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This study proposes a novel time-series forecasting approach that integrates the 
Informer model with the RAO − 1 optimization algorithm for soil water content 
(SWC) prediction. The method innovatively combines Informer’s long-range 
dependency modeling with RAO-1’s efficient hyperparameter optimization 
to enhance forecasting accuracy. Comparative experiments were conducted 
using Random Forest, Support Vector Regression, Long Short-Term Memory 
and Transformer as baseline models on SWC datasets from the Beijing region. 
The RAO-1-optimized Informer consistently outperforms these baselines in both 
deterministic and probabilistic forecasting tasks, while also achieving superior 
computational efficiency. These results highlight the robustness of the proposed 
method and its potential to support sustainable agricultural water management 
through accurate SWC prediction.
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1 Introduction

Soil water content (SWC) as a critical parameter in the hydrological cycle, plays a pivotal 
regulatory role in regional water resource sustainability and agricultural productivity (Chen 
et  al., 2025; Liu et  al., 2020). Accurate prediction of SWC dynamics enables optimized 
irrigation scheduling, water waste reduction, and crop water use efficiency (WUE) 
improvement. Research demonstrates that in arid regions, precision irrigation strategies based 
on SWC monitoring can reduce water resource consumption by 15–30% while maintaining 
or even increasing crop yields (Gundim et al., 2023). Under global climate change scenarios 
characterized by uneven spatiotemporal precipitation distribution, the increasing frequency 
of extreme drought and flood events highlights the importance of SWC monitoring. SWC data 
not only facilitates drought risk prediction and planting strategy optimization to ensure food 
security (Bonfante et al., 2019), but also enables early flood warnings through real-time SWC 
analysis. When SWC approaches saturation capacity, integrating meteorological data allows 
prediction of surface runoff and waterlogging probability, thereby supporting drainage 
measures to mitigate flood impacts (Azimi et al., 2020). Thus, SWC prediction holds significant 
application value across multiple domains, including water resource management, sustainable 
agricultural development, and disaster prevention.

Prediction methods for SWC can generally be  categorized into three main types: 
traditional physical models, machine learning (ML) techniques, and deep learning (DL) 
approaches (Mahesh, 2020). As noted by Karandish and Šimůnek (2016), numerical models 
and machine learning models each have their strengths in soil moisture simulation, with data-
driven methods offering flexibility in handling complex nonlinear relationships. 
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Physically-based models use meteorological data as boundary 
conditions to simulate target processes (e.g., soil water dynamics), 
thus their accuracy depends on the quality and completeness of these 
meteorological inputs. While they do not model atmospheric 
processes in detail, they do rely on a descriptive representation of 
meteorological conditions as inputs. However, physical models 
generally require numerous input parameters, including high-
resolution soil, vegetation, and meteorological data, which are difficult 
to collect comprehensively for large-scale or regional applications. 
This critical limitation has been noted in recent reviews (Singh et al., 
2023; Mohanty et al., 2017). According to Singh et al. (2023), the lack 
of detailed input parameters substantially restricts the effectiveness of 
physical approaches in SWC measurement. Mohanty et al. (2017) 
further emphasize that the spatial–temporal heterogeneity and data 
gaps in environmental variables pose significant obstacles for effective 
large-scale SWC modeling using physical approaches.

While physically-based models such as the Integrated Farm 
System Model (IFSM) (Jégo et  al., 2015) and Soil and Water 
Assessment Tool (SWAT) (Verma et  al., 2022) offer mechanistic 
insights into soil water dynamics and are widely validated in 
hydrological research, their time consumption is generally much 
lower than that of any ML model, especially in terms of per-run or 
operational use. For instance, models like IFSM are specifically 
designed for efficient scenario analysis and farm-level decision 
support, featuring extremely low computational demands compared 
to all data-driven ML approaches (Antle et al., 2017). However, the 
computational burden of physical models can increase with expanding 
spatial scales, complex heterogeneity, or high temporal resolutions, 
due to the need for intensive numerical calculations in process-based 
simulations (Tekle et al., 2025). Furthermore, the overall complexity 
and numerical procedures underlying these models can sometimes 
restrict their application to extremely rapid, large-scale or real-
time tasks.

The computational efficiency of both physical and machine 
learning models is, in fact, highly context-dependent. Depending on 
the specific implementation, model configuration, and the scale of the 
target problem, different approaches may exhibit varying levels of 
computational demand. For example Jégo et al. (2015) reported that 
IFSM achieved rapid simulation times in farm-scale applications, 
whereas Tekle et al. (2025) found that physical models could become 
computationally intensive for large basin-scale or long-term 
simulations. Similarly, as reviewed by Benos et al. (2021), machine 
learning methods such as artificial neural networks (ANNs) and 
Convolutional Neural Networks (CNNs) have achieved promising 
results for SWC prediction across various agricultural applications. 
However, the computational complexity of these models tends to 
increase substantially when dealing with high-dimensional data or 
more frequent retraining, especially for deep neural network 
architectures. Therefore, care should be  taken to evaluate 
computational trade-offs in light of the specific modeling context, 
rather than making generalized assumptions about one model class 
always outperforming another.

To overcome some of these constraints, data-driven 
approaches—particularly those employing ML and DL 
algorithms—have attracted increasing attention for SWC prediction 
in recent years (Reichstein et  al., 2019). These approaches are 
valued for their flexibility and ability to capture nonlinear 
relationships, and can be  robust even with incomplete or noisy 

input data (Ali et al., 2015). However, it is important to note that 
not all ML techniques are computationally efficient: while some 
simple models, such as decision trees or small support vector 
machines, can provide rapid inference with moderate training 
requirements (Seydi et  al., 2023), many ML and especially DL 
methods, such as deep neural networks, can be  far more time-
consuming than IFSM-type physical models, particularly during 
training or when processing large-scale datasets and frequent 
retraining is required (Reichstein et al., 2019). Therefore, despite 
their advantages in some predictive contexts, ML and DL models 
may not always offer faster operational performance than well-
optimized process-based physical models.

Therefore, despite their advantages in some predictive contexts, 
ML and DL models may not always offer faster operational 
performance than well-optimized process-based physical models.

Nevertheless, recent comparative studies have shown that certain 
ensemble ML algorithms can achieve both high accuracy and satisfactory 
computational efficiency, particularly in small-sample settings.

Teshome et al. (2024) conducted a comprehensive evaluation of 
several widely used ML algorithms, including XGBoost (Niazkar et al., 
2024), LightGBM (Niazkar et  al., 2024), CatBoost (Hancock and 
Khoshgoftaar, 2020), Random Forest (Sun et al., 2024), and k-Nearest 
Neighbors (Halder et  al., 2024). Their study showed that ensemble 
learning models—particularly XGBoost and LightGBM—consistently 
achieved high accuracy and computational efficiency, especially in small-
sample settings. Despite these strengths, traditional ML approaches 
exhibit key limitations, such as constrained generalization across 
heterogeneous landscapes, limited feature interpretability, and a reliance 
on manual feature engineering. Moreover, their capacity to capture the 
complex spatiotemporal dependencies inherent in environmental 
systems remains limited (Reichstein et al., 2019; Xu and Liang, 2021).

To overcome these challenges, researchers have turned to DL 
techniques, which are characterized by multilayer neural architectures 
capable of learning complex nonlinear relationships from high-
dimensional data. For instance, Azmat et  al. (2022) proposed a 
Temporal Graph Convolutional Network (T-GCN) that incorporates 
domain knowledge and constructs graph structures via clustering to 
model both spatial and temporal dependencies in SWC dynamics. 
Similarly, Batchu et al. (2022) developed a convolutional regression 
model that integrates multi-source remote sensing data—such as 
Sentinel-1, Sentinel-2, and Soil Moisture Active Passive (SMAP)—
leading to enhanced spatial resolution and predictive accuracy. 
However, DL models also present several challenges, including high 
computational costs, complex architectures, and the need for extensive 
data preprocessing. These factors limit their scalability and practical 
deployment in real-time or resource-constrained environments. 
Furthermore, the generalizability of DL models across different soil 
types and geographic conditions remains insufficiently validated.

In response to the limitations of both traditional ML and advanced 
DL methods, hybrid approaches have been proposed. For example, 
Liu et al. (2024) introduced a model that combines a backpropagation 
(BP) neural network with genetic algorithm-based feature selection. 
This approach leverages Sentinel remote sensing data to reduce 
redundant input features, thereby improving computational efficiency 
while maintaining high predictive accuracy. Nonetheless, the model’s 
performance remains sensitive to the quality and temporal consistency 
of remote sensing inputs, which can impact its robustness in 
operational settings. In summary, although ML and DL techniques 
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offer promising avenues for accurate SWC prediction, significant 
challenges remain—particularly in terms of data quality sensitivity, 
computational demands, and model generalizability. Addressing these 
limitations is essential to enable reliable, large-scale, and real-time 
applications in diverse agricultural and environmental contexts.

To address the aforementioned challenges, this study proposes an 
improved Informer model optimized by the RAO-1 algorithm for 
multi-step prediction of SWC. The model is capable of effectively 
predicting the variation trends of SWC at depths of 10 cm, 20 cm, and 
30 cm below the surface for the next 1, 2, and 3 days, thereby 
providing valuable scientific support for agricultural management and 
ecological monitoring. Specifically, the model leverages historical 
observational data — including temperature, precipitation, 
evaporation, and soil water content — as input features to enhance the 
model’s capability for time series forecasting and improve prediction 
accuracy for SWC.

In terms of model architecture, building upon the core advantages 
of the Informer framework, the model employs the ProbSparse self-
attention mechanism, which reduces the computational complexity of 
self-attention from ( )2O L in the original Transformer architecture to 
( )O L logL  (Zhu et al., 2023). This significantly improves computational 

efficiency, particularly when handling long-sequence data. 
Furthermore, by incorporating the concept of local sensitivity, the 
model is better able to capture local dependencies among input 
variables, enabling it to more effectively learn the dynamic patterns 
underlying SWC variations. To further enhance the model’s 
performance, the RAO-1 algorithm is integrated for adaptive 
hyperparameter optimization. As a parameter-free global optimization 
algorithm, RAO-1 dynamically adjusts the search step size, effectively 
mitigating the risk of premature convergence commonly encountered 
in traditional optimization methods (Rao, 2020). Through the 
application of RAO-1, the model achieves superior convergence 
behavior during hyperparameter search, substantially improves 
computational efficiency, and reduces training time, thus offering a 
practical and scalable solution for large-scale SWC prediction tasks.

To validate the effectiveness of the proposed RAO-1 optimized 
Informer model for soil moisture prediction, we  conducted 
comparative experiments with three state-of-the-art (SOTA) baseline 
models: Random Forest (RF), Long Short-Term Memory (LSTM), and 
Transformer. These models were selected as they represent both 
traditional ML approaches and advanced DL architectures that are 
widely recognized in time-series and remote sensing analysis.

The performance of all models was quantitatively evaluated using 
five commonly adopted regression metrics: Mean Squared Error 
(MSE) (Wang and Lu, 2018), Root Mean Squared Error (RMSE) 
(Wang and Lu, 2018), Mean Absolute Error (MAE) (Wang and Lu, 
2018), Mean Absolute Percentage Error (MAPE) (Ren and Glasure, 
2009), and the coefficient of determination (R2) (Berggren, 2024). 
These metrics offer comprehensive insights into both the absolute 
and relative prediction errors, as well as the explanatory power of 
the models.

Experimental results demonstrate that the RAO-1 optimized 
Informer consistently outperforms all baseline models across multiple 
evaluation metrics. Specifically, our model achieves the lowest MSE, 
RMSE, MAE, and MAPE values, and the highest R2 score, indicating 
superior predictive accuracy and generalization ability for soil 
moisture content estimation. These findings confirm the effectiveness 
of integrating Rao-1 based hyperparameter optimization with the 

Informer architecture, and highlight its advantage over both 
conventional and state-of-the-art methods in this domain.

The main contribution of this paper can be summarized as:

	 1	 We trained the Informer model using only a limited set of input 
features while still achieving satisfactory performance.

	 2	 We employed the RAO-1 algorithm for hyperparameter 
optimization, which not only improved the convergence 
performance during the hyperparameter search process but 
also significantly enhanced the overall computational efficiency 
and reduced the training time.

	 3	 We conducted a comparative analysis with the widely used 
baseline models in the field of time series forecasting to validate 
the effectiveness of the proposed approach.

The remainder of this paper is structured as follows. Section 2 
introduces the predictive model. Section 3 provides the experimental 
results and corresponding analysis. Conclusions are drawn in 
Section 4.

2 The proposed method

To improve the forecasting performance of the Informer 
model, we  employ the RAO-1 algorithm for adaptive 
hyperparameter optimization. The proposed method is illustrated 
in Figure 1.

As shown in Figure 1, the method consists of four main stages: 
raw time series data is first preprocessed to handle missing values, 
normalize features, and convert data formats to ensure compatibility 
with the Informer input format.

In the preprocessing stage, for each time step, we align the time 
stamps of meteorological features (MF), soil water content at depth X 
(SWC_X), and the initial soil moisture at the same depth (ISM_X). 
These variables corresponding to the same date are concatenated to 
form a multivariate feature vector. This procedure is repeated for all 
time steps to generate the input matrix for the subsequent model, with 
each row representing the features for one specific timestamp.

The Informer model is initially trained using a set of 
hyperparameters. After training, the model’s forecasting performance 
is evaluated by a fitness function measuring prediction accuracy. If the 
fitness value does not meet predefined criteria, the RAO-1 algorithm 
adaptively generates new hyperparameters based on current 
performance feedback. The Informer model is then retrained with 
updated hyperparameters. This evaluation and optimization cycle 
repeats until convergence or stopping conditions are satisfied.

2.1 Data source and feature extraction

The dataset employed in this study was collected from a single 
in-situ monitoring site in Beijing, China (39.48°N, 116.28°E), 
providing point-based measurements rather than spatially 
averaged data. Observations were recorded once per day from 
February to November of each year between 2012 and 2016. Each 
daily entry comprised a suite of meteorological features—mean 
air temperature, atmospheric pressure, relative humidity, surface 
temperature, precipitation, evaporation, and sunshine 
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duration—as well as SWC and initial soil moisture (ISM) at three 
depths (10 cm, 20 cm, and 30 cm). Guided by domain knowledge 
regarding the factors influencing soil moisture dynamics, daily 
mean air temperature, precipitation, evaporation, relative 
humidity, and the historical soil water content at each respective 
depth were selected as the fundamental input features for the 
predictive model. All variables were temporally aligned according 
to date and concatenated into multivariate input vectors.

2.2 Data pre-processing

Prior to model training, missing values in both soil moisture and 
meteorological records were addressed using linear interpolation to 
ensure data continuity. At each time step, the temporally aligned 
meteorological variables, the corresponding SWC at depth X, and 
ISM at the same depth (defined as SWC at the start of each day) were 
incorporated into unified feature vectors. To account for seasonal 
effects on soil moisture, the dataset was partitioned into the full 
season—comprising all observations from February to November 
each year—and the rainy season (June to August), which represents 
the period of peak precipitation in Beijing and forms a strict subset 
of the full seasonal dataset following regional climatological 
conventions. All input features were standardized using Z-score 
normalization to mitigate disparities in magnitude and facilitate 
model convergence. Supervised learning samples were constructed 
using a sliding window approach: observations from the preceding 
7 days were used as input to predict SWC for the subsequent 3 days, 
enabling the Informer model to capture short- to medium-term 
temporal dependencies. Through this systematic pre-processing and 
feature engineering process, a high-quality and well-structured 
dataset was established, providing a robust foundation for model 
training and evaluation under varying meteorological and 
hydrological conditions.

2.3 Informer module

The Informer model, proposed by Zhou et  al. (2020), is an 
efficient and scalable Transformer-based architecture specifically 
designed for long sequence time-series forecasting. Similar to the 
long sequence forecasting model applied in ship motion attitude 
prediction by Hou et al. (2024), Informer addresses the 
computational complexity issues of traditional Transformer 
architectures. Unlike the original Transformer, which suffers from 
quadratic time and space complexity with respect to sequence 
length, Informer introduces several innovative techniques to 
significantly reduce computational cost while maintaining high 
forecasting accuracy.

The Transformer-based models have demonstrated remarkable 
performance in sequence modeling tasks. However, their self-
attention mechanisms suffer from high computational complexity, 
particularly when dealing with long sequences. To address this 
challenge, the Informer model incorporates a ProbSparse Self-
Attention mechanism that selectively focuses on the most critical 
attention scores. This selective attention reduces the computational 
burden by identifying and retaining only the top-u  queries with 
the largest sparsity measurements, resulting in a significant 
reduction of time complexity from ( )2O L to ( )logO L L , where L 
represents the sequence length (Zhu et al., 2023). This approach 
accelerates attention computation and effectively handles long 
sequences. The architecture of the Informer model is illustrated 
in Figure 2.

The Informer model consists of the following key components:
Input Embedding: The Informer model begins with an input 

embedding layer that handles two input streams: the encoder input 
( enX ) and the decoder input ( deX ). The encoder input consists of 
multivariate time series features over seven consecutive historical 
days, combining both SWC at the target depth and associated 
meteorological variables including daily average temperature, 

FIGURE 1

Method diagram of using RAO-1 to optimize the informer model.
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precipitation, humidity, etc. The decoder input includes these 
historical tokens followed by a series of zero-masked tokens 
corresponding to the forecast horizon (next 3 days). Each input 
sequence is projected into a higher-dimensional feature space 
through a linear transformation, as defined in Equation (1):

	 = +e e eX W X b 	 (1)

where X  is the input sequence, eW  is the embedding matrix, and 
eb  is the bias term.

Encoder-Decoder Architecture: Similar to the original 
Transformer, Informer utilizes an encoder-decoder architecture, but 
with optimizations in the attention mechanism. The encoder generates 
a representation of the input sequence, which is then passed to the 
decoder for prediction.

Self-attention mechanism: The self-attention mechanism, which 
calculates attention scores between all pairs of tokens in the input 
sequence, is a fundamental component of the Transformer and 
Informer architectures. However, this mechanism suffers from 
quadratic complexity in relation to the sequence length. To address 
this, Informer introduces the probSparse attention mechanism, 
which reduces the complexity by focusing on the most informative 
parts of the sequence. This reduces the complexity 
from ( )2O L to ( )logO L L .

The self-attention mechanism can be mathematically formulated 
as shown in Equation (2):

	
( )

 
=   

 
, ,

T

k

QKAttention Q K V softmax V
d 	

(2)

where Q, K , and V  are the query, key, and value matrices, 
respectively, and kd  is the dimension of the key vectors.

ProbSparse attention: To further optimize the attention 
computation, Informer introduces an approximation called ProbSparse 
attention. This mechanism selectively focuses on the most informative 
queries, while ignoring irrelevant parts of the sequence. The sparsity 
score qu  for each query is computed as shown in Equation (3):

	

 ⋅
  
 

=
= ∑

1

k

q k
l

d
q

k
u e

	
(3)

where q and k are the query and key vectors, respectively, and kd  
is the dimension of the key vectors.

Only the queries with the top-u values of qu  are retained, ensuring 
that the most relevant query-key pairs dominate the attention 

FIGURE 2

The architecture of the informer model.
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distribution. This approach significantly reduces computational costs 
by focusing attention only on the most critical parts of the sequence.

Decoder: The decoder in the Informer architecture consists of 
stacked layers incorporating masked multi-head ProbSparse self-
attention and standard multi-head attention. The decoder input 
sequence deX comprises the concatenated historical multivariate 
features and masked tokens for the future forecasting steps. The 
masked ProbSparse self-attention enforces the causal constraint by 
limiting the decoder’s access to previous and current positions only, 
thereby eliminating any leakage of future information during training 
and inference. Furthermore, the decoder integrates the output from 
the encoder via standard multi-head attention, allowing it to leverage 
comprehensive contextual information from historical soil moisture 
and meteorological data. This design enables the decoder to generate 
rich hidden representations embedding essential temporal 
dependencies and feature correlations, which are used to produce 
accurate future soil moisture content forecasts.

Prediction layer: The output of the decoder is processed by a fully 
connected layer to produce the final multi-step forecast. Specifically, the 
last hidden state from the decoder, decoderh , is transformed as shown in 
Equation (4):

	 = +ˆ d decoder dY W h b 	 (4)

where dW  and db  are the corresponding weight matrix and bias for 
the output layer. This operation yields the predicted SWC values for 
the subsequent 1–3 days, as indicated at the output node of Figure 2. 
This final step translates the learned temporal features into concrete 

forecasts, thereby completing the end-to-end prediction process of the 
Informer model.

Informer presents a breakthrough in time-series forecasting 
by addressing the limitations of traditional attention mechanisms. 
Its design principles, including sparse attention and sequence 
distillation, enable efficient handling of long sequences while 
maintaining strong predictive performance. However, the 
parameter optimization process of the Informer model remains 
relatively complex, which can hinder its computational efficiency 
and prolong training time, especially when dealing with large-
scale time series data. To address this challenge, we employ the 
RAO-1 optimization algorithm to fine-tune the parameters of the 
Informer model. By integrating RAO-1, a metaheuristic 
optimization technique known for its simplicity and effectiveness 
in navigating complex search spaces, we  aim to enhance the 
convergence speed and overall computational efficiency of the 
training process. This integration not only accelerates model 
training but also contributes to achieving more stable and reliable 
forecasting performance.

2.4 The hybrid informer model

To further enhance the training efficiency and parameter 
optimization capability of the Informer model, we  integrate the 
RAO-1 algorithm—a robust, parameter-free metaheuristic 
optimizer renowned for its simplicity and competitive performance 
in complex optimization tasks. The name ‘RAO-1’ stands for ‘Rao 

ALGORITHM 1

RAO-1 optimization algorithm.
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Algorithm 1,’ reflecting its introduction as the first simple, 
metaphor-less population-based metaheuristic optimization 
algorithm by Rao (Rao, 2020). The intuition behind RAO-1 is to 
guide the search process by encouraging all candidate solutions in 
the population to move closer to the best solution and further away 
from the worst, thereby promoting effective exploitation and 
exploration without the need for algorithm-specific control 
parameters or metaphorical inspirations.

Unlike traditional evolutionary algorithms that rely on control 
parameters, such as crossover and mutation operations, RAO-1 
employs a direct approach to updating candidate solutions. The 
detailed implementation steps of this procedure are outlined in 
Algorithm 1, which presents the RAO-1 optimization algorithm. We 
strictly follow the update rule as defined in the original RAO-1 paper 
(Rao, 2020), as shown in Equation (5):

	

( ) ( ) ( ) ( )+  = + ⋅ − 
 

1
1

t t t t
worsti i bestX X r X X

	
(5)

where all notations are consistent with (Rao, 2020): ( )t
iX is the 

position of candidate i at iteration t , ( )t
bestX  and ( )t

worstX  denote the best 
and worst solutions at iteration t , 1r  is a randomly generated number 
within the range   0,1 , ⋅  represents the element-wise absolute 
value operation.

The key design philosophy of RAO-1 is to encourage exploration 
toward optimality while maintaining population diversity, thus 
helping to prevent premature convergence—a property that is 
particularly beneficial for navigating the high-dimensional parameter 
space required for Informer model training.

The choice of RAO-1 over alternative population-based 
optimizers such as Particle Swarm Optimization (PSO) (Poli et al., 
2007), Genetic Algorithms (GA) (Kumar et  al., 2010), and 
Bayesian optimization (Frazier, 2018) is based on several 
compelling considerations. Unlike PSO and GA, which require 
careful tuning of multiple algorithm-specific parameters (e.g., 
inertia weights, crossover and mutation probabilities), RAO-1 is 
completely parameter-free, thus eliminating the risk of suboptimal 
optimizer settings and simplifying the optimization process (Rao, 
2020). This feature is particularly advantageous for large-scale 
neural networks where the overhead of parameter tuning can 
be  prohibitive. Furthermore, RAO-1 is designed to effectively 
balance exploration and exploitation by encouraging each solution 
to approach the best candidate in the population while 
maintaining distance from the worst, which helps to prevent 
premature convergence—a common issue in standard evolutionary 
algorithms—while preserving population diversity (Rao, 2020; 
Farah et al., 2022). In contrast, Bayesian optimization, although 
efficient in low- or moderate-dimensional spaces, often suffers 
from scalability issues as the dimensionality of the search space 
increases, limiting its practical utility in high-dimensional 
hyperparameter tuning tasks that are common in transformer-
based models (Malu et  al., 2021). Prior empirical studies have 
consistently shown that RAO-1 can achieve comparable or 
superior optimization performance with reduced computational 
complexity when applied to a diverse range of complex, real-world 
optimization problems (Rao, 2020; Farah et al., 2022). Therefore, 
given its robust performance, scalability, and simplicity, RAO-1 
represents a pragmatic and theoretically sound choice for 

navigating the constrained, high-dimensional hyperparameter 
space associated with Informer model training.

In this study, all formulations and implementations of RAO-1 
strictly follow the original description in (Rao, 2020). We extend its 
established capability in solving real-world optimization problems 
(Farah et al., 2022; Meng et al., 2021) by applying it to hyperparameter 
tuning of the Informer model.

For the given dataset, as shown in Equation (6):

	 ( ){ }= = …, | 1|2|,i iD X y i N
	 (6)

where iX  is the feature vector and iy  is the observed output for the 
i-th sample, and let the parametric model ( )θ;if X  represent the 
predictive output of the Informer with parameter vector θ. The 
parameter optimization problem can be formulated as shown in 
Equation (7):
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subject to the constraint in Equation (8):

	 θ ∈ subject to S	 (8)

where S denotes the feasible set of model parameters. The explicit 
definition of S is provided in Equation (9):
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The RAO-1 optimizer is leveraged to efficiently navigate this 
constrained, high-dimensional parameter space, adaptively adjusting 
model hyperparameters to achieve minimal prediction error with 
respect to the objective function.

By leveraging RAO-1 to efficiently navigate this constrained, high-
dimensional parameter space, we  can adaptively adjust model 
hyperparameters to minimize prediction error with respect to the 
objective function. This update strategy simplifies the optimization 
process and has been shown to exhibit robust performance in avoiding 
local optima, as demonstrated in recent comparative studies (Rao, 
2020; Farah et al., 2022; Meng et al., 2021).

To efficiently integrate RAO-1 with the Informer model, the 
RAO-1 algorithm is employed to optimize hyperparameters such as 
the learning rate, attention factor, hidden size, and dropout rate. This 
hybrid framework facilitates automated hyperparameter tuning, 
significantly accelerating the convergence process while maintaining 
or improving forecasting accuracy.

This study proposes a hybrid framework that integrates the 
RAO-1 optimization algorithm with the Informer model, as illustrated 
in Figure 3. In the data processing pipeline, raw data is first passed 
through the RAO-1 optimization algorithm module for parameter 
pre-optimization. The RAO-1 algorithm uses an intelligent search 
strategy to identify optimal parameter combinations within the 
solution space, which are then set as initial values (Farah et al., 2022). 
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These optimized parameters are applied to initialize the Informer time 
series forecasting model, which is based on an enhanced Transformer 
architecture specifically designed for long-sequence prediction tasks.

Once the model is initialized, the system uses training data for 
end-to-end training, evaluating the model’s performance using a 
predefined fitness function. This function considers multiple factors, 
including prediction accuracy and model complexity.

The optimization process is governed by dual stopping criteria: 
the process terminates either when the model’s fitness reaches a 
predefined threshold or when the maximum number of allowed 
iterations is exceeded. If neither condition is met, the system returns 
to the RAO-1 parameter initialization step for further optimization. 
Ultimately, the best-performing model from all candidate solutions 
generated during the iterations is selected as the final model and 
validated for generalization on an independent test set.

This hybrid approach, which combines heuristic optimization 
algorithms with deep learning models, enables automatic parameter 
tuning. It ensures high prediction accuracy while significantly 
enhancing training efficiency. Experimental results demonstrate that 
this framework outperforms the standalone Informer model across 
multiple evaluation metrics.

2.5 Performance evaluation metrics

This study employs four evaluation metrics to assess the 
performance of the Informer model optimized by the RAO-1 
algorithm, providing a comprehensive understanding of the 
optimization outcomes. The metrics used are MAE, MAPE, RMSE, 
MSE, and R2. The formulations are listed in Equations (10–14), 
respectively.
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where iy  is the actual value of SWC, iy  is the predictive value of 
SWC, iy  is the mean value of the actual value of test dataset, and M  is 
the number of the test dataset.

The MAE is calculated as the average of all predictions to represent 
the overall performance during the forecasting period. The range of 
MAE spans from zero to infinity, with values closer to zero indicating 
accurate predictions and minimal error. However, MAE is sensitive to 
the absolute values of the data.

The MSE is calculated as the average of the squared differences 
between observed and predicted values to assess the overall prediction 
error during the forecast period. The value of MSE ranges from zero 

FIGURE 3

Integrated optimization framework of informer model with RAO-1 algorithm.
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to infinity, where a lower MSE indicates a model with more accurate 
predictions and fewer large errors. Due to the squaring of errors, MSE 
is more sensitive to large deviations than other metrics.

MAPE is also employed to compare the results over the entire 
period and during the rainy season, as it evaluates the percentage 
of error rather than the absolute error. A lower MAPE value 
indicates smaller error, although when the absolute values approach 
zero, the bias can be magnified. According to Lewis (1982), a MAPE 
between 20 and 50% is considered reasonable, while values below 
10% are regarded as highly accurate. More recent studies, such as 
those by Hyndman and Koehler (2006), and more recently by Atzori 
et al. (2020), have affirmed that MAPE remains a valuable metric, 
though it should be  used with caution when data values are 
near zero.

RMSE is used to address challenges of underfitting and overfitting 
in this study. Smaller RMSE values (closer to zero) are favorable. The 

2R  value indicates the degree to which the linear regression model fits 
the data points in this study, with the scatter plot of observed and 
predicted SWC values ranging from 0 to 1. RMSE and 2R  are widely 
used and have been emphasized in recent forecasting works such as 
those by Yang and Chen (2019) and Wang et al. (2021), as they provide 
a clear insight into model performance and error distribution.

The equations for MAE, MAPE, RMSE, MSE, and 2R are derived 
from Chai and Draxler (2014) with further validation from more 
recent contributions by Dube et al. (2022) and Sharma et al. (2023). 
These metrics continue to be essential for evaluating the efficacy of ML 
models in time series forecasting tasks.

3 Case study

To ensure a fair comparison, all models in the case study are 
trained and evaluated using the exact same pre-processed and feature-
aligned datasets described in Section 2. The meteorological variables, 
soil water content at each depth, and initial soil moisture are jointly 
aligned and concatenated as described, serving as the universal input 

vector for all models. In this study, experiments were conducted by 
first tuning the population size and number of iterations of the RAO-1 
algorithm, with the optimal configuration determined based on 
comparisons of MSE, MAE, RMSE, 2R , MAPE, and training time. 
Using the selected parameters, we  applied the RAO-1-optimized 
Informer model to predict SWC one, two, and three days in advance 
at soil depths of 10 cm, 20 cm, and 30 cm. The predictive performance 
of the optimized Informer was evaluated for both the rainy season and 
the entire dataset. For benchmarking, RF, LSTM, and Transformer 
models were employed under the same forecasting scenarios and 
settings. The SWC data used in these experiments was collected from 
a site in Beijing, China, covering February 28, 2012 to November 8, 
2016, and comprises daily average SWC measurements from soil 
depths of 10 cm, 20 cm, and 30 cm. After preprocessing, these data 
formed continuous time series that were used for both model training 
and evaluation.

3.1 Data description

The SWC data used in this study was collected over a period from 
February 28, 2012, to November 8, 2016, at a site located in Beijing, 
China. The data consists of daily average SWC measurements, 
recorded at regular intervals throughout the study period. These raw 
SWC data were collected at three different soil depths: 10 cm, 20 cm, 
and 30 cm. The data from these depths were then processed to form a 
comprehensive SWC time series, which serves as the basis for both the 
training and testing datasets in the subsequent analytical and 
predictive modeling tasks.

The time series data collected from the specified depths is essential 
for understanding the SWC variations across different layers of the soil 
profile. By analyzing these measurements, we can gain insights into 
the SWC dynamics at varying depths, which is particularly relevant 
for agricultural and hydrological applications.

The collected SWC data from the 10 cm, 20 cm, and 30 cm depths 
are visualized in Figures 4–6, respectively. These figures provide an 

FIGURE 4

SWC at 10 cm depth.
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in-depth view of the temporal variations in SWC at different depths 
over the study period. The visual representations of the data allow for 
a clearer understanding of seasonal trends, moisture retention 
patterns, and the relationship between soil depth and SWC in the 
study area.

This detailed data analysis is integral to the development of 
accurate models for forecasting SWC dynamics, which is critical for 
efficient water management and agricultural decision-making.

In the experimental process, a data item is formed by using a 
sequence of seven consecutive historical SWC data points from 10 cm, 
20 cm, and 30 cm depths, along with their corresponding response 

points (the 8th, 9th, and 10th data points). Specifically, the SWC data 
from the previous 7 days is used to predict the SWC for the following 
3 days. The complete dataset consists of 1,272 data items, with the first 
1,000 items forming the training set and the remaining 272 items used 
for testing.

Traditional hyperparameter tuning methods make training the 
Informer model highly time-consuming. To address this challenge, 
the RAO-1 algorithm is employed for optimizing the hyperparameters 
of the Informer model. Given that population size and the number of 
iterations significantly influence the results of RAO-1 optimization, 
we first analyze the effects of different population sizes and iteration 

FIGURE 5

SWC at 20 cm depth.

FIGURE 6

SWC at 30 cm depth.
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numbers on the parameter tuning results under the condition of 
predicting the SWC at 30 cm depth for 2 days ahead. The optimal 
population size and iteration count obtained from this analysis are 
then used for training models on SWC predictions for other forecast 
horizons and depths.

Finally, the performance of the Informer model optimized using 
the RAO-1 algorithm is compared with that of the baseline models, 
tested on the same testing dataset. This comparison provides a 
benchmark for evaluating the effectiveness of the proposed 
optimization strategy in improving model performance.

3.2 Effects of population size and iteration 
frequency on model training dynamics

To determine the optimal population size and number of 
iterations, we first conducted experiments under the condition of 
predicting SWC at a 30 cm depth for 2 days ahead. A population size 
that is too small leads to insufficient diversity, causing the algorithm 
to converge prematurely to a local optimum and making it difficult to 
explore the global optimal region of the parameter space. This issue is 
particularly pronounced in high-dimensional parameter optimization 
problems, where small populations struggle to effectively cover the 
solution space. While the computational cost of a single iteration may 
be  low, the number of iterations required to reach a satisfactory 
solution could significantly increase, ultimately reducing overall 
computational efficiency.

In the framework combining RAO-1 with the Informer model, 
small population sizes make the model more sensitive to initial 
parameter settings, potentially resulting in increased instability during 
the model training process. Additionally, too few iterations can lead 
to premature termination of the algorithm before it reaches stable 
convergence, resulting in incomplete parameter optimization and 
adversely affecting the quality of the Informer model initialization. 
Stopping the optimization process before the fitness evaluation is 
sufficiently thorough may miss more optimal parameter combinations. 
If the exploration-exploitation balance in RAO-1 has not been 
properly established, premature termination could lead to the delivery 
of suboptimal initial parameters to the Informer model.

On the other hand, excessively large population sizes require 
evaluating a large number of individuals in each iteration, which 
significantly increases the computational cost. This issue becomes 
especially pronounced in the context of DL model optimization, 

where computational overhead grows non-linearly (Telikani et al., 
2021; Wu et al., 2019). Once the population size exceeds a certain 
threshold, the improvement in solution quality becomes 
disproportionate to the resource consumption, leading to a decrease 
in optimization efficiency. With a fixed number of iterations, an 
excessively large population may lead to insufficient exploration 
during the exploitation phase, thereby slowing down the convergence 
rate. Similarly, an excessively large number of iterations requires 
re-evaluating the fitness function after each iteration, which can 
be  computationally expensive, especially given the high cost of 
training and validating the Informer model (Roy et  al., 2023). 
Consequently, a large number of iterations can result in overly long 
optimization times, reducing overall efficiency.

Furthermore, during the optimization process, the fitness function 
may become biased toward specific patterns in the training data, 
leading to parameter optimization that performs well on the training 
set but has reduced generalization ability on the test set. This 
overfitting issue can compromise the broader applicability of the 
model. To address these challenges and achieve a more balanced 
optimization, we chose to initialize both the population size and the 
number of iterations to 5, with increments of 5 as the minimum step 
size for increasing these values. This systematic approach allows for 
careful evaluation of how different parameter settings influence overall 
performance. The experimental results presented in Table  1 were 
obtained for the scenario of forecasting soil conditions 2 days ahead 
at a depth of 20 cm.

As shown in Table 1, when the population size is set to 5, the 
model’s performance initially improves as the number of iterations 
increases. However, as the iteration count continues to increase, early 
stopping is triggered. This could be due to the small population size, 
which leads to insufficient diversity within the population, causing 
the algorithm to converge prematurely to a local optimum and 
making it difficult to explore the global optimal region of the 
parameter space. To address this, we fixed the number of iterations 
and increased the population size to 10. Under this condition, the 
model’s performance improved compared to the case with a 
population size of 5.

Next, we kept the population size constant and further increased 
the number of iterations, observing that the model’s performance 
continued to improve. However, when the iteration count reached 30, 
early stopping was triggered again, and further increases in iterations 
did not yield significant performance improvements. We  then 
continued to increase the number of iterations, but the model’s 

TABLE 1  The performance and training time of the model under different population size and iteration frequency.

Population size Iteration frequency MSE RMSE MAE MAPE R2 Training Time(s)

5 5 0.9673 1.1356 0.7981 8.9695% 0.5164 355.22

5 10 0.7715 0.9264 0.6002 7.5612% 0.5648 585.78

5 15 0.7593 0.9146 0.5951 7.4996% 0.5661 607.86

10 15 0.6312 0.8563 0.5289 6.5918% 0.6071 1736.20

10 20 0.5531 0.7788 0.4862 5.9989% 0.6627 2700.73

10 25 0.5279 0.7098 0.4046 5.2158% 0.7846 3660.21

10 30 0.5167 0.6978 0.3997 5.1098% 0.7901 3709.32

15 30 0.5302 0.7114 0.4057 5.2272% 0.7834 3765.79

15 35 0.5245 0.7016 0.4027 5.2088% 0.7887 3797.91
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performance remained relatively unchanged. Similarly, when 
we increased the population size further, no notable improvements in 
performance were observed. Following this, as both the population 
size and iteration count continued to increase, early stopping was 
triggered in all cases.

As observed in Table 1 and detailed above, increasing both the 
population size and number of iterations generally leads to improved 
model accuracy as measured by MSE, RMSE, MAE, and R2, but at the 
expense of an exponential increase in training time. For example, 
increasing the population size from 5 to 10 (with 25 iterations) 
resulted in a notable decrease in MSE (from 0.7593 to 0.5279) and an 
improvement in R2 (from 0.5661 to 0.7846), but the training time rose 
sharply from 607.86 s to 3660.21 s. Beyond a certain threshold 
(population size > 10, iterations > 30), the marginal improvement in 
accuracy diminished while the computational burden continued to 
escalate. Thus, a population size of 10 and 25 iterations represents a 
practical trade-off, offering substantial accuracy gains with an 
acceptable computational cost.

This balance between performance improvements and 
computational efficiency is critical for practical deployment scenarios, 
especially when computational resources or training time are limited.

In summary, we decided to use a population size of 10 and 25 
iterations for model training.

3.3 Baseline methods

To validate the effectiveness of the proposed RAO-1 optimized 
Informer model for soil moisture prediction, we  selected four 
representative and widely used baseline models for comparison: 
Support Vector Regression (SVR) (Awad and Khanna, 2015), RF 
(Dashtbazi et al., 2023), LSTM (Wang et al., 2024), and Transformer 
(Zhao et al., 2023). These methods cover both traditional ML and 
advanced DL approaches.

SVR is a kernel-based regression technique that has been 
frequently applied in hydrological modeling and soil moisture 
estimation due to its strong ability to capture non-linear 
relationships in complex datasets (Deka, 2014). SVR is particularly 
effective when the underlying relationship between predictors and 
target variables is not strictly linear, and it can perform well for 
short-term forecasting. However, similar to other traditional 
regression methods, SVR does not explicitly model temporal 
dependencies, which may limit its performance for long-term or 
sequence-based predictions.

RF is an ensemble learning method based on decision trees and 
specifically implemented here as a Random Forest Regressor. Thanks 
to its robustness, generalization ability, and capacity to handle 
nonlinear interactions, RF has found considerable success in water 
resources and soil moisture time series modeling (Adab et al., 2020). 
RF is also resistant to overfitting and can effectively handle tabular, 
structured data after appropriate preprocessing. Nevertheless, as a 
bagging-based algorithm, RF focuses more on short-term 
dependencies and, like SVR, lacks mechanisms for explicitly capturing 
long-term temporal trends in time series data (Kratzert et al., 2018).

LSTM is a type of RNN that is particularly effective for modeling 
sequential data with long-range dependencies. By using memory cells 
and gating mechanisms, LSTM can capture temporal patterns in soil 
moisture time series. However, its sequential nature leads to higher 

computational costs and difficulties in handling very long 
sequences efficiently.

In summary, SVR and RF serve as strong traditional machine 
learning benchmarks with proven effectiveness for short-term 
forecasting based on structured data features, although their inherent 
designs limit their ability to capture long-term temporal dependencies. 
In contrast, LSTM, Transformer, and our proposed Informer-based 
models are advanced deep learning approaches specially designed for 
sequential or time series data. For instance, Xu et al. (2023) 
demonstrated the effectiveness of Informer in power-load forecasting, 
highlighting its potential for time-series prediction tasks similar to 
SWC forecasting. This comprehensive selection of baselines ensures a 
thorough and fair evaluation of the advantages introduced by the 
RAO-1 optimized Informer model for both short-term and long-term 
soil water content forecasting.

In addition, while it is acknowledged that integrating an attention 
mechanism into the LSTM framework has been reported to further 
improve time-series forecasting performance in some recent studies 
(Qin et al., 2017; Yan et al., 2021; Li et al., 2024), such an extension 
was not included in our comparative experiments at this stage. The 
primary reasons are as follows: First, compared to the standard 
LSTM, the Attention-LSTM model is significantly more complex and 
requires a larger number of trainable parameters, which poses a 
greater risk of overfitting—an issue highlighted in the context of 
small to moderately sized datasets in deep learning literature (Aamer 
et  al., 2020; Kumar et  al., 2023)—especially given that our soil 
moisture dataset, though consisting of several thousand samples, 
remains moderate in size for advanced deep neural networks. Second, 
the focus of this work is to benchmark the proposed RAO-1 
optimized Informer against the most commonly used and widely 
accepted baseline architectures, so as to ensure comparability and 
reproducibility with previous research in the hydrological time series 
field (Datta et al., 2023; Zhou et al., 2021). Expanding the baseline 
family to include various advanced LSTM variants could also 
introduce ambiguity regarding the core contribution of this study. 
Therefore, the comparison is limited to the standard LSTM and 
Transformer models, with the inclusion of more sophisticated LSTM 
variants reserved for future work as larger or more diverse datasets 
become available.

3.4 Hyperparameter selection and tuning

To ensure a fair and optimal comparison among all models, 
comprehensive hyperparameter selection and tuning were performed 
for both deep learning models (Informer, LSTM, Transformer) and 
traditional machine learning models (RF, SVR). This process took into 
account the scale of available samples and employed a sliding window 
approach, where data from 7 consecutive days were used to predict 
SWC for the subsequent 3 days. The data were chronologically 
partitioned into training, validation, and testing sets with a ratio of 60, 
20, and 20%, respectively, to avoid temporal data leakage. All deep 
learning models were initialized and trained three times with different 
random seeds, and the best validation model checkpoint was selected 
for test set evaluation.

For the deep learning models (Informer, LSTM, and Transformer), 
the following key hyperparameters were tuned: number of layers, 
hidden units, learning rate, dropout rate, batch size, and early stopping 
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mechanism. The parameter ranges, as shown in Equation (15), were 
carefully designed to balance model capacity against the moderate 
dataset size and to mitigate overfitting risks. This design approach is 
consistent with the search space division method for high-dimensional 
data optimization proposed by Chaudhuri (2024):
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For the Informer model specifically, key model parameters—
including learning rate, hidden units, dropout rate, and the model-
specific hyperparameter α (search space [0.1, 2.0])—were optimized 
using the RAO-1 global optimization algorithm within their respective 
search spaces. Other Informer parameters not subject to direct 
optimization, such as batch size and optimizer type, were aligned with 
those of the LSTM and Transformer models to maintain comparability.

Traditional machine learning models—RF and SVR—were tuned 
via grid search over the following hyperparameter spaces:

RF:
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SVR:
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All hyperparameter tuning was conducted on the validation set 
using mean squared error as the objective metric. Early stopping was 
employed only for deep learning models to prevent overfitting, based 

on validation loss not improving for 10 consecutive epochs. All 
models were trained with consistent maximum epochs (100 for deep 
models) and data splits to ensure uniformity.

The final selected hyperparameters for each model, which yielded 
optimal validation performance, are summarized in Table 2.

This hyperparameter selection strategy, combined with consistent 
data splits and evaluation protocols, ensures valid and unbiased 
comparisons across models. This protocol is intended to eliminate 
hyperparameter tuning bias and to ensure that each model’s reported 
performance represents its optimal achievable accuracy under 
consistent experimental conditions.

3.5 Comparative analysis

We compare the performance of the RAO-1 optimized Informer 
model with the baseline models for forecasting SWC one, two, and 
3 days ahead, based on seven consecutive days of SWC data, under 
conditions at depths of 10 cm, 20 cm, and 30 cm. The evaluation 
metrics used for comparison include MSE, RMSE, MAE, MAPE, and 

2R . Tables 3–5 summarize the forecasting performance of the RAO-1 
optimized Informer model and the baseline models for predicting 
SWC one, two, and 3 days in advance, respectively, at depths of 10 cm, 
20 cm, and 30 cm.

The performance metrics (MSE, MAE, etc.) reported for each 
model are obtained as the average (and standard deviation) over all 
five-fold cross-validation (CV). For each depth/horizon combination, 
the training, validation, and test sets were split as described in Section 
3.4 Small discrepancies among mean values across tables may arise 
due to the use of fold-wise CV versus one-time evaluation on the 
entire test set, which is common in time series forecasting studies.

As observed from Tables 3–5, the RAO-1 optimized Informer 
consistently outperforms the baseline models across different 
forecasting horizons and soil depths, which is consistent with the 
findings of Ye et al. (2024) that Informer-based models enhanced by 
optimization algorithms exhibit superior generalization in time-series 
forecasting tasks, particularly in reducing error metrics such as MSE 
and MAE while achieving higher R2 scores. This demonstrates the 
robustness and adaptability of the proposed method in capturing 
nonlinear temporal dependencies in SWC dynamics. Moreover, 
we also observe that under the same prediction time intervals, the 
prediction performance of both models improves with increasing soil 
depth. This phenomenon can be attributed to the stabilization of SWC 
at greater depths, where the fluctuations in water content become 

TABLE 2  Hyperparameter search space and optimal configurations for all models.

Model Layers Hidden 
units

Learning 
rate

Batch size Dropout Early 
stopping

Other parameters

LSTM 2 32 0.0005 32 0.2 10 –

Transformer 2 32 0.0005 0.32 0.2 10 –

Informer 2 32 0.00001 16 0.2 10 α = 1.0

RF – – – – – – n_estimators = 200, max_

depth = 10, min_samples_

leaf = 2, max_features = ‘sqrt’

SVR – −1 – – – – kernel = ‘rbf ’, C = 10, 

gamma = 0.01, epsilon = 0.1
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smaller. As the depth increases, the SWC tends to stabilize, reducing 
the variability that is often seen in the upper layers. Stable data features 
generally offer clearer patterns, which are beneficial for DL models. 
The reduced fluctuation in water content results in a decrease in noise 
within the data, enabling the models to more accurately identify 
trends in SWC dynamics, thus improving prediction accuracy.

Shallow SWC is typically influenced by a variety of external 
factors, such as precipitation, evaporation, and plant transpiration, 
leading to significant changes in moisture levels and susceptibility to 
short-term fluctuations. In contrast, the moisture content at greater 
depths tends to be more stable, exhibiting smaller variations over time. 
This stability allows the models to capture long-term trends and stable 
temporal relationships more effectively, avoiding the uncertainty 

introduced by rapid changes in the shallow soil layer. Therefore, as the 
soil depth increases, the predictive performance of both models 
improves, which aligns with previous findings that highlight the 
positive impact of stable, less volatile data on model accuracy.

Recent studies have shown that deep soil layers, with their more 
stable water content, provide more reliable input for ML models, 
enhancing predictive performance. For instance, a study by Chen et al. 
(2025) demonstrated that models trained on more stable data from 
deeper soil layers outperform those using shallow soil data, primarily 
due to the reduced noise and volatility in deeper SWC. Similarly, Li 
et al. (2024) found that stable long-term patterns in deep SWC provide 
a more predictable structure, allowing models to effectively capture 
SWC dynamics over time. Additionally, Wang et al. (2023) emphasized 

TABLE 3  Performance comparison for 1-day-ahead SWC prediction over the entire season.

Depth (cm) Model MSE RMSE MAE MAPE R2

10 RF 3.1082 1.7629 1.0235 6.1315 0.8124

10 SVR 2.789 1.6716 0.963 5.831 0.8340

10 LSTM 2.6794 1.6369 0.9417 5.5411 0.8501

10 Transformer 2.5983 1.6107 0.9149 5.3883 0.8577

10 RAO-1 + Informer 2.5243 1.4683 0.8817 5.219 0.8667

20 RF 0.2841 0.5329 0.3087 3.6374 0.8735

20 SVR 0.2426 0.4925 0.2645 3.3572 0.891

20 LSTM 0.2256 0.475 0.2583 3.2202 0.9012

20 Transformer 0.2189 0.4679 0.2439 3.1011 0.9089

20 RAO-1 + Informer 0.2055 0.4495 0.2286 3.0249 0.9277

30 RF 0.1037 0.3220 0.2021 2.6078 0.9120

30 SVR 0.0935 0.31 0.1812 2.3835 0.9251

30 LSTM 0.08 0.2829 0.1771 2.3254 0.9415

30 Transformer 0.0695 0.2636 0.1684 2.1531 0.9547

30 RAO-1 + Informer 0.0569 0.2476 0.1575 1.9897 0.9679

TABLE 4  Performance comparison for 2-day-ahead SWC prediction over the entire season.

Depth (cm) Model MSE RMSE MAE MAPE R2

10 RF 6.2084 2.4917 1.7012 9.9321 0.6328

10 SVR 5.6220 2.3731 1.585 9.5233 0.6595

10 LSTM 5.557 2.3573 1.5951 9.3762 0.677

10 Transformer 5.4312 2.322 1.5385 9.2157 0.6849

10 RAO-1 + Informer 5.3219 2.0165 1.4202 9.0469 0.6971

20 RF 0.6083 0.78 0.5021 6.1115 0.7132

20 SVR 0.5767 0.759 0.4842 5.8831 0.7354

20 LSTM 0.5452 0.7384 0.4483 5.6833 0.749

20 Transformer 0.5377 0.7332 0.4231 5.4796 0.7618

20 RAO-1 + Informer 0.5279 0.7098 0.4046 5.2158 0.7846

30 RF 0.1845 0.4293 0.2653 3.4719 0.8523

30 SVR 0.1586 0.3975 0.2334 3.1955 0.8753

30 LSTM 0.1518 0.3896 0.2341 3.1091 0.8858

30 Transformer 0.1372 0.3704 0.2169 2.8417 0.9011

30 RAO-1 + Informer 0.0989 0.3012 0.1877 2.4561 0.9276
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that DL models, including LSTM and Transformer-based approaches, 
show superior performance in capturing trends in time series data 
with minimal noise, particularly when the input data exhibits low 
variability and clear patterns.

To further evaluate whether the observed differences in prediction 
accuracy among RF, SVR, LSTM, Transformer, and the RAO-1-
optimized Informer are statistically significant, we  conducted 
independent two-sample t-tests on the MSE values obtained over all 
test folds. Table  6 summarizes the t-test statistics comparing the 
RAO-1-Informer against each baseline model across typical forecast 
horizons and soil depths.

All reported mean ± standard deviation values correspond to 
5-fold CV results unless otherwise indicated. For each depth and 
forecast horizon, test metrics are averaged over all folds (N = 5), with 
standard deviation reflecting fold-to-fold variation.

The relatively small standard deviations for certain metrics are 
attributed to stable model performance.

As shown in Table 6, the RAO-1-optimized Informer consistently 
achieves significantly lower MSEs compared to all baseline models at 
each evaluated horizon and depth (p < 0.05). These results confirm 
that the observed improvements are statistically robust and unlikely 
due to random chance.

In conclusion, the improved prediction accuracy at greater depths 
can be attributed to the inherent stability of SWC at these depths, 
which reduces noise and facilitates the extraction of reliable patterns 
by DL models.

3.6 Effectiveness of RAO-1 Optimization

To specifically evaluate the contribution of RAO-1 optimization 
to the Informer model, we performed a focused ablation study by 
comparing the performance of the Informer both with and without 
RAO-1 hyperparameter tuning. Both model versions were trained and 
tested under identical experimental conditions, including the same 

data partitions, input variables, and evaluation metrics (MSE, RMSE, 
MAE, MAPE, and R2). Thus, any observed performance differences 
can be directly attributed to the RAO-1 optimization procedure.

Table  7 summarizes the predictive performance of the vanilla 
Informer and RAO-1 optimized Informer across different soil depths 
and forecast horizons. The results clearly demonstrate that the RAO-1 
optimized Informer consistently surpasses the vanilla Informer in all 
cases. For example, for 1-day-ahead prediction at 10 cm depth, the 
vanilla Informer achieves an MAE of 0.9294 and an R2 of 0.8539, 
whereas RAO-1 + Informer further reduces the MAE to 0.8817 and 
raises R2 to 0.8667. At 30 cm soil depth for 3-day-ahead predictions, 
RAO-1 tuning lowers MAE from 0.3099 to 0.2545 and increases R2 
from 0.8283 to 0.8579. Similar improvements are consistently observed 
for RMSE, MAPE, and MSE across all depths and forecast lengths.

To rigorously validate the effect of RAO-1-based hyperparameter 
optimization, we conducted paired sample t-tests comparing the MSE 
of the Informer and RAO-1-Informer models under identical test 
conditions (i.e., using the same data splits, random seeds, and 
experimental settings). The use of paired t-tests is particularly 
appropriate for this ablation study because each model’s predictions 
are made on the exact same samples, effectively controlling for 
data variability.

All reported mean ± standard deviation values correspond to 
5-fold CV results unless otherwise indicated. For each depth and 
forecast horizon, test metrics are averaged over all folds (N = 5), with 
standard deviation reflecting fold-to-fold variation.

The relatively small standard deviations for certain metrics are 
attributed to stable model performance.

Overall, across all soil depths and forecast horizons, the paired 
t-test results demonstrate that the RAO-1-optimized Informer 
consistently achieves significantly lower MSE than the vanilla 
Informer (p < 0.05), as summarized in Table 8. These results confirm 
that the improvements observed in the ablation study are statistically 
significant, providing robust evidence for the effectiveness of RAO-1-
based hyperparameter optimization.

TABLE 5  Performance comparison for 3-day-ahead SWC prediction over the entire season.

Depth (cm) Model MSE RMSE MAE MAPE R2

10 RF 7.0485 2.6548 1.9063 11.2276 0.5744

10 SVR 6.69 2.5871 1.7825 10.9902 0.6012

10 LSTM 6.6104 2.5711 1.7817 10.6991 0.6159

10 Transformer 6.4379 2.5379 1.6215 10.6482 0.6253

10 RAO-1 + Informer 6.3269 2.4284 1.4684 10.5891 0.6346

20 RF 0.9637 0.9816 0.6571 7.8095 0.5337

20 SVR 0.8988 0.9479 0.5973 7.3899 0.5711

20 LSTM 0.8758 0.9359 0.6015 7.3998 0.5921

20 Transformer 0.8711 0.9333 0.5852 7.2126 0.5987

20 RAO-1 + Informer 0.867 0.9193 0.5787 7.1581 0.6016

30 RF 0.2845 0.5332 0.3602 4.7832 0.7804

30 SVR 0.2441 0.4945 0.2956 4.3255 0.8056

30 LSTM 0.2382 0.4881 0.3219 4.2905 0.8207

30 Transformer 0.2215 0.4707 0.2984 4.0928 0.8359

30 RAO-1 + Informer 0.1897 0.4167 0.2545 3.9876 0.8579
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These improvements can be  attributed to the superior global 
search capability of the RAO-1 algorithm for hyperparameter 
optimization. Whereas manual or grid-based tuning often results in 
suboptimal model configurations due to granularity limitations or 
computational expense, RAO-1 adaptively explores the 
hyperparameter space and efficiently identifies optimal settings such 
as learning rate, hidden size, and dropout rate that maximize the 
model’s predictive accuracy.

In addition to enhanced accuracy, we  found that the RAO-1 
optimized Informer demonstrated improved training stability and 
reduced variance across repeated experiments, indicating greater 
robustness to initialization and random effects. This enhanced 
reliability is especially important for real-world deployments, where 
model consistency is essential.

In conclusion, the findings of this ablation study provide strong 
evidence for the effectiveness of RAO-1-driven hyperparameter 

TABLE 6  Independent t-test results between RAO-1 + Informer and baseline models for MSE.

Depth (cm) Forecast 
horizon (days)

Baseline 
model

MSE (Baseline 
model)

MSE (RAO-
1 + Informer)

t-value p-value

10 1 RF 3.08 ± 0.14 2.54 ± 0.04 8.27 0.0011

10 1 SVR 2.81 ± 0.11 2.54 ± 0.04 6.31 0.0030

10 1 LSTM 2.68 ± 0.12 2.54 ± 0.04 4.97 0.0079

10 1 Transformer 2.61 ± 0.07 2.54 ± 0.04 3.74 0.0206

10 2 RF 6.22 ± 0.11 5.34 ± 0.08 9.87 0.0004

10 2 SVR 5.63 ± 0.13 5.34 ± 0.08 8.71 0.0009

10 2 LSTM 5.59 ± 0.13 5.34 ± 0.08 6.20 0.0033

10 2 Transformer 5.42 ± 0.09 5.34 ± 0.08 3.35 0.0288

10 3 RF 7.06 ± 0.14 6.36 ± 0.11 7.82 0.0015

10 3 SVR 6.71 ± 0.13 6.36 ± 0.11 6.29 0.0030

10 3 LSTM 6.63 ± 0.15 6.36 ± 0.11 6.07 0.0037

10 3 Transformer 6.49 ± 0.08 6.36 ± 0.11 3.44 0.0264

20 1 RF 0.284 ± 0.014 0.208 ± 0.007 6.41 0.0030

20 1 SVR 0.247 ± 0.009 0.208 ± 0.007 5.97 0.0041

20 1 LSTM 0.229 ± 0.011 0.209 ± 0.007 5.44 0.0051

20 1 Transformer 0.220 ± 0.010 0.208 ± 0.007 2.81 0.0474

20 2 RF 0.963 ± 0.026 0.532 ± 0.011 7.81 0.0016

20 2 SVR 0.936 ± 0.020 0.531 ± 0.012 12.13 0.00007

20 2 LSTM 0.948 ± 0.015 0.532 ± 0.011 11.24 0.0001

20 2 Transformer 0.870 ± 0.014 0.532 ± 0.011 8.84 0.0008

20 3 RF 0.968 ± 0.022 0.869 ± 0.016 5.00 0.0078

20 3 SVR 0.898 ± 0.017 0.869 ± 0.016 3.23 0.0334

20 3 LSTM 0.882 ± 0.019 0.869 ± 0.016 2.59 0.0410

20 3 Transformer 0.876 ± 0.012 0.869 ± 0.016 2.19 0.0480

30 1 RF 0.107 ± 0.011 0.059 ± 0.004 7.76 0.0016

30 1 SVR 0.098 ± 0.008 0.059 ± 0.004 6.61 0.0026

30 1 LSTM 0.083 ± 0.006 0.058 ± 0.004 5.26 0.0061

30 1 Transformer 0.074 ± 0.007 0.058 ± 0.004 3.29 0.0313

30 2 RF 0.190 ± 0.014 0.100 ± 0.007 6.72 0.0023

30 2 SVR 0.158 ± 0.008 0.100 ± 0.007 6.12 0.0038

30 2 LSTM 0.142 ± 0.006 0.099 ± 0.007 5.03 0.0076

30 2 Transformer 0.148 ± 0.008 0.100 ± 0.007 5.37 0.0052

30 3 RF 0.287 ± 0.016 0.191 ± 0.010 7.27 0.0019

30 3 SVR 0.243 ± 0.013 0.192 ± 0.009 5.71 0.0043

30 3 LSTM 0.239 ± 0.012 0.193 ± 0.010 5.01 0.0077

30 3 Transformer 0.225 ± 0.012 0.191 ± 0.011 4.82 0.0091
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optimization in improving the Informer model. The integration of 
RAO-1 not only boosts forecasting accuracy and robustness but also 
streamlines the model development workflow through automated 
parameter selection.

3.7 Cross-validation results and 
generalization assessment

To further assess the generalization ability of the RAO-1 optimized 
Informer model and to examine potential overfitting or underfitting 
issues, we performed five-fold CV (Bhagat and Bakariya, 2025) on the 
training set. In this approach, the available dataset was randomly 
divided into five equal-sized folds. For each iteration, four folds were 

used for training, and the remaining fold was used for validation. The 
process was repeated five times so that each fold served as the 
validation set once. The final performance metrics were computed as 
the average over all folds. This procedure is widely recommended for 
robust evaluation of machine learning models (Bhagat and Bakariya, 
2025; Ferdinandy et al., 2020; Bergmeir and Benítez, 2012).

To confirm that the RAO-1 optimized Informer model is neither 
overfitted nor underfitted, we present the results of five-fold CV for 
1-day, 2-day, and 3-day-ahead SWC prediction at depths of 10, 20, and 
30 cm. As shown in Table 9, the differences between training and 
validation metrics are minor across all forecasting horizons and 
depths. Furthermore, the validation results closely match those 
obtained on the independent test set, indicating strong generalizability 
and reliable predictive performance.

TABLE 8  Paired t-test results between RAO-1 + Informer and informer for MSE.

Depth (cm) Forecast horizon 
(days)

MSE (Informer) MSE (RAO-
1 + Informer)

t-value p-value

10 1 2.68 ± 0.12 2.55 ± 0.04 2.41 0.072

10 2 5.53 ± 0.19 5.33 ± 0.09 2.38 0.080

10 3 6.61 ± 0.24 6.35 ± 0.13 2.79 0.042

20 1 0.227 ± 0.014 0.209 ± 0.007 2.09 0.102

20 2 0.553 ± 0.059 0.531 ± 0.021 2.27 0.069

20 3 0.877 ± 0.031 0.870 ± 0.017 2.13 0.092

30 1 0.076 ± 0.008 0.060 ± 0.004 3.73 0.014

30 2 0.147 ± 0.013 0.101 ± 0.008 7.22 0.002

30 3 0.233 ± 0.026 0.190 ± 0.012 4.71 0.009

TABLE 7  Performance comparison for 3-day-ahead SWC prediction over the entire season.

Depth (cm) Forecast 
horizon (days)

Model MSE RMSE MAE MAPE R2

10 1 Informer 2.6389 1.6240 0.9294 5.4650 0.8539

10 1 RAO-1 + Informer 2.5243 1.4683 0.8817 5.2190 0.8667

20 1 Informer 0.2222 0.4714 0.2511 3.1606 0.9045

20 1 RAO-1 + Informer 0.2055 0.4495 0.2286 3.0249 0.9277

30 1 Informer 0.0748 0.2732 0.1727 2.2393 0.9481

30 1 RAO-1 + Informer 0.0569 0.2476 0.1575 1.9897 0.9679

10 2 Informer 5.4941 2.34 1.5668 9.2950 0.6809

10 2 RAO-1 + Informer 5.3219 2.0165 1.4202 9.0469 0.6971

20 2 Informer 0.5415 0.7358 0.4357 5.5815 0.7554

20 2 RAO-1 + Informer 0.5279 0.7098 0.4046 5.2158 0.7846

30 2 Informer 0.1445 0.38 0.2255 2.9754 0.8934

30 2 RAO-1 + Informer 0.0989 0.3012 0.1877 2.4561 0.9276

10 3 Informer 6.5242 2.5531 1.7016 10.6736 0.6206

10 3 RAO-1 + Informer 6.3269 2.4284 1.4684 10.5891 0.6346

20 3 Informer 0.8735 0.9346 0.5934 7.3062 0.5954

20 3 RAO-1 + Informer 0.867 0.9193 0.5787 7.1581 0.6016

30 3 Informer 0.2303 0.4795 0.3099 4.1916 0.8283

30 3 RAO-1 + Informer 0.1897 0.4167 0.2545 3.9876 0.8579
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The CV results confirm that the RAO-1 optimized Informer 
model maintains a good balance between accuracy and 
robustness across different soil depths and forecast horizons. 
The close alignment of training and validation metrics, together 
with their consistency with independent test set performance, 
suggests that the model does not exhibit significant overfitting 
or underfitting (Chadha and Kaushik, 2022; Kopitar et al., 2020). 
Moreover, as the forecasting horizon increases, the prediction 
errors (MSE, RMSE, MAE, MAPE) increase and the R2 decreases, 
which is consistent with the expected behavior in time series 
forecasting. Similarly, predictions at greater soil depths (20 cm 
and 30 cm) exhibit lower errors and higher determination 
coefficients, reflecting the relative stability of soil moisture at 
greater depths (Table 9).

3.8 Seasonal analysis

Considering the impact of seasonal factors on the model’s 
prediction results, we analyze the model’s performance using data 
from the rainy season, which spans from June to August each year. 

Notably, the rainy season is a subset of the full-season data. The 
prediction results of the models during this period are presented in 
Table 10.

TABLE 9  Five-fold CV results of RAO-1 optimized informer model for different depths and forecasting horizons.

Depth (cm) Forecast 
horizon (days)

Dataset MSE RMSE MAE MAPE R2

10 1 Train 2.428 1.5582 0.8612 5.0290 0.8721

10 1 Validation 2.6187 1.6183 0.8994 5.2285 0.8663

10 1 Test 2.5243 1.4683 0.8817 5.219 0.8667

20 1 Train 0.1964 0.4433 0.2225 2.9530 0.9335

20 1 Validation 0.2173 0.4661 0.2304 3.0591 0.9271

20 1 Test 0.2055 0.4495 0.2286 3.0249 0.9277

30 1 Train 0.0506 0.2250 0.1442 1.9213 0.9726

30 1 Validation 0.0585 0.2418 0.1597 1.9871 0.9660

30 1 Test 0.0569 0.2476 0.1575 1.9897 0.9679

10 2 Train 4.9102 2.2172 1.3590 8.6405 0.7120

10 2 Validation 5.2804 2.2980 1.4147 9.0114 0.6922

10 2 Test 5.3219 2.0165 1.4202 9.0469 0.6971

20 2 Train 0.4849 0.6963 0.3885 5.0021 0.7901

20 2 Validation 0.5193 0.7205 0.4062 5.1902 0.7837

20 2 Test 0.5279 0.7098 0.4046 5.2158 0.7846

30 2 Train 0.0837 0.2893 0.1704 2.2837 0.9434

30 2 Validation 0.0943 0.3071 0.1865 2.4318 0.9312

30 2 Test 0.0989 0.3012 0.1877 2.4561 0.9276

10 3 Train 6.0734 2.4655 1.4387 10.0534 0.6427

10 3 Validation 6.2940 2.5108 1.5013 10.6159 0.6341

10 3 Test 6.3269 2.4284 1.4684 10.5891 0.6346

20 3 Train 0.8138 0.9021 0.5661 7.0125 0.6144

20 3 Validation 0.8585 0.9265 0.5766 7.1909 0.6051

20 3 Test 0.8670 0.9193 0.5787 7.1581 0.6016

30 3 Train 0.1660 0.4074 0.2272 3.8340 0.8625

30 3 Validation 0.1888 0.4345 0.2570 4.0611 0.8544

30 3 Test 0.1897 0.4167 0.2545 3.9876 0.8579

TABLE 10  Prediction performance of RAO-1 optimized informer model 
during the rainy season for SWC.

Depth 
(cm)

Forecast 
horizon 
(days)

MSE RMSE MAE MAPE R2

10 1 3.1654 1.7735 1.0856 6.6598 0.7812

10 2 7.447 2.7895 2.1063 12.6971 0.5148

10 3 9.2441 3.2178 2.4716 14.9221 0.4809

20 1 0.3399 0.5823 0.3597 4.7981 0.8067

20 2 0.8012 0.8976 0.6891 8.1569 0.5694

20 3 1.1629 1.0979 0.9027 9.5468 0.4816

30 1 0.1534 0.3911 0.2864 3.5897 0.8459

30 2 0.2148 0.4635 0.3629 5.1621 0.8078

30 3 0.3136 0.5611 0.4353 6.9378 0.7721
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As shown in Table 10, the prediction performance of the models 
noticeably deteriorates during the rainy season. This can 
be attributed to the high variability of precipitation in this period, 
where sudden and intense rainfall events can cause sharp 
fluctuations in SWC. These fluctuations not only increase the 
uncertainty in SWC levels but also introduce additional noise into 
the data, which negatively impacts the prediction accuracy of the 
models. The sudden changes in precipitation can lead to rapid 
alterations in SWC, which the models may not be  adequately 
trained to handle. As a result, the prediction results become 
unstable. Especially when the input data contains a large amount of 
irregular fluctuations, the models may misinterpret the trend of 
SWC changes.

Such challenges are common in environmental prediction 
models, particularly when dealing with non-linear, volatile data 
such as precipitation and SWC. Recent studies have highlighted the 
detrimental effects of these short-term fluctuations on model 
performance. For example, Teshome et al. (2024) pointed out that 
precipitation variability can significantly impact SWC predictions, 
especially in regions with frequent and intense rainfall events. 
Similarly, Chen et al. (2025) emphasized that models trained on 
data with large short-term variations tend to exhibit decreased 
prediction accuracy, particularly when the data contains sporadic 
and sudden changes such as those occurring in the rainy season, Liu 
et  al. (2020) suggested that the drastic weather changes and 
increased rainfall during the rainy season make the prediction of 
SWC more challenging.

To address these challenges and mitigate the performance 
drop observed during the rainy season, several methodological 
improvements should be  considered in future work. First, 
incorporating additional precipitation-related variables—such as 
cumulative rainfall, rainfall intensity, or antecedent moisture 
indices—as input features can help the model better capture the 
short-term dynamics and abrupt changes in soil water content 
associated with intense rainfall events. Moreover, augmenting the 
training dataset with more representative samples from extreme 
or highly variable periods, possibly through data augmentation or 
targeted sampling, may improve model robustness and 
generalization under volatile conditions. The integration of hybrid 
or ensemble modeling techniques, which combine data-driven 
approaches with process-based hydrological models, can also 
enhance the ability to account for non-linear and seasonal 
fluctuations in soil moisture. Further, applying transfer learning 
or online learning strategies would allow the model to adapt more 
rapidly to changing environmental conditions as new data 
becomes available during the rainy season. Finally, employing 
model interpretability tools, such as attention visualization or 
SHAP (SHapley Additive exPlanations) (Nohara et  al., 2022) 
analysis, can help identify periods or variables that contribute 
most to prediction uncertainty, thus informing targeted 
refinements of the prediction framework. These strategies are 
expected to significantly enhance the resilience and reliability of 
soil water content forecasting during periods of pronounced 
seasonal variability.

These findings underline the difficulty in achieving stable 
predictions during the rainy season, highlighting the importance of 

incorporating seasonal variability and precipitation patterns into 
predictive models.

4 Conclusion

This paper employs the RAO-1 algorithm to optimize the 
Informer model for SWC prediction. The following conclusions can 
be drawn from this study:

	 1	 Optimization with RAO-1: The application of the RAO-1 
algorithm for hyperparameter optimization significantly 
improved the performance of the Informer model. The 
optimization process enhanced the convergence rate during 
training and reduced the overall computational time, making 
the model more efficient.

	 2	 Comparison with baseline models: A comparative analysis with 
baseline models—including RF, SVR, LSTM, and 
Transformer—demonstrated that the RAO-1 optimized 
Informer model achieved superior prediction accuracy, 
especially in reducing prediction errors.

	 3	 Impact of Seasonal Factors: This study also highlighted the 
significant impact of seasonal factors, particularly during the 
rainy season, on the accuracy of SWC predictions. During this 
period, the variability in precipitation and the rapid changes in 
SWC posed significant challenges for the RAO-1 optimized 
Informer model. Compared to the overall season, the model’s 
prediction performance was notably worse during the 
rainy season.

Recommendations and Future Directions:

	 1	 Broader Applications: The proposed RAO-1-optimized 
Informer model demonstrates strong potential not only for 
SWC prediction but also for other time-series forecasting tasks 
in environmental and hydrological sciences. Future research 
can extend this integrated model to areas such as pollution 
forecasting, runoff-seepage modeling, or even climate data 
prediction, where accurate and efficient modeling of temporal 
dynamics is crucial.

	 2	 Cross-domain Implementation: Beyond hydrology, the 
approach could be considered for agricultural decision support, 
drought monitoring, groundwater level prediction, or even 
renewable energy generation forecasting, where input features 
and data patterns might be similar.

	 3	 Model Enhancement: Future work could investigate the 
combination of RAO-1 with other deep learning 
architectures or the integration of additional data sources 
(e.g., remote sensing data, climate indices) to further 
enhance prediction accuracy, especially under complex 
seasonal variations.

	 4	 Real-world Implementation: Practitioners are encouraged to 
adapt and test the proposed approach under different 
environmental settings and for diverse scales—ranging from 
watershed management to large-scale regional predictions—to 
explore its robustness and generalizability.
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	 5	 Directions for Research Community: Researchers interested in 
metaheuristic algorithm optimization can further examine the 
adaptability of RAO-1 (and related algorithms) for optimizing 
other complex machine learning models in geoscience, ecology, 
and environmental engineering, potentially leading to advances 
in model automation and efficiency.

	 6	 Model Interpretability and Explainability: To further enhance 
the transparency and practical utility of the RAO-1 optimized 
Informer model, future research will systematically address 
model interpretability. Approaches such as applying SHAP 
values or analyzing feature attention scores are planned to 
elucidate how different input variables contribute to the model’s 
predictions across varying temporal and seasonal contexts. 
Improved interpretability will not only help build user trust for 
real-world hydrological applications but also facilitate the 
identification of key predictors and periods driving uncertainty, 
thereby supporting targeted model refinement and more 
informed decision-making.

	 7	 Addressing Dataset Limitations and Generalization: This study 
is based on a single-site dataset with a limited temporal span, 
which may restrict the generalizability of the proposed RAO-1 
optimized Informer model across diverse hydroclimatic regions. 
Future work will focus on expanding data collection to multiple 
geographically and climatically diverse sites, incorporating 
multi-source datasets such as remote sensing and sensor 
networks. Additionally, techniques like domain adaptation, 
transfer learning, or meta-learning could be  employed to 
enhance the model’s robustness and adaptability to different 
environmental settings.

In summary, this study highlights the value of metaheuristic 
optimization in advancing deep learning-based prediction for 
hydrological variables. The findings are expected to inspire both 
practical deployments and methodological advancements across a 
range of spatiotemporal prediction tasks in environmental science 
and beyond.
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