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The application of agricultural artificial intelligence is of great significance for 
improving agricultural productivity, reducing labor demand, and mitigating 
agricultural pollution, serving as a crucial path for achieving sustainable agricultural 
development. The study aims to deeply analyze the influencing factors on agricultural 
artificial intelligence of its usage intention in Shandong Province. Based on the 
Technology Acceptance Model (TAM) and the Unified Theory of Acceptance and 
Use of Technology (UTAUT), this study constructs an extended model and employs 
questionnaire surveys and Partial Least Squares Structural Equation Modeling 
(PLS-SEM) technology for research. The research results show that performance 
expectancy, effort expectancy, government support, and social influence are 
the key factors affecting the usage intention of agricultural artificial intelligence, 
accessibility and satisfaction are key mediating variables linking exogenous variables 
to outcome variables. Additionally, the age, educational background, and work 
experience play important roles in the moderation model. This indicates that 
there are significant differences in the usage intention of agricultural artificial 
intelligence among groups with different ages, educational backgrounds, and work 
experiences. By customizing promotion strategies, it is expected to accelerate the 
transformation of agriculture toward intelligence and promote the achievement 
of sustainable agricultural development goals.
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1 Introduction

Agricultural artificial intelligence integrates a new generation of information technologies 
(Kumar et al., 2022), covering multiple aspects such as artificial intelligence, the Internet of 
Things (IoT), big data, cloud computing, industrial equipment, agricultural biotechnology, 
and agronomic cultivation management (Misra et al., 2020; Sharma and Shivandu, 2024). This 
integration has completely transformed traditional agricultural production methods (Jha et al., 
2019), facilitating the achievement of digital, industrialized, customized, and personalized 
goals in agricultural production (Shaikh et al., 2022). Moreover, it provides technological 
support for establishing a healthy, efficient, reusable, ecological, and intelligent modern 
agricultural system (Singh et al., 2022). As stated in the International Report on Agricultural 
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Knowledge and Technology Development (McIntire et  al., 2009), 
agricultural artificial intelligence technology is a key factor in 
addressing the challenges of sustainable agricultural development. 
Despite the promising prospects for the development of agricultural 
artificial intelligence, it also faces several challenges (Bannerjee et al., 
2018). And the real challenge for agricultural artificial intelligence lies 
in ensuring that farmers can accept and utilize these technologies 
(Songol et al., 2021).

In recent years, the Chinese government has actively promoted 
the in-depth integration of artificial intelligence and agriculture 
(Liang, 2025), injecting new impetus into agricultural development. 
The report of the 20th National Congress of the Communist Party of 
China clearly put forward the goal of building an “agricultural 
powerhouse,” emphasizing that a strong agriculture should not only 
improve productivity but also have the ability to replace manual labor 
in various fields (He and Yangfen, 2025). The No. 1 Chinese Central 
Document in 2025 further supports the development of smart 
agriculture and expands the application scenarios of agriculture 
artificial intelligence, providing new momentum for high-quality 
agricultural development. The core of these initiatives is to utilize 
agriculture artificial intelligence in the agricultural sector to cultivate 
“intelligent agriculture.”

Shandong Province, as a major agricultural province in China, has 
multiple natural and social advantages for promoting agricultural 
artificial intelligence (An et  al., 2025). Shandong is the main 
production area for grain, vegetables, fruits, and aquatic products in 
China (LI et al., 2018). Such as Shouguang Vegetable Base, Yantai 
Apple Industry, Jiaodong Peninsula Fishery provide rich application 
scenarios for agricultural artificial intelligence. The region has superior 
geographical and climatic conditions (Zhang et al., 2015), including 
plains, hills, and coastal areas, which are conducive to the cultivation 
of a variety of crops. Agriculture artificial intelligence can provide 
customized solutions for the specific needs of different regions (Javaid 
et  al., 2023), such as precise irrigation and pest monitoring. In 
addition, Shandong is rich in marine resources (Fu et al., 2018). The 
marine fishery and aquaculture industry in the Jiaodong Peninsula 
serve as test beds for the application of agriculture artificial intelligence 
in marine environmental monitoring and intelligent aquaculture 
(Figure 1).

The Shandong provincial government gives priority to policies 
supporting the research, development, and application of 
agricultural artificial intelligence, the Internet of Things (IoT), and 
big data technologies (Sun et al., 2022). The industrial cluster effect 
has led to the integration of technology companies in major 
metropolitan areas such as Qingdao and Jinan. Well-known 
enterprises like Haier, Hisense, and Inspur in these cities have the 
technical ability for research and development and data processing 
capabilities in the field of agricultural artificial intelligence 
equipment. Meanwhile, Shandong has a strong research and talent 
base for the development of agriculture artificial intelligence 
(Wang et  al., 2022). Shandong University, Ocean University of 
China, and Shandong Academy of Agricultural Sciences have rich 
expertise and strong R&D capabilities in the fields of agricultural 
engineering and artificial intelligence algorithms. Moreover, the 
province has well-developed infrastructure, with a high rural 
network coverage rate and a high penetration rate of 5G and fiber-
optic networks (Sisi and Mingjun, 2021), ensuring real-time data 
transmission for agricultural artificial intelligence equipment 
(Figure 2).

The application prospects of agricultural artificial intelligence are 
very broad (Li, 2024). In the field of precision agriculture, agricultural 
artificial intelligence such as the Internet of Things and big data 
analysis can facilitate the analysis of soil, climate, and crop growth data 
(Micheni et al., 2022). According to the research of Zhang, through the 
analysis of these data, precise management suggestions such as 
irrigation and fertilization plans can be provided to farmers, thereby 
increasing crop yields per unit area and optimizing land use efficiency 
(Zhang et  al., 2024a). The application of agricultural artificial 
intelligence such as sensors, drones, and satellite images can provide 
farmers with real-time details of soil monitoring, crop growth status, 
and climate change, enabling precise control of water and nutrient 
absorption and achieving precise application of water and fertilizers 
(Inoue, 2020). In the identification and control of crop pests and 
diseases, machine learning and image recognition technologies can 
help farmers identify crop pests and diseases in a timely manner 
(Amulothu et al., 2024), predict their location, scale, and occurrence 
time, and take treatment measures promptly to minimize losses 
(Usman et al., 2023).

FIGURE 1

The conceptual model.
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In the field of intelligent agricultural machinery, the Internet of 
Things plays an important role in automating agricultural operations 
(Kim et  al., 2020) such as sowing, fertilizing, irrigating, and 
harvesting by integrating advanced technologies into agricultural 
machinery and drones (Degieter et  al., 2023). In the quality 
inspection and grading of agricultural products, intelligent 
recognition systems use the Internet of Things and big data 
technologies to analyze the appearance and internal quality 
parameters of agricultural products, achieving rapid and accurate 
inspection and grading, and ensuring the quality and safety of 
agricultural products (Ping et al., 2018). In the optimization of the 
agricultural supply chain, artificial intelligence assists farmers and 
enterprises in optimizing production plans and adjusting supply 
chain management by analyzing historical data and market demand, 
facilitating the prediction of the demand and price changes of 
agricultural products (Assimakopoulos et al., 2024).

This study was carried out in Shandong Province, aiming to 
investigate farmers’ usage intention of agricultural artificial intelligence 
in the context of “intelligent” agriculture. The study used the partial 
least squares-structural equation model (PLS-SEM) to analyze the 
impacts of performance expectancy, effort expectancy, government 
support, and social influence on the usage intention of agricultural 
artificial intelligence. At the same time, it analyzed the moderating 
effect of certain demographic characteristics (age, education 
background, and work experience) of the usage intention on 

agricultural artificial intelligence, and analyzed the influence 
mechanism of users’ usage intention of agricultural artificial 
intelligence in Shandong Province through satisfaction and 
accessibility. The partial least squares-structural equation modeling 
(PLS-SEM) technology overcomes the short- comings of traditional 
analysis methods (Chinnaraju, 2025), can solve the relationships 
between multiple latent variables, and describe the complex 
interactions between variables (Sarstedt et al., 2020). This provides a 
practical basis for Shandong Province to develop high-quality 
agriculture, formulate relevant policies according to local conditions, 
optimize constraints, and improve regional agricultural quality 
and industries.

In conclusion, agricultural artificial intelligence plays an 
important role and has broad prospects in China’s agricultural 
development. Shandong Province has many advantages in promoting 
agricultural artificial intelligence but also needs to face the challenge 
of farmers’ usage intention of this technologies. Through this study, 
it is expected to provide a scientific decision-making basis for the 
promotion and application of agricultural artificial intelligence in 
Shandong Province and promote the high-quality development of 
agriculture. In the future, it is necessary to further strengthen 
technological research and innovation and improve farmers’ scientific 
and technological literacy and application ability to better play the 
role of agricultural artificial intelligence in the process of 
agricultural modernization.

FIGURE 2

The measurement model.
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2 Theoretical framework

The technology usage behavior is defined as the process in which 
individuals or organizations perceive, evaluate, trial, and continuously 
apply new technologies (Emon, 2023). Its core mechanism involves 
the dynamic interaction between technological characteristics and 
user traits. In the context of agricultural digital transformation, the 
Technology Acceptance Model (TAM) and the Unified Theory of 
Acceptance and Use of Technology (UTAUT) serve as mainstream 
theoretical frameworks, providing important analytical tools for 
understanding the usage intention of agricultural artificial intelligence. 
This paper constructs a theoretical model suitable for agricultural 
scenarios by integrating classic theories and introducing mediating 
and moderating mechanisms, aiming to reveal the usage intention of 
agriculture artificial intelligence among agricultural users in 
Shandong Province.

2.1 Technology acceptance theory model 
(TAM)

The Technology Acceptance Model (TAM) serves as a 
foundational theoretical framework for explaining technology 
usage intention (Davis, 1985; Lai, 2017), operating through two 
principal mechanisms: perceived usefulness (performance 
expectancy) and perceived ease of use (effort expectancy). This 
dual-path conceptual structure posits that individuals’ usage 
intentions of agricultural artificial intelligence emerge from their 
cognitive evaluations of a system’s capacity to enhance task 
performance and the anticipated simplicity of its operational 
requirements. In agricultural practice, perceived usefulness is 
manifested as farmers’ subjective perception of the actual benefits 
of artificial intelligence technology (Mohr and Kühl, 2021), such as 
improving production efficiency and optimizing resource 
allocation. For example, the precise sowing system of intelligent 
agricultural machinery improves resource utilization efficiency by 
reducing seed waste (Liu et  al., 2024), and the pest and disease 
prediction model enhances risk prevention and control capabilities 
by avoiding yield losses (Sigvald, 2012). These expected benefits 
constitute an important basis for farmers’ usage intention.

Perceived ease of use focuses on the convenience of agricultural 
artificial intelligence operation and learning costs (Bansah and 
Darko Agyei, 2022), including key elements such as user-friendly 
interfaces, modular function design, and fault-tolerance 
mechanisms. Notably, these two core variables exhibit dynamic 
inter-action characteristics in the agricultural scenario. When 
farmers perceive the significant value of the agricultural artificial 
intelligence, they may be more willing to overcome initial learning 
barriers (Da Silveira et al., 2023). Conversely, if the agricultural 
artificial intelligence has a high operation threshold, even with 
significant potential benefits, the excessive cognitive load may 
inhibit usage intention. This two-way mechanism requires 
agricultural artificial intelligence promotion strategies to balance 
function optimization and user experience improvement. Means 
such as interface reconstruction and scenario-based training should 
be used to achieve the coordinated optimization of “usefulness” and 
“ease of use.”

2.2 Technology acceptance and unified use 
theoretical model (UTAUT)

The UTAUT theory (Venkatesh et al., 2003) expands the 
explanatory dimensions of agricultural artificial intelligence usage 
intention by introducing external variables such as social influence and 
government support. Performance expectancy, as the core predictor, 
reflects farmers’ expectations of agriculture artificial intelligence in 
improving agricultural productivity and reducing labor demand. When 
farmers expect that using the agricultural artificial intelligence can 
significantly improve production efficiency, their usage intention will 
increase (Caffaro et  al., 2020). This positive expectation forms a 
reinforcement loop through the mediating variable of satisfaction. The 
effort expectancy dimension focuses on the cognitive burden of 
agricultural artificial intelligence use. The simplicity of operation and 
learning costs directly affect farmers’ satisfaction.

The social influence factor reveals the influence mechanism of 
group perception on individual decision-making. When farmers 
perceive the popularity and usage of artificial intelligence technology 
among the surrounding group, the accessibility of the agricultural 
artificial intelligence significantly increases, thereby promoting 
individual usage intention. Government support, as an institutional 
environment variable, reduces the threshold of accessibility through 
policy support and financial subsidies, while also enhancing farmers’ 
satisfaction with the agricultural artificial intelligence. Empirical 
studies show that Zhang et  al. revealed the agricultural artificial 
intelligence usage patterns of small-scale farmers in China by 
extending the UTAUT model (Zhang et al., 2024b). Mohr and Kühl 
used a composite model to analyze the usage intention of agricultural 
artificial intelligence in Germany (Mohr and Kühl, 2021). Issa et al. 
(2022) constructed a verification framework to provide usage 
management solutions for agricultural technology companies. Eweoya 
et al. confirmed the applicability of the UTAUT model in the 
promotion of e-agriculture platforms in Nigeria (Eweoya et al., 2021).

2.3 Mediating variables (satisfaction and 
accessibility)

Satisfaction and accessibility, as key mediating variables, play a 
connecting role in the agricultural artificial intelligence usage process. 
Satisfaction reflects farmers’ subjective experience of the functions 
and effects of agriculture artificial intelligence (Herrera Sabillon et al., 
2022). When the agricultural artificial intelligence can accurately 
predict pests and diseases and optimize yields, farmers’ satisfaction 
significantly increases (Jabbari et al., 2023), thereby enhancing their 
usage intention. Accessibility involves the physical and economic 
feasibility of technology acquisition (Botelho, 2021). Convenient 
accessibility, reasonable cost structures, and comprehensive training 
support together constitute the core elements of accessibility. There is 
a significant synergistic effect between the two: high satisfaction 
enhances agricultural artificial intelligence recognition, and good 
accessibility provides a practical basis for usage intention. Both jointly 
promote the popularization and application of agricultural artificial 
intelligence. Gandasari and Tjhin confirmed the positive impact of 
satisfaction on the usage intention of an agricultural platform in 
Indonesia (Gandasari and Tjhin, 2024). Prihtanti and Zebua revealed 
a significant correlation between Internet satisfaction and usage 
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intention (Prihtanti and Zebua, 2023). Notably, the conception of 
accessibility has not been fully explored in agricultural artificial 
intelligence research, and its introduction as a new predictor variable 
provides innovative space for theoretical model expansion.

2.4 Moderator variables (individual 
heterogeneity)

Individual heterogeneity affects agricultural artificial intelligence 
usage intention through moderating variables. Demographic 
characteristics such as age, educational background, and work 
experience moderate the strength of the path from satisfaction and 
accessibility to usage intention (Lin, 2011), revealing the differential 
usage mechanisms among farmers.

Age differences may have a moderating effect through inter-
generational cognitive differences (Yaghoobzadeh et al., 2020). Young 
farmers are more likely to form positive satisfaction evaluations, while 
older farmers may have a weakened moderating effect due to 
traditional experience inertia or digital skills shortages. Educational 
background, as a proxy variable for cognitive resources, affects 
farmers’ understanding depth and operational ability of agricultural 
artificial intelligence functions (Paltasingh and Goyari, 2018). High-
education groups are more sensitive to the benefits of agricultural 
artificial intelligence and have a lower tolerance for ease-of-use 
defects. Work experience has a moderating effect through practical 
wisdom and risk-aversion tendencies (Jain et  al., 2025). Rich-
experienced farmers pay more attention to the actual production 
benefits and risk controllability of agricultural artificial intelligence, 
while less-experienced groups are more likely to be driven by social 
influence and policy incentives.

The heterogeneity of this moderating effect indicates that farmers’ 
individual characteristics do not simply linearly affect agricultural 
artificial intelligence usage intention but form differential decision-
making paths through the complex interaction between mediating 
variables and outcome variables.

2.5 Theoretical models

Based on the above theoretical framework, this paper constructs 
an integrated model that includes four exogenous variables 
(performance expectancy, effort expectancy, government support, and 
social influence), three endogenous variables (usage intention, 
satisfaction, and accessibility), and three moderating variables (age, 
educational background, and work experience). Among them, 
satisfaction and accessibility act as mediating variables connecting 
exogenous variables and use intention, and moderating variables 
reveal individual differences by influencing the strength of the 
mediating path.

The theoretical value of this model lies in the following aspects: 
First, it extends the UTAUT theory to the field of agricultural 
artificial intelligence and improves the explanatory framework by 
introducing institutional variables such as government support. 
Second, it constructs a dual- mediating path of satisfaction and 
accessibility to reveal the dynamic evolution mechanism of 
agricultural artificial intelligence usage intention. Finally, it reveals 
the heterogeneous usage intention patterns among farmers through 
moderating variable analysis. Empirical tests will focus on 

agricultural users in Shandong Province. The structural equation 
model will be used to verify the interaction paths between variables, 
providing a theoretical basis for formulating precise agricultural 
artificial intelligence promotion strategies and contributing to the 
realization of agricultural intelligent transformation and sustainable 
development goals.

3 Hypothesis development

The development of hypotheses is crucial in this study. The 
hypotheses in this research are constructed based on a theoretical 
framework, aiming to test the relationships between variables and 
their impacts on the outcome variable. These hypotheses are derived 
from existing theoretical frameworks and literature, clearly clarifying 
the relationships between variables and providing a solid foundation 
for empirical analysis. Subsequently, they establish a structured 
framework to guide research investigations, data analysis, and result 
interpretation. Notably, some new variables introduced in the model, 
such as government support, satisfaction, and accessibility, have all 
passed theoretical tests.

3.1 Performance expectation

The performance expectation of agricultural artificial intelligence, 
as the core driving force for usage intention, profoundly reflects the 
close association between agricultural artificial intelligence benefits 
and farmers’ psychological experiences (Issa et al., 2022), exerting a 
dual-impact mechanism on satisfaction and accessibility. Theoretically, 
performance expectation is essentially farmers’ subjective perception 
of the value of agricultural artificial intelligence (Suvittawat, 2024). 
This perception directly affects satisfaction by enhancing positive 
experiences after agricultural artificial intelligence use. When farmers 
perceive that agricultural artificial intelligence can significantly 
improve production efficiency, reduce resource consumption, or 
enhance decision-making accuracy, the actual experience of its 
functions will transform into an affirmation of technology value, thus 
forming positive emotional feedback (Ben Ayed and Hanana, 2021). 
For example, intelligent irrigation systems can reduce cost 
expenditures through precise water control (Bwambale and Abagale, 
2022), and pest prediction models can enhance revenue expectations 
by avoiding yield losses (Malhotra and Firdaus, 2022). The realization 
of these specific benefits directly strengthens farmers’ satisfaction.

Additionally, performance expectation indirectly influences 
accessibility by shaping farmers’ judgments on accessibility. If farmers 
expect the agricultural artificial intelligence to bring significant 
benefits, their usage intention will increase significantly (Elahi et al., 
2022). They will then actively seek policy support, training resources, 
or cooperation channels. This enhanced initiative objectively reduces 
the barriers to accessibility. It should be noted that the interaction 
between performance expectation and accessibility may be regulated 
by the external environment, such as the intensity of government 
subsidy policies or the service network coverage of agricultural 
artificial intelligence suppliers. These factors can indirectly enhance 
farmers’ accessibility ability by strengthening their perception of its 
benefits. Therefore, performance expectation is not only the 
psychological basis for satisfaction but also the key driving force for 
farmers to overcome accessibility barriers and achieve the practical 
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application of agricultural artificial intelligence. Based on this, the 
following hypotheses are proposed:

H1a: Performance expectation has a positive impact 
on accessibility;

H1b: Performance expectation has a positive impact 
on satisfaction.

3.2 Effort expectation

Effort expectation is defined as the expected time, effort, and 
financial commitment required by users when adopting new 
technologies (Hakkarainen, 2013). In the field of agricultural artificial 
intelligence, when farmers perceive that the effort required to use 
agricultural artificial intelligence is low, they are more likely to accept 
and adapt to this technology (Abad et al., 2024). Agricultural artificial 
intelligence that are easy to operate and have low learning costs enable 
farmers to master their usage methods in a short time and smoothly 
carry out production activities. An agricultural artificial intelligence 
with low operation difficulty and easy learning can lower the threshold 
for farmers to access and use it, meaning that more farmers can access 
and adopt agricultural artificial intelligence, and the agricultural 
artificial intelligence accessibility will be relatively more convenient. 
For example, a simple and easy-to-understand operation interface and 
modular function design allow farmers to start using the it without 
complex professional training, increasing the accessibility of 
agricultural artificial intelligence and promoting its widespread 
application in the agricultural field. Therefore, the following 
hypotheses are proposed:

H2a: Effort expectation has a positive impact on accessibility;

H2b: Effort expectation has a positive impact on satisfaction.

3.3 Government support

Government support is manifested in three dimensions: policy 
incentives, resource supply, and technical services. At the policy level, 
financial subsidies, tax exemptions, and special funds directly reduce 
the economic costs for farmers to use agricultural artificial intelligence, 
directly linking its benefits with personal income (Sood et al., 2022). 
This material support can significantly enhance farmers’ recognition 
of the value of technology (Liu and Liu, 2024). The demonstration 
training, operation guidance, and fault response mechanisms in the 
agricultural artificial intelligence promotion system alleviate farmers’ 
anxiety about the uncertainty of agricultural artificial intelligence by 
enhancing their practical control (Freund et al., 2022). This functional 
support effectively improves farmers’ subjective experience of 
technology effectiveness.

In addition, the popular science publicity and dissemination 
of successful cases led by the government create a social 
recognition atmosphere. Through cognitive guidance and 
psychological suggestion, farmers form a collective trust in the 
reliability of agricultural artificial intelligence (Zhou et al., 2023). 
This cultural support further consolidates the mechanism for 

enhancing satisfaction (Huang and Rundle-Thiele, 2014). In terms 
of barrier-free environment construction, the government 
systematically eliminates the physical barriers to agricultural 
artificial intelligence accessibility through infrastructure upgrades 
(such as 5G network coverage in rural areas), the formulation of 
technical standards, and the establishment of public service 
platforms (Hambye and Desmet, 2021). Policy-based procurement 
and bulk subsidy strategies lower the entry threshold for 
agricultural artificial intelligence, and the standardized 
construction of the technical training system makes up for the 
digital skills shortage of farmers. This dual intervention 
significantly improves the convenience of technology use. 
Government support also promotes the precise connection 
between agricultural artificial intelligence R&D providers and 
users’ needs by establishing a government-enterprise-farmer 
cooperation mechanism, making agricultural artificial intelligence 
iteration more suitable for actual agricultural production scenarios. 
This demand-oriented innovation ecosystem fundamentally 
optimizes the adaptability of agricultural artificial intelligence. 
Therefore, the following hypotheses are proposed:

H3a: Government support has a positive impact on accessibility;

H3b: Government support has a positive impact on satisfaction.

3.4 Social influence

Social influence can be defined as the influence of individuals 
considered important or close to the user in persuading them to 
accept a new technology or measure (Vannoy and Palvia, 2010). In the 
field of agricultural artificial intelligence research, when people 
around farmers, such as neighbors, peers, or agricultural experts, hold 
a positive attitude toward a widely used agricultural artificial 
intelligence, a positive social atmosphere is formed. Farmers will 
be  influenced by this atmosphere and think that the agricultural 
artificial intelligence is reliable and worth trying. For example, if a 
neighbor obtains a better harvest after using agricultural artificial 
intelligence and shares positive usage experiences, farmers will have 
higher trust and expectations for agricultural artificial intelligence. 
This positive perception will prompt farmers to focus more on the 
advantages and positive effects of the agricultural artificial intelligence 
when contacting and using it, thereby enhancing their satisfaction 
with the it (Lee et al., 2024). In a social environment that actively 
promotes agricultural artificial intelligence, the spread speed of 
agricultural artificial intelligence will accelerate. Farmers can more 
easily obtain information, training, and technical support related to 
agricultural artificial intelligence. For example, agricultural 
cooperatives and industry associations will organize relevant training 
activities and technical exchange meetings, providing farmers with 
more opportunities to understand and learn agricultural artificial 
intelligence. Meanwhile, social recognition will also attract more 
suppliers to enter the market, offering more product and service 
options, reducing the cost and difficulty for farmers to acquire 
agricultural artificial intelligence, and thus improving the accessibility. 
Therefore, the following hypotheses are proposed:

H4a: Social influence has a positive impact on accessibility;
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H4b: Social influence has a positive impact on satisfaction.

3.5 Accessibility

Accessibility, as a key mediating variable for the usage of 
agricultural artificial intelligence technology, has a positive impact 
that stems from the synergistic effect of the physical accessibility, 
economic affordability, and the social support system (Rieber and 
Estes, 2017). The accessibility is not only reflected in the physical 
existence of hardware devices and software services (Chandel and 
Sood, 2023) but also involves whether farmers can obtain the required 
resources through convenient channels within a reasonable cost range. 
In the agricultural scenario in Shandong Province, the government-led 
infrastructure construction, such as 5G network coverage and fiber-
optic popularization, provides a physical foundation for agricultural 
artificial intelligence transmission. The cooperation between 
agricultural artificial intelligence enterprises and agricultural research 
institutions under the industrial cluster effect shortens the 
intermediate links of agricultural artificial intelligence implementation. 
For example, enterprises such as Haier and Inspur reduce the 
equipment procurement threshold through customized solutions, and 
the on-site training and technical support network provided by 
agricultural extension stations effectively relieve farmers’ 
learning barriers.

In terms of economic affordability, the combination of government 
subsidy policies and financial credit services significantly reduces the 
initial investment risk of agricultural artificial intelligence usage (Feng 
et  al., 2023), enabling small and medium-scale farmers to access 
intelligent agricultural machinery through installment-payment or 
leasing models. The social support system constructs the “last-mile” 
channel for agricultural artificial intelligence diffusion through the 
promotion of demonstration households and collective procurement 
by cooperatives. Conversely, if there are significant barriers to 
accessibility, such as logistics restrictions in remote areas or the lack 
of professional services, even if farmers have high performance 
expectations, they may abandon usage due to insufficient accessibility 
(Butler and Sellbom, 2002). This two-way mechanism realizes the 
rapid popularization of agricultural artificial intelligence through 
large-scale promotion. Therefore, accessibility is not only a necessary 
condition for technology usage intention but also a key bridge 
connecting farmers’ subjective perception and objective behavior. Its 
positive impact essentially reflects the comprehensive adaptation 
degree between the technology system and the agricultural ecosystem. 
Based on this, the following hypothesis is proposed:

H5: Accessibility has a positive impact on farmers’ usage intention 
of agricultural AI.

3.6 Satisfaction

Satisfaction, as the core psychological mechanism connecting 
agricultural artificial intelligence characteristics and usage intention 
(Zhang et al., 2025), has a positive impact on the usage intention. This 
positive impact essentially stems from the interaction between 
emotional experience and rational judgment in human behavior 
decision-making. When farmers form a positive perception of 

agricultural artificial intelligence functions, operational convenience, 
and benefit realization through actual contact or information 
transmission, this cumulative emotional feedback will trigger an 
internal driving force for usage intention (Wang et al., 2023). From a 
psychological perspective, satisfaction forms a positive emotional 
anchor by enhancing the pleasure of agricultural artificial intelligence 
use and reducing the risk of cognitive dissonance (Marikyan et al., 
2023), enabling farmers to form a virtuous cycle of “use-satisfaction-
reuse” in the process of agricultural artificial intelligence usage. For 
example, when an intelligent irrigation system precisely regulates 
water consumption and achieves expected yield increases, farmers not 
only gain economic benefits but also develop a strong sense of value 
recognition due to the visual verification of agricultural artificial 
intelligence effectiveness. This dual sense of gain significantly 
strengthens their usage intention agricultural artificial intelligence.

Additionally, satisfaction also plays a role in reducing the 
psychological threshold of agricultural artificial intelligence usage 
intention. High satisfaction will weaken farmers’ sensitivity to initial 
learning costs or operational complexity and may even trigger a 
demonstration effect through the social recognition mechanism (Xue 
et al., 2024), prompting surrounding farmers to follow suit. It should 
be noted that the formation of satisfaction is dynamic and context-
dependent (Kompan and Bieliková, 2013). The intensity of its positive 
impact on usage intention will be regulated by individual cognitive 
differences, such as educational background, and technological 
scenario changes, such as government support. For example, young 
farmers may strengthen their usage intention due to their easier 
formation of satisfaction with the agricultural artificial intelligence 
interface, while elderly farmers may need a higher level of functional 
satisfaction to offset the influence of path dependence due to their 
emotional attachment to traditional farming methods. This difference 
further confirms the core position of satisfaction as a mediating 
variable in the promotion of agricultural artificial intelligence and 
provides a theoretical basis for formulating hierarchical promotion 
strategies. Therefore, the following hypothesis is proposed:

H6: Satisfaction has a positive impact on farmers’ usage intention 
of agricultural AI.

3.7 Age, educational background, and work 
experience

In the process of promoting agricultural artificial intelligence, 
factors such as age, educational background, and work experience 
cannot be  ignored in their influence on farmers’ usage intention 
(Mohr and Kühl, 2021). Young farmers generally have a stronger 
ability to accept new things and better adaptability to agricultural 
artificial intelligence (Chuang et al., 2020). They are more willing to 
try agricultural artificial intelligence. During the process of contact 
and use, they are more likely to have a satisfactory experience. When 
they are satisfied with agricultural artificial intelligence, due to their 
learning ability and exploratory spirit, they will be more active in 
seeking relevant technology and resources (Sampedro-Hernández and 
Vera-Cruz, 2017), and the accessibility for them will be relatively easy. 
This high satisfaction and good accessibility will further enhance their 
usage intention of agricultural artificial intelligence. In contrast, 
although elderly farmers may have rich experience in traditional 
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agricultural production, they may be slower to accept agricultural 
artificial intelligence (Manning, 2024). However, once they are 
satisfied with agricultural artificial intelligence and can easily obtain 
relevant resources, their usage intention will gradually increase.

As for educational background, farmers with a higher educational 
background tend to have a stronger ability to understand and apply 
agricultural artificial intelligence (Daberkow and McBride, 2003). 
They can more deeply recognize the potential value of agricultural 
artificial intelligence. When they experience the actual benefits 
brought by agricultural artificial intelligence, their satisfaction will 
be higher. At the same time, they can more easily access and master 
relevant technology with their knowledge and skills (Ritz et al., 2019), 
and the accessibility is relatively high. This high satisfaction and good 
accessibility will prompt them to be more willing to use agricultural 
artificial intelligence (Javaid et  al., 2023). Farmers with a lower 
educational background may have certain difficulties in 
understanding and using agricultural artificial intelligence (Mansour, 
2024). However, if they can easily obtain technology resources with 
the help of the government or relevant institutions and gradually 
achieve satisfactory results during use, their usage intention will also 
gradually increase.

As for work experience, farmers with rich work experience have 
accumulated a large amount of practical knowledge in long-term 
agricultural production (Šūmane et  al., 2018). They can more 
accurately judge whether agricultural artificial intelligence meets the 
actual production needs. When they find that agricultural artificial 
intelligence can effectively solve production problems, they will have 
a higher level of satisfaction (Tarafdar et al., 2010). Moreover, with 
their personal connections and resources, they can more easily obtain 
relevant technology and support (Warlick, 2009), and the accessibility 
is good. This high satisfaction and good accessibility will make them 
more willing to use agricultural artificial intelligence. Farmers with 
less work experience may lack experience in judging the value of 
agricultural artificial intelligence. However, they are more likely to 
be driven by social influence and policy incentives. If they can easily 
obtain technology resources and have a satisfactory experience during 
use, their usage intention will also gradually increase (Deng et al., 
2010). Based on the above analysis, the following hypotheses 
are proposed:

H7: Age positively regulates the relationship between satisfaction, 
accessibility, and usage intention;

H8: Educational background positively regulates the relationship 
between satisfaction, accessibility, and usage intention;

H9: Work experience positively regulates the relationship between 
satisfaction, accessibility, and usage intention.

4 Materials and methods

4.1 Questionnaire design

This study employed a structured questionnaire based on 
research variables as a data collection tool, with its design 
referencing previous academic literature. The questionnaire was 
divided into three sections. The first section was the survey 

introduction, which included a detailed explanation of the research 
purpose, procedural guidelines, and a statement of informed consent 
for participants. The second section focused on demographic 
information, where respondents provided personal details such as 
gender, age, educational background, and working experience. The 
final section measured latent variables. The core framework 
consisted of seven latent variables operationalized through 29 items. 
These variables and their respective item counts were as follows: 
performance expectancy (3 items), effort expectancy (5 items), 
government support (5 items), social influence (5 items), 
accessibility (5 items), users’ satisfaction (3 items), and usage 
intention (3 items). All items were evaluated using a 7-point Likert 
scale (1 = strongly disagree, 7 = strongly agree) to quantify 
respondents’ usage intentions. This scale ensured consistent 
measurement across constructs while capturing subtle differences in 
participants’ perceptions.

4.2 Pre - testing

To ensure the high scientific rigor and validity of the questionnaire 
design, this study meticulously organized a pre - test before conducting 
the formal survey. The pre-test employed a stratified sampling method, 
selecting 60 farmers from three regions in Shandong Province, namely 
Jinan, Weifang, and Linyi. This sample accounted for 17% of the total 
sample size. Among them, farmers under 35 years old accounted for 
30%, and those with a junior high school education or above 
accounted for 65%. The sample covered various agricultural sectors 
such as crop cultivation, animal husbandry, and fisheries, 
demonstrating good representativeness.

The research team first conducted in-depth interviews with 10 
farmers. Through these interviews, it was found that there were 
ambiguities in 3 measurement items. For instance, under the concept 
of “government support,” the expressions of “technical subsidies” and 
“training services” were likely to cause confusion among respondents. 
To address this issue, the research team invited an expert panel for 
discussions and rephrased the relevant items to ensure clear and 
accurate expression.

In evaluating the internal consistency of the questionnaire, the 
Cronbach’s α coefficient and composite reliability (CR) were adopted. 
The pre-test results indicated that the reliability values of “performance 
expectancy” (α = 0.78) and “effort expectancy” (α = 0.82) were close 
to the standards for the formal study (α > 0.85). To further optimize 
the scale, the researchers deleted one item with a factor loading below 
0.5, such as “the comprehensibility of the AI system operation 
manual.” Additionally, it was found that 20% of the respondents had 
cognitive biases regarding the “accessibility” items. To improve the 
measurement accuracy, specific items such as “whether there is an AI 
technology promotion station within the nearest 1 kilometer” 
were added.

The discriminant validity of the constructs in the extended 
TAM-UTAUT model was significant. In the Fornell-Larcker criterion, 
the square roots of all average variance extracted (AVE) values were 
greater than 0.7, laying a solid foundation for the measurement model 
of the formal study. Moreover, the interaction effects between the 
moderating variables (age, educational background) and the 
mediating variables (satisfaction, accessibility) were marginally 
significant (p < 0.1) in the pre-test. This suggests that in the formal 
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study, the sample size needs to be  increased to enhance 
statistical power.

Through a series of iterative optimizations, the pre - test ensured 
the theoretical adaptability of the questionnaire and its feasibility in 
practice, providing a reliable methodological guarantee for the 
subsequent large - scale survey.

4.3 Data collection

The survey subjects in this study were from 16 prefecture-level 
cities in Shandong Province. The questionnaire was designed on the 
online platform “Wenjuanzhixing” (https://www.wjx.cn/), and the 
distribution and collection were carried out by the Institute of Urban 
Agriculture of the Chinese Academy of Sciences, Jining University, 
and the Agricultural Research Institute of Rencheng District, Jining 
City. During the survey, relevant personnel explained the structure, 
content, and precautions of the questionnaire online to the 
respondents before they filled it out, without any guiding tendency. 
The respondents were selected using random sampling and purposive 
sampling techniques (Table 1).

A total of 500 questionnaires were distributed in this study, and 
359 valid responses were collected, with a response rate of 71.8%. 
According to Hair et al. (2017), the minimum sample size required for 
the study should be 10 times the number of potential variable paths, 
and the minimum sample size for this model was 100. Therefore, a 
sample size of 359 was sufficient to ensure the reliability and validity 

of the model. In addition, Table  2 summarized the demographic 
characteristics of the participants, which provided valuable 
background references for interpreting the research results.

5 Result

This study used SmartPLS 4 software to conduct partial least 
squares structural equation modeling (PLS-SEM) analysis following 
internationally recognized research protocols. This approach was 
based on the theoretical framework proposed by Hair et al. (2017) and 
demonstrated three distinct advantages. Firstly, it effectively managed 
the complex configuration involving 29 observed variables and 7 
latent constructs. Secondly, the method was adaptable to small sample 
sizes (N = 359) and non-normally distributed data, meeting the 
analysis requirements of the current dataset. Thirdly, it achieved both 
prediction and validation goals, allowing exploratory factor analysis 
to be used for model refinement while rigorously testing the statistical 
significance of hypothesized path relationships. The algorithm 
iteratively generated a latent variable score matrix through a weighted 
regression procedure. The statistical significance of parameters was 
verified using 5,000 iterations of Bootstrap resampling, enhancing the 
model’s robustness and significantly improving the explanatory power 
of endogenous variables. This methodological strategy ensured 
theoretical coherence and empirical precision in explaining the 
interactions among latent constructs (Table 3).

5.1 Measurement model assessment

In structural equation modeling (SEM), the validation of the 
measurement model is critical for ensuring the theoretical coherence 
and empirical validity of relationships between latent constructs and 
their observed indicators (Cheung et al., 2024). This study employs 
partial least squares structural equation modeling (PLS-SEM), a 
method particularly suited for handling complex models and small 
sample sizes while effectively controlling measurement error and 
validating theoretical assumptions (Hair et  al., 2019). The 
measurement model assessment is systematically conducted across 
three dimensions: (1) Reliability assessment. Internal consistency 
metrics, including Cronbach’s α and composite reliability (CR), were 
used to evaluate the stability of observed variables in measuring latent 
constructs. (2) Validity assessment. Convergent validity was examined 
through factor loadings, average variance extracted (AVE), and 
content validity, ensuring observed variables adequately capture the 
theoretical essence of latent constructs. (3) Discriminant validity was 
validated by comparing the correlation coefficients between latent 
variables with the square roots of their respective AVE values, 
confirming the distinctiveness of each construct. This systematic 
validation process establishes a robust measurement foundation for 
subsequent structural model analysis, thereby enhancing the 
credibility of the study’s conclusions (Table 4).

5.1.1 Reliability assessment
Reliability assessment evaluates the stability and internal 

consistency of measurement tools, serving as a critical step in 
validating data reliability. This study employed composite reliability 
(CR) and Cronbach’s α coefficients as dual metrics for evaluation. As 

TABLE 1 Respondents’ characteristics.

Characteristics Number of 
respondents

Percentage (%)

Years of experience

Less than 1 year 71 19.78%

1–3 years 40 11.14%

4–5 years 42 11.70%

6–10 years 52 14.48%

11–20 years 72 20.06%

More than 20 years 82 22.84%

Education background

Below junior high school 146 40.67%

High school/secondary 

specialized school
104 28.97%

Junior college 30 8.36%

Undergraduate 72 20.06%

Postgraduate and above 7 1.95%

Age

18–25 71 19.78%

26–30 0 0.00%

31–40 6 1.67%

41–50 189 52.65%

51–60 86 23.96%

60 above 7 1.95%
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evidenced by Table 2, the CR values for all latent variables exceeded 
0.85, indicating high stability of the constructs within the 
measurement model. Furthermore, Cronbach’s α coefficients for each 
latent variable surpassed 0.85, corroborating the excellent internal 
consistency among scale items (Hair et al., 2017; Liengaard et al., 2021; 
Sarstedt et al., 2021). Taken together, these two metrics demonstrate 
that the measurement model meets the stringent reliability 
requirements of psychological and social sciences, ensuring robust 
results with well-controlled measurement error.

5.1.2 Validity assessment
To examine the discriminant validity of the measurement model, 

this study employed the Fornell-Larcker criterion and the HTMT 
(Heterotrait-Monotrait Ratio) method (Ab Hamid et al., 2017). The 
Fornell-Larcker criterion requires that the square root of the average 
variance extracted (AVE) for each construct exceeds its correlation 
coefficients with other constructs. As shown in Table  2, all latent 
variables achieved AVE values above the 0.75 threshold (satisfying the 
requirement for convergent validity). Furthermore, the diagonal 
elements of the AVE square roots (e.g., 0.877, 0.920) were consistently 
greater than the corresponding off-diagonal correlation coefficients 
(e.g., 0.686, 0.284), confirming that the measurement indicators 
effectively distinguished between latent variables (Fornell and 
Larcker, 1981).

Complementarily, the HTMT method was applied to validate 
discriminant validity by comparing the heterotrait-monotrait ratio of 
correlations. A HTMT value below the recommended thresholds of 
0.85 or 0.9 indicates acceptable discriminant validity (Ab Hamid et al., 
2017). The results aligned with those from the Fornell-Larcker 
criterion, demonstrating that the measurement model exhibited 
robust discriminant validity. This ensures that the constructs are both 
distinct and reliable, providing a solid empirical foundation for 
subsequent analyses.

5.2 Structural model evaluation

Following the validation of the measurement model’s reliability 
and validity, this study employed Partial Least Squares Structural 
Equation Modeling (PLS-SEM) to empirically analyze the 
hypothesized relationships between latent variables. The structural 
model evaluation focused on three core objectives: (1) Mechanism 
Elucidation: Quantifying direct effect sizes among latent variables to 
reveal underlying causal mechanisms; (2) Model Performance: 
Evaluating the model’s explanatory and predictive power using 
metrics such as R2 and predictive relevance (Q2); (3) Hypothesis 
Testing: Assessing the statistical plausibility of research hypotheses 
through the significance of path coefficients. Compared to traditional 
covariance-based SEM, PLS-SEM adopts a variance-maximizing 
iterative algorithm, offering greater flexibility in handling complex 
models, non-normal data, and small sample sizes, particularly in 
scenarios with multicollinearity (Westland, 2015).

5.2.1 Collinearity diagnostics
Multicollinearity among latent variables can distort path 

coefficient estimates and compromise hypothesis testing reliability in 
SEM. To evaluate collinearity, this study applied the Variance Inflation 
Factor (VIF) (Tay, 2017). As shown in Table 5, the VIF values for all 

TABLE 2 Reliability and validity.

Construct Cronbach’s α Composite 
reliability

Average 
variance 
extracted 

(AVE)

Accessibility 0.850 0.856 0.769

Behavior 

intention
0.954 0.955 0.846

Effort 

expectations
0.962 0.975 0.868

Government 

support
0.975 0.976 0.909

Performance 

expectations
0.961 0.961 0.928

Social 

influence
0.919 0.922 0.754

User 

satisfaction
0.969 0.969 0.942

TABLE 3 Discriminant validity by Fornell-Larcker criterion.

Construct 1 2 3 4 5 6 7

Accessibility 0.877

Behavior 

intention
0.686 0.920

Effort 

expectations
0.216 0.284 0.931

Government 

support
0.732 0.652 0.227 0.953

Performance 

expectations
0.731 0.775 0.273 0.744 0.963

Social influence 0.746 0.782 0.401 0.765 0.735 0.868

User 

satisfaction
0.702 0.600 0.195 0.583 0.748 0.579 0.970

Values on diagonal indicate the square root of the AVE.

TABLE 4 Discriminant validity by Heterotrait–Monotrait ratio.

Construct 1 2 3 4 5 6 7

Accessibility

Behavior 

intention
0.756

Effort 

expectations
0.234 0.293

Government 

support
0.8 0.675 0.228

Performance 

expectations
0.798 0.809 0.278 0.768

Social influence 0.842 0.831 0.422 0.808 0.774

User 

satisfaction
0.765 0.624 0.197 0.599 0.775 0.608
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latent variables ranged from 1.214 to 2.965, all well below the critical 
threshold of 5. This confirms the absence of significant 
multicollinearity in the model, satisfying the foundational 
requirements for PLS-SEM analysis (Hair et al., 2011).

5.2.2 Model explanatory power (R2) and predictive 
relevance (Q2)

In this study, the R2 values of endogenous variables were used to 
evaluate the explanatory power of the model. The results showed that 
the R2 values of accessibility (R2 = 0.656), satisfaction (R2 = 0.562), and 
usage intention (R2 = 0.498) all exceeded the threshold of 0.4, 
indicating a strong explanatory ability for latent variables and meeting 
the r ecommended standards in social sciences (Hair et al., 2019). The 
predictive relevance was further verified through the blindfolding 
method, revealing that all Q2 values of the endogenous variables were 
significantly greater than zero (accessibility = 0.495, 
satisfaction = 0.523, usage intention = 0.417). This met the predictive 
relevance criteria proposed by Hair et al. [69], confirming the model’s 
robust out-of-sample predictive ability.

The f2 measure was used to assess the strength of the influence of 
exogenous variables on endogenous variables, following Cohen’s 
classification (Cohen, 2013). High influence (f2 ≥ 0.35) was observed 
from performance expectations to user satisfaction; moderate 
influence (0.15 ≤ f2 ≤ 0.35) was found from accessibility to usage 
intention; small effects (f2 < 0.15) were detected from social influence 
to accessibility, performance expectations to accessibility, government 
support to accessibility, and user satisfaction to usage intention; and 
negligible effects were noted from effort expectations to user 
satisfaction, government support to user satisfaction, social influence 
to user satisfaction, and effort expectations to accessibility. The 

validation of the structural model confirmed that the extended 
TAM-UTAUT model effectively explained the usage intention of 
agricultural artificial intelligence among farmers in Shandong.

5.2.3 Path analysis and hypothesis testing
This study proposed ten research hypotheses using an extended 

TAM-UTAUT model. The partial least squares-structural equation 
model (PLS-SEM) was employed to estimate path coefficients, and 
significance was tested through bootstrapping with 5,000 iterations. 
The results summarized in Table  6 are as follows: Performance 
expectancy exhibited positive impacts on accessibility and satisfaction 
(β = 0.297, p < 0.005; β = 0.686, p < 0.005), supporting H1a and H1b. 
Effort expectancy negatively affected accessibility (β = −0.068, 
p < 0.05), validating H2b. Government support had a positive impact 
on accessibility (β = 0.366, p < 0.005), confirming H3a. Social 
influence also had a positive impact on accessibility (β = 0.366, 
p < 0.005), confirming H4a. Accessibility directly predicted usage 
intention (β = 0.523, p < 0.005), supporting H5. Satisfaction also 
significantly influenced usage intention (β = 0.233, p < 0.005), 
validating H6.

Notably, the following hypotheses were rejected due to 
non-significant effects: Effort expectancy, government support, and 
social influence did not significantly affect satisfaction (H2b, H3b, 
H4b). The non-significance of H2b may be because although effort 
expectancy is negatively correlated with accessibility, when farmers 
evaluate agricultural artificial intelligence, the ease of agricultural 
artificial intelligence accessibility is not solely determined by 
operational difficulty, and other factors mask the impact of effort 
expectancy. The non-significance of H3b might be that government 
support is mostly reflected in the resources for accessing agricultural 
artificial intelligence, and its direct improvement on farmers’ 
satisfaction is not obvious. The non-significance of H4b could be that 
social influence mainly helps farmers access agricultural artificial 
intelligence rather than enabling them to have satisfactory feelings 
from aspects such as functional effects, so it has no significant impact 
on satisfaction (Table 7).

5.3 Moderation effect analysis

This study introduces three moderating variables—age, 
educational background, and work experience—to reveal the 
differential impacts of farmers’ individual heterogeneity on the usage 
intention of agricultural artificial intelligence. The moderation effect 
test shows that age has a negative moderating effect on the relationship 
between accessibility and usage intention (β = −0.139, p < 0.05), while 
it has a positive moderating effect on the relationship between 
satisfaction and usage intention (β = 0.166, p < 0.005). This 
contradictory result reflects the complex interaction between 
generational cognitive differences and agricultural artificial 
intelligence adaptability. Older farmers are less sensitive to agricultural 
artificial intelligence accessibility, but once they have a satisfactory, 
their increase in usage intention is significantly higher than that of the 
younger group. This may be  due to the path-dependence inertia 
formed by traditional agricultural production experience, which 
makes older farmers more inclined to build trust in agricultural 
artificial intelligence through actual benefit verification rather than 
simply relying on accessibility.

TABLE 5 Collinearity statistics (VIF) and model explanatory and predictive 
power.

Label Path name VIF R2 f2 Q2

H1a
Performance 

expectations- > Accessibility
4.348 0.098 0.495

H1b

Performance 

expectations- > User 

satisfaction

4.348 0.409 0.523

H2a
Effort 

expectations- > Accessibility
1.206 0.656 0.011

H2b
Effort expectations- > User 

satisfaction
1.206 0.562 0.001

H3a
Government 

support- > Accessibility
3.904 0.059

H3b
Government support- > User 

satisfaction
3.904 0.001

H4a
Social 

influence- > Accessibility
3.66 0.123

H4b
Social influence- > User 

satisfaction
3.66 0.003

H5
Accessibility- > Behavior 

intention
2.661 0.498 0.276 0.417

H6
User satisfaction- > Behavior 

intention
2.661 0.055
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The moderating effect of educational background shows a 
significant two-path characteristic. The study finds that educational 
background positively moderates the relationship between 
accessibility and usage intention (β = 0.112, p < 0.05), but negatively 
moderates the relationship between satisfaction and usage intention 
(β = −0.158, p < 0.005). This paradoxical phenomenon reveals the 
dynamic balance mechanism between cognitive resources and 
agricultural artificial intelligence perception. Farmers with higher 
education levels can more efficiently overcome agricultural artificial 
intelligence access barriers with their stronger information-processing 
abilities. However, they also have higher requirements for the 
completeness of agricultural artificial intelligence functions, leading 
to a decreasing marginal utility of satisfaction. This suggests that 
policymakers need to pay attention to hierarchical design in 
agricultural artificial intelligence promotion, providing precise and 
modular agricultural artificial intelligence solutions for highly 
educated groups and creating a low-threshold and high-tolerance 
usage environment for less-educated groups.

The moderating effect of work experience verifies the non-linear 
impact of practical wisdom on agricultural artificial intelligence usage. 
The study shows that work experience negatively moderates the 
relationship between accessibility and usage intention (β = −0.114, 
p  < 0.05), but positively moderates the relationship between 
satisfaction and usage intention (β = 0.137, p < 0.05). Senior farmers’ 
dependence on agricultural artificial intelligence accessibility 
decreases with the accumulation of experience, and they obtain 
resources more through existing production networks. However, the 
increase in their usage intention is more dependent on the verification 
process of the actual benefits of agricultural artificial intelligence. This 

moderating pattern confirms the existence of an “experience-benefit” 
compensation mechanism. Although rich work experience may 
inhibit the exploration of new accessibility, it can make up for this 
defect by strengthening the perception of agricultural artificial 
intelligence effects.

Notably, the three moderating variables have significant 
differences in their moderating effects on the mediation paths. Age 
mainly affects usage intention by strengthening the moderating effect 
of satisfaction, while educational background and work experience act 
on both the accessibility and satisfaction mediation paths. This 
heterogeneous moderating pattern indicates that farmers’ individual 
characteristics do not simply and linearly affect agricultural artificial 
intelligence usage intention but form differential usage paths by 
selectively strengthening specific mediation mechanisms. Specifically, 
age differences mainly reflect the psychological mechanism differences 
in agricultural artificial intelligence trust formation, educational 
background focuses on the agricultural artificial intelligence usage 
intention differences in cognitive resource allocation, and work 
experience reflects the interaction differences between practical 
wisdom and agricultural artificial intelligence innovation.

The moderation analysis in this study provides important insights 
for the personalized design of agricultural artificial intelligence 
promotion strategies. Policymakers need to break through the 
traditional “one-size-fits-all” promotion model and establish a 
hierarchical promotion system based on age, education, and work 
experience. For young farmers, a “fast-track” for agricultural artificial 
intelligence accessibility should be constructed to reduce learning 
costs through digital platforms; for older farmers, the demonstration 
effect should be  strengthened to enhance agricultural artificial 
intelligence trust through visual benefit display; for highly educated 
groups, modular and customizable agricultural artificial intelligence 
solutions should be developed to meet their professional needs; for 
experienced farmers, experience integration mechanism should 
be  established to synergistically optimize traditional agricultural 
wisdom and artificial intelligence algorithms. This differentiated 
promotion strategy can not only improve the agricultural artificial 
intelligence usage rate but also promote the sustainable application of 
agricultural artificial intelligence by activating the differences in 
farmers’ individual endowments.

6 Discussion

This study systematically examined the usage intention patterns 
of agricultural artificial intelligence among farmers in Shandong 
Province, China, focusing on the influencing roles of performance 
expectancy, effort expectancy, government support, and social 
influence in shaping agricultural artificial intelligence usage intentions. 
The research further explored heterogeneous moderating effects of 
demographic characteristics including age, educational attainment, 
and farming experience.

Empirical findings revealed that performance expectancy 
significantly enhanced both satisfaction and accessibility, underscoring 
farmers’ cognitive valuation of agricultural artificial intelligence 
practical utility as a pivotal driver for usage intention. Government 
support and social influence demonstrated positive correlations with 
accessibility, suggesting their roles in facilitating agricultural artificial 
intelligence diffusion through resource provision and peer influence 

TABLE 6 Bootstrapping and path coefficient indicators.

Label Path name Path 
coefficient

T-value p-value

H1a
Performance 

expectations- > Accessibility
0.297 4.363 0.000

H1b

Performance 

expectations- > User 

satisfaction

0.686 10.639 0.000

H2a
Effort 

expectations- > Accessibility
−0.068 2.410 0.016

H2b
Effort expectations- > User 

satisfaction
−0.024 0.857 0.391

H3a
Government 

support- > Accessibility
0.246 3.546 0.000

H3b
Government 

support- > User satisfaction
0.032 0.492 0.623

H4a
Social 

influence- > Accessibility
0.366 5.189 0.000

H4b
Social influence- > User 

satisfaction
0.061 1.075 0.282

H5
Accessibility- > Behavior 

intention
0.523 7.091 0.000

H6
User satisfaction- > Behavior 

intention
0.233 2.848 0.004
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mechanisms. Contrary to theoretical expectations, effort expectancy 
exhibited a negative association with accessibility, implying that 
farmers’ perceived agricultural artificial intelligence complexity may 
interact with non-operational barriers such as infrastructure 
limitations and information asymmetry. Unvalidated hypotheses 
regarding the impact of effort expectancy, government support, and 
social influence on satisfaction highlight the need for further 
exploration into farmers’ experiential learning processes and 
contextual factors influencing usage intention.

Moderating analysis unveiled distinct usage pathways shaped by 
individual heterogeneity. Older farmers demonstrated lower 
sensitivity to agricultural artificial intelligence accessibility but showed 
heightened responsiveness to satisfaction, indicating their reliance on 
post-usage validation. Educated farmers exhibited superior 
agricultural artificial intelligence accessibility but maintained higher 
functional expectations, suggesting a knowledge-based demand for 
agricultural artificial intelligence sophistication. Experienced farmers 
displayed reduced dependency on formal accessibility while 
emphasizing practical efficacy, reflecting their capacity to integrate 
agricultural artificial intelligence within existing agronomic 
knowledge systems. These findings collectively demonstrate that 
demographic variables selectively amplify specific moderating 
mechanisms, creating differentiated usage trajectories.

Policy implications suggest usage intention of agricultural 
artificial intelligence personalized promotion strategies: streamlining 
digital service platforms for younger farmers, reinforcing benefit 
demonstration programs for older demographics, developing modular 
solutions for educated groups, and establishing experience-technology 
integration frameworks for seasoned farmers. Such tailored 
approaches could accelerate agricultural artificial intelligence 
transformation while aligning with United Nations Sustainable 
Development Goals. Future research should expand sample scope to 
explore regional variations and longitudinal effects of emerging factors 
such as digital literacy and climate change adaptation needs. The study 
contributes to the agritech usage literature by revealing the complex 
interplay between cognitive evaluations, institutional support, and 
individual heterogeneity in shaping agricultural innovation diffusion.

7 Conclusion and limitation

This study focuses on the usage intention of agricultural artificial 
intelligence by farmers in Shandong Province. Using the extended 

TAM-UTAUT model and the partial least squares structural equation 
modeling (PLS-SEM) method, it conducts an in-depth analysis of the 
factors influencing farmers’ usage intention of agricultural artificial 
intelligence and the moderating effect of farmers’ individual 
heterogeneity, providing a theoretical and practical basis for the 
promotion of agricultural artificial intelligence.

The research results show that performance expectancy has a 
positive impact on satisfaction and accessibility, and it is the key 
driving force for farmers usage intention of agricultural artificial 
intelligence. Government support and social influence can enhance 
farmers’ usage intention of agricultural artificial intelligence by 
improving its accessibility. However, effort expectancy is negatively 
correlated with accessibility. This is because when farmers evaluate the 
agricultural artificial intelligence, the ease of accessibility is not solely 
determined by the operational difficulty. Moreover, the impacts of 
effort expectancy, government support, and social influence on 
satisfaction have not been significantly verified, which may be related 
to farmers’ cognition and actual experience.

The moderation analysis reveals the differential impacts of age, 
educational background, and work experience on usage intention. 
Older farmers are less sensitive to agricultural artificial intelligence 
accessibility, but satisfactory has a more significant effect on usage 
intention of agricultural artificial intelligence. Farmers with a higher 
educational level can acquire agricultural artificial intelligence more 
efficiently but have higher requirements for agricultural artificial 
intelligence functions. Farmers with rich work experience rely less on 
agricultural artificial intelligence accessibility and value the actual 
benefits of the agricultural artificial intelligence more. Farmers’ 
individual characteristics form differential usage intention paths by 
selectively strengthening specific mediating mechanisms.

Based on the research results, policymakers and agricultural 
artificial intelligence developers should formulate personalized 
promotion strategies. For young farmers, the threshold for agricultural 
artificial intelligence accessibility should be  lowered, and digital 
platforms should be used to provide convenient services. For older 
farmers, the visualization and verification of agricultural artificial 
intelligence benefits should be strengthened to enhance their trust in 
the agricultural artificial intelligence. For highly educated groups, 
modular and customizable agricultural artificial intelligence solutions 
should be developed. For farmers with rich experience, a mechanism 
for integrating agricultural artificial intelligence and work experience 
should be  established. By customizing promotion strategies, it is 
expected to accelerate the transformation of agricultural intelligence 

TABLE 7 Moderating analysis.

Moderating variable and path Original sample Standard deviation T statistics P values

Age*accessibility- > Behavior intention −0.139 0.060 2.298 0.022

Age*satisfaction- > Behavior intention 0.166 0.057 2.928 0.003

Education background*Accessibility- > Behavior 

intention
0.112 0.057 1.979 0.048

Education background*Satisfaction- > Behavior 

intention
−0.158 0.056 2.823 0.005

Work experience*Accessibility- > Behavior 

intention
−0.114 0.058 1.971 0.049

Work experience*Satisfaction- > Behavior intention 0.137 0.056 2.447 0.014

https://doi.org/10.3389/fsufs.2025.1621832
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Kai et al. 10.3389/fsufs.2025.1621832

Frontiers in Sustainable Food Systems 14 frontiersin.org

and promote the achievement of sustainable agricultural 
development goals.

Although this study has achieved valuable results, it still has certain 
limitations. First, the research sample is only from Shandong Province, 
which may not fully represent the situation of farmers in other regions 
of China. There are differences in agricultural production conditions, 
economic development levels, and cultural backgrounds in different 
regions, and these factors may affect farmers’ usage intention of 
agricultural artificial intelligence. Future research can further expand 
the sample scope to cover farmers from more regions to improve the 
universality and applicability of the research results.

Second, this study only considers some individual characteristics 
such as age, educational background, and work experience as 
moderating variables, and may overlook the impacts of other 
important factors on farmers’ usage intention of agricultural artificial 
intelligence. For example, factors such as farmers’ income level, risk 
preference, and social network may also play important roles in the 
agricultural artificial intelligence usage intention. Future research can 
incorporate more relevant factors to more comprehensively 
understand the impact of farmers’ individual heterogeneity on the 
promotion of agricultural artificial intelligence.

Finally, this study mainly uses the questionnaire survey method 
to collect data, which may have certain subjectivity and biases. 
Although some measures have been taken to ensure data quality 
during the questionnaire design and data collection process, 
respondents’ answers may still be  affected by personal subjective 
factors. Future research can combine multiple methods such as field 
observation and experimental research to obtain more objective and 
accurate data and improve the reliability of the research results.
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