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Introduction: This study extends prior work on economies of scale by

introducing e�ciency as a moderating factor in agricultural economies of scale.

By incorporating regional heterogeneity, the paper provides a new framework

for understanding scale expansion in diverse agricultural environments, o�ering

insights that can guide policies for more sustainable agricultural production.

Methods: The study examines how e�ciency a�ects economies of scale in

corn production using data from the China Rural Revitalization Survey (CRRS).

A double stochastic frontier model with two-stage least squares is employed to

isolate e�ciency loss and address scale endogeneity via instrumental variables.

Results: The results reveal a significant U-shaped relationship between land

operating scale and unit production cost. Insu�cient e�ciency under expanded

scale increases costs, highlighting the need for sustainable resource allocation to

balance productivity and long-term agricultural viability. Furthermore, e�ciency

moderates economies of scale, exhibiting regional heterogeneity.

Discussion: The policy implications include optimizing factor allocation through

tiered management training, improving the land transfer market to reduce

transaction costs, and deploying digital infrastructure and cross-regional service

alliances to mitigate regional disparities. This study provides evidence on the

role of managerial ability in e�ciency, which optimizing economies of scale,

demonstrating how resource e�cient practices reduce input waste and align

agricultural growth with ecological preservation. This study provides evidence

that managerial ability in e�ciency not only lowers production costs but also

reduces resource waste, thereby supporting the dual goals of economic viability

and environmental sustainability in agriculture. These insights inform policies to

scale farming operations without compromising ecological integrity.

KEYWORDS

e�ciency, economies of scale, allocative e�ciency, endogeneity treatment, regional

heterogeneity

1 Introduction

Understanding the role of efficiency in agricultural economies of scale is essential

for building sustainable and efficient food production systems. By identifying how cost

reductions can be achieved through better farm management, this study provides insights

into optimizing agricultural production in a way that supports long-term food security

and resource efficiency. With the acceleration of agricultural modernization in China,

large-scale operations have been regarded as an important means to reduce production

costs and enhance international competitiveness. However, the persistent rise in corn
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production costs, together with the complex relationship between

scale expansion and cost control, remains a focal point for

both academics and policymakers. While large-scale operations

are viewed as a crucial approach to reducing production costs

and boosting international competitiveness (Huang and Ding,

2016), the empirical relationship between scale expansion and

cost control exhibits significant complexity. For instance, Tauer

and Mishra (2006), through an empirical analysis of the U.S.

dairy industry, found that the high costs of small-scale farms

primarily stem from efficiency losses rather than technological

disadvantages, whereas the cost advantages of large-scale farms

are realized through reductions in allocative inefficiency. Data

indicate that between 2013 and 2020, the number of farmers with

an operating scale exceeding 3.3 mu increased by 42%, and the

share of operating area rose from 20.7% to 28.5% (Zhang et al.,

2017). This study addresses three key research questions: (1) How

does efficiency influence economies of scale in grain production?

(2) To what extent does efficiency moderate the relationship

between farm size and production costs? (3) How do regional

differences shape the impact of efficiency on cost? By answering

these questions, the study provides new insights into sustainable

agricultural scaling.

By answering these questions, the study provides new

insights into sustainable agricultural scaling. In addition to

economic benefits, managerial ability plays a pivotal role in

mitigating agriculture’s environmental footprint. For example,

precise input allocation reduces nitrogen leaching into waterways,

addressing eutrophication—a critical issue in regions like the

Yangtze River Basin. By bridging scale economies with ecological

stewardship, this study advances a holistic framework for

sustainable intensification.

Traditional theories posited that economies of scale lower

unit costs by spreading fixed costs (Alvarez and Arias, 2003;

Hall and Leveen, 1978). However, recent evidence shows that

both technical and allocative efficiencies constrain this effect

(Tauer and Mishra, 2006; Mosheim and Lovell, 2009). Note that

factor price distortions induce allocative inefficiency, offsetting

technical efficiency corns. Li et al. (2021) found that for

Chinese corn growers, scale expansion reduces frontier costs,

technical inefficiency losses negate 40% of the benefits. Moreover,

economies of scale are non-linear and largely depend on efficiency,

resource allocation, and market conditions (Zhou et al., 2020);

Henderson (2020) found that management differences explain 62%

of this non-linearity. Strong management optimizes production

factors and reduces inefficiency (Summer, 2014), whereas weak

management leads to misallocation and cost rebounds (Zhang

et al., 2017). Allocative inefficiency, driven by asymmetric

information and inadequate socialized services (Zhang J. et al.,

2022; Zhang et al., 2024), can be mitigated by improved

management (Chavas, 2001). However, a unified mechanism

linking efficiency and scale remains unresolved (MacDonald et al.,

2007).

Promoting the transition toward economies of scale in grain

production is a key concern for academics and policymakers.

Land transfers, optimize farmland allocation and boost total

factor productivity by affecting employment and technology

adoption (Gai et al., 2023). Xu et al. (2024) analyzed scale

effects from both farm- and plot-level perspectives, clarifying the

“scale–yield” relationship based on arable land availability

and input characteristics. Ma (2018) demonstrated that

large-scale corn production in Hebei yields high technical

efficiency, returns to scale above unity (1.01), and lower costs

per mu, indicating that advanced technology can enhance

economies of scale within an optimal range. Government

subsidies and infrastructure investments further reduce costs

and promote scale expansion efficiency, which encompasses

production planning, resource allocation, technology promotion,

and risk management (Triebs and Kumbhakar, 2018), is

pivotal in integrating these factors. Nonetheless, the intrinsic

mechanisms linking efficiency and economies of scale

remain underexplored; this research addresses this gap by

providing new theoretical and practical guidance for sustainable

corn production.

Endogeneity is a critical concern for the scale variable. Efficient

farmers tend to expand via land transfers (Chen et al., 2021),

while exogenous shocks, such as policy subsidies, can distort

scale decisions, biasing OLS estimates. Foster and Rosenzweig

(2019) demonstrated that using the regional fragmentation index

overestimated scale effects by 31%. To mitigate such bias, this

study employs the scale of owned land and its interaction with

efficiency as instrumental variables (Chavas, 2001), acknowledging

that owned land is influenced by historical institutions and family

endowments (Zhang et al., 2017). Instrumental variable and panel

data models (Zhang et al., 2024) are used to address these

endogeneity issues.

Although economies of scale have been widely studied,

three limitations remain: a primary focus on technical efficiency,

reliance on a single instrumental variable that neglects interaction

effects, and predominantly subjective measures of efficiency.

This paper addresses these issues by employing farmer data

from the China Rural Revitalization Survey (CRRS) and a

two-stage least squares (2SLS) model based on a modified

Cobb-Douglas production function. The study decomposes

frontier, technical inefficiency, and allocative inefficiency costs to

reveal the moderating pathway of efficiency on economies of

scale. Its contributions are threefold: theoretically, it establishes

an integrated “scale–efficiency–economies of scale” framework

emphasizing allocative efficiency; methodologically, it introduces

dual instrumental variables to resolve joint endogeneity; and

practically, it demonstrates how socialized services can compensate

for management shortcomings, thereby informing differentiated

policy design.

The rest of the paper is organized as follows. Section 2

describe the primary system approach and data. Section 3

discusses the empirical results, and the final section presents the

study’s conclusions.

2 Methodology and data

2.1 The primal system approach

This study empirically investigates how farmers’

efficiency influences economies of scale in corn production.

Frontiers in Sustainable FoodSystems 02 frontiersin.org

https://doi.org/10.3389/fsufs.2025.1621038
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Zhang et al. 10.3389/fsufs.2025.1621038

The measurement of efficiency is based on calculating technical

efficiency, a metric reflecting how well farmers utilize existing

technology, through a specified production function, thereby

assessing its status. To elucidate the transmission mechanism of

efficiency on corn production costs, a combined theoretical and

empirical approach is employed. Initially, the study builds on the

Primal System Approach, a framework integrating production

and cost analysis, construct a dual stochastic frontier model that

incorporates both technical inefficiency and allocative inefficiency

is constructed. Following Zhang et al. (2019), this study uses

Technical Efficiency (TE) as a proxy for efficiency, which is

calculated from the residuals of the Cobb-Douglas production

function. This approach allows for a detailed assessment of how

technical efficiency affects economies of scale in corn production:

Its expression is given by

ln yi = a0 +
∑

j
aj ln xji + vi − ui (1)

fj

f1
=

wj

w1
eξj ⇒

∂ lny

∂ lnxj
÷

∂ lny

∂ lnx1
≡

pj

p
=

wjxj

w1x1
eξj =

aj

a1
(2)

ln
(

aj/a1
)

− ln
(

wj/w1

)

− lnxj + lnx1 = ξj (3)

Here, yj denotes output; xj represents inputs (e.g., labor,

seeds, fertilizers); aj captures technological parameters, thereby

reflecting the influence of technological level on production; v is a

normally distributed error capturing random shocks; Among these,

pj denotes the cost share of the j-th input factor for the farmer; wj

is the price of the j-th input factor for the farmer; and ξj can be

interpreted as the allocative inefficiency parameter of input factor j

relative to the baseline input factor.

Logarithmic transformation facilitates regression analysis to

derive coefficients. It also distinguishes technical from allocative

efficiency through first-order cost minimization (Atkinson and

Dorfman, 2006) and cross-equation constraints (Kumbhakar,

2020). Building on the production function, we derive cost

minimization conditions and analyze key inputs (labor, seeds,

fertilizers) to estimate technical efficiency and generate kernel

density plots. This method effectively elucidates the mechanism by

which efficiency influences production.

We further validate economies of scale by first constructing a

baseline regression model. The model is specified as follows:

lnCi = β0 + β1lnSi +
∑

j
βjXji + νi (4)

In this study, Ci denotes the production cost per kilogram of

corn for the i-th farmer, Si represents the production scale of the

farmer, Xi is a vector of control variables—including household

head age, household head education level, household head gender,

whether the farmer is engaged in non-agricultural activities,

and whether the farmer participates in a cooperative, These

control variables are used to account for other factors affecting

production costs. β0 is the constant term, β1 are the parameters

to be estimated, and νi is the random error term. To more

comprehensively capture any potential non-linear relationship

between scale and cost, as shown in the equation below, we further

construct a model that includes a squared term for scale to capture

the direction andmagnitude of its impact on corn production costs.

lnCi = β0 + β1lnSi + β2(ln Si)
2
+

∑

j
βjXji + νi (5)

During the estimation process, the significance and sign of each

variable’s coefficient are analyzed based on the regression results

to determine whether the effects of scale and the control variables

on cost align with economic theory. A significant non-linear

relationship exists between scale and cost: as scale expands, costs

initially decrease rapidly (as reflected by a negative coefficient on

the linear scale term), and then the rate of cost reduction gradually

slows (as indicated by a positive coefficient on the squared scale

term). This not only further verifies the existence of economies

of scale but also suggests that the effect of economies of scale

is not infinitely increasing; rather, it follows a U-shaped pattern,

indicating an optimal range of scale. Combining the above models

and formulas allows for a systematic analysis of the impact of

farmers’ managerial capacity on the unit production cost of corn.

It also explores the roles of technical efficiency loss and allocative

efficiency loss in this relationship.

To address potential endogeneity of production scale, we

employ a dual instrumental variable strategy (Huang and Ding,

2016) using the farmer’s owned land area and its interaction with

efficiency as instruments. The former is exogenous (Stock and

Yogo, 2005), and the latter captures the moderating effect of

efficiency. A system of simultaneous equations is estimated via two-

stage least squares (2SLS). The first-stage regression is specified as:

ln Si = α0 + α1 lnZi +
∑

j
αjXji + ηi (6)

lnCi = β0 + β1 ln Ŝi +
∑

j
βjXji + ui (7)

After successfully obtaining the predicted values of

production scale in the first-stage regression, we move on

the second-stage regression. Let Ŝi denote the predicted

production scale obtained in the first stage; this value replaces

the original endogenous production scale variable, thereby

effectively mitigating the interference of endogeneity on the

estimation results.

To further examine the effect of efficiency on corn production

costs, we construct a cost model that incorporates efficiency,

production scale, and their interaction:

lnCi = β0 + β1 ln Ŝi + β2Mi + β3

(

ln Ŝi ×Mi

)

+
∑

j
βiXji + νi

(8)

In this specification, efficiency Mi, scale ln Ŝi, and their

interaction term ln Ŝi × Mi are used as the core explanatory

variables to analyze the effect of efficiency on costs at different

scales. This two-stage estimation approach effectively circumvents

the endogeneity issues associated with Si and Mi, thereby yielding

unbiased estimates of the impact of efficiency, scale, and their

interaction on corn production costs. To ensure the robustness

of the findings, three robustness checks are implemented: (1)

Replacing the dependent variable by using cost per mu instead of
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cost per unit of output, and substituting allocative efficiency loss

for technical efficiency loss as a proxy for efficiency; (2) Altering the

quantification method for efficiency by constructing a management

effectiveness index and computing the deviation from themean; (3)

Conducting regional estimations to test for heterogeneity between

the eastern, central, and western regions. All tests pass theHausman

test, thereby confirming the reliability of the core conclusions.

2.2 Data

The data are drawn from the China Rural Revitalization

Survey (CRRS), covering 10 provinces in 2020. A stratified random

sampling method was used, selecting counties based on GDP and

villages based on economic level (Zhang L. et al., 2022). The

final sample consists of 3,511 households, including 1,515 corn-

producing households. Implicit costs, such as the opportunity

cost of household labor, were calibrated using the methodology

outlined in the Compilation of National Agricultural Product Cost

and Revenue Data by the National Development and Reform

Commission (Li et al., 2021). Key variables include land scale,

with an average of 20.05 mu and a standard deviation of 76.68,

and production costs, with an average of 1,775.8 yuan per

mu. Detailed descriptive statistics are provided in Table 1. The

distribution of production scale exhibits a pyramid pattern: 78.5%

of farmers operate <10 mu, accounting for only 13.1% of the

total operating area, whereas farmers operating more than 100 mu

represent 8.2% of the sample yet cover 71.3% of the cultivated

land. This distribution is consistent with the land concentration

trend reported by Zhang J. et al. (2022). Outliers, representing

2.1% of the sample, were trimmed using Tukey’s method (Chen

et al., 2021), and province fixed effects were included to control

for regional heterogeneity. Table 1 further presents additional

descriptive statistics, including an average output of 9,543.06 kg

with a standard deviation of 30,431.97 kg, land input of 20.05 mu

with a standard deviation of 76.68 mu, and cost variables such as

land rent, labor wage, fertilizer price, and seed price.

3 Results and discussion

3.1 The impact of e�ciency on economies
of scale: baseline results

First, we compute efficiency using the Cobb–Douglas (CD)

production function method to estimate farmers’ Technical

Efficiency (TE). The inputs of land, labor, seeds, and fertilizers

all have a significant positive impact on corn output. According

to the production function regression results in Table 2, the

coefficient for land input is 0.882, which is significantly higher

than that for the other inputs, indicating that land input plays

a decisive role in corn production. The coefficients for labor,

seeds, and fertilizers are 0.030, 0.080, and 0.108, respectively,

and are all statistically significant. The kernel density estimation

of technical efficiency also indicates an average value of 0.606,

implying that, farmers have a potential output growth space of

39.4%. This suggests that enhancing efficiency could reduce input

waste and promote sustainable intensification of corn production.

There is considerable variation in technical efficiency among

farmers, with the highest observed efficiency at 0.956 and the

lowest at 0.002. This reflects significant differences in production

efficiency among farmers. Land input is one of the key variables

determining corn output, emphasizing the need for sustainable

land management practices to balance productivity with long-

term soil health and ecological preservation. In comparison

with similar studies, although some report slightly higher values,

substantial variation among farmers is also observed, with the

highest technical efficiency reaching 0.92 and the lowest 0.05.

Such differences may arise from variations in the agricultural

production environment, farmers’ levels of technical training,

and production and management practices. One study found an

average technical efficiency close to our result, and similarly showed

notable dispersion in efficiency among farmers. The similarities

and differences in these results provide a broader perspective

on the current state and heterogeneity of farmers’ efficiency,

suggesting that further research is needed to explore the deeper

factors affecting farmers’ technical efficiency in order to develop

more effective improvement strategies. Overall, the computed

results on efficiency in this study provide important baseline data

and analytical evidence for a deeper exploration of the complex

relationship between efficiency and economies of scale among

farmers. Comparisons with related studies enrich our overall

understanding of this field and help promote further research.

Additionally, this paper further examines economies of scale.

Based on the Two-Stage Least Squares (2SLS) method and the

baseline regression results, columns (1) and (2) indicate that

there is a significant negative relationship between production

scale and unit production cost, with a coefficient of −0.385

significant at the 1% level. In Table 3, column (4) shows that the

estimated coefficient for production scale is −0.339, significant

at the 1% level, indicating that an expansion in production scale

contributes to reducing the unit production cost. Meanwhile,

the estimated coefficient for the squared term of production

scale is 0.037, significant at the 5% level. The positive coefficient

shows that the relationship between production scale and unit

production cost is U-shaped. In other words, in the early stages

of scale expansion, unit production cost declines; however, once

a certain critical point is exceeded—due to inadequate efficiency

and declining resource allocation efficiency—the cost begins to rise.

Furthermore, the regression results without considering control

variables show that the estimated coefficient for the first-order

(linear) term of production scale is −0.385, significant at the 1%

level, while after adding the quadratic term, the coefficient is 0.062,

significant at the 1% level. This also confirms that there exists a

significant U-shaped relationship between production scale and

unit production cost.

It is particularly noteworthy that the estimated coefficient for

the squared term of production scale is 0.062, significant at the 1%

level. This result indicates that the relationship between production

scale and unit production cost is not simply linear but exhibits

a typical U-shaped pattern. In the early stage of scale expansion,

factors such as fixed cost sharing and increased bargaining power

in procurement cause costs to decline rapidly. However, once the

scale exceeds a certain critical point, factors such as managerial

capacity bottlenecks, declining resource allocation efficiency, and
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TABLE 1 Descriptive statistics of variables.

Variable Mean Std. dev. Min Max

Total output (kg) 9,543.06 30,431.97 1.00 457,500.00

Land input (mu) 20.05 76.68 0.20 2,210.00

Labor input (person-hours) 133.79 228.87 1.28 3,840.00

Seed input (kg) 56.47 287.20 0.25 6,037.50

Fertilizer input (kg) 1,082.25 3,648.81 0.20 88,400.02

Land rent (yuan/mu) 582.07 418.16 30.00 2,500.00

Labor wage (yuan/person-hour) 15.88 8.83 9.09 133.33

Fertilizer price (yuan/kg) 3.97 4.74 0 44.44

Seed price (yuan/kg) 27.58 5.98 0 30.00

Household head age (years) 59.94 11.30 26.00 96.00

Education level (0= Junior High or below; 1=High School/vocational; 2= College or above) 0.18 0.44 0 2

Household head gender (0= Female; 1=Male) 0.93 0.25 0 1

Part-time farmer (0= Part-time; 1= Full-time) 0.47 0.50 0 1

Cooperative participation (0= No; 1= Yes) 0.24 0.43 0 1

Disaster experience (0= No; 1= Yes) 0.33 0.47 0 1

TABLE 2 Production function regression results.

Variable Coe�cient

Land 0.882∗∗∗ (0.034)

Labor 0.030∗∗ (0.014)

Seeds 0.080∗∗∗ (0.019)

Fertilizer 0.108∗∗∗ (0.028)

Constant 5.509∗∗∗ (0.119)

Observations 1,515

Standard errors in parentheses, ∗∗∗p < 0.01, ∗∗p < 0.05.

rising coordination costs lead to gradually rising costs. This finding

is consistent with many previous studies on agricultural economies

of scale and reminds us that in studying agricultural economies of

scale, one should not focus solely on the effect of scale expansion

but must also consider the complex accompanying factors.

3.2 The impact of e�ciency on economies
of scale: using 2SLS method

Validity tests reported in Table 4 confirm the robustness of the

instrumental variables. The table presents the estimated coefficient

for the owned land area (Z) as 0.095, which is statistically significant

at the 1 percent level.

Initially, the regression did not consider the potential

endogeneity of the scale variable and employed Ordinary Least

Squares (OLS). However, to address this endogeneity, we re-

estimated the regression using the instrumental variable method

(Two-Stage Least Squares, 2SLS). The 2SLS method involves two

stages: in the first stage, the scale variable is regressed on the

instrumental variable; in the second stage, the analysis shows

that the scale variable still has a negative impact on the cost

per kilogram of corn, albeit with a coefficient different from that

obtained via OLS. This suggests that the OLS coefficient, which

does not account for instrumental variables, might be problematic.

Therefore, subsequent analysis should adopt the instrumental

variable regression results, which are more accurate. This design

is better suited to capturing the dynamic moderating effect of

efficiency during scale expansion compared to traditional single-

instrument methods, such as those proposed by Fan and Chan-

Kang (2005). Methodologically, it is consistent with the “joint

endogeneity” framework proposed by Kumbhakar (2020).

These findings are similar to those of Tauer and Mishra

(2006) for U.S. dairy farms, although the turning point in our

study is significantly lower than that in developed countries,

possibly due to insufficient fixed asset investment under China’s

smallholder agricultural conditions. Specifically, scale expansion

leads to an annual per-mu cost reduction of 2.7%, primarily

attributable to variable cost savings from outsourced machinery

services (Zhang J. et al., 2022). However, as scale increases further,

rising coordination costs lead to diminishing marginal returns,

consistent with the findings from Henderson’s (2020) study of

Indian farmers.

We now focus on the relationship between efficiency and cost.

It is evident that when efficiency is enhanced, costs drop rapidly.

In other words, as efficiency increases, unit costs show a marked

decline. The data on firm that under a constant scale, if efficiency

improves, the corresponding outcomes—such as the cost of corn

production—will decrease. Similarly, under constant efficiency, an

increase in scale also results in lower costs. Several perspectives exist

to interpret this phenomenon. From the viewpoint that increasing

efficiency under a fixed scale leads to lower outcomes, it is clear that

efficiency, rather than the scale factor, plays the key role. Therefore,
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TABLE 3 Verification of economies of scale: baseline regression results.

Variable Dependent variable: production cost per kilogram of corn

Scale −0.385∗∗∗ (0.02) −0.183∗∗∗ (0.03) −0.651∗∗∗ (0.06) −0.339∗∗∗ (0.06)

Scale squared 0.062∗∗∗ (0.02) 0.037∗∗ (0.02)

Household head age 0.002 (0.00) 0.003 (0.00)

Education (high school vs. Junior high or below) −0.136∗∗ (0.06) −0.141∗∗ (0.06)

Education (college or above vs. Junior high or below) 0.359 (0.27) 0.343 (0.27)

Household head gender −0.115 (0.11) −0.106 (0.11)

Part-time farmer 0.094∗∗ (0.04) 0.096∗∗ (0.04)

Cooperative participation 0.046 (0.05) 0.034 (0.05)

Disaster experience 0.378∗∗∗ (0.05) 0.373∗∗∗ (0.05)

Regional dummies Yes Yes Yes Yes

_cons 0.815∗∗∗ (0.05) −0.487∗∗ (0.22) 0.961∗∗∗ (0.05) −0.511∗∗ (0.21)

N 1,519 1,502 1,519 1,502

R2 0.224 0.548 0.246 0.554

Standard errors in parentheses, ∗∗p < 0.05, ∗∗∗p < 0.01.

while at first glance, we observe an economies of scale effect—that

is, costs decline as scale increases—a deeper analysis reveals that the

underlying driving force is actually efficiency.

The moderating effect of efficiency is both statistically

significant and robust, as shown in Table 5. The coefficient for scale

is −0.074 and becomes insignificant, while the interaction term

between efficiency and scale remains negative. This suggests that

scale, by itself, does not have a significant effect on costs; rather, it

is the efficiency that is attached to the scale which influences the

relationship between scale and cost. In other words, as production

scale expands, many factors change simultaneously. For example,

when farmers expand their operational scale, numerous elements

are dynamically evolving. Without controlling for these related

factors, one might erroneously attribute all changes solely to scale,

whereas in reality, these changes are not directly linked to scale—

that is, scale itself is not the active factor. What truly matters is to

separate the effects of other factors from those of scale.

Moreover, the moderating role of efficiency on economies of

scale is evident from the regression results reported in Table 5. The

estimated coefficient for the interaction term between production

scale and efficiency is −0.266, statistically significant at the

5% level. This negative relationship demonstrates that stronger

efficiency enhances the cost-reducing effect of scale expansion.

Specifically, the estimated coefficient for the interaction term

between production scale and efficiency is −0.258, statistically

significant at the 5% level, while the coefficient for efficiency

itself is −2.125, statistically significant at the 1% level. These

findings indicate that farmers with greater efficiency are more

effective in mitigating cost increases associated with scale

expansion. This aligns with the stochastic frontier analysis results

reported by, which demonstrate that efficiency not only enhances

technical efficiency but also mitigates allocative distortions, thereby

supporting long-term agricultural viability through optimized

resource use.

To ensure the reliability and accuracy of the results, this

section further elaborates on the analysis conducted after the

benchmark regression using the Two-Stage Least Squares (2SLS)

method. As shown in Table 5, in the first-stage regression, the

estimated coefficient of self-owned land size as an instrumental

variable is 0.051, which is significant at the 1% confidence

level. This indicates that self-owned land size is not correlated

with efficiency, thereby satisfying the relevance requirement of

instrumental variables. Since self-owned land is fundamental

to farmers’ production activities and is unrelated to efficiency

in this context, the strict test for weak instrumental variables

clearly rejects the null hypothesis of weak instruments.

This confirms that the chosen instrumental variable is both

strong and effective, laying a solid foundation for subsequent

precise estimation.

In the second-stage regression, the estimated coefficient of the

predicted production scale in Table 5 is −0.09, with a standard

error of 0.08, and is not significant. The interaction term between

efficiency and scale is −0.258, which is significant at the 1%

confidence level. This robustly validates the existence of economies

of scale and demonstrates the significant moderating effect of

efficiency on scale. In other words, the expansion of production

scale does indeed significantly reduce the cost per kilogram

of corn, and the results remain robust even after addressing

endogeneity issues using the 2SLS method. This further confirms

that the observed effect of efficiency on economies of scale is

genuine rather than an artifact of endogeneity. Although there are

some differences in absolute coefficient values compared to the

baseline regression, the negative trend remains consistent, and the

significance of efficiency indicates the stable existence of economies

of scale.

The analysis of control variables also reveals several significant

conclusions. First, the role of education in fostering sustainable

technology adoption and mitigating environmental trade-offs in
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TABLE 4 The impact of scale on the unit cost of corn: a 2SLS approach.

Variable First stage Second stage First stage Second stage

Scale Unit production
cost (per kg of

corn)

Scale Unit production
cost (per kg of

corn)

Instrument (owned land scale) 0.095∗∗∗ (0.01) 0.058∗∗∗ (0.01)

Scale −0.385∗∗∗ (0.03) −0.137∗∗ (0.06)

Household head age −0.011∗∗∗ (0.00) 0.002 (0.00)

Education (high school vs. Junior high or below) −0.001 (0.09) −0.138∗∗ (0.06)

Education (college or above vs. Junior high or below) 0.023 (0.34) 0.358 (0.27)

Household head gender 0.393∗∗∗ (0.09) −0.130 (0.11)

Part-time farmer 0.176∗∗∗ (0.05) 0.081∗ (0.05)

Cooperative participation 0.173∗∗∗ (0.06) 0.036 (0.05)

Disaster experience 0.081 (0.05) 0.372∗∗∗ (0.05)

Regional dummies Yes Yes Yes Yes

Endogeneity test 0.021 0.052

Weak instrument test 0.000 0.000

_cons 1.022∗∗∗ (0.05) 0.820∗∗∗ (0.06) −0.649∗∗ (0.28)

N 1,504 1,504 1,500

R2 0.224 0.548

Standard errors in parentheses, ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 5 The impact of e�ciency on economies of scale: a 2SLS approach.

Variable Baseline
regression

First stage Second stage

Production cost
per kg of corn

Scale Scale ×
e�ciency

Production cost
per kg of corn

Instrument (owned land scale) 0.051∗∗∗ (0.01) −0.016∗∗∗ (0.00)

Instrument (owned land scale)∗(efficiency) 0.011 (0.02) 0.084∗∗∗ (0.01)

Scale −0.074 (0.08) −0.090 (0.08)

Scale∗efficiency −0.266∗∗ (0.12) −0.258∗∗ (0.11)

Efficiency −2.125∗∗∗ (0.20) 0.420∗∗∗ (0.17) 0.772∗∗∗ (0.09) −2.146∗∗∗ (0.21)

Household head age 0.001 (0.00) −0.011∗∗∗ (0.00) −0.006∗∗∗ (0.00) 0.001 (0.00)

Education (high school vs. Junior high or below) 0.043 (0.05) 0.019 (0.09) 0.026 (0.06) 0.041 (0.05)

Education (college or above vs. Junior high or below) 0.387∗∗ (0.19) 0.039 (0.34) −0.028 (0.25) 0.384∗∗ (0.19)

Household head gender −0.011 (0.08) 0.399∗∗∗ (0.09) 0.189∗∗∗ (0.06) −0.004 (0.08)

Part-time farmer 0.060∗ (0.04) 0.172∗∗∗ (0.05) 0.084∗∗ (0.04) 0.059∗ (0.04)

Cooperative participation −0.004 (0.04) 0.166∗∗∗ (0.06) 0.100∗∗ (0.04) −0.005 (0.04)

Disaster experience 0.064 (0.04) 0.037 (0.05) 0.018 (0.03) 0.063 (0.04)

Regional dummies Yes Yes Yes Yes

Endogeneity test 0.024

Weak instrument test 0.000

_cons 1.337∗∗∗ (0.21) 2.925∗∗∗ (0.24) 1.291∗∗∗ (0.14) 1.401∗∗∗ (0.23)

N 1,502 1,500 1,500 1,500

R2 0.726 0.727

Standard errors in parentheses,∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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agricultural practices is evident. Although age does not directly

impact production costs—evidenced by an estimated coefficient

of 0.001 for household head age in Table 5, which is not

significant—it suggests that, ceteris paribus, an increase in age

may slightly raise production costs. This aligns with previous

studies indicating that older household heads may struggle to

adopt new technologies and management practices promptly. It

may also suggest that older farmers tend to maintain smaller-

scale operations, with a weaker synergy between efficiency and

scale, possibly due to delayed technology adoption or a higher

risk aversion tendency. The heterogeneity effect of education level

is particularly pronounced. Household heads with a university

degree or higher have significantly higher production costs than

those with lower educational levels. This variable has a coefficient

of 0.387 in the benchmark regression and is significant at the

5% confidence level, which contradicts traditional expectations

from human capital theory. However, when combined with the

second-stage results, it is observed that the expansion coefficient for

highly educated household heads is 0.039, and the coefficient for

efficiency improvement is −0.028, neither of which is significant.

This indicates no apparent advantage in these aspects, suggesting

that highly educated individuals may allocate their knowledge

capital to non-agricultural sectors, leading to a bias in agricultural

technology selection.

The moderating effect of production organization methods

exhibits heterogeneous characteristics. Part-time farmers display

a significant cost disadvantage in the benchmark regression,

with a part-time coefficient of 0.060, significant at the 10%

confidence level. This suggests that part-time farmers often

face higher corn production costs. In the interaction equation,

the coefficient decreases to 0.084, remaining significant at the

10% confidence level. This may be explained by the dual-

channel impact of part-time farming on economies of scale:

it directly increases unit production costs while indirectly

suppressing efficiency gains by weakening the moderating effect

of efficiency on scale. The influence of cooperative participation

is more nuanced. Although it does not directly affect production

costs—the benchmark regression coefficient is −0.004 and not

significant—the expansion coefficient is 0.166, significant at the

10% confidence level, while efficiency improvement is 0.100,

significant at the 5% confidence level. Indicating a significant

role in promoting economies of scale. The unique nature

of cooperative services, where the “scale-promoting, efficiency-

neutral” characteristic may stem from the dual nature of

cooperative service functions: while expanding operational scale,

increased internal transaction costs offset the efficiency gains from

technology promotion.

In summary, the detailed analysis of the data in Table 5,

combined with rigorous research methods, highlights the critical

role of efficiency in economies of scale and its interaction

with other factors. By improving efficiency and lowering unit

costs, farmers can achieve more sustainable production systems

that support long-term food availability. Reducing production

inefficiencies ensures that food prices remain stable, benefiting

both producers and consumers, particularly in regions with high

agricultural costs. Our analysis demonstrates that improving

management efficiency and lowering unit production costs are

pivotal for achieving more sustainable production systems. Lower

unit costs enhance the financial viability of food production,

reducing the risk of farm closures and ensuring long-term

food supply stability. Moreover, by minimizing inefficiencies in

production, cost savings help maintain stable prices for staple

crops, thereby indirectly benefiting consumers. The observed

regional differences in economies of scale further highlight

potential disparities in food availability, emphasizing the need

for policy designs that account for such inequalities. Efficient

operations play a pivotal role in reducing input waste by

ensuring that resources—such as fertilizers and labor—are used

in an optimized manner, thereby minimizing inefficiencies. This

heightened efficiency contributes to lower production costs,

which in turn supports the long-term financial sustainability

of farming enterprises and alleviates the pressure to pursue

unsustainable expansion. By enhancing operational efficiency,

farmers can maintain their viability without relying excessively

on external subsidies or resorting to environmentally detrimental

practices, ultimately fostering a more balanced and resilient

agricultural system.

3.3 Heterogeneity analysis

Regional heterogeneity analysis reported in Table 6 presents

the regional heterogeneity results for Northeast China, East

China, Central South China, Southwest China, and Northwest

China. The results reveal significant spatial differences in

the impact of efficiency on agricultural economies of scale,

where the estimated coefficient β is −0.750, compared to the

Northwest with coefficient β is −0.148. This difference may be

attributed to two factors. First, the relatively mature agricultural

industrial system and higher level of mechanization in the more

efficient regions enable efficiency to coordinate production

factors more effectively, maximizing economies of scale. Second,

farmers in the Western regions are more dependent on non-

agricultural employment, and their agricultural operations

are often part-time due to weaker agricultural infrastructure.

This limits the effective utilization of efficiency and reduces

the marginal returns on management investments that would

otherwise promote economies of scale. These findings are

consistent with the cross-national comparative conclusions

of Bravo-Ureta et al. (2020), which indicate that regional

differences in infrastructure and labor markets significantly

influence the pathways through which economies of scale

are achieved.

The variation in the impact of efficiency across regions

underscores the importance of region-specific policies for

sustainable food production. While some areas benefit more

from economies of scale, others face structural barriers that

hinder efficiency improvements. Ensuring equitable access to

agricultural infrastructure and management training can help

address these disparities and support sustainable food systems.

Regarding farmer characteristics play a significant role in cost

reduction. For instance, the Eastern and Northeastern regions

exhibit stronger cost reductions, possibly due to better institutional

support or more advanced farm structures. In contrast, Western

regions may struggle to realize economies of scale due to weaker
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TABLE 6 The impact of e�ciency on economies of scale: regional heterogeneity.

Variable Northeast East Central-Southern Southwest Northwest

Scale 0.481∗ (0.28) −0.153 (0.26) −0.005 (0.22) 0.158 (0.41) −0.231 (0.17)

Scale× efficiency −0.750∗∗ (0.38) −0.196∗∗∗ (0.06) −0.299∗∗ (0.13) −0.409∗ (0.21) −0.148 (0.23)

Efficiency −0.532 (1.57) −2.179∗∗∗ (0.50) −2.640∗∗∗ (0.44) −2.482∗∗∗ (0.34) −2.246∗∗∗ (0.37)

Household head age −0.003 (0.01) 0.003 (0.00) 0.007 (0.00) −0.002 (0.00) −0.001 (0.00)

Education (high school vs. Junior high or below) 0.081 (0.13) 0.079 (0.10) 0.070 (0.10) −0.084 (0.17) 0.022 (0.11)

Education (college or above vs. Junior high or below) 0.284 (0.47) 0.217 (0.30) 1.000∗∗ (0.43) 0.187 (0.19) 0.591 (0.60)

Household head gender 0.310 (0.34) 0.129 (0.17) −0.042 (0.19) 0.004 (0.10) −0.045 (0.19)

Part-time farmer 0.088 (0.08) 0.031 (0.07) −0.069 (0.09) 0.141∗∗ (0.07) 0.097 (0.07)

Cooperative participation −0.078 (0.10) −0.047 (0.10) 0.005 (0.08) 0.082 (0.09) −0.066 (0.07)

Disaster experience −0.216∗∗ (0.10) 0.143∗ (0.08) 0.053 (0.10) 0.192∗∗ (0.09) 0.024 (0.07)

Regional dummies Yes Yes Yes Yes Yes

Constant −0.514 (1.25) 3.775∗∗∗ (0.45) 1.521∗∗∗ (0.44) 2.542∗∗∗ (0.31) 1.792∗∗∗ (0.40)

N 183 251 290 366 410

R2 0.595 0.715 0.636 0.456 0.454

Standard errors in parentheses,∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

infrastructure, necessitating more targeted policy interventions.

Part-time farmers, whose attention is divided between multiple

occupations, often do not fully exert efficiency in corn production.

The data show that the economies of scale effect is significantly

weaker for part-time farmers compared to full-time farmers.

This is because part-time involvement prevents farmers from

fully dedicating themselves to agricultural production, leading to

deficiencies in resource allocation and process control, which in

turn impede effective cost reduction. These regional disparities

reflect divergent sustainability challenges. In Northwest China,

where soil degradation and water scarcity are acute, weaker

managerial ability exacerbates over-cultivation risks. Conversely,

Northeastern regions with robust infrastructure can leverage

managerial practices to adopt no-till farming, reducing soil

erosion. Policy interventions must therefore prioritize region-

specific solutions, such as drought-resistant crop training

in the West and subsidized conservation tillage equipment

in the Northeast.

3.4 Robustness tests

To ensure the reliability and robustness of the results,

multiple tests were conducted to confirm consistency with

previous studies. In terms of variable substitution, the regression

was re-estimated as reported in Table 7, replacing the cost

per kilogram of corn with the cost per mu and substituting

management allocation capacity for efficiency, measured as

technical efficiency. The results presented in Table 7 indicate

that the estimated coefficient for the interaction term between

scale and management allocation capacity is −0.139, statistically

significant at the 5% level. Although the numerical values

of key indicators, such as the scale coefficient, exhibit slight

variations, the overall trend remains consistent. This indicates

that our conclusions do not depend on the choice of specific

variables and exhibit strong stability. The results indicate that the

promoting effect of efficiency is consistently present across different

scale groups, with the core variable relationships remaining

substantively unchanged, further confirming the reliability of

our results. Additionally, we compared results obtained using

different estimation methods such as OLS and SFA. The findings

under these different methods consistently support our main

conclusions regarding the impact of efficiency on economies of

scale, thereby confirming the robustness of our research from

multiple dimensions. Through these rigorous testing procedures,

we are confident that our results accurately reflect the intrinsic

relationship between efficiency and economies of scale, providing

strong support for both agricultural economic research and

practical applications.

4 Conclusions

4.1 Concluding remarks

This study finds that improved efficiency significantly reduces

unit production costs, helping farmers optimize input use and

achieve cost-effective production while advancing resource-

efficient and environmentally sustainable agricultural practices.

These efficiency gains contribute to a more sustainable food

system by reducing economic pressures that may otherwise

drive inefficient land use or input over-application. Efficiency

reduces input waste—such as minimizing overuse of fertilizers

or labor inefficiencies—thereby lowering production costs

and enhancing long-term financial sustainability for farmers.

By reducing the pressure to pursue unsustainable expansion,

efficiency enables farmers to remain economically viable

without relying on excessive external subsidies or engaging

in environmental exploitation.
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TABLE 7 Robustness checks.

Variable Per—mu cost Managerial allocation ability

Scale 0.910 (0.98) 0.016 (0.04)

Scale× efficiency −0.258∗∗ (0.11)

Efficiency −2.146∗∗∗ (0.21)

Scale×managerial allocation ability −0.139∗∗∗ (0.05)

Managerial allocation ability −0.355∗∗∗ (0.13)

Household head age 0.001 (0.00) 0.003 (0.00)

Education (high school vs. Junior high or below) 0.041 (0.05) −0.114∗ (0.06)

Education (college or above vs. Junior high or below) 0.384∗∗ (0.19) 0.374 (0.26)

Household head gender −0.004 (0.08) −0.130 (0.11)

Part-time farmer 0.059∗ (0.04) 0.082∗ (0.05)

Cooperative participation −0.005 (0.04) 0.032 (0.05)

Disaster experience 0.063 (0.04) 0.344∗∗∗ (0.05)

Regional dummies Yes Yes

Constant 1.401∗∗∗ (0.23) −0.960∗∗∗ (0.27)

N 1,500 1,480

R2 0.796 0.562

Standard errors in parentheses,∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

This study investigates the influence mechanism between

efficiency and economies of scale from the perspective of efficiency.

It demonstrates the relationship between scale expansion and

cost efficiency, a dimension often overlooked in prior analyses

of agricultural economies of scale. By integrating regional

heterogeneity into the framework, the research offers a nuanced

understanding of how contextual factors shape the benefits of

management practices, distinguishing itself from homogeneous

approaches that assume uniform effects across regions. This study

bridges empirical evidence with practical implications, highlighting

its relevance to the special issue’s focus on innovative strategies for

resilient and efficient food systems.

4.2 Policy recommendation

Improving land transfer markets and strengthening digital

agriculture infrastructure can enhance both efficiency and

sustainability. Improving land transfer markets prevents

fragmentation, promoting efficient land use while reducing

risks of soil degradation. Digital infrastructure not only lowers

costs but also enables precision agriculture, minimizing overuse

of water and fertilizers to mitigate environmental harm. These

improvements ensure that farmland is allocated to maximize

productivity while minimizing ecological footprints, thereby

supporting a transition toward more resilient and resource-

efficient food production systems. Such policies align agricultural

growth with environmental sustainability goals.

To achieve these goals, it is essential to design land

transfer policies that reduce transaction costs and ensure efficient

land use, thereby preventing fragmentation that can lead to

lower productivity. Additionally, land transfer policies should

incorporate environmental safeguards, such as mandating soil

health assessments before transfers to prevent over-exploitation—

critical in ecologically fragile regions like the Northwest. Moreover,

enhancing digital infrastructure can improve information access

and reduces decision-making inefficiencies, supporting precision

management and reducing unnecessary input use. Furthermore,

tiered management training programs can equip farmers with

best practices in resource allocation, preventing excessive input

costs and waste. Prioritize tiered training programs that address

region-specific sustainability challenges: Western regions require

modules on drought-resistant cropping and soil conservation,

while Eastern provinces benefit from precision irrigation training,

as evidenced by their differing environmental pressures and

infrastructure capacities. Collectively, these policy measures

provide a comprehensive framework for advancing sustainable

agriculture while simultaneously promoting efficiency.
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