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Sustainable agricultural inputs are essential for enhancing food security,
promoting development, and ensuring resilience in rapidly emerging economies;
however, studies utilizing the advanced autoregressive distributed lag (ARDL)
approach to investigate their impact on agriculture-driven economic growth
remain limited. This research aims to fill this gap by employing a dynamic ARDL
simulation model to analyze the relationship between sustainable agricultural
inputs and economic growth in the agricultural sector, utilizing annual time
series data spanning from 1983 to 2023. The analysis includes unit root tests,
which affirm the stationarity of all variables, and the ARDL bounds test, which
reveals a significant long-run cointegrating relationship among them. Our
findings indicate that the expansion of irrigated areas and increased usage of
chemical fertilizers contribute significantly to agricultural economic growth in
both the short and long run, while agricultural mechanization only positively
affects growth in the short run. Notably, the variable representing crop-sown
land does not exhibit a statistically significant impact on agricultural economic
growth across both time frames. Furthermore, the results from novel DYARDL
simulations, which assess the implications of 10% positive and negative shocks,
further substantiate both short-run and long-run analysis outcomes. The insights
generated from this study highlight the critical role that sustainable agricultural
inputs play in agricultural economic dynamics and provide evidence-based
recommendations for fostering resilient, low-input systems that support global
food security and agro-environmental sustainability.

KEYWORDS

agricultural mechanization, irrigated area, chemical fertilizer consumption, crop sown
land, agricultural economic growth, DYARDL model, cointegration analysis

1 Introduction

Modern high-yield agriculture relies on inputs such as synthetic fertilizers, pesticides,
machinery, and hybrid seeds to meet global food demand (Ahvo et al., 2023). Their
unaffordability due to supply chain disruptions and climate shocks hinders productivity,
inflates costs, and destabilizes food security, particularly in import-dependent regions
(Khan et al, 2024). Overreliance also risks environmental degradation, such as soil
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depletion and water pollution, undermining long-term
sustainability (Liu et al, 2021). This intern affects the huge
efforts to transition to resilient, input-efficient systems that balance
productivity with ecological and economic stability in a climate-
uncertain future (Brunelle et al., 2024; Hou et al., 2023; Shen et al.,
2013).

The associations of different shocks, natural (climate
extremes and soil degradation, natural disasters and so on)
and anthropogenic disasters (trade constraints and unsustainable
practices), on agricultural economy are increasingly well-
understood (Holst et al., 2013; Lin and Wang, 2024; Rezaei et al.,
2023). Very little is known, however, about how positive and
negative shocks from agricultural inputs affect the agricultural
economy as a whole, whether as large scale-national or regional
scale. Few studies, for instance, Ahvo et al. (2023), use the random
forest machine learning algorithm to study the combined impact of
agricultural input shocks in high-yielding areas of the world. Based
on this study, response from a 50% reduction in key agricultural
inputs could slash global maize yields by up to 26% and wheat by
21%, exposing critical vulnerabilities in food systems. McArthur
and McCord (2017) developed an input-yield-economy nexus
framework using a combination of fixed effect and instrumental
variable specifications. In their estimate, a total positive shock from
fertilizer, water, and modern seeds could increase yields and the
economy, resulting in a structural shift in the economy.

There is a growing body of literature that estimates the impact
of policy-driven shocks on Chinas agricultural input resources
and agricultural economic growth temporal associations. The
positive shocks that drive the agricultural economic growth is
mainly from ongoing land reforms, subsidy policies, technological
advancements, research and development investments, and
institutional restructuring (Fan et al., 2023; Gong, 2018; Huang
et al., 2020; Ullah et al., 2024; Zhang et al., 2011). Studies in the
field of agricultural input shocks have only focused on single
input shocks (excessive chemical fertilizer, and so on) on specific
outcomes (for example, grain production; Xu et al., 2023). The
increase in electricity consumption, mechanization, and crop land
area has also been positively associated with agricultural-driven
Liu and Wang (2005)

revealed that the practice of mechanized farming, plastic film

economic growth (Zeng et al, 2022).

inputs, and education contributes to agricultural economic growth.
Similarly, research conducted in Pakistan by Chandio et al
(2019a,b) demonstrated a long-term positive correlation between
fertilizer use, water availability, and crop area with growth in
agricultural production.

In an investigation into the recent decline of China’s agricultural
economy, Zhao and Tang (2018) identified a decrease in the
growth rate linked to negative shock arising from factors such as
land, water, technology, and energy. Their study underscores the
importance of investing in technological progress that optimizes
the use of energy, water, and land to promote agricultural growth
in China. Similarly, a study conducted in Pakistan demonstrated
a long-term positive correlation between fertilizer use, water
availability, and crop area with growth in agricultural production
(Chandio et al., 2019a,b).

Despite the existing body of literature, significant research
gaps persist regarding the comprehensive impact of agricultural
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input shocks on the national agricultural economy. Specifically,
it remains unclear how these input shocks exert both positive
and negative effects at the macroeconomic level. Furthermore,
prior studies have largely overlooked the application of advanced
time-series analysis, which is essential for accurately assessing how
distinct agricultural inputs influence China’s economic growth over
both short- and long-time horizons. This gap in understanding
hinders effective policy formulation and highlights the need for a
robust analytical framework to elucidate these complex dynamics.
Addressing these deficiencies is crucial for developing targeted
strategies to optimize agricultural productivity and economic
resilience. We selected China as the focus of our study due to
its immense agricultural sector, which features a wide range of
climates, terrains, and farming practices, from smallholder farms
to large-scale mechanized operations. This rich diversity provides
a unique opportunity to analyze the effects of various agricultural
inputs on economic growth in distinct contexts. Furthermore,
China’s significant role in global food production and its ongoing
transformation toward sustainable agricultural practices make it a
critical case for understanding the interplay between agriculture
and economic development. By examining China, we aim to derive
insights that can inform policies and strategies applicable both
domestically and globally.

Consequently, the questions come into play: (1) In what ways
do the combined temporal effects of both positive and negative
shocks to agricultural machinery, land, fertilizer, and irrigation
interact to affect agricultural economic growth? (2) Do positive
and negative shocks from various critical agricultural inputs have
reinforcing effects on agricultural economic growth? (3) What
is the relative significance of positive and negative shocks from
each critical agricultural input in influencing the overall effect
on agricultural economic growth? (4) What policy measures
can be proposed to improve agricultural resilience and promote
sustainable growth while addressing the potential trade-offs
between positive and negative shocks to various critical agricultural
inputs regarding resource allocation and policy implementation for
agricultural economic growth? The resolution of an issue should
be achieved through investigations employing advanced models,
specifically ARDL. Therefore, this investigation aims to examine
the combined impacts of the positive and negative shocks from
critical agricultural inputs (machine, land, fertilizer, and irrigation)
on agricultural economic growth. We also estimate the short- and
long-run effect of the change/shocks in individual inputs from the
combined effect to identify the inputs that would most affect the
economy. We used a novel dynamic autoregressive distributive lag
model (ARDL) simulation to conduct the assessment using China’s
41 years of data spanning 1983-2023. The model enabled us to
estimate the input shocks at different levels (used £10% for this
study). The simulation approach allowed for capturing key inputs
shock and time-sensitive growth impacts.

This
contributions  to

study offers important theoretical and practical

agricultural economics. (1) Theoretical
contribution: By wusing advanced dynamic
Distributed Lag (DYARDL) methods, it

understanding of how different inputs affect growth in the

Autoregressive
enhances our

short and long run. This challenges traditional views and enriches
theoretical frameworks in agricultural production. (2) Practical
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contribution: The research aids policymakers in China by
highlighting the need for sustainable input efficiency to ensure
food security and resilience in low-input farming. By promoting
strategies that balance synergies, address diminishing returns,
and support sustainability, this study provides valuable insights
for creating effective, environmentally friendly agricultural
policies. This study informs policies that balance synergies,
diminishing returns, and sustainability through spatiotemporal
optimization to mitigate input-driven risks. Furthermore, we
contribute to adjustments to align China’s rural revitalization with
the sustainable development goals (SDGs) (No. 8: decent work
and economic growth, particularly related to 8.4: efficiency in
consumption and production toward economic growth) through
balanced input-growth-sustainability pathways.

The study is organized to facilitate a clear and logical
progression of ideas, ensuring that readers can easily follow the
research narrative. Section 2 provides a comprehensive review of
the existing literature on agricultural inputs and economic growth,
effectively establishing the research context and highlighting
the critical gaps in current knowledge. Section 3 outlines the
methodology in detail, including a rigorous explanation of the
advanced ARDL bounds testing, the dynamic ARDL simulation
approach, and the specific data sources and variables utilized in
the analysis. Section 4 presents and analyzes the empirical findings,
encompassing necessary unit root tests, cointegration results,
short-run and long-run effects of inputs, and DYARDL shock
simulations, thereby providing a thorough examination of the data.
Finally, Section 5 synthesizes the key conclusions and articulates
actionable policy implications based on the findings, ensuring
that the research is relevant and applicable for policymakers. This
structured approach not only enhances clarity but also strengthens
the manuscript’s contribution to the field.

2 Literature review

The topic of agricultural economic growth (AEG) has drawn
extensive attention from scholars worldwide. Thus, this study
emphasizes three issues. The first issue is the quantification and
calculation method of AEG (Lin et al., 2021; Bi et al., 2022; Mei
et al., 2022; Wang, 2022). The second issue focuses on the factors
either driving or influencing AEG. Studies in this issue can be
dissected into four perspectives.

First, only few studies examined the association of land tenure
and AEG (Kuang et al., 2022; Liu and Wang, 2005; Sun and
Chen, 2020). Second, there are several studies focusing on the
association between farmers’ agricultural practices and their effect
on AEG (Abdul-Rahim et al.,, 2018; Gupta and Kannan, 2024).
These studies argued that soil and water conservation practices,
crop diversification, cropping intensity, and proper fertilizer use,
enhance productivity and thereby improve AEG. Third, the effect
of energy consumption and CO, emission on AEG is the foremost
important area of studies in many countries, such as China,
Pakistan, Iran, Ghana, and Europe (Ali et al, 2019; Chandio
et al., 2019a,b; Najafi Alamdarlo, 2016; Zafeiriou and Azam, 2017).
Fourth, how natural disaster influence AEG is also an important
area of prior research (Lin and Wang, 2024; Yuan et al., 2022).
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Recent studies identify the association between agricultural
input factors and AEG to examine how this association
promotes sustainable agricultural development. For instance,
agricultural input factors, including the increase in rural electricity
consumption, total power of agricultural machinery, and crop-
sown area, also increased AEG (Zeng et al, 2022). A study by
Liu and Wang (2005) found that the practice of mechanized
farming, plastic film inputs, and education contribute to AEG.
Seeking to understand why AEG in China is declining recently,
Zhao et al. (2018) found the decline in AEG associated with a
scarcity of land, water, technology, and energy, and argued that
investment to enhance technology progress that save energy, water,
and land enables the sustainable development of agriculture in
China. A study in Pakistan explored that fertilizer use, water
availability, and cropped area have long-term positive relationship
with agricultural production growth (Rehman et al., 2019). A study
by Khan et al. (2022) used dynamic ARDL model to investigate
the long- and short-run nexus between chemical fertilizers, area
under greenhouses, and renewable energies and AEG, finding
that increasing the use of renewable energy and the expansion of
greenhouse areas contribute to the growth of AEG.

The third issue is the application of the ARDL model to AEG,
which is the focus of several studies. While ARDL applications
across diverse contexts (Asumadu-Sarkodie and Owusu, 2016;
Najafi Alamdarlo, 2016; Warsame et al., 2023; Zafeiriou and Azam,
2017) consistently model AEG-environment linkages, they suffer
from two critical limitations: (1) an over-reliance on aggregate
variables (e.g., total CO, emissions and undifferentiated resource
use) that masks how specific inputs (fertilizer and mechanization)
differentially drive growth and degradation, and (2) an inability to
translate broad correlations (long-run equilibria) into actionable
insights for input-level management within distinct agricultural
systems, despite contextual nuances (e.g., wheat’s mitigation role
in Somalia).

Considering the existing body of evidence, understanding the
factors influencing agricultural economic growth has garnered
significant attention from researchers. While existing literature
extensively employs the ARDL approach to model agricultural
dynamics, critical gaps persist. Studies by Bambi and Pea-Assounga
(2024, 2025), Derouez and Algattan (2025), Hasan et al. (2023),
Karasoy (2024), and Zhang et al. (2024) predominantly focus on
ARDLs capacity to analyze environmental impacts, multifactor
interactions, or aggregate production outcomes. However, these
applications often treat agricultural inputs implicitly within
broader models or prioritize environmental consequences over
direct, disaggregated economic growth linkages. Crucially, they
lack investigation into how specific, discrete inputs (irrigation,
fertilizer, machinery, and land) distinctly drive agricultural
economic growth in both the short and long run, particularly
within rapidly emerging economies such as China. Furthermore,
the study seldom utilizes advanced simulations, such as dynamic
ARDL, to forecast input-specific shocks. This study directly
addresses this gap by applying dynamic ARDL to isolate and
quantify the differential growth contributions of individual inputs.

This study distinguishes itself by offering new insights into
the relationship between agricultural input resources, specifically
agricultural mechanization, irrigated area, chemical fertilizer use,
crop sown land, and agricultural economic growth. It employs a
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novel dynamic ARDL model, which has not been applied in prior
studies on this topic. This allows for a deep understanding of
the long- and short-term dynamics of agricultural input resources
and their impact on agricultural economic growth. The findings
of this study will contribute critical evidence for shaping input
resource strategies aimed at advancing agricultural development.
This is particularly relevant for China’s 2035 plan to create modern
agriculture and revitalize rural areas. By examining both positive
and negative shocks of input resources, this study provides valuable
knowledge that can guide future research into the environmental
aspects of agricultural development and help bridge existing gaps
in the literature (Table 1).

3 Methodology and data source

3.1 Data sources and processing

The main goal of this study is to examine the impact of
agricultural mechanization (AM), irrigation area (IA), chemical
fertilizer consumption (CF), and crop sown land (CL) on
agricultural economic growth (AEG) in China. To this end, the
data used in this study come from the China Agricultural Statistical
Yearbook (https://data.stats.gov.cn). This study used secondary
annual time series data for China covering a period of 41 years,
from 1983 to 2023. The dependent variable in this study is AEG. It is
represented by the value-added of the agriculture, forestry, animal
husbandry, and fishery industries (originally it was in Chinese
yuan and converted into the current USD value). Existing research
uses various indicators as a measure of AEG, such as agricultural
total factor productivity (Kuang et al., 2022), gross output value
of agriculture, forestry, animal husbandry, and fishery (Guo et al.,
2021; Yuan et al., 2022; Zeng et al., 2022).

In this study, the logarithm of the value-added of the
agriculture, forestry, animal husbandry, and fishery industries serve
as a comprehensive measure of AEG, which reflect the value
realized by the whole industrial chain of agricultural production,
processing, logistics, marketing, and services (Lin et al, 2021;
Bi et al, 2022; Mei et al., 2022; Wang, 2022). It represents the
development level of the agricultural economy. Including AEG as
a dependent variable is motivated by the increasing recognition
of the agriculture sector’s critical role in achieving food security,
enhancing farmers’ livelihoods, promoting rural development, and
stabilizing the national economy in the face of global challenges.

Additionally, the total power of agricultural mechanization
(AM;
mechanization level (Zou et al, 2024). It is a useful available

10,000 kW) 1is used as a measure of agricultural

variable that can be used to assess the level of mechanization.
Theoretically, AM accelerates AEG by increasing productivity and
efficiency, allowing farmers to achieve higher yields with less labor
and time (Lu and Huan, 2022; Lu et al., 2024; Meng et al., 2024).
Moreover, it reduces production costs and encourages investment
and frees farmers to look for off-farm employment which further
enhances the competitiveness and sustainability of the agricultural
sector (Ma et al., 2023).

The other independent variable in this study is irrigation
area (IA), hectares of cultivated land. It serves as a crucial
indicator of water conservation efforts in farmland throughout
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China. It refers to the total extent of fields that are watered and
those equipped with irrigation systems or equipment for regular
irrigation purposes. Theoretically, IA of cultivated land directly
influences crop yields and resource efficiency, thereby enhancing
agricultural productivity (Liu et al., 2024). Existing studies support
that expanding IA supports food security and rural development,
making it a vital factor for sustainable economic growth (Li et al.,
2024). Furthermore, consumption of chemical fertilizers (CFs;
10,000 tons), an independent variable, refers to the amount of
chemical fertilizer used in farming during a given year. While a
study by Khan et al. (2022) highlighted that chemical fertilizer
consumption does not show direct long-term or short-term effects
on AEG, Yousaf et al. (2017) reported that chemical fertilizer
improves crop production, thereby contributing to AEG.

Another important independent variable in this study is crop
sown land (CL; 1,000 hectares). It refers to the total land area,
whether cultivated or uncultivated, that is planted or transplanted
with crops intended for harvest within a given calendar year by
agricultural producers. Existing studies revealed the association
between CL and AEG. The amount of cultivated crop land in
China declined due to land use change driven by urbanization,
which imposes a reduction in agricultural production, thereby
affecting the overall agricultural growth (Lu et al., 2024; Xiao
et al,, 2018). A study by Doll (2021) highlighted that the decline
of arable land caused by land waste imposes huge pressure on
agricultural development. Establishing a foundation on existing
studies, this study evaluates the association of these input resources
with AEG for building illustrations for the realization of the
agricultural modernization goal of the Chinese government as early
as the 2050s.

3.2 Model estimation

This study employed Autoregressive Distributed Lag (ARDL)
modeling and a novel Dynamic Autoregressive Distributed Lag
(DYARDL) simulation forecast to explore both long- and short-
term relationships between agricultural economic growth (AEG)
and four independent variables: agricultural mechanization (AM),
irrigation area (IA), chemical fertilizer consumption (CF), and
crop sown land (CL). To address potential heteroskedasticity and
mitigate the impact of extreme values or outliers, all variables
were transformed into their natural logarithmic forms. The
research utilized a log-linear regression model to analyze how
AM, IA, CE and CL influence AEG in China, highlighting the
intricate interdependencies among these factors. Figure 1 shows the
analytical frameworks of this study. This comprehensive approach
not only clarifies the individual contributions of each variable
to agricultural economic growth but also provides insights into
their collective impact, thereby enhancing the understanding of
agricultural development dynamics in the region. The log-linear
regression model in Equation 1 is as follows:

LnAEG = By + B1LnAM + BoLnIA + BsLnCF + B4LnCL + &,
(1)

Where ¢ stands for time period, Ln denotes natural log, 81, 52,
B3, and B4 represent coefficients, and ¢ is an error term.
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TABLE 1 Summary of existing studies on factors affecting agricultural economic growth.

10.3389/fsufs.2025.1619447

References Sample Period Methodology Main findings ‘

Mei et al. (2022) China 2014-2018 FGLS MMnternet finance and rural finance-1AEG

Guo et al. (2021) China 2001-2018 MS(M)-AR(p) model 4 Agricultural Support Policies-1AEG

Kuang et al. (2022) China 2005-2018 Intermediary effect test model 4 Farmland transfer-+ AEG

Lin and Wang (2024) China 2004-2020 Fixed-effect model +Natural disasters- | AEG

Liu and Wang (2005) China 1991-1999 Extended production model +Technological progress-1 AEG

Nan et al. (2019) China 1997-2014 Two-step generalized method MRural credit cooperatives’-1 AEG

Zeng et al. (2022) China 2007-2019 Random effects model +Agricultural insurance-1? AEG

Wang (2022) China 1985-2019 ARDL +CO; emissions, 1 AGExp, 1OILC, and
+GASC-1 | AEG

Sun and Chen (2020) China 1970-1987 OLS method +Household responsibility system-1 AEG

Hu et al. (2023) China 2000-2019 Logarithmic Mean Divisia index method | 1Agricultural energy consumption-|AEG

Zhao et al. (2018) China 1978-2015 Modified production function model +Capital-+AEG

Abdul-Rahim et al. China 2003-2012 Cobb-Douglas production function 1Soil and water conservation-+ AEG

(2018)

Gao et al. (2014) China 1978-2010 Provincial index approach +Rural-urban income gaps-| AEG

Yin et al. (2024) China 2000-2019 Panel-fixed-effects models +Geographical indications-1AEG

Li and Li (2021) China 2007-2017 Dynamic spatial panel lag model 1Water pollution- | AEG

Deng et al. (2024) China 2011-2020 The synthetic control method 4Farmland use right mortgage loan- | AEG

Yuan et al. (2022) China 1991-2018 Benchmark panel regressions 4 Temperature fluctuation- | AEG

Warsame and Daror Somalia 1985-2017 ARDL and VECM +Environmental degradation-| AEG

(2024)

Adedoyin et al. (2020) Sub-Saharan Africa 1980-2014 PMG-ARDL 1CO, emissions- | AEG

Aydogan and Vardar E7 countries 1990-2014 EKC and Granger causality +CO, emissions, real GDP, non-renewable energy

(2020) use-T AEG

Najafi Alamdarlo (2016) Iran 2001-2013 EKC 4+ Water consumption and CO, emissions-1 | AEG

Zafeiriou and Azam Europe 1992-2014 ARDL and EKC +Environmental degradation- | AEG

(2017)

Asumadu-Sarkodie and Ghana 1961-2012 ARDL and VECM 1+CO, emissions and agriculture, land use 1| AEG

Owusu (2016)

Ali et al. (2019) Pakistan 1961-2014 ARDL 1+CO; emissions, land under cereal cropst
1T} AEG

Chandio et al. (2021) Pakistan 1984-2016 ARDL 1 Energy consumption 1 AEG

Chandio et al. (2019a,b) Pakistan 1980-2016 ARDL 4Environmental degradation-| AEG

Rehman et al. (2019) Pakistan 1987-2017 ARDL +Cropped area, energy consumption, tfertilizer
use, 1 GDP per capita, and {water availability and
1CO, emissions-1 | AEG

Chandio et al. (2019a,b) Pakistan 1977-2014 ARDL 4+CO; emissions, 1financial development and
tMertilizer use-1 | AEG

Alietal. (2019) Pakistan 1960-2014 ARDL 1CO; emissions- | AEG

Gupta and Kannan India 1981/2- Bai-Perron multiple breakpoint method | 1Trade terms, tirrigation, 1 cropping intensity,

(2024) 2019/20 fpublic investment, 1 fertilizer use, and tlabor,

4 crop diversification-1 | AEG

1] denote increase and decrease, respectively.

3.2.1 ARDL model

The ARDL model was developed by Pesaran et al
(2001) to estimate the long- and short-run relationships

among variables. Unlike conventional
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cointegration

which require all time series data to be non-stationary and

tests,

05

integrated of the same order [typically I(1)], the ARDL
model can be estimated using time series data with mixed
orders of integration [I(0) and I(1)], but not I(2), and it
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-AEG,AM, IA, CF and CL
- 1983-2023, 41 Obs. -

- China | |

Natural log transformation 1
|

Non-stationary <+ Unit root test result

Stop

Non-cointegrated <«—

Stop

FIGURE 1
Analysis diagram.

Reduces heteroscedasticity and skewness and
normalize distributions

' . e . T | | ARDL model requires all variables to be
L Augmented Dickey—Fuller | Phillips—Perron | _stationary at level I(0) or in first difference I(1)

— Stationary

(OUTHE ORI ARDL bounds test | —

Cointegration test result

Establish directionality in relationships between agricultural =
economic growth and independent variables

Analysis of empirical findings

Determine the existence of a long-
_ run relationship between variables

— Cointegrated

|

Long-run estimation ARDL estimator

Long-run result
+

Granger’s Causality test

Diagnosis and stability test

allows for different lag lengths for both regressors and the
dependent variable.

Applying the ARDL technique, unbiased long-run estimates
can be obtained. The ARDL model is also a useful approach for
small and finite sample sizes and uses a combination of endogenous
and exogenous variables, unlike a VAR model, which is strictly
for endogenous variables. However, if any variable in the data is
stationary at the second difference, I(2), the ARDL approach cannot
be applied. In the ARDL model, there must be no autocorrelation
among the error terms. Additionally, the data should exhibit
no heteroscedasticity, meaning that the variance and mean must
remain constant throughout the model. The data should also follow
a normal distribution. In the ARDL model, if the variables are not
cointegrated, only the short-run ARDL model can be specified. The
generalized ARDL (p, q) model is specified in Equation 2:

» q
Y= voi + Zi:l Y1+ Zi:o BiXi—i + €ir 2)

Where Y;: The dependent variable at time ¢.

¥o: The constant or intercept term.

Z{-J:l 8;Y;—;: The autoregressive (AR) part of the model, where
Y;_; are lagged values of the dependent variable and §; are the
coefficients associated with these lags. quzo ,B]f X;—j: The distributed
lag (DL) part of the model, where X;_; are the lagged values of the
independent variable(s) and ﬂ]f are the coeflicients associated with
these lags. &;: The error term at time t, capturing all other influences
on Y; not included in the model.
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Equation 3 shows the ARDL model of this study for long-run
and short-run estimations.

p p
LnAEG, = Do+ Y 91LnAM;_y + Y  92LnlA;_
t—1 t—1

P p q
+ > 93LnCFy + Y 9aLlnCLy + Y ALnAM;
t—1 t—1 t—1
q q q
+ Z ALnlA,_; + Z ALnCE;_y + Z ALnCL;_,
t—1 t—1 t—1
+ ECT,_; 3)

The signs U, U, U3, ¥4 represent long-run estimates; A
denotes the short-run regressors; the error correction term is
ECT;_;, which indicates adjustment speed toward the long-run
in a short time period. The p and g symbolize lag lengths; while
t stands for time. The optimal lag length is selected based on
the AIC. Although the inclusion of additional lags improves the
regression fit, it comes at the cost of higher variance in the
coeflicient estimates. To balance this trade-off, we employed a
data-driven approach for optimal lag selection using the automatic
Akaike Information Criterion (AIC) method, which is a popular
technique for determining the best lag length in time series analysis
(Kripfganz and Schneider, 2023). Recently, several researchers have
also utilized automatic selection of the optimal lag order with the
AIC in their studies to determine the best lag length for fitting the
ARDL model (Wang, 2022).
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3.2.2 The novel dynamic ARDL simulations

This study uses the novel DYARDL developed by Jordan and
Philips (2018) to investigate the effect of the main agricultural input
resources on AEG. Unlike the ARDL model, the DYARDL can
better capture the dynamics of data with feedback effects, making
it more flexible in handling complex time series relationships
(Abdullahi et al., 2024). The variables should be stationary at I(1)
and 1(0), and they must be cointegrated. In the DYARDL model,
the other variables in the equation remain unchanged. Equation 4
presents the error correction form of the novel DYARDL model
used in the current study:

(ALnAEG) t = ag + 6pLnAEG;—1 + B1 ALnAM; + 01 LnAM;_,
+ BoALnIA; + 6,LnlIA;— 1 + B3 ALnCF;
+ 03LnCF;—1 4+ B4ALnCL; + 04ALnCLy—1 + &, (4)

3.2.3 Stationarity test

This study used the Augmented Dickey-Fuller (ADF), the
Phillip-Perron (PP), the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS), and the Zivot-Andrew’s test to check the stationarity of
the variables. In the unit root test, the null hypothesis posits that
the data are non-stationary, while the alternative hypothesis asserts
that the data are stationary. Equation 5 illustrates the unit root test
applied to the current dataset.

m
AYy =Olo+ﬂoT+ﬂ1Yt71+ZOt1AYt71+Sz (5)
i1

In Equation 5, Y is the variable being examined for unit root; T
represents the linear trend; AY;_; indicates the lag difference; «
is the constant term; and ¢ indicates the time trend. The null and
alternative hypotheses of “unit root test” can be represented as f;
=0ORH;: f1.

3.2.4 Cointegration testing

This study followed the ARDL bound test introduced by
Pesaran et al. (2001) for examining the existence of long-run
cointegration between variables. When conducting a cointegration
test, if the F-statistic and ¢-test values exceed the upper bound
critical value by <5%, this suggests a long-run cointegration
relationship between the dependent variable and the regressors;
otherwise, no cointegration exists. However, if the computed
F-statistic and ¢-test fall between the lower and upper bound
critical values, the results are inconclusive (Asumadu-Sarkodie and
Owusu, 2016). To test the long-run cointegration, two hypotheses
are formulated.

Ho: by = by = b3y =bgy =bs; =0

Hj: Atleast one bj; # 0, (wherei=1,2,3,4,5)

To perform the bounds test for long-run cointegration, the
conditional ARDL (B g1, g2, 43, g4) model with four variables is
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specified in Equations 6-11:

ALnAEG; = ag1 + bllLI’lAEGt_l + bzanAMt_l + b31L1’lIAt_1
barLnCFy_1 + bsiLnCLe_y + 3 a1 ALRAEG,
i=

q1 q2
Zi:l A ALnAM;_1+ Zi:l az;LnlA;_;

+ + o+

93 q4
Y. aulnCFi+ ) asLnClii+ey  (6)
ALnAM; = agy + b11LnAM;— + by1 LnAEG;— + b3 LnIA;—;
buLnCFiy + bsiLnCLe—y + Y @ ALnAM,
=

+

q1 q2
+ Zi:l i ALnAM,_1+ Zi:l asiLnlA;_
+

93 94
Y. aulnCFi+ ) aslnCLy+en  (7)
AL”IAt = dag1 + blanIAt_l + b21L1’lAMt_1 + b31LT’lAEGt_1
by LnCF;—y + bs1 LnCL;—; + ZP . a1 ALnlA;
=

+

q1 q2
+ Zizl i ALnAM,_1+ Zi:l asiLnlA;_
+

a3 q4
21:1 ayLnCFy 1 + 21:1 asiLnCLi—1 +e;  (8)
ALnCF; = ag; + bj1LnCF;_1 + by1 LnAM;_1 + b3 LnIA;_,
buuLnAEG, 1 + bsiLnCLi_y + Y @i ALnCF,
i=

+

ql q2
+ Zi:l Ay ALnAM,_1+ Zi:l asLnlA;_
+

q3 q4
Zi:l a4ilnCF;—y + Zi:l asilnCLi—1 +e1;  (9)
ALﬂCLt = ap1 + bllALl’lCLt,1 + bZIALI’lAMt,1 + b31LnIAt,1
+ buLnCF,_i +bsiLnAEG, 1+ " aiiLnCL,_y
=

q1 92
+ E . az,'LI’IAMt,]-f—E i as;LnlA;_;
43 q4
+ E i=1614iLﬂCFt—1+ E i=1615iLﬂCLt—1+€1t (10)

Then, if there is no cointegration, the ARDL (B q1, 92, 3, q4)
model is specified in Equation 12.

1
ALnAEG; = ag + E p lal,'ALnAEGt_l + E q 1a2iAL7’lAMt—l
1= 1=
q2 q3
+ E i asziLnlA;_ 1 + E - a4;LnCF;_y

q4
+ Zi:l asiLnCL;_1 + ¢ (11)

If there is cointegration, the error correction model (ECM)
representation is specified in Equation 13.

1
ALNAEG; = ag + E P 1al,-ALnAEGt,l + E ? laZiALnAMt,l
1= 1=
q2 q3
+ E i=1a3anIAt—l+ E i a4iLnCF;_y

4
+ 37 asLnCLy +MECT, 1 +e¢, (12)

Where, A =

with a negative sign; ECT =
Z?:o ﬂi

o
a1ia2ia3ia4ias; are the short-run dynamic coeflicients of the model’s

(1 - Z€:1 61), speed of adjustment parameter
(LnAEG;_; — 6X}); the error

correction term; 6 = , is the long-run parameter;

adjustment to the long-run equilibrium. Obtain the short-run

dynamic parameter by estimating the ECM associated with the
long-run estimates. The short-run causal effect is represented by the
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t-statistic on the explanatory variables (short-run coefficients). The
long-run relationship between the variables indicates that there is
Granger causality in at least one direction, which is determined by
the t-statistic on the coefficient of the lagged error correction term.

3.2.5 Granger causality test

We further apply Granger causality analysis to evaluate the
causal effect between the variables (Granger, 1969). Similarly,
before conducting the Granger causality test, it is necessary for
the variables to be stationary. Additionally, after estimating the
model, diagnostic checks were performed to ensure that residuals
do not exhibit serial correlation, which could otherwise affect the
validity of the test results (Figure 1). While testing the Granger
causality, the null hypothesis (Hp) is that Y(t) does not Granger-
cause X(f), meaning that all coefficients associated with lagged
values of Y(t), when included in a regression model predicting X(¢),
are equal to zero. The alternative hypothesis (H;) is that Y(¢) does
Granger-cause X(t), meaning at least one coefficient associated with
lagged values of Y (), when included in such a regression model,
is non-zero (Granger, 1969). The f-value was estimated to reject
the null hypothesis if the F-statistic is greater than the f-value. The
following two equations were used to find 8; = 0 for all lags j.

p
X =) X (t—i)+c+u()
i=1

(13)

P 4
X() =) aX(t—i)+) BY(t—j)+e+un) (14)

i=1 j=1
The f-statistics was calculated using the following equation:

_ ESSr — ESSur/q

= ESSux /(n— k) (15)

Where ESSg: Error sum of squares for the restricted model
(Equation 13); ESSyg: Error sum of squares for the unrestricted
model (Equation 14); g: Number of restrictions [equal to the
number of lagged terms of Y(#)]; n: Number of observations; k:
Total number of parameters in the unrestricted model.

The null hypothesis was rejected if the F-statistic exceeded the
critical value from the F-distribution table or if the p-value was
less than the significance level (e.g., 0.05). This indicates that Y (¢)
Granger-causes X(t). Otherwise, the null hypothesis failed to be
rejected, implying no evidence that Y(t) Granger-causes X(t).

4 Empirical results and discussion

4.1 Descriptive statistics

The descriptive statistics in Table 2 show that these series are
obviously heterogeneous. The average AM is larger than that of the
other independent variables. The standard deviation clearly shows
that AEG value is the highest, followed by the AM, suggesting that
there have been more changes in agricultural development during
the study period, and show great fluctuation. As we see in Table 2,
the skewness values for all variables were between —1 and 1, which
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TABLE 2 Descriptive statistics.

Statistic  LnAEG  LnAM LnlA LnCF LnCL

Mean 26.288 20.1344 10.921 17.494 18.532

Median 26.238 20.2189 10.903 17.602 18.537

Std. 1.169 0.5934 0.156 0.397 0.044

Skewness —0.329 —0.3536 0.099 —0.905 —0.604

Kurtosis 1.939 1.7095 1.754 2.550 2.936

Min 24.065 19.0097 10.692 16.624 18.414

Max 27.931 20.8531 11.179 17.913 18.596

Jarque-Bera 5.664 10.8616 8.858 5.694 3.241

Probability 0.058 0.0044 0.012 0.058 0.199

Observation 41 41 41 41 41
TABLE 3 Correlation matrix.

Variables LnAEG LnAM LnlA LnCF LnCL

LnAEG 1.000

LnAM 0.9851 1.000

LnIA 0.979 0.9647 1.000

LnCF 0.951 0.9577 0.891 1.000

LnCL 0.366 0.2906 0.464 0.177 1.000

generally shows approximately symmetric distributions, which is
an indicator of normality of all variables.

The correlation matrix analysis in Table 3 demonstrates the
strength and direction of relationships between variables.

Except for CL in Figure 2, the plots of the other variables
during the study period show an increasing trend, highlighting the
presence of relationships among the study variables.

4.2 Unit root tests

The analysis in this study begins with checking whether the
variables are stationary at level I(0) or first difference I(1), followed
by the establishment of the system’s optimal lag length, k, as it is the
essential requirement for further investigation. This study applied
the augmented Dickey and Fuller (ADF), Phillips and Perron (PP),
Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Zivot-Andrews
unit root tests are four widely used methods for time series analysis
(Dickey and Fuller, 1979; Phillips and Perron, 1986). Conducting
both the ADF and PP tests provides a more comprehensive analysis
of the stationarity of a time series, helping to validate findings and
better understand the underlying data characteristics. They have
different methodologies and underlying assumptions, which can
yield complementary insights.

Table 4 shows the results of ADE, PP, and KPSS stationarity tests
at I(0) and I(1). The unit root test results reveal important insights
into the stationarity characteristics of various agricultural variables.
AEG is found to be stationary at the level according to the ADF
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FIGURE 2
Plots of variables during the study period.
TABLE 4 Unit root test analysis.
Variable Level ADF A ADF Level PP A PP Level KPSS A KPSS
LnAEG —2.688* —3.584"** —2.215 —3.584"** 0.637 0.074™**
LnAM —3.398** —3.910%** —2.692* —3.948%** 0.780 0.145%*
LnIA 0.774 —4.589*** 0.544 —4.527%%* 0.273 0.105***
LnCF —6.009™ —1.862 —3.932% —1.645 0.899 0.15%*
LnCL —0.840 —4.220%" —1.348 —4.246%** 0.650 0.094***

A: first difference. ***, **, *Illustrates null hypothesis 1%, 5%, and 10% significance level, respectively.
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TABLE 5 Zivot-Andrews unit root test with structural breaks.

Variable Level Z Breaking AZ Breaking
Andrew year Andrews year
LnAEG —4.059 1994 —4.980* 1996
LnAM —3.594 2010 —7.285%* 2016
LnIA —4.095 2002 —5.336" 1991
LnCF —3.281 2011 —4.463 1991
LnCL —4.525 2000 5,834+ 2004

A: first difference, *represents 10% significance level, **shows 5% significance level, and

***indicates 1% significance level.

tests, but it exhibits stationarity at first difference across the PP and
KPSS tests.

In the case of AM, the ADF and PP tests identify it as stationary
at level, while the KPSS test suggests that it is stationary at first
difference. IA is consistently non-stationary at the level in all tests,
but it becomes stationary upon taking the first difference. CF
presents a mixed picture, being stationary at the level according to
the ADF and PP tests, yet it is stationary at the first difference in
the KPSS teat. Finally, CL remains non-stationary at the level in all
tests, transitioning to stationarity at first difference across the board
(Table 4). These findings underscore the necessity of differencing
for ensuring stationarity in time series analyses involving these
agricultural indicators.

The ADF and PP unit-root tests are the most commonly
used in previous research. However, they may create a bias
toward non-rejection of the unit root for small sample sizes.
Thus, this study further implemented the structural break unit
root test developed by Zivot and Andrews (1992). This unit
root test offers the variables with a breaking stationary series,
assisting in exploring the factors that affect the agricultural input
resource in the time series. Table 5 shows the results of the
structural break unit root test. The structural break unit root
test shows that the f-statistic for agricultural economic growth
exceeded the critical value at a significance level below 10%,
with a break occurring in 1996. The mid-1990s was a period
in which economic reforms and urbanization spurred off-farm
work, increasing wage labor and self-employment opportunities,
which significantly boosted farmers” incomes (Wang et al., 2011).
Moreover, since the mid-1990s, Chinas agricultural productivity
has benefited from plant biotechnology innovations such as Bt
cotton, enhancing agricultural outcomes (Huang et al., 2002). The
15-year contract of the Household Responsibility System (HRS),
a system that decentralized land control to individual households,
was extended from 15 to 30 years, creating stability in land contract
system and resulting in boosting agricultural productivity (Huang
et al., 2020; Huang and Rozelle, 2017).

Agricultural mechanization rejects the null hypothesis at
a significance level below 1%, with a structural break in
2016. The unexpected rise in agricultural mechanization in
China around 2016 may have been driven by the 2014 land
transfer policy, which promoted the separation of the “three
rights” (land ownership, contract, and management). This policy
facilitated the consolidation of large-scale farms and the uptake
of agricultural machinery, boosting agricultural productivity and
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incomes (Duan etal., 2021; Gong et al,, 2022). In the case of the
irrigated area, the null hypothesis was rejected at a significant
level below 5% with a structural break in 1991. The expansion
of irrigated area in China at the beginning of the 1990s can be
associated with the first China’s water law, which was enacted in
1988, largely in response to the decline in irrigated land (Lohmar
et al, 2003). Following this, government investment in water
infrastructure grew to 2.9% of total investments, driven by both the
need to repair and maintain infrastructure and a broader national
focus on infrastructure development. By 1990, the area of irrigated
land increased to 48.39 million hectares, slightly surpassing the
1978 level (Wang et al., 2020).

The results of chemical fertilizer showed no significant
difference at both levels and first difference in the years 2011 and
1991, respectively. Because, in 1991, the use of chemical fertilizer
is just at the start of its rising stage, as the period was the initial
stage of a dual system of central planning and market adjustment,
and the surge of chemical fertilizer was inconsiderable (Li et al.,
2013). The structural break unit root test shows that the ¢-statistic
for crop sown land surpassed the critical value at a significance level
below 1%, with a break occurring in 2004. The sharp increase in the
agricultural sown area in 2004 was largely due to the introduction of
China’s new agricultural subsidy system, which protected farmers’
rights, and the 2002 Rural Land Contract Law, which legally defined
collective land ownership, fostering the development of large-scale
agriculture (Du et al., 2011; Zhou et al.,, 2020). Currently, policies
are in action to protect the existing crop land and reclaim the
degraded and abandoned land (Table 5).

4.3 ARDL bound cointegration tests

The stationarity of the included variables enables us to
continue to the cointegration test. This study probed the
cointegration between agricultural mechanization level, irrigated
area, chemical fertilizer consumption, crop land, and agricultural
economic growth using the ARDL bound cointegration testing
approach based on Kripfganz and Schneider (2023). The results
of the cointegration test in Table 6 show that the values of
F-state and t-test are 9.225 and —6.370, respectively. These
values exceed the upper and lower bound critical values at 1%
significance level, supported by the P-value. Thus, we reject
the null hypothesis (Hg) of no-cointegration and confirm the
existence of cointegration among the study variables. This indicates
the presence of a long-run equilibrium relationship between
agricultural mechanization level, irrigated area, chemical fertilizer
consumption, crop land, and agricultural economic growth. In this
context, the cointegration indicates that while this variable may
exhibit short-term fluctuations, it converges to a stable equilibrium
over time. Moreover, the cointegration among these variables
implies that a change in one of the independent variables will
likely result in corresponding adjustments in agricultural economic
growth. Using the ARDL bound test approach, existing studies
also proved the presence of cointegration among variables, such as
chemical fertilizer consumption and agricultural economic growth
in China and Pakistan (Rehman et al., 2019; Chandio et al., 2019a,b;
Khan et al., 2022).
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TABLE 6 ARDL bounds testing with Kripfganz's novel p-values.

10.3389/fsufs.2025.1619447

P-value
[(0)) 1(1) [(0)] 1(1) [(0)) 1(1) [(0)] 1(1)
F-stat 9.225 245 3.52 2.86 401 3.74 5.06 0.000%** 0.000%*
t-test —6.370 —257 —3.66 —2.86 —3.99 —343 —4.60 0.000** 0.000%*

***Denotes the symbol for 1% significance level, 1(0) specifies the critical value of the lower bound, I(1) represents the critical value of the upper bound.

TABLE 7 The results of DYARDL short-run and long-run estimations.

Variable  Coefficient Std. t-test P-value
error
Long-run associations
ECT_1 —1.001922 0.1572952 —6.37 0.000"*
(LnAEG)
LnAM —0.5418306 0.1551827 —3.49 0.004***
LnlA 7.018342 0.5788395 12.12 0.000"**
LnCF 1.216259 0.1320637 9.21 0.000"*
LnCL —0.4695141 0.3921578 —1.20 0.251
Short-run associations
A LnAM 0.4372458 0.2450047 1.78 0.096*
A LnIA 3.704872 1.162639 3.19 0.007*+*
A LnCF 1.665627 0.7618401 2.19 0.046**
A LnCL 0.3342545 0.9569157 0.35 0.732
Constant —52.189 11.20783 —4.66 0.000**
R?:0.9109 Adj R?:0.7710 RootMSE:
0.0341
Number of Observations: 37 Log Likelihood: 90.449

ok, #%, *Ilustrates null hypothesis 1%, 5%, and 10% significance level, respectively.
Ho: No long-run and short-run relationship. H;: There exists a long-run and short-
run relationship.

4.4 Dynamic ARDL short-run and long-run
estimation

The results of the DYARDL model estimation are detailed
in Table 7, covering both short- and long-run analysis. In the
long run, the agricultural mechanization level is shown to be
highly significant with a negative coefficient of —0.541. This
finding leads to the rejection of the null hypothesis at the 1%
significance level, supporting the alternative hypothesis. It indicates
that a 1% increase in agricultural mechanization level will decrease
agricultural economic growth by 0.541% in the long run. In the
short run, however, a 1% increase in agricultural mechanization
level will increase agricultural economic growth by 0.437%, which
is significant at the 10% significance level. Signs of coeflicients
differ between short- and long-term. This is because short-run
gains likely arise from immediate efficiency improvements, such
as faster reducing labor bottlenecks, boosting output with existing
resources. Long-run negatives emerge as mechanization reduces
labor demand faster than alternative employment emerges, while
potentially creating overcapacity or diverting capital from more
productive investments such as R&D or irrigation.
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The significant negative long-run effect likely reflects labor
displacement, where mechanization reduces overall agricultural
employment faster than new opportunities emerge. It may also
indicate structural inefficiencies, such as misallocated capital
investment or reduced productivity in contexts with abundant,
underutilized labor. The results are supported by previous
researchers, such as Zou et al. (2024), highlight that agricultural
mechanization in China has reduced the need for labor, leading
to a shift of young people away from farming toward non-
agricultural employment. This migration diminishes the local labor
force available for agriculture and lowers household consumption,
which ultimately impedes the growth of the agricultural economy.
However, these results differ from those of Lu et al. (2024),
which revealed that agricultural mechanization boosts green
productivity via enhanced management, factor efficiency, and
industrial diversification.

In the case of the irrigation area, the coefficient is positive,
higher, and significant at the 1% level in the long run. The
result suggests that a 1% increase in irrigation area will increase
agricultural economic growth by 7.018% in the long run. In
the short run, the irrigation area with a positive coefficient is
also significant. A 1% increase in irrigation area will increase
agricultural economic growth by 3.704% in the short run.
This substantial long-run and short-run multiplier likely reflects
irrigation enabling intensified production (multi-cropping, higher-
value/higher-yield crops) and reduced yield volatility, significantly
boosting output. It also suggests that irrigation acts as catalytic
infrastructure, triggering wider investments in complementary
inputs and facilitating a structural shift toward more productive
farming systems. The results are in line with Li et al. (2024),
who found that the expansion of irrigated land is a key driver
of increased water use for irrigation, which directly boosts
agricultural productivity. Furthermore, irrigation can be used for
maize cultivation to increase crop yield, thereby improving the
agricultural economy (Liu et al., 2023). As more land is irrigated,
crop yields rise, supporting greater food production and economic
growth in the agricultural sector. This growth enhances food
security, raises farmer incomes, and stimulates rural economies.

Considering chemical fertilizer consumption, the long-run
relationship is highly significant with a positive coefficient.
The results show that a 1% increase in the chemical fertilizer
consumption will increase agricultural economic growth by 1.216%
in the long run. In the short run, it can also be seen that chemical
fertilizer has a positive effect on agricultural economic growth
with a 1% significance level, leading to the rejection of the null
hypothesis. A 1% increase in chemical fertilizer consumption
resulted in a 1.665% increase in agricultural economic growth in the
short run. The results show that the reduction in chemical fertilizer
hinders the growth of agricultural output. Simply reducing fertilizer
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use in crop cultivation could intensify the tension between boosting
crop yields and conserving land resources in China, potentially
leading to a decline in agricultural economic growth (Hu and
Liu, 2024). However, this result is inconsistent with a study by
Khan et al. (2022), which concludes that the short- and long-
run association between chemical fertilizer use and agricultural
economic growth is non-significant. This implies the need for
further investigation.

In terms of crop sown land, it is noticeable that the coefficient
of crop land toward agricultural economic growth has a positive
effect with a negative coefficient in the long run, while a positive
coefficient in the short-run and non-significant both in the long-
and short-run. It suggests that we cannot reject the null hypothesis
with regard to agricultural economic growth. In economically
advanced and major grain-producing areas, the pressure on
cultivated land does not correspond directly to economic growth,
as the expansion of agricultural productivity often outpaces land
constraints. This disconnect suggests that agricultural economic
growth can be driven more by technological advancements and
efficiency gains rather than by the mere increase in cultivated land
(Wu et al., 2022). Moreover, the error correction term (ECT;_1)
exhibits a negative coefficient with a P-value significant at the 1%
level, indicating a rapid adjustment toward long-run equilibrium
within a short timeframe and suggesting resistance to shocks. The
model’s outcomes show both R-square and adjusted R-square values
that are notably strong.

4.5 Novel dynamic ARDL simulations
forecast

This study further estimated a dynamic ARDL simulation
forecast model to visualize the possible effect of a counterfactual
change in one regressor at a single point in time and its impact
on the dependent variable, holding the other independent variables
constant, using stochastic simulation techniques. In particular, we
predicted a 10% positive or negative shock in the main independent
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variables, which could be used to measure its impact on AEG in
China. The dark blue lines indicate predicted mean values, and the
light blue area to dark blue area represents 70%, 90%, and 95%
confidence intervals. The impulse response results are shown in
Figures 3-6. An impulse response plot is a graphical representation
used in time series analysis and econometrics to show the reaction
of a variable in a dynamic system to a shock or impulse over
time. It illustrates how a one-time change in an input (in our case,
an agricultural input resource) affects the output variable (such
as AEG) at various time intervals. The importance of impulse
response plots lies in their ability to capture the short-term and
long-term effects of shocks in a system. The points in each graph
(Figures 3-6) represent the average predicted values and impact
pathways of agricultural economic growth, derived from the shocks
introduced by each regressor (explanatory variables).

Figure 3A represents the influence of a 10% positive shock in
the LnAM on AEG in China. The impulse response graph reveals
that a 10% increase in LnAM reduces AEG while a 10% decrease in
LnAM increases LnAEG (Figure 3B), both in the long- and short-
run. In consistent with these findings, a study by Zou et al. (2024)
found that the agricultural mechanization in China has diminished
labor demand, prompting young people to pursue non-farming
jobs, which in turn lowers local agricultural labor supply and
household consumption, hindering the growth of the agricultural
economy. Additionally, mechanization has shifted production from
cash crops to grain crops, resulting in a decline in AEG. The results
are also consistent with the result in Table 7.

Figures 4A, B depicts the impulse response plot of irrigated
area, which shows that a 10% positive shock from LnIA to LnAEG
in Figure 4A induces a slight decrease in AEG both in the long
and short run. This finding aligned with a study by Li et al. (2024),
which revealed that an increase in the irrigated area led to a national
increase in water productivity and AEG over the period between
1982 and 2017 in China. A 10% negative shock in Figure 4B also
represents a small increase in AEG in both the long and short
term. This might be due to the fact that the majority of grain
production comes from irrigated areas that are affected by water
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TABLE 8 Outcome of Granger causality Wald tests result.

10.3389/fsufs.2025.1619447

—AEG —AM —I1A —CF —CL
AM—AEG 0.019** AEG—AM 0.513 AEG—IA 0.000*** AEG—CF 0.000** AEG—CL 0.001**
1A—AEG 0.000%** IA—>AM 0.795 AM—IA 0.075* AM—CF 0.002"* AM—CL 0.034**
CF—AEG 0.000*** CF—AM 0271 CF—IA 0.000** AI->CF 0001+ Al->CL 0.030**
CL—AEG 0.000*** CL—AM 0.033** CL—IA 0.000** CL—CF 0.000** CF—CL 0.006"*
ALL—AEG 0.000*** ALL—AM 0.031** ALL—IA 0.000*** ALL—CF 0.000*** ALL—CL 0.000"**
ek wx *lustrates null hypothesis 1%, 5%, and 10% significance level, respectively. Ho: No Granger causality. Hy: There exists Granger causality.
scarcity, and the decoupling of irrigation area expansion from grain TABLES Normality test results.
roduction through agricultural water productivity growth ma :
procuc rhrough ag productivity g Y Source test Chi?2 ol p-value
result in an increase in AEG (Ju et al., 2023; Qi et al., 2022). These
conflicting results need further investigation as the association Cameron & Trivedi's decomposition of IM-test
between irrigation area expansion, water scarcity, and agricultural Heteroskedasticity 37.00 36 0.4226
prOduCthTl is ex.acerbated by climate change and industrial water Skewness 2196 - 05049
consumption (Liu et al., 2024).
Figure 5A shows the impulse response plot, which indicates the Kurtosis 009 ! 07676
impact of LnCF on AEG. A 10% positive shock in LnCF declines Total 58.34 59 0.4996

AEG, which prevents fertilizer-caused environmental pollution.
Figure 5B also shows that a 10% negative shock in LnCF results
in an increase in LnAEG in the long and short run. This finding
is supported by Khan et al. (2022), who found that the reduction
of chemical fertilizer in China induces a significant increase in
AEG. Several studies also argued that the reduction in chemical
fertilizer through replacing it with organic fertilizer increases
agricultural production without affecting the environment (Duan
et al., 2021). Preventing excessive application of chemical fertilizer
and pesticide promotes environmental sustainability without
affecting agricultural production (Liu et al., 2021), and this can be
achieved through a system change, particularly the agri-food system
(Brunelle et al., 2024) and by providing agricultural subsidy on
fertilizer use (Fan et al., 2023).

Figures 6A, B demonstrates the impulse response plot, which
illustrates that a 10% positive shock in crop sown land leads to a
decrease in AEG (Figure 5A) both in the short and long term, while
a 10% negative shock results in an increase in AEG (Figure 6B).
Crop land expansion induces huge environmental destruction, such
as biodiversity loss, forest loss, carbon emission, loss of ecosystems’
functions, and land degradation (Ceddia, 2020; Zeng et al., 2018).
This might provide a short-term promise to increase agricultural
production but at the expense of the environment, which in turn
affects agricultural production, leading to a decline in overall food
production. A study in the United States found that the newly
converted crop land was unsuitable for crop production, producing
much lower crop yields than the national average (Lark et al,
2020). To compensate for the need for additional crop land for
securing agricultural production, studies in China suggest the role
of reclamation of degraded land and abandoned land (Guo et al.,
2023). Moreover, Schneider et al. (2022) explored that instead
of new crop land expansion at the expense of the environment,
it is crucial to identify suitable, cultivable, and available land
for crop production. Multiple cropping is also an important
mechanism to promote land-use intensification and prevent crop-
land expansion, which resulted in a long-term decline in AEG
(Xiang et al., 2022).
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4.6 Granger causality test

The Granger causality test in Table 8 reveals a highly
interconnected agricultural system. AEG is primarily driven by
increases in IA, CF, and CL, with significant causality (p < 0.001).
Although AM has a weaker effect on AEG (p-value = 0.019), it
significantly influences both CF and CL with p-values of 0.002 and
0.034, respectively, indicating that technological advancements in
farming play a key role in input adoption and land utilization.
IA shows strong causality with AEG (p = 0.000) and moderates
strong relationships with AM, CF, and CL, underscoring its central
role in the agricultural system. CF not only significantly drives
agricultural growth (p = 0.000) but also influences AM, IA, and
CL (p < 0.006). Similarly, CL exhibits strong causality with AEG,
IA, and CE and a moderate effect on IA (p = 0.033; Table 8).
Overall, the results suggest that agricultural development is shaped
by a dynamic, interdependent network of factors, where changes in
one input resource, such as irrigation or fertilizer use, can trigger
widespread shifts in others, ultimately driving economic growth in
the sector.

4.7 Diagnostic tests

In addition, the diagnostics tests have been performed to
identify any heteroscedasticity issues, abnormality issues, and
serial correlation problems, as presented in Tables9, 10. A
normality test presented in Table 9 was conducted, revealing no
evidence of heteroskedasticity based on Cameron and Trivedi’s
decomposition of the IM-test. Additionally, both skewness and
kurtosis were found to be statistically insignificant, indicating that
the residuals conform to the assumption of normality. This
supports the conclusion that the regression model satisfies key
assumptions for valid inference. The Breusch-Godfrey LM test
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results in Table 9 support the null hypothesis of no autocorrelation,
indicating that the selected variables are not autocorrelated.
Furthermore, to detect serial correlation, in addition to analyzing
residuals against their lags, the Durbin-Watson test is employed.
The result shows a value of 2.11, which falls within the range of 1.5-
2.5, indicating that there is no significant autocorrelation present in
the data.

4.8 Stability test

The study also conducted stability tests using the cumulative
sum (CUSUM) and CUSUM squared methods to verify the
stability of both long-run and short-run parameters. The CUSUM
results, illustrated in Figures 7, 8, indicate that the statistical values
fall within acceptable limits. To address minor inconsistencies
identified in earlier goodness-of-fit assessments, we applied the
CUSUM test with ordinary least squares (OLS), as introduced by
Ploberger and Kramer (1996). The findings presented in Figure 8
indicate that the CUSUM trend remains well within the 95%
confidence interval, confirming the stability of both long- and
short-run coefficients. These results strongly suggest that the model
is stable and provides an excellent fit. Furthermore, this stability
testing approach has been utilized in numerous studies, such as
Khan et al. (2021), reinforcing its validity.

TABLE 10 Outcome of diagnostic test.

Lags (p) Chi? df Prob > F
Breusch-Godfrey LM test for autocorrelation
1 ‘ 0.259 ‘ 1 ‘ 0.6105

Durbin-Watson d-statistic (19, 37) = 2.119649

P-value < 0.05 indicates the presence of serial correlation; P-value > 0.05 indicates the
absence of serial correlation. Hy: no serial correlation.

10.3389/fsufs.2025.1619447

5 Conclusion and policy implications

Agriculture is often regarded as a key solution to alleviating
poverty, particularly among the 80% of the world’s impoverished
population residing in rural areas and dependent on farming.
Recognized as a pivotal strategy, agricultural development is seen
as essential for eradicating extreme poverty, promoting inclusive
prosperity, and meeting the nutritional needs of an anticipated
global population of 10 billion by 2050.

The Zero Hunger Challenge, initiated at Rio+420 in 2021,
urges governments to double the productivity and income of
smallholder farmers, establish sustainable food systems, and
guarantee universal access to sufficient, nutritious food throughout
the year. In the 14th Five-Year Plan period (2021-2025), the
government of China issued a plan to advance agricultural and
rural modernization to create a strong agricultural economy.
Furthermore, the 14th Five-Year Plan (FYP) introduces a National
Agriculture Green Development Plan aimed at transforming the
agricultural sector to prioritize environmental sustainability. The
key to achieving these goals relied on efficient utilization of
agricultural input resources.

Therefore, this study conducted the association between
agricultural mechanization, irrigated area, chemical fertilizer
consumption, and crop sown area with agricultural economic
growth in China from the onset of major rural reforms in
1983-2023, a period during which the Chinese government has
actively promoted modern agriculture and rural revitalization as
key strategies for future agricultural development. In recent years,
the growth rate of Chinas agricultural economy has declined,
along with its contribution to the national economy. This trend
may be attributed to dynamic changes in key agricultural input
resources, driven by both anthropogenic and natural factors.
Anthropogenic factors include unsustainable farming practices and
excessive chemical fertilizer use, which causes nitrogen runoff
soil/land degradation (Xu et al., 2023). Natural factors include
natural disasters, including prolonged drought, temperature rise,

OLS cusum plot of D.LnAEG

~ with 95% confidence bands around the null
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biodiversity loss, and soil erosion (Lin and Wang, 2024; Yuan et al,
2022).

Annual data obtained from the Chinese statistical yearbook
were used. The data were checked for the confirmation of
stationarity and cointegration, as it is a requirement for further
short- and long-run estimation. The ADE, PP, KPSS, and Zivot-
Andrews unit root tests were conducted to confirm the stationarity
of the variable at only the level or first difference. We used
the ARDL bound test approach to examine the existence of
cointegration in the long run among the study variables. Dynamic
ARDL and novel dynamic simulation forecast were applied to
estimate the effect in the long and short run. We further
examine the existence of causality effect using Granger causality
test approach.

The results of ADE, PP, KPSS, and Zivot-Andrews unit root
tests with structural breaks confirms the stationarity of variables.
The ARDL bound test result also verified the cointegration among
the study variables, which validates the existence of a long-run
relationship. The dynamic ARDL estimation shows that a 1%
increase in agricultural mechanization slightly boosts agricultural
economic growth in the short run, but may reduce it in the
long run. An increase in irrigated land and chemical fertilizer
consumption promotes agricultural development in both the short
and long run. However, the relationship between crop sown area
and agricultural growth is not significant in either the short or
long run. The results from the novel dynamic ARDL model show
that a 10% positive shock in agricultural mechanization, chemical
fertilizer use, and crop sown area leads to a decrease in agricultural
economic growth, while a 10% negative shock in these factors
results in an increase in agricultural economic growth, both in the
short and long run. However, a 10% shock in irrigated land remains
insignificant. The strong Granger causality effects observed for
irrigated area, chemical fertilizer consumption, and crop sown land

Frontiers in Sustainable Food Systems

arise from their direct contributions to increasing productivity and
total output in agriculture. These factors have an immediate and
measurable impact on yields and farm incomes. On the other hand,
agricultural mechanization shows a weaker causality effect because
its benefits are more indirect, focused on efficiency improvements
rather than direct yield enhancement, and are constrained by high
costs and energy dependencies. Moreover, diagnostic tests show
no issues with normality, heteroskedasticity (Cameron and Trivedi
IM-test), or autocorrelation (Breusch-Godfrey LM test), and the
CUSUM OLS test confirms the model’s good fit at a significance
level below 1%.

several

On account of the study’s policy

recommendations are proposed. First, the stunted association

findings,

of agricultural mechanization and agricultural economic growth
shows that the source of agricultural economic growth in
China resulted mainly from rural-labor transfer/allocation
instead of technological advancement, in particular, agricultural
mechanization. Thus, a strategic shift to mechanized-oriented
agricultural development is required in a more advanced way. It
may be a challenge when the shift considers land transfer to create
large-scale agriculture in the short term, but the outcome will be
in line with the long-term agricultural modernization goal of the
country by 2030.

Second, the strong relationship between agricultural economic
growth and chemical fertilizer consumption suggests that a
gradual strategy should be implemented to decouple chemical
fertilizers from agricultural growth in China. Because urgent
reduction of chemical fertilizer application may lead to uncertain
outcomes on food security, the government should promote
organic and regenerative farming, invest in precision agriculture
technologies to optimize fertilizer use, and provide subsidies for
sustainable practices. Additionally, reforming fertilizer subsidies
and introducing environmental taxes on excessive fertilizer use
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can incentivize efficiency. These measures will help reduce
reliance on chemical fertilizers while maintaining productivity
and sustainability in agriculture. Ultimately, a balanced approach
combining technology, policy reforms, and sustainable practices
will foster long-term agricultural growth.

Third, as the irrigation area shows a positive association with
agricultural economic growth in China, the government should
invest in advanced irrigation technologies, such as drip and
sprinkler systems, to maximize water efficiency, enlarge irrigated
areas, and improve agricultural productivity in China amid
water scarcity. Policies should also focus on the modernization
of existing irrigation infrastructure, promote the recycling of
wastewater for agriculture, and encourage water-saving farming
practices. Efforts should be made to develop water storage
capacities through reservoirs and rainwater harvesting, along with
incentivizing farmers to adopt water-efficient crops, to ensure
more sustainable use of water resources. Moreover, a proper
national water management strategy that balances agricultural
needs with ecological preservation is essential to ensure long-term
water availability.

Fourth, Chinas resource supply and demand balancing act
requires prioritizing high-efficiency inputs (such as precision
irrigation) to boost growth while minimizing resource waste
(SDG 12), and redirecting subsidies from land expansion toward
sustainable urban-rural food systems (SDG 11). Finally, top priority
should be given to maintaining the quantity and quality of crop
land for sustainable agricultural development. Policies should
focus on reclaiming degraded and abandoned lands through
sustainable land rehabilitation techniques, such as soil erosion
control, reforestation, and the use of organic amendments to
restore fertility and enlarge crop sown areas without resorting
to the natural environment. More investment in technology is
needed for precision land assessment and targeted reclamation
projects to ensure efficient use of such areas. Incentives should
be provided for farmers who adopt sustainable land management
practices. This study also encourages policies, such as the farmland
transfer policy and the cultivated land protection policy, to establish
a long-term association between crop-land and agricultural
development. This can prevent degradation and enhance long-term
agricultural productivity.

Although we have examined the effect of agricultural
input resources, mainly mechanization, irrigation, fertilizer, and
farmland, on agricultural economic growth from dynamic vantage
points, certain limitations still exist. First, although this study
uses a novel dynamic ARDL estimation approach, the sample
size used is limited. As a result, further research is needed with
a larger and more comprehensive dataset (e.g., microdata at
regional and county level) to provide a more accurate prediction
of the impacts of agricultural input resources on the economic
growth of the agriculture sector. Second, as China is a large
agricultural country, future research needs to consider regional
variation to further explore the associations in detail. While the
diagnostic and stability tests validate the robustness of the models,
further research is required to deepen our understanding of
the relationship between the expansion of crop sown areas and
agricultural economic development, as indicated by the simulation
forecasts. Third, a more detailed analysis of specific variables,
such as chemical fertilizer use, is necessary to investigate their
sources and underlying mechanisms, given their environmental
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connections with the agricultural sector. Finally, we recommend
cross-country research on the relationship between agricultural
input resources and sustainable agricultural development, which
could provide valuable insights from a global perspective.
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