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This study proposes a novel time-series forecasting approach that integrates the
Informer model with the RAO — 1 optimization algorithm for soil water content
(SWC) prediction. The method innovatively combines Informer’s long-range
dependency modeling with RAO-1's efficient hyperparameter optimization
to enhance forecasting accuracy. Comparative experiments were conducted
using Random Forest, Support Vector Regression, Long Short-Term Memory
and Transformer as baseline models on SWC datasets from the Beijing region.
The RAO-1-optimized Informer consistently outperforms these baselines in both
deterministic and probabilistic forecasting tasks, while also achieving superior
computational efficiency. These results highlight the robustness of the proposed
method and its potential to support sustainable agricultural water management
through accurate SWC prediction.
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1 Introduction

Soil water content (SWC) as a critical parameter in the hydrological cycle, plays a pivotal
regulatory role in regional water resource sustainability and agricultural productivity (Chen
et al, 2025; Liu et al., 2020). Accurate prediction of SWC dynamics enables optimized
irrigation scheduling, water waste reduction, and crop water use efficiency (WUE)
improvement. Research demonstrates that in arid regions, precision irrigation strategies based
on SWC monitoring can reduce water resource consumption by 15-30% while maintaining
or even increasing crop yields (Gundim et al., 2023). Under global climate change scenarios
characterized by uneven spatiotemporal precipitation distribution, the increasing frequency
of extreme drought and flood events highlights the importance of SWC monitoring. SWC data
not only facilitates drought risk prediction and planting strategy optimization to ensure food
security (Bonfante et al., 2019), but also enables early flood warnings through real-time SWC
analysis. When SWC approaches saturation capacity, integrating meteorological data allows
prediction of surface runoff and waterlogging probability, thereby supporting drainage
measures to mitigate flood impacts (Azimi et al., 2020). Thus, SWC prediction holds significant
application value across multiple domains, including water resource management, sustainable
agricultural development, and disaster prevention.

Prediction methods for SWC can generally be categorized into three main types:
traditional physical models, machine learning (ML) techniques, and deep learning (DL)
approaches (Mahesh, 2020). As noted by Karandish and Simtinek (2016), numerical models
and machine learning models each have their strengths in soil moisture simulation, with data-
driven methods offering flexibility in handling complex nonlinear relationships.
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Physically-based models use meteorological data as boundary
conditions to simulate target processes (e.g., soil water dynamics),
thus their accuracy depends on the quality and completeness of these
meteorological inputs. While they do not model atmospheric
processes in detail, they do rely on a descriptive representation of
meteorological conditions as inputs. However, physical models
generally require numerous input parameters, including high-
resolution soil, vegetation, and meteorological data, which are difficult
to collect comprehensively for large-scale or regional applications.
This critical limitation has been noted in recent reviews (Singh et al.,
2023; Mohanty et al., 2017). According to Singh et al. (2023), the lack
of detailed input parameters substantially restricts the effectiveness of
physical approaches in SWC measurement. Mohanty et al. (2017)
further emphasize that the spatial-temporal heterogeneity and data
gaps in environmental variables pose significant obstacles for effective
large-scale SWC modeling using physical approaches.

While physically-based models such as the Integrated Farm
System Model (IFSM) (Jégo et al, 2015) and Soil and Water
Assessment Tool (SWAT) (Verma et al., 2022) offer mechanistic
insights into soil water dynamics and are widely validated in
hydrological research, their time consumption is generally much
lower than that of any ML model, especially in terms of per-run or
operational use. For instance, models like IFSM are specifically
designed for efficient scenario analysis and farm-level decision
support, featuring extremely low computational demands compared
to all data-driven ML approaches (Antle et al., 2017). However, the
computational burden of physical models can increase with expanding
spatial scales, complex heterogeneity, or high temporal resolutions,
due to the need for intensive numerical calculations in process-based
simulations (Tekle et al., 2025). Furthermore, the overall complexity
and numerical procedures underlying these models can sometimes
restrict their application to extremely rapid, large-scale or real-
time tasks.

The computational efficiency of both physical and machine
learning models is, in fact, highly context-dependent. Depending on
the specific implementation, model configuration, and the scale of the
target problem, different approaches may exhibit varying levels of
computational demand. For example Jégo et al. (2015) reported that
IFSM achieved rapid simulation times in farm-scale applications,
whereas Tekle et al. (2025) found that physical models could become
computationally intensive for large basin-scale or long-term
simulations. Similarly, as reviewed by Benos et al. (2021), machine
learning methods such as artificial neural networks (ANNs) and
Convolutional Neural Networks (CNNs) have achieved promising
results for SWC prediction across various agricultural applications.
However, the computational complexity of these models tends to
increase substantially when dealing with high-dimensional data or
more frequent retraining, especially for deep neural network
architectures. Therefore, care should be taken to evaluate
computational trade-offs in light of the specific modeling context,
rather than making generalized assumptions about one model class
always outperforming another.
some of these constraints, data-driven
those and DL
algorithms—have attracted increasing attention for SWC prediction

To overcome
approaches—particularly employing ML
in recent years (Reichstein et al., 2019). These approaches are
valued for their flexibility and ability to capture nonlinear
relationships, and can be robust even with incomplete or noisy
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input data (Ali et al., 2015). However, it is important to note that
not all ML techniques are computationally efficient: while some
simple models, such as decision trees or small support vector
machines, can provide rapid inference with moderate training
requirements (Seydi et al., 2023), many ML and especially DL
methods, such as deep neural networks, can be far more time-
consuming than IFSM-type physical models, particularly during
training or when processing large-scale datasets and frequent
retraining is required (Reichstein et al., 2019). Therefore, despite
their advantages in some predictive contexts, ML and DL models
may not always offer faster operational performance than well-
optimized process-based physical models.

Therefore, despite their advantages in some predictive contexts,
ML and DL models may not always offer faster operational
performance than well-optimized process-based physical models.

Nevertheless, recent comparative studies have shown that certain
ensemble ML algorithms can achieve both high accuracy and satisfactory
computational efficiency, particularly in small-sample settings.

Teshome et al. (2024) conducted a comprehensive evaluation of
several widely used ML algorithms, including XGBoost (Niazkar et al.,
2024), LightGBM (Niazkar et al., 2024), CatBoost (Hancock and
Khoshgoftaar, 2020), Random Forest (Sun et al., 2024), and k-Nearest
Neighbors (Halder et al., 2024). Their study showed that ensemble
learning models—particularly XGBoost and LightGBM—consistently
achieved high accuracy and computational efficiency, especially in small-
sample settings. Despite these strengths, traditional ML approaches
exhibit key limitations, such as constrained generalization across
heterogeneous landscapes, limited feature interpretability, and a reliance
on manual feature engineering. Moreover, their capacity to capture the
complex spatiotemporal dependencies inherent in environmental
systems remains limited (Reichstein et al,, 2019; Xu and Liang, 2021).

To overcome these challenges, researchers have turned to DL
techniques, which are characterized by multilayer neural architectures
capable of learning complex nonlinear relationships from high-
dimensional data. For instance, Azmat et al. (2022) proposed a
Temporal Graph Convolutional Network (T-GCN) that incorporates
domain knowledge and constructs graph structures via clustering to
model both spatial and temporal dependencies in SWC dynamics.
Similarly, Batchu et al. (2022) developed a convolutional regression
model that integrates multi-source remote sensing data—such as
Sentinel-1, Sentinel-2, and Soil Moisture Active Passive (SMAP)—
leading to enhanced spatial resolution and predictive accuracy.
However, DL models also present several challenges, including high
computational costs, complex architectures, and the need for extensive
data preprocessing. These factors limit their scalability and practical
deployment in real-time or resource-constrained environments.
Furthermore, the generalizability of DL models across different soil
types and geographic conditions remains insufficiently validated.

In response to the limitations of both traditional ML and advanced
DL methods, hybrid approaches have been proposed. For example,
Liuetal. (2024) introduced a model that combines a backpropagation
(BP) neural network with genetic algorithm-based feature selection.
This approach leverages Sentinel remote sensing data to reduce
redundant input features, thereby improving computational efficiency
while maintaining high predictive accuracy. Nonetheless, the model’s
performance remains sensitive to the quality and temporal consistency
of remote sensing inputs, which can impact its robustness in
operational settings. In summary, although ML and DL techniques
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offer promising avenues for accurate SWC prediction, significant
challenges remain—particularly in terms of data quality sensitivity,
computational demands, and model generalizability. Addressing these
limitations is essential to enable reliable, large-scale, and real-time
applications in diverse agricultural and environmental contexts.

To address the aforementioned challenges, this study proposes an
improved Informer model optimized by the RAO-1 algorithm for
multi-step prediction of SWC. The model is capable of effectively
predicting the variation trends of SWC at depths of 10 cm, 20 cm, and
30 cm below the surface for the next 1, 2, and 3 days, thereby
providing valuable scientific support for agricultural management and
ecological monitoring. Specifically, the model leverages historical
observational data — including temperature, precipitation,
evaporation, and soil water content — as input features to enhance the
model’s capability for time series forecasting and improve prediction
accuracy for SWC.

In terms of model architecture, building upon the core advantages
of the Informer framework, the model employs the ProbSparse self-
attention mechanism, which reduces the computational complexity of
self-attention from O (Lz) in the original Transformer architecture to
0] (L logL) (Zhuetal., 2023). This significantly improves computational
efficiency, particularly when handling long-sequence data.
Furthermore, by incorporating the concept of local sensitivity, the
model is better able to capture local dependencies among input
variables, enabling it to more effectively learn the dynamic patterns
underlying SWC variations. To further enhance the models
performance, the RAO-1 algorithm is integrated for adaptive
hyperparameter optimization. As a parameter-free global optimization
algorithm, RAO-1 dynamically adjusts the search step size, effectively
mitigating the risk of premature convergence commonly encountered
in traditional optimization methods (Rao, 2020). Through the
application of RAO-1, the model achieves superior convergence
behavior during hyperparameter search, substantially improves
computational efficiency, and reduces training time, thus offering a
practical and scalable solution for large-scale SWC prediction tasks.

To validate the effectiveness of the proposed RAO-1 optimized
Informer model for soil moisture prediction, we conducted
comparative experiments with three state-of-the-art (SOTA) baseline
models: Random Forest (RF), Long Short-Term Memory (LSTM), and
Transformer. These models were selected as they represent both
traditional ML approaches and advanced DL architectures that are
widely recognized in time-series and remote sensing analysis.

The performance of all models was quantitatively evaluated using
five commonly adopted regression metrics: Mean Squared Error
(MSE) (Wang and Lu, 2018), Root Mean Squared Error (RMSE)
(Wang and Lu, 2018), Mean Absolute Error (MAE) (Wang and Lu,
2018), Mean Absolute Percentage Error (MAPE) (Ren and Glasure,
2009), and the coefficient of determination (R?) (Berggren, 2024).
These metrics offer comprehensive insights into both the absolute
and relative prediction errors, as well as the explanatory power of
the models.

Experimental results demonstrate that the RAO-1 optimized
Informer consistently outperforms all baseline models across multiple
evaluation metrics. Specifically, our model achieves the lowest MSE,
RMSE, MAE, and MAPE values, and the highest R* score, indicating
superior predictive accuracy and generalization ability for soil
moisture content estimation. These findings confirm the effectiveness
of integrating Rao-1 based hyperparameter optimization with the
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Informer architecture, and highlight its advantage over both
conventional and state-of-the-art methods in this domain.
The main contribution of this paper can be summarized as:

1 We trained the Informer model using only a limited set of input
features while still achieving satisfactory performance.

2 We employed the RAO-1 algorithm for hyperparameter
optimization, which not only improved the convergence
performance during the hyperparameter search process but
also significantly enhanced the overall computational efficiency
and reduced the training time.

3 We conducted a comparative analysis with the widely used
baseline models in the field of time series forecasting to validate
the effectiveness of the proposed approach.

The remainder of this paper is structured as follows. Section 2
introduces the predictive model. Section 3 provides the experimental
results and corresponding analysis. Conclusions are drawn in
Section 4.

2 The proposed method

To improve the forecasting performance of the Informer
RAO-1
hyperparameter optimization. The proposed method is illustrated

model, we employ the algorithm for adaptive
in Figure 1.

As shown in Figure 1, the method consists of four main stages:
raw time series data is first preprocessed to handle missing values,
normalize features, and convert data formats to ensure compatibility
with the Informer input format.

In the preprocessing stage, for each time step, we align the time
stamps of meteorological features (MF), soil water content at depth X
(SWC_X), and the initial soil moisture at the same depth (ISM_X).
These variables corresponding to the same date are concatenated to
form a multivariate feature vector. This procedure is repeated for all
time steps to generate the input matrix for the subsequent model, with
each row representing the features for one specific timestamp.

The Informer model is initially trained using a set of
hyperparameters. After training, the model’s forecasting performance
is evaluated by a fitness function measuring prediction accuracy. If the
fitness value does not meet predefined criteria, the RAO-1 algorithm
adaptively generates new hyperparameters based on current
performance feedback. The Informer model is then retrained with
updated hyperparameters. This evaluation and optimization cycle
repeats until convergence or stopping conditions are satisfied.

2.1 Data source and feature extraction

The dataset employed in this study was collected from a single
in-situ monitoring site in Beijing, China (39.48°N, 116.28°E),
providing point-based measurements rather than spatially
averaged data. Observations were recorded once per day from
February to November of each year between 2012 and 2016. Each
daily entry comprised a suite of meteorological features—mean
air temperature, atmospheric pressure, relative humidity, surface
temperature, and sunshine

precipitation, evaporation,
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FIGURE 1
Method diagram of using RAO-1 to optimize the informer model.

duration—as well as SWC and initial soil moisture (ISM) at three
depths (10 cm, 20 cm, and 30 cm). Guided by domain knowledge
regarding the factors influencing soil moisture dynamics, daily
mean air temperature, precipitation, evaporation, relative
humidity, and the historical soil water content at each respective
depth were selected as the fundamental input features for the
predictive model. All variables were temporally aligned according
to date and concatenated into multivariate input vectors.

2.2 Data pre-processing

Prior to model training, missing values in both soil moisture and
meteorological records were addressed using linear interpolation to
ensure data continuity. At each time step, the temporally aligned
meteorological variables, the corresponding SWC at depth X, and
ISM at the same depth (defined as SWC at the start of each day) were
incorporated into unified feature vectors. To account for seasonal
effects on soil moisture, the dataset was partitioned into the full
season—comprising all observations from February to November
each year—and the rainy season (June to August), which represents
the period of peak precipitation in Beijing and forms a strict subset
of the full seasonal dataset following regional climatological
conventions. All input features were standardized using Z-score
normalization to mitigate disparities in magnitude and facilitate
model convergence. Supervised learning samples were constructed
using a sliding window approach: observations from the preceding
7 days were used as input to predict SWC for the subsequent 3 days,
enabling the Informer model to capture short- to medium-term
temporal dependencies. Through this systematic pre-processing and
feature engineering process, a high-quality and well-structured
dataset was established, providing a robust foundation for model
training and evaluation under varying meteorological and
hydrological conditions.

Frontiers in Sustainable Food Systems

2.3 Informer module

The Informer model, proposed by Zhou et al. (2020), is an
efficient and scalable Transformer-based architecture specifically
designed for long sequence time-series forecasting. Similar to the
long sequence forecasting model applied in ship motion attitude
(2024),
computational complexity issues of traditional Transformer

prediction by Hou et al Informer addresses the
architectures. Unlike the original Transformer, which suffers from
quadratic time and space complexity with respect to sequence
length, Informer introduces several innovative techniques to
significantly reduce computational cost while maintaining high
forecasting accuracy.

The Transformer-based models have demonstrated remarkable
performance in sequence modeling tasks. However, their self-
attention mechanisms suffer from high computational complexity,
particularly when dealing with long sequences. To address this
challenge, the Informer model incorporates a ProbSparse Self-
Attention mechanism that selectively focuses on the most critical
attention scores. This selective attention reduces the computational
burden by identifying and retaining only the top-u queries with
the largest sparsity measurements, resulting in a significant
reduction of time complexity from O(LZ? to O(LlogL), where L

., 2023). This approach
accelerates attention computation and effectively handles long

represents the sequence length (Zhu et a

sequences. The architecture of the Informer model is illustrated
in Figure 2.

The Informer model consists of the following key components:

Input Embedding: The Informer model begins with an input
embedding layer that handles two input streams: the encoder input
(X¢n) and the decoder input (Xg,). The encoder input consists of
multivariate time series features over seven consecutive historical
days, combining both SWC at the target depth and associated
meteorological variables including daily average temperature,

frontiersin.org
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precipitation, humidity, etc. The decoder input includes these
historical tokens followed by a series of zero-masked tokens
corresponding to the forecast horizon (next 3 days). Each input
sequence is projected into a higher-dimensional feature space
through a linear transformation, as defined in Equation (1):

X, =W,X +b, 1)
where X is the input sequence, W, is the embedding matrix, and
b, is the bias term.

Encoder-Decoder ~Architecture: Similar to the original
Transformer, Informer utilizes an encoder-decoder architecture, but
with optimizations in the attention mechanism. The encoder generates
a representation of the input sequence, which is then passed to the
decoder for prediction.

Self-attention mechanism: The self-attention mechanism, which
calculates attention scores between all pairs of tokens in the input
sequence, is a fundamental component of the Transformer and
Informer architectures. However, this mechanism suffers from
quadratic complexity in relation to the sequence length. To address
this, Informer introduces the probSparse attention mechanism,

which reduces the complexity by focusing on the most informative

The self-attention mechanism can be mathematically formulated
as shown in Equation (2):

T

Ji

Attention(Q,K,V) =softmax \%4 2)

where Q, K, and V are the query, key, and value matrices,
respectively, and dy, is the dimension of the key vectors.

ProbSparse attention: To further optimize the attention
computation, Informer introduces an approximation called ProbSparse
attention. This mechanism selectively focuses on the most informative
queries, while ignoring irrelevant parts of the sequence. The sparsity
score ug for each query is computed as shown in Equation (3):

g =kZe va. 3)
=1

where g and k are the query and key vectors, respectively, and d
is the dimension of the key vectors.

parts of the sequence. This reduces the complexity Only the queries with the top-u values of u, are retained, ensuring
from O(Lz) to O(L logL). that the most relevant query-key pairs dominate the attention
Frontiers in Sustainable Food Systems 05 frontiersin.org
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distribution. This approach significantly reduces computational costs
by focusing attention only on the most critical parts of the sequence.

Decoder: The decoder in the Informer architecture consists of
stacked layers incorporating masked multi-head ProbSparse self-
attention and standard multi-head attention. The decoder input
sequence Xj.comprises the concatenated historical multivariate
features and masked tokens for the future forecasting steps. The
masked ProbSparse self-attention enforces the causal constraint by
limiting the decoder’s access to previous and current positions only,
thereby eliminating any leakage of future information during training
and inference. Furthermore, the decoder integrates the output from
the encoder via standard multi-head attention, allowing it to leverage
comprehensive contextual information from historical soil moisture
and meteorological data. This design enables the decoder to generate
rich  hidden
dependencies and feature correlations, which are used to produce

representations embedding essential temporal
accurate future soil moisture content forecasts.

Prediction layer: The output of the decoder is processed by a fully
connected layer to produce the final multi-step forecast. Specifically, the

last hidden state from the decoder, A jeoder- iS transformed as shown in

Y= Wdhdecoder + bd (4)

where W; and b, are the corresponding weight matrix and bias for
the output layer. This operation yields the predicted SWC values for
the subsequent 1-3 days, as indicated at the output node of
This final step translates the learned temporal features into concrete

10.3389/fsufs.2025.1636499

forecasts, thereby completing the end-to-end prediction process of the
Informer model.

Informer presents a breakthrough in time-series forecasting
by addressing the limitations of traditional attention mechanisms.
Its design principles, including sparse attention and sequence
distillation, enable efficient handling of long sequences while
maintaining strong predictive performance. However, the
parameter optimization process of the Informer model remains
relatively complex, which can hinder its computational efficiency
and prolong training time, especially when dealing with large-
scale time series data. To address this challenge, we employ the
RAO-1 optimization algorithm to fine-tune the parameters of the
Informer model. By integrating RAO-1, a metaheuristic
optimization technique known for its simplicity and effectiveness
in navigating complex search spaces, we aim to enhance the
convergence speed and overall computational efficiency of the
training process. This integration not only accelerates model
training but also contributes to achieving more stable and reliable
forecasting performance.

2.4 The hybrid informer model

To further enhance the training efficiency and parameter
optimization capability of the Informer model, we integrate the
RAO-1
optimizer renowned for its simplicity and competitive performance

algorithm—a robust, parameter-free metaheuristic

in complex optimization tasks. The name ‘RAO-1’ stands for ‘Rao

Output: Best solution X_best.

2: Evaluate fitness f(X_i) for all X_i
3:fort=1toT do

for each candidate solution X_i do

Update position:

9: Evaluate f(X_i)
10: end for

11: end for

12: Return X_best

Input: Objective function f(x), population size N, number of iterations T

1: Initialize population {X_i} randomly for i =1 to N

4: Determine X_best and X_worst in the current population

Generate random number r1 € [0, 1]

Xi=Xi+r1rl=* (X_best — |X_worst|)

ALGORITHM 1
RAO-1 optimization algorithm
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Algorithm 1, reflecting its introduction as the first simple,
metaphor-less population-based metaheuristic optimization
algorithm by Rao (Rao, 2020). The intuition behind RAO-1 is to
guide the search process by encouraging all candidate solutions in
the population to move closer to the best solution and further away
from the worst, thereby promoting effective exploitation and
exploration without the need for algorithm-specific control
parameters or metaphorical inspirations.

Unlike traditional evolutionary algorithms that rely on control
parameters, such as crossover and mutation operations, RAO-1
employs a direct approach to updating candidate solutions. The
detailed implementation steps of this procedure are outlined in
Algorithm 1, which presents the RAO-1 optimization algorithm. We
strictly follow the update rule as defined in the original RAO-1 paper

) )

. . . t) .
where all notations are consistent with (Rao, 2020): Xi( ) is the

. e t t
position of candidate i at iteration ¢, X, and X, ;. denote the best

(Rao, 2020), as shown in Equation (5):

X)), ,(Xm ()

i i best ~ |“*worst

and worst solutions at iteration ¢, 1; is a randomly generated number
within the range o1, || represents the element-wise absolute
value operation. o

The key design philosophy of RAO-1 is to encourage exploration
toward optimality while maintaining population diversity, thus
helping to prevent premature convergence—a property that is
particularly beneficial for navigating the high-dimensional parameter
space required for Informer model training.

The choice of RAO-1 over alternative population-based
optimizers such as Particle Swarm Optimization (PSO) (Poli et al.,
2007), Genetic Algorithms (GA) (Kumar et al., 2010), and
Bayesian optimization (Frazier, 2018) is based on several
compelling considerations. Unlike PSO and GA, which require
careful tuning of multiple algorithm-specific parameters (e.g.,
inertia weights, crossover and mutation probabilities), RAO-1 is
completely parameter-free, thus eliminating the risk of suboptimal
optimizer settings and simplifying the optimization process (Rao,
2020). This feature is particularly advantageous for large-scale
neural networks where the overhead of parameter tuning can
be prohibitive. Furthermore, RAO-1 is designed to effectively
balance exploration and exploitation by encouraging each solution
to approach the best candidate in the population while
maintaining distance from the worst, which helps to prevent
premature convergence—a common issue in standard evolutionary
algorithms—while preserving population diversity (Rao, 2020;
Farah et al., 2022). In contrast, Bayesian optimization, although
efficient in low- or moderate-dimensional spaces, often suffers
from scalability issues as the dimensionality of the search space
increases, limiting its practical utility in high-dimensional
hyperparameter tuning tasks that are common in transformer-
based models (Malu et al., 2021). Prior empirical studies have
consistently shown that RAO-1 can achieve comparable or
superior optimization performance with reduced computational
complexity when applied to a diverse range of complex, real-world
optimization problems (Rao, 2020; Farah et al., 2022). Therefore,
given its robust performance, scalability, and simplicity, RAO-1
represents a pragmatic and theoretically sound choice for
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navigating the constrained, high-dimensional hyperparameter
space associated with Informer model training.

In this study, all formulations and implementations of RAO-1
strictly follow the original description in (Rao, 2020). We extend its
established capability in solving real-world optimization problems
(Farah etal,, 20225 Meng et al., 2021) by applying it to hyperparameter
tuning of the Informer model.

For the given dataset, as shown in Equation (6):

D={(Xpy;)li=112],...N} )

where X; is the feature vector and y; is the observed output for the
i-th sample, and let the parametric model f (Xi;H) represent the
predictive output of the Informer with parameter vector 6. The
parameter optimization problem can be formulated as shown in
Equation (7):

min(6) =L 3 (3= £ (x:0)) )

subject to the constraint in Equation (8):

subject tof e S (8)

where S denotes the feasible set of model parameters. The explicit
definition of S is provided in Equation (9):

0.00001<1r<0.1
0.1<a<2
S=1he {8,16,32,64,128} (9)
0<d<038
be {8,16,32}

The RAO-1 optimizer is leveraged to efficiently navigate this
constrained, high-dimensional parameter space, adaptively adjusting
model hyperparameters to achieve minimal prediction error with
respect to the objective function.

By leveraging RAO-1 to efficiently navigate this constrained, high-
dimensional parameter space, we can adaptively adjust model
hyperparameters to minimize prediction error with respect to the
objective function. This update strategy simplifies the optimization
process and has been shown to exhibit robust performance in avoiding
local optima, as demonstrated in recent comparative studies (Rao,
2020; Farah et al., 2022; Meng et al., 2021).

To efficiently integrate RAO-1 with the Informer model, the
RAO-1 algorithm is employed to optimize hyperparameters such as
the learning rate, attention factor, hidden size, and dropout rate. This
hybrid framework facilitates automated hyperparameter tuning,
significantly accelerating the convergence process while maintaining
or improving forecasting accuracy.

This study proposes a hybrid framework that integrates the
RAO-1 optimization algorithm with the Informer model, as illustrated
in Figure 3. In the data processing pipeline, raw data is first passed
through the RAO-1 optimization algorithm module for parameter
pre-optimization. The RAO-1 algorithm uses an intelligent search
strategy to identify optimal parameter combinations within the
solution space, which are then set as initial values (Farah et al., 2022).
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These optimized parameters are applied to initialize the Informer time
series forecasting model, which is based on an enhanced Transformer
architecture specifically designed for long-sequence prediction tasks.

Once the model is initialized, the system uses training data for
end-to-end training, evaluating the model’s performance using a
predefined fitness function. This function considers multiple factors,
including prediction accuracy and model complexity.

The optimization process is governed by dual stopping criteria:
the process terminates either when the model’s fitness reaches a
predefined threshold or when the maximum number of allowed
iterations is exceeded. If neither condition is met, the system returns
to the RAO-1 parameter initialization step for further optimization.
Ultimately, the best-performing model from all candidate solutions
generated during the iterations is selected as the final model and
validated for generalization on an independent test set.

This hybrid approach, which combines heuristic optimization
algorithms with deep learning models, enables automatic parameter
tuning. It ensures high prediction accuracy while significantly
enhancing training efficiency. Experimental results demonstrate that
this framework outperforms the standalone Informer model across
multiple evaluation metrics.

2.5 Performance evaluation metrics

This study employs four evaluation metrics to assess the
performance of the Informer model optimized by the RAO-1
algorithm, providing a comprehensive understanding of the
optimization outcomes. The metrics used are MAE, MAPE, RMSE,
MSE, and R The formulations are listed in Equations (10-14),
respectively.
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M
MAE:_ZK% 5’1) (10)
i=1
1 & (1yi-y
MAPE=—Z 1211 1%100% (11)
i=1 Yi
RMSE = (12)
M ~\2
Z(yi yz)
RZ=1—’;41 (13)
—\2
Z(yi y:)
i=1
1 M . \2
MSE=—3"(yi-J) (14)

where y; is the actual value of SWC, ;/\, is the predictive value of
SWC, ; is the mean value of the actual value of test dataset, and M is
the number of the test dataset.

The MAE is calculated as the average of all predictions to represent
the overall performance during the forecasting period. The range of
MAE spans from zero to infinity, with values closer to zero indicating
accurate predictions and minimal error. However, MAE is sensitive to
the absolute values of the data.

The MSE is calculated as the average of the squared differences
between observed and predicted values to assess the overall prediction
error during the forecast period. The value of MSE ranges from zero
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to infinity, where a lower MSE indicates a model with more accurate
predictions and fewer large errors. Due to the squaring of errors, MSE
is more sensitive to large deviations than other metrics.

MAPE is also employed to compare the results over the entire
period and during the rainy season, as it evaluates the percentage
of error rather than the absolute error. A lower MAPE value
indicates smaller error, although when the absolute values approach
zero, the bias can be magnified. According to Lewis (1982), a MAPE
between 20 and 50% is considered reasonable, while values below
10% are regarded as highly accurate. More recent studies, such as
those by Hyndman and Koehler (2006), and more recently by Atzori
et al. (2020), have affirmed that MAPE remains a valuable metric,
though it should be used with caution when data values are
near zero.

RMSE is used to address challenges of underfitting and overfitting
in this study. Smaller RMSE values (closer to zero) are favorable. The
R2 value indicates the degree to which the linear regression model fits
the data points in this study, with the scatter plot of observed and
predicted SWC values ranging from 0 to 1. RMSE and R2 are widely
used and have been emphasized in recent forecasting works such as
those by Yang and Chen (2019) and Wang et al. (2021), as they provide
a clear insight into model performance and error distribution.

The equations for MAE, MAPE, RMSE, MSE, and R2 are derived
from Chai and Draxler (2014) with further validation from more
recent contributions by Dube et al. (2022) and Sharma et al. (2023).
These metrics continue to be essential for evaluating the efficacy of ML
models in time series forecasting tasks.

3 Case study

To ensure a fair comparison, all models in the case study are
trained and evaluated using the exact same pre-processed and feature-
aligned datasets described in Section 2. The meteorological variables,
soil water content at each depth, and initial soil moisture are jointly
aligned and concatenated as described, serving as the universal input
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vector for all models. In this study, experiments were conducted by
first tuning the population size and number of iterations of the RAO-1
algorithm, with the optimal configuration determined based on
comparisons of MSE, MAE, RMSE, Rz, MAPE, and training time.
Using the selected parameters, we applied the RAO-1-optimized
Informer model to predict SWC one, two, and three days in advance
at soil depths of 10 cm, 20 cm, and 30 cm. The predictive performance
of the optimized Informer was evaluated for both the rainy season and
the entire dataset. For benchmarking, RF, LSTM, and Transformer
models were employed under the same forecasting scenarios and
settings. The SWC data used in these experiments was collected from
a site in Beijing, China, covering February 28, 2012 to November 8,
2016, and comprises daily average SWC measurements from soil
depths of 10 cm, 20 cm, and 30 cm. After preprocessing, these data
formed continuous time series that were used for both model training
and evaluation.

3.1 Data description

The SWC data used in this study was collected over a period from
February 28, 2012, to November 8, 2016, at a site located in Beijing,
China. The data consists of daily average SWC measurements,
recorded at regular intervals throughout the study period. These raw
SWC data were collected at three different soil depths: 10 ¢cm, 20 cm,
and 30 cm. The data from these depths were then processed to form a
comprehensive SWC time series, which serves as the basis for both the
training and testing datasets in the subsequent analytical and
predictive modeling tasks.

The time series data collected from the specified depths is essential
for understanding the SWC variations across different layers of the soil
profile. By analyzing these measurements, we can gain insights into
the SWC dynamics at varying depths, which is particularly relevant
for agricultural and hydrological applications.

The collected SWC data from the 10 cm, 20 cm, and 30 cm depths
are visualized in Figures 4-6, respectively. These figures provide an
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FIGURE 4
SWC at 10 cm depth.
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SWC at 30 cm depth.

in-depth view of the temporal variations in SWC at different depths
over the study period. The visual representations of the data allow for
a clearer understanding of seasonal trends, moisture retention
patterns, and the relationship between soil depth and SWC in the
study area.

This detailed data analysis is integral to the development of
accurate models for forecasting SWC dynamics, which is critical for
efficient water management and agricultural decision-making.

In the experimental process, a data item is formed by using a
sequence of seven consecutive historical SWC data points from 10 cm,
20 cm, and 30 cm depths, along with their corresponding response
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points (the 8th, 9th, and 10th data points). Specifically, the SWC data
from the previous 7 days is used to predict the SWC for the following
3 days. The complete dataset consists of 1,272 data items, with the first
1,000 items forming the training set and the remaining 272 items used
for testing.

Traditional hyperparameter tuning methods make training the
Informer model highly time-consuming. To address this challenge,
the RAO-1 algorithm is employed for optimizing the hyperparameters
of the Informer model. Given that population size and the number of
iterations significantly influence the results of RAO-1 optimization,
we first analyze the effects of different population sizes and iteration
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numbers on the parameter tuning results under the condition of
predicting the SWC at 30 cm depth for 2 days ahead. The optimal
population size and iteration count obtained from this analysis are
then used for training models on SWC predictions for other forecast
horizons and depths.

Finally, the performance of the Informer model optimized using
the RAO-1 algorithm is compared with that of the baseline models,
tested on the same testing dataset. This comparison provides a
benchmark for evaluating the effectiveness of the proposed
optimization strategy in improving model performance.

3.2 Effects of population size and iteration
frequency on model training dynamics

To determine the optimal population size and number of
iterations, we first conducted experiments under the condition of
predicting SWC at a 30 cm depth for 2 days ahead. A population size
that is too small leads to insufficient diversity, causing the algorithm
to converge prematurely to a local optimum and making it difficult to
explore the global optimal region of the parameter space. This issue is
particularly pronounced in high-dimensional parameter optimization
problems, where small populations struggle to effectively cover the
solution space. While the computational cost of a single iteration may
be low, the number of iterations required to reach a satisfactory
solution could significantly increase, ultimately reducing overall
computational efficiency.

In the framework combining RAO-1 with the Informer model,
small population sizes make the model more sensitive to initial
parameter settings, potentially resulting in increased instability during
the model training process. Additionally, too few iterations can lead
to premature termination of the algorithm before it reaches stable
convergence, resulting in incomplete parameter optimization and
adversely affecting the quality of the Informer model initialization.
Stopping the optimization process before the fitness evaluation is
sufficiently thorough may miss more optimal parameter combinations.
If the exploration-exploitation balance in RAO-1 has not been
properly established, premature termination could lead to the delivery
of suboptimal initial parameters to the Informer model.

On the other hand, excessively large population sizes require
evaluating a large number of individuals in each iteration, which
significantly increases the computational cost. This issue becomes
especially pronounced in the context of DL model optimization,
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where computational overhead grows non-linearly (Telikani et al,
20215 Wu et al,, 2019). Once the population size exceeds a certain
threshold, the improvement in solution quality becomes
disproportionate to the resource consumption, leading to a decrease
in optimization efficiency. With a fixed number of iterations, an
excessively large population may lead to insufficient exploration
during the exploitation phase, thereby slowing down the convergence
rate. Similarly, an excessively large number of iterations requires
re-evaluating the fitness function after each iteration, which can
be computationally expensive, especially given the high cost of
training and validating the Informer model (Roy et al, 2023).
Consequently, a large number of iterations can result in overly long
optimization times, reducing overall efficiency.

Furthermore, during the optimization process, the fitness function
may become biased toward specific patterns in the training data,
leading to parameter optimization that performs well on the training
set but has reduced generalization ability on the test set. This
overfitting issue can compromise the broader applicability of the
model. To address these challenges and achieve a more balanced
optimization, we chose to initialize both the population size and the
number of iterations to 5, with increments of 5 as the minimum step
size for increasing these values. This systematic approach allows for
careful evaluation of how different parameter settings influence overall
performance. The experimental results presented in Table 1 were
obtained for the scenario of forecasting soil conditions 2 days ahead
at a depth of 20 cm.

As shown in Table 1, when the population size is set to 5, the
model’s performance initially improves as the number of iterations
increases. However, as the iteration count continues to increase, early
stopping is triggered. This could be due to the small population size,
which leads to insufficient diversity within the population, causing
the algorithm to converge prematurely to a local optimum and
making it difficult to explore the global optimal region of the
parameter space. To address this, we fixed the number of iterations
and increased the population size to 10. Under this condition, the
model’s performance improved compared to the case with a
population size of 5.

Next, we kept the population size constant and further increased
the number of iterations, observing that the model’s performance
continued to improve. However, when the iteration count reached 30,
early stopping was triggered again, and further increases in iterations
did not yield significant performance improvements. We then
continued to increase the number of iterations, but the model’s

TABLE 1 The performance and training time of the model under different population size and iteration frequency.

Population size Iteration frequency MSE RMSE MAE MAPE R? Training Time(s)
5 5 0.9673 1.1356 0.7981 8.9695% 0.5164 355.22
5 10 0.7715 0.9264 0.6002 7.5612% 0.5648 585.78
5 15 0.7593 0.9146 0.5951 7.4996% 0.5661 607.86
10 15 0.6312 0.8563 0.5289 6.5918% 0.6071 1736.20
10 20 0.5531 0.7788 0.4862 5.9989% 0.6627 2700.73
10 25 0.5279 0.7098 0.4046 5.2158% 0.7846 3660.21
10 30 05167 0.6978 03997 5.1098% 0.7901 3709.32
15 30 0.5302 0.7114 0.4057 5.2272% 0.7834 3765.79
15 35 0.5245 0.7016 0.4027 5.2088% 0.7887 3797.91
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performance remained relatively unchanged. Similarly, when
we increased the population size further, no notable improvements in
performance were observed. Following this, as both the population
size and iteration count continued to increase, early stopping was
triggered in all cases.

As observed in Table 1 and detailed above, increasing both the
population size and number of iterations generally leads to improved
model accuracy as measured by MSE, RMSE, MAE, and R? but at the
expense of an exponential increase in training time. For example,
increasing the population size from 5 to 10 (with 25 iterations)
resulted in a notable decrease in MSE (from 0.7593 to 0.5279) and an
improvement in R* (from 0.5661 to 0.7846), but the training time rose
sharply from 607.86s to 3660.21s. Beyond a certain threshold
(population size > 10, iterations > 30), the marginal improvement in
accuracy diminished while the computational burden continued to
escalate. Thus, a population size of 10 and 25 iterations represents a
practical trade-off, offering substantial accuracy gains with an
acceptable computational cost.

This
computational efficiency is critical for practical deployment scenarios,

balance between performance improvements and
especially when computational resources or training time are limited.

In summary, we decided to use a population size of 10 and 25
iterations for model training.

3.3 Baseline methods

To validate the effectiveness of the proposed RAO-1 optimized
Informer model for soil moisture prediction, we selected four
representative and widely used baseline models for comparison:
Support Vector Regression (SVR) (Awad and Khanna, 2015), RF
(Dashtbazi et al., 2023), LSTM (Wang et al., 2024), and Transformer
(Zhao et al., 2023). These methods cover both traditional ML and
advanced DL approaches.

SVR is a kernel-based regression technique that has been
frequently applied in hydrological modeling and soil moisture
estimation due to its strong ability to capture non-linear
relationships in complex datasets (Deka, 2014). SVR is particularly
effective when the underlying relationship between predictors and
target variables is not strictly linear, and it can perform well for
short-term forecasting. However, similar to other traditional
regression methods, SVR does not explicitly model temporal
dependencies, which may limit its performance for long-term or
sequence-based predictions.

RF is an ensemble learning method based on decision trees and
specifically implemented here as a Random Forest Regressor. Thanks
to its robustness, generalization ability, and capacity to handle
nonlinear interactions, RF has found considerable success in water
resources and soil moisture time series modeling (Adab et al., 2020).
RF is also resistant to overfitting and can effectively handle tabular,
structured data after appropriate preprocessing. Nevertheless, as a
bagging-based algorithm, RF focuses more on short-term
dependencies and, like SVR, lacks mechanisms for explicitly capturing
long-term temporal trends in time series data (Kratzert et al., 2018).

LSTM is a type of RNN that is particularly effective for modeling
sequential data with long-range dependencies. By using memory cells
and gating mechanisms, LSTM can capture temporal patterns in soil
moisture time series. However, its sequential nature leads to higher
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computational costs and difficulties in handling very long
sequences efficiently.

In summary, SVR and RF serve as strong traditional machine
learning benchmarks with proven effectiveness for short-term
forecasting based on structured data features, although their inherent
designs limit their ability to capture long-term temporal dependencies.
In contrast, LSTM, Transformer, and our proposed Informer-based
models are advanced deep learning approaches specially designed for
sequential or time series data. For instance, Xu et al. (2023)
demonstrated the effectiveness of Informer in power-load forecasting,
highlighting its potential for time-series prediction tasks similar to
SWC forecasting. This comprehensive selection of baselines ensures a
thorough and fair evaluation of the advantages introduced by the
RAO-1 optimized Informer model for both short-term and long-term
soil water content forecasting.

In addition, while it is acknowledged that integrating an attention
mechanism into the LSTM framework has been reported to further
improve time-series forecasting performance in some recent studies
(Qin etal, 2017; Yan et al., 2021; Li et al., 2024), such an extension
was not included in our comparative experiments at this stage. The
primary reasons are as follows: First, compared to the standard
LSTM, the Attention-LSTM model is significantly more complex and
requires a larger number of trainable parameters, which poses a
greater risk of overfitting—an issue highlighted in the context of
small to moderately sized datasets in deep learning literature (Aamer
et al, 2020; Kumar et al., 2023)—especially given that our soil
moisture dataset, though consisting of several thousand samples,
remains moderate in size for advanced deep neural networks. Second,
the focus of this work is to benchmark the proposed RAO-1
optimized Informer against the most commonly used and widely
accepted baseline architectures, so as to ensure comparability and
reproducibility with previous research in the hydrological time series
field (Datta et al., 2023; Zhou et al., 2021). Expanding the baseline
family to include various advanced LSTM variants could also
introduce ambiguity regarding the core contribution of this study.
Therefore, the comparison is limited to the standard LSTM and
Transformer models, with the inclusion of more sophisticated LSTM
variants reserved for future work as larger or more diverse datasets
become available.

3.4 Hyperparameter selection and tuning

To ensure a fair and optimal comparison among all models,
comprehensive hyperparameter selection and tuning were performed
for both deep learning models (Informer, LSTM, Transformer) and
traditional machine learning models (RE, SVR). This process took into
account the scale of available samples and employed a sliding window
approach, where data from 7 consecutive days were used to predict
SWC for the subsequent 3 days. The data were chronologically
partitioned into training, validation, and testing sets with a ratio of 60,
20, and 20%, respectively, to avoid temporal data leakage. All deep
learning models were initialized and trained three times with different
random seeds, and the best validation model checkpoint was selected
for test set evaluation.

For the deep learning models (Informer, LSTM, and Transformer),
the following key hyperparameters were tuned: number of layers,
hidden units, learning rate, dropout rate, batch size, and early stopping
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mechanism. The parameter ranges, as shown in Equation (15), were
carefully designed to balance model capacity against the moderate
dataset size and to mitigate overfitting risks. This design approach is
consistent with the search space division method for high-dimensional
data optimization proposed by Chaudhuri (2024):

0.00001 < Learning rate <0.1
Hidden units per layer  {8,16,32,64,128}
Dropout rate e {0.0,0.1,0.2,0.3}
Batch size e {8,16,32}

Number of layers € {1,2,4}
Optimizer = Adam

(15)

Early stopping : patience of 10 epochs on validation loss

Maximum number of epochs:100

For the Informer model specifically, key model parameters—
including learning rate, hidden units, dropout rate, and the model-
specific hyperparameter a (search space [0.1, 2.0])—were optimized
using the RAO-1 global optimization algorithm within their respective
search spaces. Other Informer parameters not subject to direct
optimization, such as batch size and optimizer type, were aligned with
those of the LSTM and Transformer models to maintain comparability.

Traditional machine learning models—RF and SVR—were tuned
via grid search over the following hyperparameter spaces:

RE:

Number of trees € {100,200,300,400}
Maximum tree depth € {5,10,20, 40,None}

Minimum samples per leaf € {1,2,4} (16)
Number of features considered at each split {sqrt,log 2}
SVR:
Kernel {rbf,linear}
Regularization parameter € {1,10, 100}
17)

Kernel coefficient € {scale,0.0l,O.l}
Epsilon € {0.01,0.1}

All hyperparameter tuning was conducted on the validation set
using mean squared error as the objective metric. Early stopping was
employed only for deep learning models to prevent overfitting, based
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on validation loss not improving for 10 consecutive epochs. All
models were trained with consistent maximum epochs (100 for deep
models) and data splits to ensure uniformity.

The final selected hyperparameters for each model, which yielded
optimal validation performance, are summarized in Table 2.

This hyperparameter selection strategy, combined with consistent
data splits and evaluation protocols, ensures valid and unbiased
comparisons across models. This protocol is intended to eliminate
hyperparameter tuning bias and to ensure that each model’s reported
performance represents its optimal achievable accuracy under
consistent experimental conditions.

3.5 Comparative analysis

We compare the performance of the RAO-1 optimized Informer
model with the baseline models for forecasting SWC one, two, and
3 days ahead, based on seven consecutive days of SWC data, under
conditions at depths of 10 cm, 20 cm, and 30 cm. The evaluation
metrics used for comparison include MSE, RMSE, MAE, MAPE, and
R%. Tables 3-5 summarize the forecasting performance of the RAO-1
optimized Informer model and the baseline models for predicting
SWC one, two, and 3 days in advance, respectively, at depths of 10 cm,
20 cm, and 30 cm.

The performance metrics (MSE, MAE, etc.) reported for each
model are obtained as the average (and standard deviation) over all
five-fold cross-validation (CV). For each depth/horizon combination,
the training, validation, and test sets were split as described in Section
3.4 Small discrepancies among mean values across tables may arise
due to the use of fold-wise CV versus one-time evaluation on the
entire test set, which is common in time series forecasting studies.

As observed from Tables 3-5, the RAO-1 optimized Informer
consistently outperforms the baseline models across different
forecasting horizons and soil depths, which is consistent with the
findings of Ve et al. (2024) that Informer-based models enhanced by
optimization algorithms exhibit superior generalization in time-series
forecasting tasks, particularly in reducing error metrics such as MSE
and MAE while achieving higher R* scores. This demonstrates the
robustness and adaptability of the proposed method in capturing
nonlinear temporal dependencies in SWC dynamics. Moreover,
we also observe that under the same prediction time intervals, the
prediction performance of both models improves with increasing soil
depth. This phenomenon can be attributed to the stabilization of SWC
at greater depths, where the fluctuations in water content become

TABLE 2 Hyperparameter search space and optimal configurations for all models.

Model Layers Hidden Learning Batch size Dropout Early Other parameters
units rate stopping

LSTM 2 32 0.0005 32 02 10 -

Transformer 2 32 0.0005 0.32 0.2 10 -

Informer 2 32 0.00001 16 0.2 10 a=10

RF _ — - - - - n_estimators = 200, max_

depth = 10, min_samples_

leaf = 2, max_features = ‘sqrt’

SVR - -1 - - - - kernel = ‘rbf’, C = 10,
gamma = 0.01, epsilon = 0.1
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TABLE 3 Performance comparison for 1-day-ahead SWC prediction over the entire season.

Depth (cm) Model MSE RMSE MAE MAPE R?

10 RF 3.1082 1.7629 1.0235 6.1315 0.8124
10 SVR 2.789 1.6716 0.963 5.831 0.8340
10 LSTM 2.6794 1.6369 0.9417 5.5411 0.8501
10 Transformer 2.5983 1.6107 0.9149 5.3883 0.8577
10 RAO-1 + Informer 2.5243 1.4683 0.8817 5219 0.8667
20 RF 0.2841 0.5329 0.3087 3.6374 0.8735
20 SVR 0.2426 0.4925 0.2645 3.3572 0.891
20 LSTM 0.2256 0.475 0.2583 3.2202 0.9012
20 Transformer 0.2189 0.4679 0.2439 3.1011 0.9089
20 RAO-1 + Informer 0.2055 0.4495 0.2286 3.0249 0.9277
30 RF 0.1037 0.3220 0.2021 2.6078 0.9120
30 SVR 0.0935 0.1812 2.3835 0.9251
30 LSTM 0.08 0.2829 0.1771 2.3254 0.9415
30 Transformer 0.0695 0.2636 0.1684 2.1531 0.9547
30 RAO-1 + Informer 0.0569 0.2476 0.1575 1.9897 0.9679

TABLE 4 Performance comparison for 2-day-ahead SWC prediction over the entire season.

Depth (cm) Model MSE RMSE MAE MAPE R?

10 RF 6.2084 2.4917 1.7012 9.9321 0.6328
10 SVR 5.6220 2.3731 1.585 9.5233 0.6595
10 LSTM 5.557 2.3573 1.5951 9.3762 0.677
10 Transformer 5.4312 2.322 1.5385 9.2157 0.6849
10 RAO-1 + Informer 5.3219 2.0165 1.4202 9.0469 0.6971
20 RF 0.6083 0.5021 6.1115 0.7132
20 SVR 0.5767 0.759 0.4842 5.8831 0.7354
20 LSTM 0.5452 0.7384 0.4483 5.6833 0.749
20 Transformer 0.5377 0.7332 0.4231 5.4796 0.7618
20 RAO-1 + Informer 0.5279 0.7098 0.4046 5.2158 0.7846
30 RF 0.1845 0.4293 0.2653 3.4719 0.8523
30 SVR 0.1586 0.3975 0.2334 3.1955 0.8753
30 LSTM 0.1518 0.3896 0.2341 3.1091 0.8858
30 Transformer 0.1372 0.3704 0.2169 2.8417 0.9011
30 RAO-1 + Informer 0.0989 0.3012 0.1877 2.4561 0.9276

smaller. As the depth increases, the SWC tends to stabilize, reducing
the variability that is often seen in the upper layers. Stable data features
generally offer clearer patterns, which are beneficial for DL models.
The reduced fluctuation in water content results in a decrease in noise
within the data, enabling the models to more accurately identify
trends in SWC dynamics, thus improving prediction accuracy.
Shallow SWC is typically influenced by a variety of external
factors, such as precipitation, evaporation, and plant transpiration,
leading to significant changes in moisture levels and susceptibility to
short-term fluctuations. In contrast, the moisture content at greater
depths tends to be more stable, exhibiting smaller variations over time.
This stability allows the models to capture long-term trends and stable
temporal relationships more effectively, avoiding the uncertainty
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introduced by rapid changes in the shallow soil layer. Therefore, as the
soil depth increases, the predictive performance of both models
improves, which aligns with previous findings that highlight the
positive impact of stable, less volatile data on model accuracy.
Recent studies have shown that deep soil layers, with their more
stable water content, provide more reliable input for ML models,
enhancing predictive performance. For instance, a study by Chen et al.
(2025) demonstrated that models trained on more stable data from
deeper soil layers outperform those using shallow soil data, primarily
due to the reduced noise and volatility in deeper SWC. Similarly, Li
etal. (2024) found that stable long-term patterns in deep SWC provide
a more predictable structure, allowing models to effectively capture
SWC dynamics over time. Additionally, Wang et al. (2023) emphasized
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TABLE 5 Performance comparison for 3-day-ahead SWC prediction over the entire season.

Depth (cm) Model MSE RMSE MAE MAPE R?

10 RF 7.0485 2.6548 1.9063 11.2276 0.5744
10 SVR 6.69 2.5871 1.7825 10.9902 0.6012
10 LSTM 6.6104 2.5711 1.7817 10.6991 0.6159
10 Transformer 6.4379 2.5379 1.6215 10.6482 0.6253
10 RAO-1 + Informer 6.3269 2.4284 1.4684 10.5891 0.6346
20 RF 0.9637 0.9816 0.6571 7.8095 0.5337
20 SVR 0.8988 0.9479 0.5973 7.3899 0.5711
20 LSTM 0.8758 0.9359 0.6015 7.3998 0.5921
20 Transformer 0.8711 0.9333 0.5852 7.2126 0.5987
20 RAO-1 + Informer 0.867 0.9193 0.5787 7.1581 0.6016
30 RF 0.2845 0.5332 0.3602 4.7832 0.7804
30 SVR 0.2441 0.4945 0.2956 4.3255 0.8056
30 LSTM 0.2382 0.4881 0.3219 4.2905 0.8207
30 Transformer 0.2215 0.4707 0.2984 4.0928 0.8359
30 RAO-1 + Informer 0.1897 0.4167 0.2545 3.9876 0.8579

that DL models, including LSTM and Transformer-based approaches,
show superior performance in capturing trends in time series data
with minimal noise, particularly when the input data exhibits low
variability and clear patterns.

To further evaluate whether the observed differences in prediction
accuracy among RE, SVR, LSTM, Transformer, and the RAO-1-
optimized Informer are statistically significant, we conducted
independent two-sample t-tests on the MSE values obtained over all
test folds. Table 6 summarizes the t-test statistics comparing the
RAO-1-Informer against each baseline model across typical forecast
horizons and soil depths.

All reported mean + standard deviation values correspond to
5-fold CV results unless otherwise indicated. For each depth and
forecast horizon, test metrics are averaged over all folds (N = 5), with
standard deviation reflecting fold-to-fold variation.

The relatively small standard deviations for certain metrics are
attributed to stable model performance.

As shown in Table 6, the RAO-1-optimized Informer consistently
achieves significantly lower MSEs compared to all baseline models at
each evaluated horizon and depth (p < 0.05). These results confirm
that the observed improvements are statistically robust and unlikely
due to random chance.

In conclusion, the improved prediction accuracy at greater depths
can be attributed to the inherent stability of SWC at these depths,
which reduces noise and facilitates the extraction of reliable patterns
by DL models.

3.6 Effectiveness of RAO-1 Optimization

To specifically evaluate the contribution of RAO-1 optimization
to the Informer model, we performed a focused ablation study by
comparing the performance of the Informer both with and without
RAO-1 hyperparameter tuning. Both model versions were trained and
tested under identical experimental conditions, including the same
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data partitions, input variables, and evaluation metrics (MSE, RMSE,
MAE, MAPE, and R?). Thus, any observed performance differences
can be directly attributed to the RAO-1 optimization procedure.

Table 7 summarizes the predictive performance of the vanilla
Informer and RAO-1 optimized Informer across different soil depths
and forecast horizons. The results clearly demonstrate that the RAO-1
optimized Informer consistently surpasses the vanilla Informer in all
cases. For example, for 1-day-ahead prediction at 10 cm depth, the
vanilla Informer achieves an MAE of 0.9294 and an R? of 0.8539,
whereas RAO-1 + Informer further reduces the MAE to 0.8817 and
raises R* to 0.8667. At 30 cm soil depth for 3-day-ahead predictions,
RAO-1 tuning lowers MAE from 0.3099 to 0.2545 and increases R?
from 0.8283 to 0.8579. Similar improvements are consistently observed
for RMSE, MAPE, and MSE across all depths and forecast lengths.

To rigorously validate the effect of RAO-1-based hyperparameter
optimization, we conducted paired sample t-tests comparing the MSE
of the Informer and RAO-1-Informer models under identical test
conditions (i.e., using the same data splits, random seeds, and
experimental settings). The use of paired t-tests is particularly
appropriate for this ablation study because each model’s predictions
are made on the exact same samples, effectively controlling for
data variability.

All reported mean + standard deviation values correspond to
5-fold CV results unless otherwise indicated. For each depth and
forecast horizon, test metrics are averaged over all folds (N = 5), with
standard deviation reflecting fold-to-fold variation.

The relatively small standard deviations for certain metrics are
attributed to stable model performance.

Overall, across all soil depths and forecast horizons, the paired
t-test results demonstrate that the RAO-1-optimized Informer
consistently achieves significantly lower MSE than the vanilla
Informer (p < 0.05), as summarized in Table 8. These results confirm
that the improvements observed in the ablation study are statistically
significant, providing robust evidence for the effectiveness of RAO-1-
based hyperparameter optimization.
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TABLE 6 Independent t-test results between RAO-1 + Informer and baseline models for MSE.

Depth (cm) Forecast Baseline MSE (Baseline MSE (RAO- t-value p-value
horizon (days) model model) 1 + Informer)

10 1 RF 3.08 £0.14 2.54 £0.04 8.27 0.0011
10 1 SVR 2.81+0.11 2.54 +0.04 6.31 0.0030
10 1 LSTM 2.68+0.12 2.54 +0.04 4.97 0.0079
10 1 Transformer 2.61£0.07 2.54 £ 0.04 3.74 0.0206
10 2 RF 6.22+0.11 5.34 +0.08 9.87 0.0004
10 2 SVR 5.63+0.13 5.34+0.08 8.71 0.0009
10 2 LSTM 559 £0.13 5.34 +0.08 6.20 0.0033
10 2 Transformer 5.42 +0.09 5.34 +0.08 3.35 0.0288
10 3 RF 7.06 +0.14 6.360.11 7.82 0.0015
10 3 SVR 6.71+0.13 6.36 £ 0.11 6.29 0.0030
10 3 LSTM 6.63+0.15 6.36 +0.11 6.07 0.0037
10 3 Transformer 6.49 +0.08 6.36 £0.11 3.44 0.0264
20 1 RF 0.284 +0.014 0.208 + 0.007 6.41 0.0030
20 1 SVR 0.247 + 0.009 0.208 + 0.007 5.97 0.0041
20 1 LSTM 0.229 +0.011 0.209 + 0.007 5.44 0.0051
20 1 Transformer 0.220 + 0.010 0.208 + 0.007 2.81 0.0474
20 2 RF 0.963 £ 0.026 0.532+0.011 7.81 0.0016
20 2 SVR 0.936 + 0.020 0.531 +0.012 12.13 0.00007
20 2 LSTM 0.948 +0.015 0.532 +0.011 11.24 0.0001
20 2 Transformer 0.870 £ 0.014 0.532 £0.011 8.84 0.0008
20 3 RF 0.968 +0.022 0.869 +0.016 5.00 0.0078
20 3 SVR 0.898 +0.017 0.869 +0.016 323 0.0334
20 3 LSTM 0.882 £ 0.019 0.869 % 0.016 2.59 0.0410
20 3 Transformer 0.876 + 0.012 0.869 +0.016 2.19 0.0480
30 1 RF 0.107 +0.011 0.059 + 0.004 7.76 0.0016
30 1 SVR 0.098 + 0.008 0.059 + 0.004 6.61 0.0026
30 1 LSTM 0.083 + 0.006 0.058 + 0.004 5.26 0.0061
30 1 Transformer 0.074 £+ 0.007 0.058 + 0.004 3.29 0.0313
30 2 RF 0.190 + 0.014 0.100 + 0.007 6.72 0.0023
30 2 SVR 0.158 + 0.008 0.100 + 0.007 6.12 0.0038
30 2 LSTM 0.142 + 0.006 0.099 + 0.007 5.03 0.0076
30 2 Transformer 0.148 + 0.008 0.100 + 0.007 537 0.0052
30 3 RF 0.287 +0.016 0.191 +0.010 7.27 0.0019
30 3 SVR 0.243 +0.013 0.192 % 0.009 571 0.0043
30 3 LSTM 0.239 +0.012 0.193 +0.010 5.01 0.0077
30 3 Transformer 0.225 +0.012 0.191 + 0.011 4.82 0.0091

These improvements can be attributed to the superior global
search capability of the RAO-1 algorithm for hyperparameter
optimization. Whereas manual or grid-based tuning often results in
suboptimal model configurations due to granularity limitations or
RAO-1
hyperparameter space and efficiently identifies optimal settings such

computational  expense, adaptively explores the
as learning rate, hidden size, and dropout rate that maximize the

model’s predictive accuracy.
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In addition to enhanced accuracy, we found that the RAO-1
optimized Informer demonstrated improved training stability and
reduced variance across repeated experiments, indicating greater
robustness to initialization and random effects. This enhanced
reliability is especially important for real-world deployments, where
model consistency is essential.

In conclusion, the findings of this ablation study provide strong
evidence for the effectiveness of RAO-1-driven hyperparameter
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TABLE 7 Performance comparison for 3-day-ahead SWC prediction over the entire season.

Depth (cm) Forecast Model
horizon (days)

10 1 Informer 2.6389 1.6240 0.9294 5.4650 0.8539
10 1 RAO-1 + Informer 2.5243 1.4683 0.8817 52190 0.8667
20 1 Informer 0.2222 0.4714 02511 3.1606 0.9045
20 1 RAO-1 + Informer 0.2055 0.4495 0.2286 3.0249 0.9277
30 1 Informer 0.0748 0.2732 0.1727 2.2393 0.9481
30 1 RAO-1 + Informer 0.0569 02476 0.1575 1.9897 0.9679
10 2 Informer 5.4941 2.34 1.5668 9.2950 0.6809
10 2 RAO-1 + Informer 53219 2.0165 1.4202 9.0469 0.6971
20 2 Informer 05415 0.7358 04357 5.5815 0.7554
20 2 RAO-1 + Informer 05279 0.7098 0.4046 52158 0.7846
30 2 Informer 0.1445 0.38 0.2255 2.9754 0.8934
30 2 RAO-1 + Informer 0.0989 03012 0.1877 24561 0.9276
10 3 Informer 6.5242 25531 1.7016 10.6736 0.6206
10 3 RAO-1 + Informer 6.3269 2.4284 1.4684 10.5891 0.6346
20 3 Informer 0.8735 0.9346 0.5934 7.3062 0.5954
20 3 RAO-1 + Informer 0.867 0.9193 0.5787 7.1581 0.6016
30 3 Informer 0.2303 0.4795 0.3099 4.1916 0.8283
30 3 RAO-1 + Informer 0.1897 0.4167 0.2545 3.9876 0.8579

TABLE 8 Paired t-test results between RAO-1 + Informer and informer for MSE.

Depth (cm) Forecast horizon MSE (Informer) MSE (RAO-
(days) 1 + Informer)

10 1 2.68 +0.12 2.55+0.04 241 0.072
10 2 5.53+0.19 5.33+0.09 238 0.080
10 3 6.61+0.24 6.35+0.13 279 0.042
20 1 0227 +0.014 0.209 + 0.007 2.09 0.102
20 2 0.553 + 0.059 0.531 +0.021 227 0.069
20 3 0.877 + 0.031 0.870 +0.017 213 0.092
30 1 0.076 + 0.008 0.060 + 0.004 3.73 0.014
30 2 0.147 + 0.013 0.101 + 0.008 7.22 0.002
30 3 0.233+0.026 0.190 £ 0.012 471 0.009

optimization in improving the Informer model. The integration of
RAO-1 not only boosts forecasting accuracy and robustness but also
streamlines the model development workflow through automated
parameter selection.

3.7 Cross-validation results and
generalization assessment

To further assess the generalization ability of the RAO-1 optimized
Informer model and to examine potential overfitting or underfitting
issues, we performed five-fold CV (Bhagat and Bakariya, 2025) on the
training set. In this approach, the available dataset was randomly
divided into five equal-sized folds. For each iteration, four folds were
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used for training, and the remaining fold was used for validation. The
process was repeated five times so that each fold served as the
validation set once. The final performance metrics were computed as
the average over all folds. This procedure is widely recommended for
robust evaluation of machine learning models (Bhagat and Bakariya,
2025; Ferdinandy et al., 2020; Bergmeir and Benitez, 2012).

To confirm that the RAO-1 optimized Informer model is neither
overfitted nor underfitted, we present the results of five-fold CV for
1-day, 2-day, and 3-day-ahead SWC prediction at depths of 10, 20, and
30 cm. As shown in Table 9, the differences between training and
validation metrics are minor across all forecasting horizons and
depths. Furthermore, the validation results closely match those
obtained on the independent test set, indicating strong generalizability
and reliable predictive performance.
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TABLE 9 Five-fold CV results of RAO-1 optimized informer model for different depths and forecasting horizons.

Depth (cm) Forecast Dataset
horizon (days)

10 1 Train 2.428 1.5582 0.8612 5.0290 0.8721
10 1 Validation 26187 1.6183 0.8994 52285 0.8663
10 1 Test 2.5243 1.4683 0.8817 5219 0.8667
20 1 Train 0.1964 0.4433 02225 29530 0.9335
20 1 Validation 02173 0.4661 0.2304 3.0591 0.9271
20 1 Test 02055 0.4495 0.2286 3.0249 0.9277
30 1 Train 0.0506 0.2250 0.1442 1.9213 0.9726
30 1 Validation 0.0585 0.2418 0.1597 1.9871 0.9660
30 1 Test 0.0569 0.2476 0.1575 1.9897 0.9679
10 2 Train 49102 22172 1.3590 8.6405 0.7120
10 2 Validation 5.2804 22980 1.4147 9.0114 0.6922
10 2 Test 53219 2.0165 1.4202 9.0469 0.6971
20 2 Train 0.4849 0.6963 0.3885 5.0021 0.7901
20 2 Validation 0.5193 0.7205 0.4062 5.1902 0.7837
20 2 Test 05279 0.7098 0.4046 52158 0.7846
30 2 Train 0.0837 0.2893 0.1704 22837 0.9434
30 2 Validation 0.0943 03071 0.1865 24318 0.9312
30 2 Test 0.0989 03012 0.1877 24561 0.9276
10 3 Train 6.0734 2.4655 1.4387 10.0534 0.6427
10 3 Validation 6.2940 25108 1.5013 10.6159 0.6341
10 3 Test 63269 2.4284 1.4684 10.5891 0.6346
20 3 Train 0.8138 0.9021 0.5661 7.0125 0.6144
20 3 Validation 0.8585 0.9265 0.5766 7.1909 0.6051
20 3 Test 0.8670 0.9193 0.5787 7.1581 0.6016
30 3 Train 0.1660 0.4074 0.2272 3.8340 0.8625
30 3 Validation 0.1888 0.4345 02570 4.0611 0.8544
30 3 Test 0.1897 0.4167 0.2545 3.9876 0.8579

The CV results confirm that the RAO-1 optimized Informer
model maintains a good balance between accuracy and
robustness across different soil depths and forecast horizons.
The close alignment of training and validation metrics, together
with their consistency with independent test set performance,
suggests that the model does not exhibit significant overfitting
or underfitting (Chadha and Kaushik, 2022; Kopitar et al., 2020).
Moreover, as the forecasting horizon increases, the prediction
errors (MSE, RMSE, MAE, MAPE) increase and the R? decreases,
which is consistent with the expected behavior in time series
forecasting. Similarly, predictions at greater soil depths (20 cm
and 30 cm) exhibit lower errors and higher determination
coefficients, reflecting the relative stability of soil moisture at
greater depths (Table 9).

3.8 Seasonal analysis

Considering the impact of seasonal factors on the model’s
prediction results, we analyze the model’s performance using data
from the rainy season, which spans from June to August each year.
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TABLE 10 Prediction performance of RAO-1 optimized informer model
during the rainy season for SWC.

Depth Forecast MSE RMSE MAE MAPE R?
(cm) horizon
(days)

10 1 31654 17735 | 1.0856 & 6.6598  0.7812
10 2 7447 | 27895 | 21063 = 12.6971 = 0.5148
10 3 92441 | 32178 | 24716 | 149221  0.4809
20 1 03399 | 05823 03597 | 47981 | 0.8067
20 2 0.8012 = 08976 | 06891 | 8.1569 | 0.5694
20 3 11629 1.0979 | 09027 = 9.5468  0.4816
30 1 0.1534 03911 | 02864 = 35897  0.8459
30 2 02148 | 04635 | 03629 = 51621  0.8078
30 3 03136 | 05611 | 04353 | 69378 | 0.7721

Notably, the rainy season is a subset of the full-season data. The
prediction results of the models during this period are presented in
Table 10.
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As shown in Table 10, the prediction performance of the models
noticeably deteriorates during the rainy season. This can
be attributed to the high variability of precipitation in this period,
where sudden and intense rainfall events can cause sharp
fluctuations in SWC. These fluctuations not only increase the
uncertainty in SWC levels but also introduce additional noise into
the data, which negatively impacts the prediction accuracy of the
models. The sudden changes in precipitation can lead to rapid
alterations in SWC, which the models may not be adequately
trained to handle. As a result, the prediction results become
unstable. Especially when the input data contains a large amount of
irregular fluctuations, the models may misinterpret the trend of
SWC changes.

Such challenges are common in environmental prediction
models, particularly when dealing with non-linear, volatile data
such as precipitation and SWC. Recent studies have highlighted the
detrimental effects of these short-term fluctuations on model
performance. For example, Teshome et al. (2024) pointed out that
precipitation variability can significantly impact SWC predictions,
especially in regions with frequent and intense rainfall events.
Similarly, Chen et al. (2025) emphasized that models trained on
data with large short-term variations tend to exhibit decreased
prediction accuracy, particularly when the data contains sporadic
and sudden changes such as those occurring in the rainy season, Liu
et al. (2020) suggested that the drastic weather changes and
increased rainfall during the rainy season make the prediction of
SWC more challenging.

To address these challenges and mitigate the performance
drop observed during the rainy season, several methodological
improvements should be considered in future work. First,
incorporating additional precipitation-related variables—such as
cumulative rainfall, rainfall intensity, or antecedent moisture
indices—as input features can help the model better capture the
short-term dynamics and abrupt changes in soil water content
associated with intense rainfall events. Moreover, augmenting the
training dataset with more representative samples from extreme
or highly variable periods, possibly through data augmentation or
targeted sampling, may improve model robustness and
generalization under volatile conditions. The integration of hybrid
or ensemble modeling techniques, which combine data-driven
approaches with process-based hydrological models, can also
enhance the ability to account for non-linear and seasonal
fluctuations in soil moisture. Further, applying transfer learning
or online learning strategies would allow the model to adapt more
rapidly to changing environmental conditions as new data
becomes available during the rainy season. Finally, employing
model interpretability tools, such as attention visualization or
SHAP (SHapley Additive exPlanations) (Nohara et al., 2022)
analysis, can help identify periods or variables that contribute
most to prediction uncertainty, thus informing targeted
refinements of the prediction framework. These strategies are
expected to significantly enhance the resilience and reliability of
soil water content forecasting during periods of pronounced
seasonal variability.

These findings underline the difficulty in achieving stable
predictions during the rainy season, highlighting the importance of
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incorporating seasonal variability and precipitation patterns into
predictive models.

4 Conclusion

This paper employs the RAO-1 algorithm to optimize the
Informer model for SWC prediction. The following conclusions can
be drawn from this study:

1 Optimization with RAO-1: The application of the RAO-1
algorithm for hyperparameter optimization significantly
improved the performance of the Informer model. The
optimization process enhanced the convergence rate during
training and reduced the overall computational time, making
the model more efficient.

2 Comparison with baseline models: A comparative analysis with

SVR, LSTM, and

Transformer—demonstrated that the RAO-1 optimized

baseline models—including RE
Informer model achieved superior prediction accuracy,
especially in reducing prediction errors.

3 Impact of Seasonal Factors: This study also highlighted the
significant impact of seasonal factors, particularly during the
rainy season, on the accuracy of SWC predictions. During this
period, the variability in precipitation and the rapid changes in
SWC posed significant challenges for the RAO-1 optimized
Informer model. Compared to the overall season, the model’s
prediction performance was notably worse during the
rainy season.

Recommendations and Future Directions:

1 Broader Applications: The proposed RAO-1-optimized
Informer model demonstrates strong potential not only for
SWC prediction but also for other time-series forecasting tasks
in environmental and hydrological sciences. Future research
can extend this integrated model to areas such as pollution
forecasting, runoff-seepage modeling, or even climate data
prediction, where accurate and efficient modeling of temporal
dynamics is crucial.

2 Cross-domain Implementation: Beyond hydrology, the
approach could be considered for agricultural decision support,
drought monitoring, groundwater level prediction, or even
renewable energy generation forecasting, where input features
and data patterns might be similar.

3 Model Enhancement: Future work could investigate the
combination of RAO-1 with other deep learning
architectures or the integration of additional data sources
(e.g., remote sensing data, climate indices) to further
enhance prediction accuracy, especially under complex
seasonal variations.

4 Real-world Implementation: Practitioners are encouraged to
adapt and test the proposed approach under different
environmental settings and for diverse scales—ranging from
watershed management to large-scale regional predictions—to
explore its robustness and generalizability.
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5 Directions for Research Community: Researchers interested in
metaheuristic algorithm optimization can further examine the
adaptability of RAO-1 (and related algorithms) for optimizing
other complex machine learning models in geoscience, ecology,
and environmental engineering, potentially leading to advances
in model automation and efficiency.

6 Model Interpretability and Explainability: To further enhance
the transparency and practical utility of the RAO-1 optimized
Informer model, future research will systematically address
model interpretability. Approaches such as applying SHAP
values or analyzing feature attention scores are planned to
elucidate how different input variables contribute to the model’s
predictions across varying temporal and seasonal contexts.
Improved interpretability will not only help build user trust for
real-world hydrological applications but also facilitate the
identification of key predictors and periods driving uncertainty,
thereby supporting targeted model refinement and more
informed decision-making.

7 Addressing Dataset Limitations and Generalization: This study
is based on a single-site dataset with a limited temporal span,
which may restrict the generalizability of the proposed RAO-1
optimized Informer model across diverse hydroclimatic regions.
Future work will focus on expanding data collection to multiple
geographically and climatically diverse sites, incorporating
multi-source datasets such as remote sensing and sensor
networks. Additionally, techniques like domain adaptation,
transfer learning, or meta-learning could be employed to
enhance the model’s robustness and adaptability to different
environmental settings.

In summary, this study highlights the value of metaheuristic
optimization in advancing deep learning-based prediction for
hydrological variables. The findings are expected to inspire both
practical deployments and methodological advancements across a
range of spatiotemporal prediction tasks in environmental science
and beyond.
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