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1 Introduction

With the global population projected to reach nearly 10 billion by 2050, food systems
must become dramatically more efficient and sustainable to meet the growing demand
while conserving scarce resources (FAO, 2017). Digital transformation, particularly
through the agricultural Internet of Things (IoT), is often seen as the solution. In fact,
the agricultural IoT market is growing rapidly and is projected to reach $40 billion by
2034, mainly driven by the deployments of wireless sensor networks (WSN) (Precedence
Research, 2024).

WSN deployments comprise spatially distributed nodes equipped with sensors and
wireless communication modules powered by batteries or energy harvesting devices. By
providing continuous high-resolution monitoring of soil moisture, microclimate, nutrient
status, and crop health, these networks transmit data via protocols such as ZigBee, LoRa,
or NB-IoT1 to edge gateways or cloud platforms for real-time analysis. Farmers and
agronomists can then take advantage of these insights to schedule irrigation based on
real-time soil moisture measurements (Meriç, 2025), optimize fertilizer applications to
match field nutrient levels (Adamo et al., 2025), and implement targeted pest management
informed by sensor-enabled trap networks (Parsons et al., 2020).

Although WSNs improve agricultural efficiency and sustainability, they also raise
ethical concerns, including data protection, high costs, and limited evidence on
long-term environmental and economic outcomes (Elijah et al., 2018). This opinion
article proposes a conceptual framework and research agenda for embedding ethical
foresight in WSN deployments. We highlight the importance of ethics in ensuring
reliable data for accurate decisions, protecting privacy to prevent misuse, promoting
equity to reduce inequalities, safeguarding labor against displacement, and mitigating
environmental risks such as wildlife disruption. Through case examples, including
from the Global South, we illustrate these issues and propose solutions via technical
safeguards, policy mechanisms, and community engagement, supported by a step-by-step
lifecycle checklist.

1 Zigbee, LoRa, and NB-IoT are low-power wireless protocols commonly used in WSNs to enable

reliable and secure data transmission. Zigbee supports short-range mesh networking, LoRa offers

long-range connectivity, and NB-IoT extends cellular coverage to underserved areas.
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2 Challenges and risks of WSN
adoption

2.1 Data reliability: balancing precision and
risk

WSNs rely on accurate sensor data to inform critical
agricultural decisions, such as optimizing irrigation, fertilization,
and pest control. However, data quality can be compromised
by sensor calibration errors, environmental interference, power
limitations, and maintenance challenges (Mahmood et al., 2015).
Extreme weather, such as heavy rainfall or high winds, can disrupt
sensor functionality and wireless connectivity, causing data loss or
corruption. Limited power sources, like batteries, may fail or be
mismanaged, leading to interrupted data collection or inaccurate
transmissions. Such errors can result in flawed recommendations,
risking crop losses, livestock health issues, and economic harm
to farmers.

These challenges are particularly acute in low-resource settings,
such as smallholder farms in Sub-Saharan Africa and South Asia,
where electricity and technical expertise are scarce. Sensors in these
regions face harsh conditions with limited maintenance, while most
IoT devices are imported and require specialized skills that may
not be locally available (Bayih et al., 2022). Dust, humidity, and
temperature fluctuations accelerate sensor degradation, causing
frequent faults and unreliable data. For example, a soil moisture
probe in a remote field may quickly deteriorate under heat and
require recalibration, a task beyond the training of many local
users. Small errors such as sensor drift or battery depletion often
go unnoticed, increasing the risk of misleading recommendations
(Lin et al., 2019).

To ensure reliable data, technical strategies, such as sensor fault
detection and isolation algorithms (Jihani et al., 2023), redundant
sensing, real-time data validation, and robust calibration protocols,
are essential. In the Global South, deployments should incorporate
durable hardware, local training programs, and support tailored
to available skills. These technical safeguards must integrate
with institutional strategies to prevent data errors from causing
ecological or economic harm.

2.2 Privacy and security: safeguarding
farmer autonomy

WSNs generate vast amounts of sensitive data on farming
practices, yields, land use, and ecological conditions, raising
significant privacy concerns. In many regions, the lack of robust
data protection laws worsens these issues (Ferris, 2017). For
example, several African countries do not have tailored legislation
for agricultural data, and farmer awareness of data protection
remains low (Chichaibelu et al., 2023). This regulatory gap
increases farmers’ fears of data misuse, such as land speculation,
sharing with competitors, or regulatory actions against them
(Sykuta, 2016). These worries contribute to the reluctance to adopt
WSN technologies, despite their productivity benefits.

The risks of poor data governance are clear in a 2019 Australian
incident, where an animal rights group published a map of

farm locations, exposing data from digital tools (Wiseman and
Sanderson, 2019). This breach led the Australian government to
apply the Privacy Act to aggregated farming data, illustrating how
farm data can be misused in harmful ways. Such events expose
farmers to manipulation by activists, insurers, or competitors,
eroding trust in digital systems.

Addressing privacy requires ethical data governance
frameworks that prioritize farmer autonomy. Secure storage,
end-to-end encryption2, and clear ownership rules are vital
to maintain farmer control. Farmers should provide informed
consent for data use and revoke permissions as needed. The
EU Code of Conduct on Agricultural Data Sharing (COPA-
COGECA et al., 2020) offers a model, emphasizing transparency,
equitable data-sharing agreements, and farmer participation in
data ecosystems. These principles help balance the tension between
farmer autonomy and the needs of third-party stakeholders, such
as agribusinesses and technology firms, that rely on farm data for
predictive analytics and decision-support tools.

Beyond governance, securing WSNs is challenging due to
limited sensor resources and dynamic agricultural environments
(Urooj et al., 2023). Weak encryption, unprotected communication
links, and inadequate authentication protocols can expose WSNs to
breaches, compromising farmer privacy and leading to competitive
disadvantages or financial losses. To mitigate these risks, WSNs
must incorporate robust security measures, including multi-
level authentication, regular vulnerability assessments, and timely
software updates. A “privacy-by-design"3 approach, embedding
protections early, plus clear ownership agreements, can strengthen
security, build trust, and promote adoption.

2.3 Equity and transparency: building trust
in agricultural decisions

AI and machine learning models in WSNs can transform
agricultural management, but they must prioritize fairness and
transparency to avoid biases (Ferrara, 2024). Bias often stems
from data collection, where sensors are mainly deployed on large,
well-funded farms, creating datasets that favor irrigated, high-
input systems. This leads to unsuitable recommendations for
smallholder or rainfed farms, potentially causing harm. Label
errors4 worsen skewed predictions, as yield or pest data from
areas with poor digital infrastructure are often incomplete. Key
contextual factors, like land tenure, credit access, and local
practices, are rarely captured, ignoring real-world conditions and
exacerbating inequalities.

Algorithmic bias is evident when systems favor specific crops
or regions. Most agricultural datasets focus on commodity crops,

2 End-to-end encryption is a communication method in which data is

encrypted on the sender’s device and decrypted only on the recipient’s

device, ensuring that no intermediaries can access it.

3 Privacy-by-design is a system development approach that integrates

privacy protections into the design and architecture from the very beginning.

4 Label errors refer to incorrect or misclassified data points, such as

misidentifying crop yield or pest presence, which can cause prediction errors

in machine learning models and result in inaccurate outcomes.
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such as corn, soybeans, and canola, from large-scale operations
(Bronson, 2022). For example, a fertilizer algorithm trained on
industrial corn data might overestimate inputs for subsistence
crops in the Global South, widening productivity gaps. This
perpetuates a biased view of farming that prioritizes high-input
production, disadvantaging smallholders (Bronson, 2022).

To promote equity, models should be audited with diverse
datasets and involve underrepresented farmers in design.
Transparency and explainability are key (Felzmann et al., 2020).
User interfaces should show how recommendations are generated;
for instance, an irrigation alert could display soil moisture values
and thresholds, allowing farmers to adjust advice. In low-literacy
settings, use voice prompts or icons. Ethical AI should enable
opt-in/out for automated advice and integrate farmers’ qualitative
inputs, such as local pest observations or traditional indicators.
Integrating WSN data with indigenous knowledge and local
expertise ultimately yields more robust guidance.

2.4 Social impacts: navigating automation
and labor displacement

The integration of WSNs and automation in agriculture
boosts efficiency but poses socioeconomic challenges, including job
displacement and erosion of rural livelihoods (Rotz et al., 2019).
As automated systems handle tasks like monitoring and decision-
making, manual labor roles diminish, threatening employment
in rural areas where agriculture is the main income source and
alternatives are limited. Without policies, this can widen social
inequalities and rural-urban divides. For example, automated
milking systems in European dairy farms reduce labor time by
20–62%, easing physical demands but displacing traditional roles,
while shifting workers to herd management, data analysis, and
system maintenance (Martin et al., 2022).

To mitigate job displacement from automation, deployment
strategies should include comprehensive transition plans.
These encompass reskilling and upskilling initiatives to prepare
workers for digital agriculture competencies, including WSN
data management, interpretation, and sensor maintenance. Such
programs can foster emerging roles in a technology-augmented
sector (Bronson and Knezevic, 2016). Additionally, inclusive
policies promoting varied skill development can ease the move
from manual to supervisory or strategic positions. Empirical
research underscores that effective automation reallocates human
efforts to knowledge-driven tasks rather than eradicating them
(Acemoglu and Restrepo, 2019), potentially yielding more
rewarding and less strenuous job opportunities.

2.5 Environmental impacts: balancing
benefits and ecological risks

WSNs in agriculture offer significant environmental benefits
but also pose ecological risks that require careful management.
WSNs enhance resource efficiency by optimizing water, fertilizer,
and pesticide use, thereby reducing environmental degradation
and promoting sustainability. For example, real-time soil moisture

monitoring enables precise irrigation scheduling, minimizing water
waste and preventing over-irrigation, which can lead to soil erosion
and nutrient leaching (Abdollahi et al., 2021). At the same time,
electronic devices can pose hazards to livestock and wildlife (Mark,
2019). In pasture-based systems, GPS collars and sensors support
animal welfare by enabling early detection of disease or heat stress,
yet they also carry risks such as collar injuries or stress from virtual
fencing that delivers electric shocks, underscoring the need for
animal-friendly designs (Herlin et al., 2021).

The presence of WSN devices in natural habitats can disrupt
wildlife behavior and migration patterns. Buried soil sensors
can temporarily disturb soil structure, with uncertain long-term
effects on subterranean life. Automated systems, if over-relied
upon, may prioritize efficiency over ecological diversity, potentially
simplifying habitats and harming species (Goddard et al., 2021).
Unrecovered sensor components contribute to electronic waste,
threatening biodiversity through hazardous material accumulation.
Environmental assessments highlight that improper disposal of
WSN components can lead to environmental contamination
(Bonvoisin et al., 2012). To mitigate these risks, adopting
biodegradable sensors that decompose naturally or implementing
robust recycling and repurposing programs is critical to minimize
ecological harm and align with circular economy principles in
agricultural technology.

3 Toward ethical and sustainable WSN
deployments

As illustrated in Figure 1, the responsible integration of
WSNs relies on three interconnected pillars: technical safeguards,
policy mechanisms, and community engagement. By aligning
engineering best practices with governance structures and
stakeholder participation, this framework transforms abstract
ethical concerns into practical, actionable strategies.

Embedding ethical safeguards at the design stage is essential
for trust, transparency, and resilience. Technically, strategies
like data anonymization5 at the sensor edge, which removes
personally identifiable information such as farm locations or owner
details before transmission, protect farmer privacy and commercial
confidentiality (Amiri-Zarandi et al., 2022). Open architectures
and standardized protocols based on common standards promote
device interoperability across manufacturers, reduce vendor lock-
in6, and spur innovation through seamless integration of new
tools (Roccatello et al., 2025). Privacy-preserving methods such
as federated learning7 enable collaborative crop yield predictions
across farms without exchanging raw data, thereby mitigating
breach risks (Žalik and Žalik, 2023). Secure over-the-air firmware
updates8 and tamper-resistant hardware with physical protections

5 Data anonymization is the process of modifying data to prevent the

identification of individuals or entities while preserving its utility for analysis.

6 Vendor lock-in occurs when WSN users are restricted to a single

provider’s hardware or software, limiting flexibility and increasing costs.

7 Federated learning is a machine learning approach in which models

are trained across multiple devices or locations without transferring the

underlying data, thereby preserving privacy.
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FIGURE 1

Ethical framework for WSNs: integrating data reliability, privacy, equity, social, and environmental impacts with technical safeguards, policy
mechanisms, and community engagement via a lifecycle checklist.

against unauthorized alterations safeguard against cyber threats
like malware (Kerliu et al., 2019). In the Global South, where
infrastructure is variable, low-cost solar-powered nodes and mobile
interfaces enhance accessibility by leveraging high smartphone
penetration to align with local realities. These embedded measures
make WSNs robust, transparent, and ethically grounded.

Policy mechanisms play an equally critical role in guiding
the responsible use of WSNs. Governments can legislate data
protection standards, mandating encryption for data transmission,
authentication protocols for user verification, and clear guidelines
on ethical data handling, including rules for third-party sharing
(Ferris, 2017). In partnership with industry, policymakers should
craft frameworks for data exchange, covering sensor-generated
data ownership, informed consent requirements for farmers,
and accountability via misuse penalties. Economic tools such as
subsidies to offset sensor costs for smallholders in the Global South,
tax incentives for eco-friendly deployments, and sustainability
certifications for low-impact systems can drive adoption while
addressing environmental risks like battery disposal. Furthermore,
ethical labor standards, workforce reskilling for digital tasks like
sensor maintenance, and social safety nets to counter automation-
induced job losses in manual monitoring ensure that innovation
supports economic resilience, social equity, and environmental
stewardship.

At the core of this triad lies community engagement,
which grounds WSN integration in local contexts and values.

8 Over-the-air firmware updates are wireless updates that install new

software on devices such as sensors without requiring physical connections,

enhancing security by enabling remote patching of vulnerabilities.

Educating farmers and stakeholders on benefits like real-time crop
monitoring for improved yields, alongside limitations such as
battery dependency or network gaps, and rights to control or delete
data, empowers informed choices. Community-led structures
like cooperatives for collective data management or advisory
boards for deployment reviews foster transparent, participatory
oversight. Involving locals in planning sensor placements with
field-specific knowledge, providing hands-on installation training,
and facilitating data dashboard interpretation aligns technologies
with community priorities, boosting acceptance and trust (Carolan,
2017). In the Global South, co-design incorporating indigenous
knowledge such as traditional agroforestry practices for pest
management into algorithms and training in local languages further
enhances relevance and equity. Ongoing dialogues among farmers,
researchers, policymakers, and environmental advocates can co-
create region-specific ethical standards, adapting to challenges like
arid climates or smallholder systems.

To operationalize this framework, we propose a
lifecycle-aligned checklist (Table 1) spanning five stages: (1)
Planning/Design: Assess risks early; (2) Installation/Operation:
Implement safeguards; (3) Maintenance/Updating: Monitor
and adapt; (4) Incident Response: Address breaches rapidly; (5)
End-of-Life: Decommission sustainably. This structured approach
embeds ethics continuously across the WSN lifecycle.

4 Conclusion

WSN deployments mark a new era in agriculture, creating
unprecedented opportunities for efficiency and sustainability. To
fully realize these benefits, a comprehensive ethical framework is
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TABLE 1 Lifecycle ethics checklist for WSN deployments.

Stage Technical safeguards Policy mechanisms Community engagement

Planning/design Conduct bias audits on data models; integrate
federated learning for privacy-preserving
collaboration (Žalik and Žalik, 2023).

Develop transparent and easy-to-read data
license agreements and obtain informed consent
(Kaur et al., 2022); assess equity impacts for
smallholders.

Consult local farmers on needs; form
advisory boards to incorporate
indigenous knowledge.

Installation/operation Deploy redundant sensors for reliability; use
data anonymization to protect data in transit
(Amiri-Zarandi et al., 2022).

Enforce data encryption standards (Hazrati
et al., 2022); monitor for labor displacement via
usage logs.

Train users on intuitive interfaces;
collect feedback through community
platforms.

Maintenance/updating Perform over-the-air firmware updates with
tamper detection (Kerliu et al., 2019); validate
against environmental baselines.

Update policies for emerging threats (e.g., AI
bias regulations); incentivize electronic waste
recycling.

Involve locals in upkeep; reskill workers
for sensor maintenance roles.

Incident response Activate fault isolation algorithms (Jihani et al.,
2023); isolate breaches to prevent data leaks.

Report incidents per legal frameworks; audit for
equity violations.

Notify affected communities promptly;
co-develop recovery plans.

End-of-life Design for recyclability; assess full ecological
footprint using environmental assessment
methods (Bonvoisin et al., 2012).

Mandate decommissioning protocols; repurpose
hardware for community use; restore land if
damaged

Share technical knowledge; evaluate
long-term social impacts.

needed that integrates technical safeguards, policy mechanisms,
and community engagement. Addressing issues of data reliability,
privacy, equity, labor, and environmental impact through a unified
lifecycle approach transforms WSNs from neutral tools into
accountable systems that adapt to real-world conditions. This
framework, illustrated with case examples, highlights ethics across
deployment stages from pre-deployment to end-of-life. Future
research should test its applicability in diverse agroecological
contexts, quantify long-term outcomes, and refine policies
that both empower farmers and foster innovation. Ultimately,
embedding ethics into WSNs can advance digital agriculture that
is not only high performing but also equitable and environmentally
responsible.
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