑Rural-urban income gaps-↓AEG

Yin et al. (2024) China 2000–2019 Panel-fixed-effects models ↑Geographical indications-↑AEG

Li and Li (2021) China 2007–2017 Dynamic spatial panel lag model ↑Water pollution-↓AEG

Deng et al. (2024) China 2011–2020 The synthetic control method ↑Farmland use right mortgage loan-↓AEG

Yuan et al. (2022) China 1991–2018 Benchmark panel regressions ↑Temperature fluctuation-↓AEG

Warsame and Daror

(2024)

Somalia 1985–2017 ARDL and VECM ↑Environmental degradation-↓AEG

Adedoyin et al. (2020) Sub-Saharan Africa 1980–2014 PMG-ARDL ↑CO2 emissions-↓AEG

Aydogan and Vardar

(2020)

E7 countries 1990–2014 EKC and Granger causality ↑CO2 emissions, real GDP, non-renewable energy

use-↑↓AEG

Najafi Alamdarlo (2016) Iran 2001–2013 EKC ↑Water consumption and CO2 emissions-↑↓AEG

Zafeiriou and Azam

(2017)

Europe 1992–2014 ARDL and EKC ↑Environmental degradation-↓AEG

Asumadu-Sarkodie and

Owusu (2016)

Ghana 1961–2012 ARDL and VECM ↑CO2 emissions and agriculture, land use ↑↓AEG

Ali et al. (2019) Pakistan 1961–2014 ARDL ↑CO2 emissions, land under cereal crops↑

↑↓AEG

Chandio et al. (2021) Pakistan 1984–2016 ARDL ↑Energy consumption ↑↓AEG

Chandio et al. (2019a,b) Pakistan 1980–2016 ARDL ↑Environmental degradation-↓AEG

Rehman et al. (2019) Pakistan 1987–2017 ARDL ↑Cropped area, ↑energy consumption, ↑fertilizer

use, ↑GDP per capita, and ↑water availability and

↑CO2 emissions-↑↓AEG

Chandio et al. (2019a,b) Pakistan 1977–2014 ARDL ↑CO2 emissions, ↑financial development and

↑fertilizer use-↑↓AEG

Ali et al. (2019) Pakistan 1960–2014 ARDL ↑CO2 emissions-↓AEG

Gupta and Kannan

(2024)

India 1981/2–

2019/20

Bai–Perron multiple breakpoint method ↑Trade terms, ↑irrigation, ↑cropping intensity,

↑public investment, ↑fertilizer use, and ↑labor,

↑crop diversification-↑↓AEG

↑↓ denote increase and decrease, respectively.

3.2.1 ARDL model
The ARDL model was developed by Pesaran et al.

(2001) to estimate the long- and short-run relationships

among variables. Unlike conventional cointegration tests,

which require all time series data to be non-stationary and

integrated of the same order [typically I(1)], the ARDL

model can be estimated using time series data with mixed

orders of integration [I(0) and I(1)], but not I(2), and it
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FIGURE 1

Analysis diagram.

allows for different lag lengths for both regressors and the

dependent variable.

Applying the ARDL technique, unbiased long-run estimates

can be obtained. The ARDL model is also a useful approach for

small and finite sample sizes and uses a combination of endogenous

and exogenous variables, unlike a VAR model, which is strictly

for endogenous variables. However, if any variable in the data is

stationary at the second difference, I(2), the ARDL approach cannot

be applied. In the ARDL model, there must be no autocorrelation

among the error terms. Additionally, the data should exhibit

no heteroscedasticity, meaning that the variance and mean must

remain constant throughout the model. The data should also follow

a normal distribution. In the ARDL model, if the variables are not

cointegrated, only the short-run ARDLmodel can be specified. The

generalized ARDL (p, q) model is specified in Equation 2:

Yt = γoi +
∑p

i=1
δiYt−1 +

∑q

i=0
β

′

iXt−i + εit (2)

Where Yt : The dependent variable at time t.

γo: The constant or intercept term.
∑p

i=1 δiYt−i: The autoregressive (AR) part of the model, where

Yt−i are lagged values of the dependent variable and δi are the

coefficients associated with these lags.
∑q

j=0 β
′

jXt−j: The distributed

lag (DL) part of the model, where Xt−j are the lagged values of the

independent variable(s) and β
′

j are the coefficients associated with

these lags. εt : The error term at time t, capturing all other influences

on Yt not included in the model.

Equation 3 shows the ARDL model of this study for long-run

and short-run estimations.

LnAEGt = ϑ0 +

p
∑

t−1

ϑ1LnAMt−1 +

p
∑

t−1

ϑ2LnIAt−1

+

p
∑

t−1

ϑ3LnCFt−1 +

p
∑

t−1

ϑ4LnCLt−1 +

q
∑

t−1

1LnAMt−1

+

q
∑

t−1

1LnIAt−1 +

q
∑

t−1

1LnCFt−1 +

q
∑

t−1

1LnCLt−1

+ ECTt−1 (3)

The signs ϑ1, ϑ2, ϑ3, ϑ4 represent long-run estimates; 1

denotes the short-run regressors; the error correction term is

ECTt−1, which indicates adjustment speed toward the long-run

in a short time period. The p and q symbolize lag lengths; while

t stands for time. The optimal lag length is selected based on

the AIC. Although the inclusion of additional lags improves the

regression fit, it comes at the cost of higher variance in the

coefficient estimates. To balance this trade-off, we employed a

data-driven approach for optimal lag selection using the automatic

Akaike Information Criterion (AIC) method, which is a popular

technique for determining the best lag length in time series analysis

(Kripfganz and Schneider, 2023). Recently, several researchers have

also utilized automatic selection of the optimal lag order with the

AIC in their studies to determine the best lag length for fitting the

ARDL model (Wang, 2022).
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3.2.2 The novel dynamic ARDL simulations
This study uses the novel DYARDL developed by Jordan and

Philips (2018) to investigate the effect of the main agricultural input

resources on AEG. Unlike the ARDL model, the DYARDL can

better capture the dynamics of data with feedback effects, making

it more flexible in handling complex time series relationships

(Abdullahi et al., 2024). The variables should be stationary at I(1)

and I(0), and they must be cointegrated. In the DYARDL model,

the other variables in the equation remain unchanged. Equation 4

presents the error correction form of the novel DYARDL model

used in the current study:

(1LnAEG) t = α0 + θ0LnAEGt−1 + β11LnAMt + θ1LnAMt−1

+ β21LnIAt + θ2LnIAt−1 + β31LnCFt

+ θ3LnCFt−1 + β41LnCLt + θ41LnCLt−1 + εt (4)

3.2.3 Stationarity test
This study used the Augmented Dickey-Fuller (ADF), the

Phillip-Perron (PP), the Kwiatkowski-Phillips-Schmidt-Shin

(KPSS), and the Zivot-Andrew’s test to check the stationarity of

the variables. In the unit root test, the null hypothesis posits that

the data are non-stationary, while the alternative hypothesis asserts

that the data are stationary. Equation 5 illustrates the unit root test

applied to the current dataset.

1Y1 = α0 + β0T + β1Yt−1 +

m
∑

i−1

α11Yt−1 + εt (5)

In Equation 5, Y is the variable being examined for unit root; T

represents the linear trend; 1Yt−1 indicates the lag difference; α0

is the constant term; and t indicates the time trend. The null and

alternative hypotheses of “unit root test” can be represented as β1

= 0 OR H1: β1.

3.2.4 Cointegration testing
This study followed the ARDL bound test introduced by

Pesaran et al. (2001) for examining the existence of long-run

cointegration between variables. When conducting a cointegration

test, if the F-statistic and t-test values exceed the upper bound

critical value by <5%, this suggests a long-run cointegration

relationship between the dependent variable and the regressors;

otherwise, no cointegration exists. However, if the computed

F-statistic and t-test fall between the lower and upper bound

critical values, the results are inconclusive (Asumadu-Sarkodie and

Owusu, 2016). To test the long-run cointegration, two hypotheses

are formulated.

H0 : b11 = b21 = b31 = b41 = b51 = 0

H1: At least one bi1 6= 0, (where i= 1, 2, 3, 4, 5)

To perform the bounds test for long-run cointegration, the

conditional ARDL (P, q1, q2, q3, q4) model with four variables is

specified in Equations 6–11:

1LnAEGt = a01 + b11LnAEGt−1 + b21LnAMt−1 + b31LnIAt−1

+ b41LnCFt−1 + b51LnCLt−1 +
∑p

i=1
a1i1LnAEGt−1

+
∑q1

i=1
a2i1LnAMt−1+

∑q2

i=1
a3iLnIAt−1

+
∑q3

i=1
a4iLnCFt−1 +

∑q4

i=1
a5iLnCLt−1 + e1t (6)

1LnAMt = a01 + b11LnAMt−1 + b21LnAEGt−1 + b31LnIAt−1

+ b41LnCFt−1 + b51LnCLt−1 +
∑p

i=1
a1i1LnAMt−1

+
∑q1

i=1
a2i1LnAMt−1+

∑q2

i=1
a3iLnIAt−1

+
∑q3

i=1
a4iLnCFt−1 +

∑q4

i=1
a5iLnCLt−1 + e1t (7)

1LnIAt = a01 + b11LnIAt−1 + b21LnAMt−1 + b31LnAEGt−1

+ b41LnCFt−1 + b51LnCLt−1 +
∑p

i=1
a1i1LnIAt−1

+
∑q1

i=1
a2i1LnAMt−1+

∑q2

i=1
a3iLnIAt−1

+
∑q3

i=1
a4iLnCFt−1 +

∑q4

i=1
a5iLnCLt−1 + e1t (8)

1LnCFt = a01 + b11LnCFt−1 + b21LnAMt−1 + b31LnIAt−1

+ b41LnAEGt−1 + b51LnCLt−1 +
∑p

i=1
a1i1LnCFt−1

+
∑q1

i=1
a2i1LnAMt−1+

∑q2

i=1
a3iLnIAt−1

+
∑q3

i=1
a4iLnCFt−1 +

∑q4

i=1
a5iLnCLt−1 + e1t (9)

1LnCLt = a01 + b111LnCLt−1 + b211LnAMt−1 + b31LnIAt−1

+ b41LnCFt−1 + b51LnAEGt−1 +
∑p

i=1
a1iLnCLt−1

+
∑q1

i=1
a2iLnAMt−1+

∑q2

i=1
a3iLnIAt−1

+
∑q3

i=1
a4iLnCFt−1 +

∑q4

i=1
a5iLnCLt−1 + e1t (10)

Then, if there is no cointegration, the ARDL (P, q1, q2, q3, q4)

model is specified in Equation 12.

1LnAEGt = a01 +
∑p

i=1
a1i1LnAEGt−1 +

∑q1

i=1
a2i1LnAMt−1

+
∑q2

i=1
a3iLnIAt−1 +

∑q3

i=1
a4iLnCFt−1

+
∑q4

i=1
a5iLnCLt−1 + et (11)

If there is cointegration, the error correction model (ECM)

representation is specified in Equation 13.

1LnAEGt = a01 +
∑p

i=1
a1i1LnAEGt−1 +

∑q1

i=1
a2i1LnAMt−1

+
∑q2

i=1
a3iLnIAt−1 +

∑q3

i=1
a4iLnCFt−1

+
∑q4

i=1
a5iLnCLt−1 + λECTt−1 + et (12)

Where, λ =

(

1−
∑p

i=1 δ1

)

, speed of adjustment parameter

with a negative sign; ECT = (LnAEGt−1 − θXt); the error

correction term; θ =

∑q
i=0 βi
α

, is the long-run parameter;

a1ia2ia3ia4ia5i are the short-run dynamic coefficients of the model’s

adjustment to the long-run equilibrium. Obtain the short-run

dynamic parameter by estimating the ECM associated with the

long-run estimates. The short-run causal effect is represented by the
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t-statistic on the explanatory variables (short-run coefficients). The

long-run relationship between the variables indicates that there is

Granger causality in at least one direction, which is determined by

the t-statistic on the coefficient of the lagged error correction term.

3.2.5 Granger causality test
We further apply Granger causality analysis to evaluate the

causal effect between the variables (Granger, 1969). Similarly,

before conducting the Granger causality test, it is necessary for

the variables to be stationary. Additionally, after estimating the

model, diagnostic checks were performed to ensure that residuals

do not exhibit serial correlation, which could otherwise affect the

validity of the test results (Figure 1). While testing the Granger

causality, the null hypothesis (H0) is that Y(t) does not Granger-

cause X(t), meaning that all coefficients associated with lagged

values of Y(t), when included in a regressionmodel predictingX(t),

are equal to zero. The alternative hypothesis (H1) is that Y(t) does

Granger-causeX(t), meaning at least one coefficient associated with

lagged values of Y(t), when included in such a regression model,

is non-zero (Granger, 1969). The f -value was estimated to reject

the null hypothesis if the F-statistic is greater than the f -value. The

following two equations were used to find βj = 0 for all lags j.

X (t) =

p
∑

i=1

αiX (t − i) + c1 + u1(t) (13)

X (t) =

p
∑

i=1

αiX (t − i) +

q
∑

j=1

βjY
(

t − j
)

+c2 + u2(t) (14)

The f-statistics was calculated using the following equation:

F =
ESSR − ESSUR/q

ESSUR /(n− k)
(15)

Where ESSR: Error sum of squares for the restricted model

(Equation 13); ESSUR: Error sum of squares for the unrestricted

model (Equation 14); q: Number of restrictions [equal to the

number of lagged terms of Y(t)]; n: Number of observations; k:

Total number of parameters in the unrestricted model.

The null hypothesis was rejected if the F-statistic exceeded the

critical value from the F-distribution table or if the p-value was

less than the significance level (e.g., 0.05). This indicates that Y(t)

Granger-causes X(t). Otherwise, the null hypothesis failed to be

rejected, implying no evidence that Y(t) Granger-causes X(t).

4 Empirical results and discussion

4.1 Descriptive statistics

The descriptive statistics in Table 2 show that these series are

obviously heterogeneous. The average AM is larger than that of the

other independent variables. The standard deviation clearly shows

that AEG value is the highest, followed by the AM, suggesting that

there have been more changes in agricultural development during

the study period, and show great fluctuation. As we see in Table 2,

the skewness values for all variables were between−1 and 1, which

TABLE 2 Descriptive statistics.

Statistic LnAEG LnAM LnIA LnCF LnCL

Mean 26.288 20.1344 10.921 17.494 18.532

Median 26.238 20.2189 10.903 17.602 18.537

Std. 1.169 0.5934 0.156 0.397 0.044

Skewness −0.329 −0.3536 0.099 −0.905 −0.604

Kurtosis 1.939 1.7095 1.754 2.550 2.936

Min 24.065 19.0097 10.692 16.624 18.414

Max 27.931 20.8531 11.179 17.913 18.596

Jarque-Bera 5.664 10.8616 8.858 5.694 3.241

Probability 0.058 0.0044 0.012 0.058 0.199

Observation 41 41 41 41 41

TABLE 3 Correlation matrix.

Variables LnAEG LnAM LnIA LnCF LnCL

LnAEG 1.000

LnAM 0.9851 1.000

LnIA 0.979 0.9647 1.000

LnCF 0.951 0.9577 0.891 1.000

LnCL 0.366 0.2906 0.464 0.177 1.000

generally shows approximately symmetric distributions, which is

an indicator of normality of all variables.

The correlation matrix analysis in Table 3 demonstrates the

strength and direction of relationships between variables.

Except for CL in Figure 2, the plots of the other variables

during the study period show an increasing trend, highlighting the

presence of relationships among the study variables.

4.2 Unit root tests

The analysis in this study begins with checking whether the

variables are stationary at level I(0) or first difference I(1), followed

by the establishment of the system’s optimal lag length, k, as it is the

essential requirement for further investigation. This study applied

the augmented Dickey and Fuller (ADF), Phillips and Perron (PP),

Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Zivot-Andrews

unit root tests are four widely used methods for time series analysis

(Dickey and Fuller, 1979; Phillips and Perron, 1986). Conducting

both the ADF and PP tests provides a more comprehensive analysis

of the stationarity of a time series, helping to validate findings and

better understand the underlying data characteristics. They have

different methodologies and underlying assumptions, which can

yield complementary insights.

Table 4 shows the results of ADF, PP, and KPSS stationarity tests

at I(0) and I(1). The unit root test results reveal important insights

into the stationarity characteristics of various agricultural variables.

AEG is found to be stationary at the level according to the ADF
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FIGURE 2

Plots of variables during the study period.

TABLE 4 Unit root test analysis.

Variable Level ADF 1 ADF Level PP 1 PP Level KPSS 1 KPSS

LnAEG −2.688∗ −3.584∗∗∗ −2.215 −3.584∗∗∗ 0.637 0.074∗∗∗

LnAM −3.398∗∗ −3.910∗∗∗ −2.692∗ −3.948∗∗∗ 0.780 0.145∗∗∗

LnIA 0.774 −4.589∗∗∗ 0.544 −4.527∗∗∗ 0.273 0.105∗∗∗

LnCF −6.009∗∗∗ −1.862 −3.932∗∗∗ −1.645 0.899 0.15∗∗∗

LnCL −0.840 −4.220∗∗∗ −1.348 −4.246∗∗∗ 0.650 0.094∗∗∗

1: first difference. ∗∗∗ , ∗∗ , ∗Illustrates null hypothesis 1%, 5%, and 10% significance level, respectively.
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TABLE 5 Zivot-Andrews unit root test with structural breaks.

Variable Level Z
Andrew

Breaking
year

1 Z
Andrews

Breaking
year

LnAEG −4.059 1994 −4.980∗ 1996

LnAM −3.594 2010 −7.285∗∗∗ 2016

LnIA −4.095 2002 −5.336∗∗ 1991

LnCF −3.281 2011 −4.463 1991

LnCL −4.525 2000 −5.834∗∗∗ 2004

1: first difference, ∗represents 10% significance level, ∗∗shows 5% significance level, and
∗∗∗indicates 1% significance level.

tests, but it exhibits stationarity at first difference across the PP and

KPSS tests.

In the case of AM, the ADF and PP tests identify it as stationary

at level, while the KPSS test suggests that it is stationary at first

difference. IA is consistently non-stationary at the level in all tests,

but it becomes stationary upon taking the first difference. CF

presents a mixed picture, being stationary at the level according to

the ADF and PP tests, yet it is stationary at the first difference in

the KPSS teat. Finally, CL remains non-stationary at the level in all

tests, transitioning to stationarity at first difference across the board

(Table 4). These findings underscore the necessity of differencing

for ensuring stationarity in time series analyses involving these

agricultural indicators.

The ADF and PP unit-root tests are the most commonly

used in previous research. However, they may create a bias

toward non-rejection of the unit root for small sample sizes.

Thus, this study further implemented the structural break unit

root test developed by Zivot and Andrews (1992). This unit

root test offers the variables with a breaking stationary series,

assisting in exploring the factors that affect the agricultural input

resource in the time series. Table 5 shows the results of the

structural break unit root test. The structural break unit root

test shows that the t-statistic for agricultural economic growth

exceeded the critical value at a significance level below 10%,

with a break occurring in 1996. The mid-1990s was a period

in which economic reforms and urbanization spurred off-farm

work, increasing wage labor and self-employment opportunities,

which significantly boosted farmers’ incomes (Wang et al., 2011).

Moreover, since the mid-1990s, China’s agricultural productivity

has benefited from plant biotechnology innovations such as Bt

cotton, enhancing agricultural outcomes (Huang et al., 2002). The

15-year contract of the Household Responsibility System (HRS),

a system that decentralized land control to individual households,

was extended from 15 to 30 years, creating stability in land contract

system and resulting in boosting agricultural productivity (Huang

et al., 2020; Huang and Rozelle, 2017).

Agricultural mechanization rejects the null hypothesis at

a significance level below 1%, with a structural break in

2016. The unexpected rise in agricultural mechanization in

China around 2016 may have been driven by the 2014 land

transfer policy, which promoted the separation of the “three

rights” (land ownership, contract, and management). This policy

facilitated the consolidation of large-scale farms and the uptake

of agricultural machinery, boosting agricultural productivity and

incomes (Duan et al., 2021; Gong et al., 2022). In the case of the

irrigated area, the null hypothesis was rejected at a significant

level below 5% with a structural break in 1991. The expansion

of irrigated area in China at the beginning of the 1990s can be

associated with the first China’s water law, which was enacted in

1988, largely in response to the decline in irrigated land (Lohmar

et al., 2003). Following this, government investment in water

infrastructure grew to 2.9% of total investments, driven by both the

need to repair and maintain infrastructure and a broader national

focus on infrastructure development. By 1990, the area of irrigated

land increased to 48.39 million hectares, slightly surpassing the

1978 level (Wang et al., 2020).

The results of chemical fertilizer showed no significant

difference at both levels and first difference in the years 2011 and

1991, respectively. Because, in 1991, the use of chemical fertilizer

is just at the start of its rising stage, as the period was the initial

stage of a dual system of central planning and market adjustment,

and the surge of chemical fertilizer was inconsiderable (Li et al.,

2013). The structural break unit root test shows that the t-statistic

for crop sown land surpassed the critical value at a significance level

below 1%, with a break occurring in 2004. The sharp increase in the

agricultural sown area in 2004 was largely due to the introduction of

China’s new agricultural subsidy system, which protected farmers’

rights, and the 2002 Rural Land Contract Law, which legally defined

collective land ownership, fostering the development of large-scale

agriculture (Du et al., 2011; Zhou et al., 2020). Currently, policies

are in action to protect the existing crop land and reclaim the

degraded and abandoned land (Table 5).

4.3 ARDL bound cointegration tests

The stationarity of the included variables enables us to

continue to the cointegration test. This study probed the

cointegration between agricultural mechanization level, irrigated

area, chemical fertilizer consumption, crop land, and agricultural

economic growth using the ARDL bound cointegration testing

approach based on Kripfganz and Schneider (2023). The results

of the cointegration test in Table 6 show that the values of

F-state and t-test are 9.225 and −6.370, respectively. These

values exceed the upper and lower bound critical values at 1%

significance level, supported by the P-value. Thus, we reject

the null hypothesis (H0) of no-cointegration and confirm the

existence of cointegration among the study variables. This indicates

the presence of a long-run equilibrium relationship between

agricultural mechanization level, irrigated area, chemical fertilizer

consumption, crop land, and agricultural economic growth. In this

context, the cointegration indicates that while this variable may

exhibit short-term fluctuations, it converges to a stable equilibrium

over time. Moreover, the cointegration among these variables

implies that a change in one of the independent variables will

likely result in corresponding adjustments in agricultural economic

growth. Using the ARDL bound test approach, existing studies

also proved the presence of cointegration among variables, such as

chemical fertilizer consumption and agricultural economic growth

in China and Pakistan (Rehman et al., 2019; Chandio et al., 2019a,b;

Khan et al., 2022).
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TABLE 6 ARDL bounds testing with Kripfganz’s novel p-values.

K = 4 10% 5% 1% P-value

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

F-stat 9.225 2.45 3.52 2.86 4.01 3.74 5.06 0.000∗∗∗ 0.000∗∗∗

t-test −6.370 −2.57 −3.66 −2.86 −3.99 −3.43 −4.60 0.000∗∗∗ 0.000∗∗∗

∗∗∗Denotes the symbol for 1% significance level, I(0) specifies the critical value of the lower bound, I(1) represents the critical value of the upper bound.

TABLE 7 The results of DYARDL short-run and long-run estimations.

Variable Coe�cient Std.
error

t-test P-value

Long-run associations

ECT_1

(LnAEG)

−1.001922 0.1572952 −6.37 0.000∗∗∗

LnAM −0.5418306 0.1551827 −3.49 0.004∗∗∗

LnIA 7.018342 0.5788395 12.12 0.000∗∗∗

LnCF 1.216259 0.1320637 9.21 0.000∗∗∗

LnCL −0.4695141 0.3921578 −1.20 0.251

Short-run associations

1 LnAM 0.4372458 0.2450047 1.78 0.096∗

1 LnIA 3.704872 1.162639 3.19 0.007∗∗∗

1 LnCF 1.665627 0.7618401 2.19 0.046∗∗

1 LnCL 0.3342545 0.9569157 0.35 0.732

Constant −52.189 11.20783 −4.66 0.000∗∗∗

R2 : 0.9109 Adj R2 : 0.7710 RootMSE:

0.0341

Number of Observations: 37 Log Likelihood: 90.449

∗∗∗ , ∗∗ , ∗Illustrates null hypothesis 1%, 5%, and 10% significance level, respectively.

H0 : No long-run and short-run relationship. H1 : There exists a long-run and short-

run relationship.

4.4 Dynamic ARDL short-run and long-run
estimation

The results of the DYARDL model estimation are detailed

in Table 7, covering both short- and long-run analysis. In the

long run, the agricultural mechanization level is shown to be

highly significant with a negative coefficient of −0.541. This

finding leads to the rejection of the null hypothesis at the 1%

significance level, supporting the alternative hypothesis. It indicates

that a 1% increase in agricultural mechanization level will decrease

agricultural economic growth by 0.541% in the long run. In the

short run, however, a 1% increase in agricultural mechanization

level will increase agricultural economic growth by 0.437%, which

is significant at the 10% significance level. Signs of coefficients

differ between short- and long-term. This is because short-run

gains likely arise from immediate efficiency improvements, such

as faster reducing labor bottlenecks, boosting output with existing

resources. Long-run negatives emerge as mechanization reduces

labor demand faster than alternative employment emerges, while

potentially creating overcapacity or diverting capital from more

productive investments such as R&D or irrigation.

The significant negative long-run effect likely reflects labor

displacement, where mechanization reduces overall agricultural

employment faster than new opportunities emerge. It may also

indicate structural inefficiencies, such as misallocated capital

investment or reduced productivity in contexts with abundant,

underutilized labor. The results are supported by previous

researchers, such as Zou et al. (2024), highlight that agricultural

mechanization in China has reduced the need for labor, leading

to a shift of young people away from farming toward non-

agricultural employment. This migration diminishes the local labor

force available for agriculture and lowers household consumption,

which ultimately impedes the growth of the agricultural economy.

However, these results differ from those of Lu et al. (2024),

which revealed that agricultural mechanization boosts green

productivity via enhanced management, factor efficiency, and

industrial diversification.

In the case of the irrigation area, the coefficient is positive,

higher, and significant at the 1% level in the long run. The

result suggests that a 1% increase in irrigation area will increase

agricultural economic growth by 7.018% in the long run. In

the short run, the irrigation area with a positive coefficient is

also significant. A 1% increase in irrigation area will increase

agricultural economic growth by 3.704% in the short run.

This substantial long-run and short-run multiplier likely reflects

irrigation enabling intensified production (multi-cropping, higher-

value/higher-yield crops) and reduced yield volatility, significantly

boosting output. It also suggests that irrigation acts as catalytic

infrastructure, triggering wider investments in complementary

inputs and facilitating a structural shift toward more productive

farming systems. The results are in line with Li et al. (2024),

who found that the expansion of irrigated land is a key driver

of increased water use for irrigation, which directly boosts

agricultural productivity. Furthermore, irrigation can be used for

maize cultivation to increase crop yield, thereby improving the

agricultural economy (Liu et al., 2023). As more land is irrigated,

crop yields rise, supporting greater food production and economic

growth in the agricultural sector. This growth enhances food

security, raises farmer incomes, and stimulates rural economies.

Considering chemical fertilizer consumption, the long-run

relationship is highly significant with a positive coefficient.

The results show that a 1% increase in the chemical fertilizer

consumption will increase agricultural economic growth by 1.216%

in the long run. In the short run, it can also be seen that chemical

fertilizer has a positive effect on agricultural economic growth

with a 1% significance level, leading to the rejection of the null

hypothesis. A 1% increase in chemical fertilizer consumption

resulted in a 1.665% increase in agricultural economic growth in the

short run. The results show that the reduction in chemical fertilizer

hinders the growth of agricultural output. Simply reducing fertilizer
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FIGURE 3

Counterfactual 10%, positive (A) and negative (B) shocks from LnAM to LnAEG.

use in crop cultivation could intensify the tension between boosting

crop yields and conserving land resources in China, potentially

leading to a decline in agricultural economic growth (Hu and

Liu, 2024). However, this result is inconsistent with a study by

Khan et al. (2022), which concludes that the short- and long-

run association between chemical fertilizer use and agricultural

economic growth is non-significant. This implies the need for

further investigation.

In terms of crop sown land, it is noticeable that the coefficient

of crop land toward agricultural economic growth has a positive

effect with a negative coefficient in the long run, while a positive

coefficient in the short-run and non-significant both in the long-

and short-run. It suggests that we cannot reject the null hypothesis

with regard to agricultural economic growth. In economically

advanced and major grain-producing areas, the pressure on

cultivated land does not correspond directly to economic growth,

as the expansion of agricultural productivity often outpaces land

constraints. This disconnect suggests that agricultural economic

growth can be driven more by technological advancements and

efficiency gains rather than by the mere increase in cultivated land

(Wu et al., 2022). Moreover, the error correction term (ECTt−1)

exhibits a negative coefficient with a P-value significant at the 1%

level, indicating a rapid adjustment toward long-run equilibrium

within a short timeframe and suggesting resistance to shocks. The

model’s outcomes show both R-square and adjusted R-square values

that are notably strong.

4.5 Novel dynamic ARDL simulations
forecast

This study further estimated a dynamic ARDL simulation

forecast model to visualize the possible effect of a counterfactual

change in one regressor at a single point in time and its impact

on the dependent variable, holding the other independent variables

constant, using stochastic simulation techniques. In particular, we

predicted a 10% positive or negative shock in the main independent

variables, which could be used to measure its impact on AEG in

China. The dark blue lines indicate predicted mean values, and the

light blue area to dark blue area represents 70%, 90%, and 95%

confidence intervals. The impulse response results are shown in

Figures 3–6. An impulse response plot is a graphical representation

used in time series analysis and econometrics to show the reaction

of a variable in a dynamic system to a shock or impulse over

time. It illustrates how a one-time change in an input (in our case,

an agricultural input resource) affects the output variable (such

as AEG) at various time intervals. The importance of impulse

response plots lies in their ability to capture the short-term and

long-term effects of shocks in a system. The points in each graph

(Figures 3–6) represent the average predicted values and impact

pathways of agricultural economic growth, derived from the shocks

introduced by each regressor (explanatory variables).

Figure 3A represents the influence of a 10% positive shock in

the LnAM on AEG in China. The impulse response graph reveals

that a 10% increase in LnAM reduces AEG while a 10% decrease in

LnAM increases LnAEG (Figure 3B), both in the long- and short-

run. In consistent with these findings, a study by Zou et al. (2024)

found that the agricultural mechanization in China has diminished

labor demand, prompting young people to pursue non-farming

jobs, which in turn lowers local agricultural labor supply and

household consumption, hindering the growth of the agricultural

economy. Additionally, mechanization has shifted production from

cash crops to grain crops, resulting in a decline in AEG. The results

are also consistent with the result in Table 7.

Figures 4A, B depicts the impulse response plot of irrigated

area, which shows that a 10% positive shock from LnIA to LnAEG

in Figure 4A induces a slight decrease in AEG both in the long

and short run. This finding aligned with a study by Li et al. (2024),

which revealed that an increase in the irrigated area led to a national

increase in water productivity and AEG over the period between

1982 and 2017 in China. A 10% negative shock in Figure 4B also

represents a small increase in AEG in both the long and short

term. This might be due to the fact that the majority of grain

production comes from irrigated areas that are affected by water
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FIGURE 4

Counterfactual 10%, positive (A) and negative (B) shocks from LnIA to LnAEG.

FIGURE 5

Counterfactual 10%, positive (A) and negative (B) shocks from LnCF to LnAEG.

FIGURE 6

Counterfactual 10%, positive (A) and negative (B) shocks from LnCL to LnAEG.
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TABLE 8 Outcome of Granger causality Wald tests result.

→AEG →AM →IA →CF →CL

AM→AEG 0.019∗∗ AEG→AM 0.513 AEG→IA 0.000∗∗∗ AEG→CF 0.000∗∗∗ AEG→CL 0.001∗∗∗

IA→AEG 0.000∗∗∗ IA→AM 0.795 AM→IA 0.075∗ AM→CF 0.002∗∗∗ AM→CL 0.034∗∗

CF→AEG 0.000∗∗∗ CF→AM 0.271 CF→IA 0.000∗∗∗ AI→CF 0.001∗∗∗ AI→CL 0.030∗∗

CL→AEG 0.000∗∗∗ CL→AM 0.033∗∗ CL→IA 0.000∗∗∗ CL→CF 0.000∗∗∗ CF→CL 0.006∗∗∗

ALL→AEG 0.000∗∗∗ ALL→AM 0.031∗∗ ALL→IA 0.000∗∗∗ ALL→CF 0.000∗∗∗ ALL→CL 0.000∗∗∗

∗∗∗ , ∗∗ , ∗Illustrates null hypothesis 1%, 5%, and 10% significance level, respectively. H0 : No Granger causality. H1 : There exists Granger causality.

scarcity, and the decoupling of irrigation area expansion from grain

production through agricultural water productivity growth may

result in an increase in AEG (Ju et al., 2023; Qi et al., 2022). These

conflicting results need further investigation as the association

between irrigation area expansion, water scarcity, and agricultural

production is exacerbated by climate change and industrial water

consumption (Liu et al., 2024).

Figure 5A shows the impulse response plot, which indicates the

impact of LnCF on AEG. A 10% positive shock in LnCF declines

AEG, which prevents fertilizer-caused environmental pollution.

Figure 5B also shows that a 10% negative shock in LnCF results

in an increase in LnAEG in the long and short run. This finding

is supported by Khan et al. (2022), who found that the reduction

of chemical fertilizer in China induces a significant increase in

AEG. Several studies also argued that the reduction in chemical

fertilizer through replacing it with organic fertilizer increases

agricultural production without affecting the environment (Duan

et al., 2021). Preventing excessive application of chemical fertilizer

and pesticide promotes environmental sustainability without

affecting agricultural production (Liu et al., 2021), and this can be

achieved through a system change, particularly the agri-food system

(Brunelle et al., 2024) and by providing agricultural subsidy on

fertilizer use (Fan et al., 2023).

Figures 6A, B demonstrates the impulse response plot, which

illustrates that a 10% positive shock in crop sown land leads to a

decrease in AEG (Figure 5A) both in the short and long term, while

a 10% negative shock results in an increase in AEG (Figure 6B).

Crop land expansion induces huge environmental destruction, such

as biodiversity loss, forest loss, carbon emission, loss of ecosystems’

functions, and land degradation (Ceddia, 2020; Zeng et al., 2018).

This might provide a short-term promise to increase agricultural

production but at the expense of the environment, which in turn

affects agricultural production, leading to a decline in overall food

production. A study in the United States found that the newly

converted crop land was unsuitable for crop production, producing

much lower crop yields than the national average (Lark et al.,

2020). To compensate for the need for additional crop land for

securing agricultural production, studies in China suggest the role

of reclamation of degraded land and abandoned land (Guo et al.,

2023). Moreover, Schneider et al. (2022) explored that instead

of new crop land expansion at the expense of the environment,

it is crucial to identify suitable, cultivable, and available land

for crop production. Multiple cropping is also an important

mechanism to promote land-use intensification and prevent crop-

land expansion, which resulted in a long-term decline in AEG

(Xiang et al., 2022).

TABLE 9 Normality test results.

Source test Chi2 df p-value

Cameron & Trivedi’s decomposition of IM-test

Heteroskedasticity 37.00 36 0.4226

Skewness 21.26 22 0.5049

Kurtosis 0.09 1 0.7676

Total 58.34 59 0.4996

4.6 Granger causality test

The Granger causality test in Table 8 reveals a highly

interconnected agricultural system. AEG is primarily driven by

increases in IA, CF, and CL, with significant causality (p ≤ 0.001).

Although AM has a weaker effect on AEG (p-value = 0.019), it

significantly influences both CF and CL with p-values of 0.002 and

0.034, respectively, indicating that technological advancements in

farming play a key role in input adoption and land utilization.

IA shows strong causality with AEG (p = 0.000) and moderates

strong relationships with AM, CF, and CL, underscoring its central

role in the agricultural system. CF not only significantly drives

agricultural growth (p = 0.000) but also influences AM, IA, and

CL (p ≤ 0.006). Similarly, CL exhibits strong causality with AEG,

IA, and CF, and a moderate effect on IA (p = 0.033; Table 8).

Overall, the results suggest that agricultural development is shaped

by a dynamic, interdependent network of factors, where changes in

one input resource, such as irrigation or fertilizer use, can trigger

widespread shifts in others, ultimately driving economic growth in

the sector.

4.7 Diagnostic tests

In addition, the diagnostics tests have been performed to

identify any heteroscedasticity issues, abnormality issues, and

serial correlation problems, as presented in Tables 9, 10. A

normality test presented in Table 9 was conducted, revealing no

evidence of heteroskedasticity based on Cameron and Trivedi’s

decomposition of the IM-test. Additionally, both skewness and

kurtosis were found to be statistically insignificant, indicating that

the residuals conform to the assumption of normality. This

supports the conclusion that the regression model satisfies key

assumptions for valid inference. The Breusch-Godfrey LM test
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results in Table 9 support the null hypothesis of no autocorrelation,

indicating that the selected variables are not autocorrelated.

Furthermore, to detect serial correlation, in addition to analyzing

residuals against their lags, the Durbin–Watson test is employed.

The result shows a value of 2.11, which falls within the range of 1.5–

2.5, indicating that there is no significant autocorrelation present in

the data.

4.8 Stability test

The study also conducted stability tests using the cumulative

sum (CUSUM) and CUSUM squared methods to verify the

stability of both long-run and short-run parameters. The CUSUM

results, illustrated in Figures 7, 8, indicate that the statistical values

fall within acceptable limits. To address minor inconsistencies

identified in earlier goodness-of-fit assessments, we applied the

CUSUM test with ordinary least squares (OLS), as introduced by

Ploberger and Krämer (1996). The findings presented in Figure 8

indicate that the CUSUM trend remains well within the 95%

confidence interval, confirming the stability of both long- and

short-run coefficients. These results strongly suggest that the model

is stable and provides an excellent fit. Furthermore, this stability

testing approach has been utilized in numerous studies, such as

Khan et al. (2021), reinforcing its validity.

TABLE 10 Outcome of diagnostic test.

Lags (p) Chi2 df Prob > F

Breusch-Godfrey LM test for autocorrelation

1 0.259 1 0.6105

Durbin–Watson d-statistic (19, 37)= 2.119649

P-value < 0.05 indicates the presence of serial correlation; P-value > 0.05 indicates the

absence of serial correlation. H0 : no serial correlation.

5 Conclusion and policy implications

Agriculture is often regarded as a key solution to alleviating

poverty, particularly among the 80% of the world’s impoverished

population residing in rural areas and dependent on farming.

Recognized as a pivotal strategy, agricultural development is seen

as essential for eradicating extreme poverty, promoting inclusive

prosperity, and meeting the nutritional needs of an anticipated

global population of 10 billion by 2050.

The Zero Hunger Challenge, initiated at Rio+20 in 2021,

urges governments to double the productivity and income of

smallholder farmers, establish sustainable food systems, and

guarantee universal access to sufficient, nutritious food throughout

the year. In the 14th Five-Year Plan period (2021–2025), the

government of China issued a plan to advance agricultural and

rural modernization to create a strong agricultural economy.

Furthermore, the 14th Five-Year Plan (FYP) introduces a National

Agriculture Green Development Plan aimed at transforming the

agricultural sector to prioritize environmental sustainability. The

key to achieving these goals relied on efficient utilization of

agricultural input resources.

Therefore, this study conducted the association between

agricultural mechanization, irrigated area, chemical fertilizer

consumption, and crop sown area with agricultural economic

growth in China from the onset of major rural reforms in

1983–2023, a period during which the Chinese government has

actively promoted modern agriculture and rural revitalization as

key strategies for future agricultural development. In recent years,

the growth rate of China’s agricultural economy has declined,

along with its contribution to the national economy. This trend

may be attributed to dynamic changes in key agricultural input

resources, driven by both anthropogenic and natural factors.

Anthropogenic factors include unsustainable farming practices and

excessive chemical fertilizer use, which causes nitrogen runoff

soil/land degradation (Xu et al., 2023). Natural factors include

natural disasters, including prolonged drought, temperature rise,

FIGURE 7

Cumulative sum square test for parameter stability.
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FIGURE 8

Cumulative sum test using OLS CUSUM plot for parameter stability.

biodiversity loss, and soil erosion (Lin andWang, 2024; Yuan et al.,

2022).

Annual data obtained from the Chinese statistical yearbook

were used. The data were checked for the confirmation of

stationarity and cointegration, as it is a requirement for further

short- and long-run estimation. The ADF, PP, KPSS, and Zivot-

Andrews unit root tests were conducted to confirm the stationarity

of the variable at only the level or first difference. We used

the ARDL bound test approach to examine the existence of

cointegration in the long run among the study variables. Dynamic

ARDL and novel dynamic simulation forecast were applied to

estimate the effect in the long and short run. We further

examine the existence of causality effect using Granger causality

test approach.

The results of ADF, PP, KPSS, and Zivot-Andrews unit root

tests with structural breaks confirms the stationarity of variables.

The ARDL bound test result also verified the cointegration among

the study variables, which validates the existence of a long-run

relationship. The dynamic ARDL estimation shows that a 1%

increase in agricultural mechanization slightly boosts agricultural

economic growth in the short run, but may reduce it in the

long run. An increase in irrigated land and chemical fertilizer

consumption promotes agricultural development in both the short

and long run. However, the relationship between crop sown area

and agricultural growth is not significant in either the short or

long run. The results from the novel dynamic ARDL model show

that a 10% positive shock in agricultural mechanization, chemical

fertilizer use, and crop sown area leads to a decrease in agricultural

economic growth, while a 10% negative shock in these factors

results in an increase in agricultural economic growth, both in the

short and long run. However, a 10% shock in irrigated land remains

insignificant. The strong Granger causality effects observed for

irrigated area, chemical fertilizer consumption, and crop sown land

arise from their direct contributions to increasing productivity and

total output in agriculture. These factors have an immediate and

measurable impact on yields and farm incomes. On the other hand,

agricultural mechanization shows a weaker causality effect because

its benefits are more indirect, focused on efficiency improvements

rather than direct yield enhancement, and are constrained by high

costs and energy dependencies. Moreover, diagnostic tests show

no issues with normality, heteroskedasticity (Cameron and Trivedi

IM-test), or autocorrelation (Breusch-Godfrey LM test), and the

CUSUM OLS test confirms the model’s good fit at a significance

level below 1%.

On account of the study’s findings, several policy

recommendations are proposed. First, the stunted association

of agricultural mechanization and agricultural economic growth

shows that the source of agricultural economic growth in

China resulted mainly from rural-labor transfer/allocation

instead of technological advancement, in particular, agricultural

mechanization. Thus, a strategic shift to mechanized-oriented

agricultural development is required in a more advanced way. It

may be a challenge when the shift considers land transfer to create

large-scale agriculture in the short term, but the outcome will be

in line with the long-term agricultural modernization goal of the

country by 2030.

Second, the strong relationship between agricultural economic

growth and chemical fertilizer consumption suggests that a

gradual strategy should be implemented to decouple chemical

fertilizers from agricultural growth in China. Because urgent

reduction of chemical fertilizer application may lead to uncertain

outcomes on food security, the government should promote

organic and regenerative farming, invest in precision agriculture

technologies to optimize fertilizer use, and provide subsidies for

sustainable practices. Additionally, reforming fertilizer subsidies

and introducing environmental taxes on excessive fertilizer use
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can incentivize efficiency. These measures will help reduce

reliance on chemical fertilizers while maintaining productivity

and sustainability in agriculture. Ultimately, a balanced approach

combining technology, policy reforms, and sustainable practices

will foster long-term agricultural growth.

Third, as the irrigation area shows a positive association with

agricultural economic growth in China, the government should

invest in advanced irrigation technologies, such as drip and

sprinkler systems, to maximize water efficiency, enlarge irrigated

areas, and improve agricultural productivity in China amid

water scarcity. Policies should also focus on the modernization

of existing irrigation infrastructure, promote the recycling of

wastewater for agriculture, and encourage water-saving farming

practices. Efforts should be made to develop water storage

capacities through reservoirs and rainwater harvesting, along with

incentivizing farmers to adopt water-efficient crops, to ensure

more sustainable use of water resources. Moreover, a proper

national water management strategy that balances agricultural

needs with ecological preservation is essential to ensure long-term

water availability.

Fourth, China’s resource supply and demand balancing act

requires prioritizing high-efficiency inputs (such as precision

irrigation) to boost growth while minimizing resource waste

(SDG 12), and redirecting subsidies from land expansion toward

sustainable urban-rural food systems (SDG 11). Finally, top priority

should be given to maintaining the quantity and quality of crop

land for sustainable agricultural development. Policies should

focus on reclaiming degraded and abandoned lands through

sustainable land rehabilitation techniques, such as soil erosion

control, reforestation, and the use of organic amendments to

restore fertility and enlarge crop sown areas without resorting

to the natural environment. More investment in technology is

needed for precision land assessment and targeted reclamation

projects to ensure efficient use of such areas. Incentives should

be provided for farmers who adopt sustainable land management

practices. This study also encourages policies, such as the farmland

transfer policy and the cultivated land protection policy, to establish

a long-term association between crop-land and agricultural

development. This can prevent degradation and enhance long-term

agricultural productivity.

Although we have examined the effect of agricultural

input resources, mainly mechanization, irrigation, fertilizer, and

farmland, on agricultural economic growth from dynamic vantage

points, certain limitations still exist. First, although this study

uses a novel dynamic ARDL estimation approach, the sample

size used is limited. As a result, further research is needed with

a larger and more comprehensive dataset (e.g., microdata at

regional and county level) to provide a more accurate prediction

of the impacts of agricultural input resources on the economic

growth of the agriculture sector. Second, as China is a large

agricultural country, future research needs to consider regional

variation to further explore the associations in detail. While the

diagnostic and stability tests validate the robustness of the models,

further research is required to deepen our understanding of

the relationship between the expansion of crop sown areas and

agricultural economic development, as indicated by the simulation

forecasts. Third, a more detailed analysis of specific variables,

such as chemical fertilizer use, is necessary to investigate their

sources and underlying mechanisms, given their environmental

connections with the agricultural sector. Finally, we recommend

cross-country research on the relationship between agricultural

input resources and sustainable agricultural development, which

could provide valuable insights from a global perspective.
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