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Introduction: Sustainable agricultural productivity is a key priority for China as it
navigates environmental challenges and growing food demand. Understanding the
impact of agricultural structural adjustments, including crop-livestock integration,
service-based agriculture, and digital transformation, on Green Total Factor
Productivity (GTFP) is essential for formulating effective agricultural policies.
Methods: This study analyzes data from 1,743 counties in China spanning from
2003 to 2022. Using econometric models, we examine the relationship between
agricultural structural adjustments and GTFP growth, focusing on the roles of
technological progress, structural changes, and digitalization. The study accounts
for regional variations in agricultural productivity.

Results: Our analysis finds that technological progress is the primary driver of GTFP
growth. Agricultural structural changes, particularly crop-livestock integration
and service-based models, contribute a “structural dividend,” enhancing sectoral
efficiency and advancement. Interestingly, service-oriented models initially slow
productivity but yield long-term benefits. Digital transformation significantly amplifies
these positive effects. Regional analysis reveals that eastern and western regions
benefit more from structural upgrades than central regions.

Discussion: These findings highlight the importance of designing policies tailored to
local contexts, especially considering regional differences in agricultural productivity.
The integration of digital technologies and service-oriented models plays a crucial
role in advancing GTFP. Policy-makers should focus on promoting inclusive,
sustainable, and technologically-driven agricultural development to meet China's
future food security needs.

KEYWORDS

green total factor productivity, agricultural structural adjustment, sustainable food
systems, digital agriculture, spatial spillover effects

1 Introduction

In the pursuit of high-quality and sustainable agricultural development, China’s food
production has historically relied on input-intensive strategies, where the expansion of
production scale primarily drove growth (Liu et al, 2023). However, this approach—
characterized by the excessive use of land, water, and chemical inputs—has resulted in
diminishing marginal returns and significant ecological degradation, rendering it ecologically
and economically unsustainable in the long term (He and Shen, 2018). Such unsustainability
reflects broader risks observed in other sectors, where unbalanced expansion without adequate
safeguards can lead to systemic collapse (Duan and Li, 2023). This situation poses a pressing
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challenge: how to shift from scale-driven growth to a more sustainable
and eflicient model that balances productivity with environmental
stewardship. Amid growing concerns over environmental degradation
and the imperative to build an ecological civilization, there is an
urgent need to reorient agricultural systems toward practices that
emphasize resource efficiency, ecological protection, and long-term
resilience (Zhang et al., 2025). Aligning agricultural transformation
with broader sustainable development spillovers can strengthen the
synergy between economic, environmental, and social outcomes (Cai
etal., 2025).

Within this context, enhancing GTFP has become a strategic
priority for achieving sustainable food production and consumption.
A central concept in this transformation is the “structural dividend”—
the productivity gains realized when resources are reallocated from
less efficient to more efficient sectors or activities within the economy
(Xuetal, 2025; Wang et al., 2019). Evidence from policy experiments
suggests that financial and institutional reforms, such as green finance,
can accelerate inclusive green growth, which supports these structural
adjustments (Xu et al, 2025). In agriculture, such structural
adjustments include crop-livestock integration, mechanization, and
the adoption of digital and smart farming practices, all of which
contribute to improved resource use efficiency and environmental
sustainability. The integration of digital intelligence into agricultural
resource management can further enhance collaborative mechanisms
and market-based coordination (Li et al., 2025).

Another key transformation is agricultural “servitization,” which
refers to the transition from traditional, production-centric farming
toward service-oriented agricultural models. These services—ranging
from machinery leasing and soil testing to technical advisory
support—are increasingly recognized as vital for raising productivity
and reducing environmental burdens (Qin et al., 2017). Adaptive
policy adjustments in other resource-dependent contexts have shown
that flexible governance approaches can yield co-benefits for
ecosystems, agriculture, and local economies (Jiang et al., 2023).
Similarly, agricultural transformation must also account for land-use
change patterns, which are influenced by both local drivers and
broader geopolitical or socio-economic dynamics (Sulieman, 2024).

Nonetheless, the productivity impacts of servitization are often
non-linear and highly region-specific, presenting an analytical
challenge for policy development. This complexity parallels findings
from advanced econometric analyses, where heterogeneous responses
emerge across different groups and contexts (Yang et al., 2024). Green
innovation, such as that driven by green bond financing, can also
interact with structural transformation by enhancing environmentally
friendly production practices (Dong and Yu, 2024). Additionally,
hidden yet persistent disparities in rural capabilities—similar to the
“long tail” phenomenon in rural education—can limit the equal
distribution of productivity gains and must be addressed for truly
inclusive agricultural transformation (Dong and Yu, 2024).

Despite growing interest in structural transformation, several
critical gaps remain in the existing literature. Most studies focus on
macro-level impacts at the provincial or national scale, providing
limited insights into how structural adjustments operate at the local
level. Additionally, the evidence on the effectiveness of agricultural
production services remains inconclusive, largely due to the failure to
capture regional heterogeneity and non-linear relationships (Qin et al.,
2017). Another overlooked area is the mediating role of digitalization,
which has become increasingly important in enabling structural
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transitions but is seldom integrated into empirical analyses. These
limitations hinder the formulation of context-sensitive, spatially
differentiated strategies for green productivity enhancement.

To address these challenges, this study makes three key
contributions. First, it conducts a fine-grained, county-level analysis
of agricultural structural adjustment and its impact on GTFP across
1,743 counties in China from 2003 to 2022, capturing spatial
heterogeneity and local dynamics often overlooked in aggregated
studies. Second, it examines potential non-linear effects—specifically,
a U-shaped relationship between agricultural servitization and
GTFP—to identify thresholds where servitization shifts from
inhibiting to promoting productivity. Third, it incorporates
digitalization as a mediating mechanism, shedding light on how
digital infrastructure and technologies strengthen the productivity
gains from structural adjustments.

This research investigates whether structural adjustments produce
productivity-enhancing “structural dividends” and how these effects
differ across regions. GTFP is measured using the DEA-Malmquist
index, which captures changes in dynamic efficiency over time. A
Spatial Autoregressive model with Autoregressive Disturbances
(SARAR) model is employed to examine inter-regional spillovers and
reveal the mechanisms through which structural transformation
influences GTFP, guided by the structural dividend hypothesis. By
integrating spatial heterogeneity and digital mediation, this study
provides policy-relevant insights into how region-specific structural
shifts can contribute to more sustainable and resilient agricultural
systems in China.

The remainder of this paper is structured as follows. Section 2
develops the theoretical framework and presents the research
hypotheses. Section 3 describes the data sources, measurement of key
variables, and empirical methodology, including the spatial
econometric model. Section 4 reports the empirical findings,
including baseline results, robustness checks, and regional
heterogeneity analyses. Section 5 investigates the underlying
mechanisms through mediation analysis. Finally, Section 6 concludes
the paper and offers policy implications based on the study’s findings.
Building on this outline, the next section develops the theoretical
and formulates the

framework underpinning the study

research hypotheses.

2 Theoretical background

2.1 Direct effect

The concept of the “structural dividend” was originally developed
within the context of national industrial restructuring but is equally
applicable to the agricultural sector. When structural adjustments
occur in agriculture, and production factors such as labor, land, or
capital shift from lower-productivity activities to higher-productivity
ones, GTFP increases. This improvement is referred to as a structural
dividend. Conversely, if production factors are reallocated from high-
productivity to low-productivity sectors, it leads to a decline in GTFP,
resulting in what is known as a structural negative benefit.

The relationship between agricultural structural adjustment and GTFP
is strongly influenced by the alignment between the evolving agricultural
structure and local factor endowments. When structural adjustments are
consistent with regional comparative advantages—reflecting the optimal
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use of land, labor, and other inputs—resource allocation becomes more
efficient, releasing structural dividends that enhance GTFP. However, when
agricultural restructuring deviates from the regional factor endowment or
proceeds in an excessive or imbalanced manner, it can create structural
distortions. In such cases, the adjustments may weaken the positive effects
on productivity or even act as a constraint on GTFP improvement.

A key dimension of this transformation is the servitization of
agriculture. When agriculture becomes excessively service-oriented
or when the transition toward service-based activities outpaces local
capacity and ecological balance, the original structure may
be destabilized, resulting in negative consequences for productivity.
Nonetheless, a rational and moderate degree of servitization can
significantly benefit GTFP. By allowing agricultural producers to
concentrate on their core strengths while outsourcing non-core
activities to specialized service providers, transaction costs are
reduced, and farmers’ incomes increase—both of which positively
influence productivity. Furthermore, collaboration between
agricultural service industries and producers encourages a coordinated
division of labor that leverages the comparative advantages of both
parties. This synergy enhances production efficiency and drives
further gains in GTFP. A theoretical framework of the study is given
in Figure 1.

Based on this theoretical rationale, this study proposes the
following hypothesis:

HI: Moderate adjustment of the agricultural structure facilitates
improvements in agricultural green total factor productivity.

2.2 Indirect effect

The adjustment of the agricultural structure contributes to the
improvement of green total factor productivity (GTFP) through
the enhancement of digitalization. Structural upgrading in
agriculture incentivizes all segments of the sector to adopt digital
technologies more actively, leading to a general rise in the level of
digitalization. This increased digital integration impacts GTFP
through several pathways: it improves production efficiency,
optimizes the allocation of resources, broadens market access, and
raises the added value of agricultural products. As a result, a clear
transmission mechanism structure

emerges agricultural

10.3389/fsufs.2025.1639062

upgrading leads to higher levels of digitalization, which in turn
promotes an increase in GTFP.

Digitalization thus functions as a mediating factor that transforms
the benefits of structural upgrading—such as industrial transformation
and the optimization of agricultural business models—into tangible
improvements in productivity. By enabling more precise, data-driven
use of production inputs across different stages of industrial
expansion, product refinement, and enterprise scaling, digitalization
allows for better responsiveness to market demands and the generation
of greater economic value. This digital transformation ultimately
enhances the efficiency and sustainability of agricultural production
systems, contributing to the growth of GTFP.

Based this the
following hypothesis:

on rationale, study proposes the

H2: Moderate adjustment of the agricultural structure can
promote improvements in agricultural green total factor
productivity through the enhancement of digitalization levels.

Having established the hypotheses, the following section outlines
the selection of the empirical model and variables used to test them.

3 Materials and methods
3.1 Selection of model

the
macroeconomic variables and the impact of spatial distance on

Considering potential spatial correlation among
regional GTFP (Zhang, 2012), this study employs a spatial
econometric model to test the proposed hypotheses. In terms of
model selection, given that both spatial lag and error terms may
coexist in spatial models, we introduce the SARAR model with a
spatial autoregressive error term for analysis (Sun et al., 2017). The

specific form of the SARAR model is as in Equation 1:

Y=pWY+XB+p,u=Wu+e (1)

where Y represents the dependent variable, X denotes the
independent variables, W is the spatial weight matrix, £ is the vector
of coefficients, ¢ is the random disturbance term, € ~ N (0,6°I,). A is the

Factor Reallocation

Agricultural
Structure

Servitization
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-

FIGURE 1
Theoretical analysis framework.
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autoregressive coefficient for the residuals, and p is the spatial
autoregressive coefficient.

3.2 Source of data

A substantial share of Chinas agricultural production is
concentrated in county-level regions, making counties an ideal unit of
analysis for agricultural research. Utilizing county-level data not only
improves the representativeness of the study but also significantly
expands the sample size compared to analyses conducted at the
provincial or municipal level. In this study, county-level administrative
divisions, as defined in 2022, serve as the basis for sample selection.
Following a rigorous screening process, the final dataset includes
1,743 counties observed over a 19-year period, yielding a total of
33,117 panel observations. The primary data sources comprise the
China County Statistical Yearbook (County and City Volume) (2014-
2018), as well as provincial and municipal statistical yearbooks
spanning 2014-2023. The analysis begins in 2003, the year China
adopted a revised national industrial classification standard, which
integrated the output value of agricultural, forestry, animal husbandry,
and fishery services into the overall output value of the agriculture,
forestry, animal husbandry, and fishery sector. With the model
framework established, the next step is to define the dependent
variable and its associated measurement indicators.

3.3 Selection of the dependent variable
In this study, agricultural green total factor productivity (GTFP)

is selected as the dependent variable. Before calculating GTFP, it is
necessary to define appropriate output and input indicators. The

TABLE 1 Indicators for the measurement of agricultural GTFP index.

Indicator Variable name Variable

category explanation
Agricultural Output The total output value of
(Expected) agriculture (10,000 Yuan)

Output index Carbon Emissions CO, emissions attributable

(Unintended) to fertilizers, pesticides, and
irrigation (10,000 t)

Input of labor Agricultural workforce
(10,000 persons)

Input of machinery The aggregate power

capacity of agricultural

machinery (10,000 kW)
Input of chemical The application rate of
fertilizers chemical fertilizers
Input index (10,000 1)
Input of pesticides The quantity of pesticide

application (10,000 t)

The area of effective

irrigation (10,000 hm?)

Input of irrigation

Input of land The cultivated area of crop

sowing (10,000 hm?)
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output indicators are categorized into expected and non-expected
outputs. The expected output is measured using the gross output value
of agriculture, forestry, animal husbandry, and fishery at the county
level. To ensure consistency over time, this value is adjusted to
constant prices using the 2003 base year and deflated with the
corresponding year’s gross national product (GNP) deflator. The
non-expected output is captured by agricultural carbon emissions,
which account for CO, emissions generated through key agricultural
activities, including the use of fertilizers, pesticides, and irrigation.
Detailed descriptions of these indicators are provided in Table 1.

This study adopts physical agricultural inputs as the input
indicators for measuring agricultural green total factor productivity
(GTFP). Specifically, labor input is measured by the number of
individuals employed in agriculture, forestry, animal husbandry, and
fishery within each county across the study period. Capital inputs are
captured through four indicators: the total power of agricultural
mechanization, the net amount of fertilizer applied, the quantity of
pesticide used, and the effective irrigated area—all of which reflect key
dimensions of capital utilization in agricultural production. Land
input is represented by the total sown area of crops in each county
over the years. To estimate GTFP, the Malmquist index approach is
employed. The defined input and output indicators are entered into
DEAP 2.1 software, which calculates county-level GTEP values. Due
to the structure of the DEA-Malmquist index method—where the
first year serves as the base period and calculations begin from the
second year—the resulting GTFP measurements span the period from
2004 to 2022.

Figure 2 presents the trends in China’s agricultural green total
factor productivity (GTFP) and its decomposition indices from 2004
to 2022. Overall, agricultural GTFP displays a pattern of initial decline
followed by a gradual recovery, accompanied by fluctuations
throughout the period. Despite these fluctuations, the GTFP growth
rate remained positive in all years. The highest recorded growth
occurred in 2004, reaching 18.80%, while the lowest was observed in
2017 at 0.80%. The period from 2009 to 2017 was marked by a gradual
decline in GTFP, which may be linked to the broader economic
transition from a phase of “structural acceleration” during
industrialization to a phase of “structural deceleration” during
urbanization (Sun et al., 2017). From 2017 to 2022, GTFP showed a
steady upward trend, likely driven by the deepening of ecological
civilization initiatives and a shift in agricultural production models
from extensive, input-heavy practices to more intensive and
environmentally sustainable approaches.

The decomposition of the GTFP index reveals that technological
progress maintained a consistent pattern of positive growth across the
entire study period. In contrast, technical efficiency fluctuated within
a relatively narrow range and registered negative growth in several
years. Notably, the trajectory of overall GTFP growth closely aligns
with that of technological progress. On average, technological progress
accounted for 93.5% of the annual GTFP growth, while technical
efficiency contributed only 6.5%. These findings indicate that
technological progress has been the principal engine driving
improvements in agricultural GTFP in China. Consequently, the gains
in GTFP over this period were largely propelled by what can
be characterized as a “single-track drive” centered on technological
advancement. Building on the assessment of GTFP trends, the
subsequent step is to define the core explanatory variables, focusing
on agricultural structure adjustment.
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3.4 Selection of explanatory variables

In this study, agricultural structure adjustment is quantified using
three key indices: rationalization, sophistication, and service orientation.
The rationalization index is adapted from established methodologies
used to evaluate industrial structure upgrading, capturing the degree of
integration, coordination, and efficiency in resource allocation across
various agricultural sub-sectors (Liu and Zhang, 2008). To operationalize
this, the agricultural system is divided into three structural tiers: the
primary sector, comprising the planting industry; the secondary sector,
which includes forestry, animal husbandry, and fishery; and the tertiary
sector, consisting of services related to agriculture, forestry, animal
husbandry, and fishery. This classification allows for a comprehensive
assessment of how balanced and efficient the structural distribution of
agricultural activities is across different functional domains. The specific
formula used to calculate these indices is given in Equation 2.

37y Y v
his=Y"| =L [xIn| =L/ = 2
is Z[Yj n e 2)

j=1 j

where his represents the rationalization index of the agricultural
structure in county. Y; and L; denote the output value and the
number of employees, respectively, in the j agricultural sector
within the county. Y and L represent the total output value and the
total number of employees across all agricultural sectors
(agriculture, forestry, animal husbandry, and fishery) in the county.
According to the definitions provided by scholars such as and Yu
(2015), the rationalization index operates inversely to the level of
rationalization. Specifically, a higher rationalization index indicates
a lower degree of rationalization in the agricultural structure, while
a lower index suggests a higher degree of rationalization. When
his = 0, the agricultural economic system is in equilibrium. A larger
rationalization index implies greater deviation from this
equilibrium state.

Due to the unavailability of employee data for each sector of the
agricultural industry in macro-level datasets, it is necessary to process
and estimate the relevant indicators pertaining to the number of

Frontiers in Sustainable Food Systems

employees in each agricultural sector. A weighting coefficient
approach is applied to disaggregate labor input across the various
sectors within the broader agricultural domain. The formula for the
weighting coefficient can be written in Equation 3.

A=(alb)*(Y;/Y) ©)

where A represents the weight coeflicient for labor input in each
agricultural sector within the county. Specifically, a denotes the
sown area of crops, b indicates the area of commonly used cultivated
land, Y; represents the output value of the j agricultural sector, and
Y signifies the total output value of agriculture, forestry, animal
husbandry, and fishery in the county. The labor input indicator for
each agricultural sector is calculated by multiplying the annual
number of employees engaged in agriculture, forestry, animal
husbandry, and fishery in the county by the weight coefficient A.
The index for the advancement of agricultural structure is
quantified using a methodology analogous to that employed for
measuring industrial structure advancement. Specifically, within the
broader agricultural sector, crop farming is classified as the primary
industry, while forestry, animal husbandry, and fishery are collectively
categorized as the secondary industry. The tertiary industry
encompasses services related to agriculture, forestry, animal
husbandry, and fishery. The specific formula can be written in
Equation 4.
YZw ,Yar Vi

gis=—L4220 43
y Ty Ty

(4)

where gis represents the index of agricultural structural
advancement for the county. Specifically, Y, Y, and Y3, denote the
output values of the planting industry, the combined forestry, animal
husbandry, and fishery sector, and the service sector related to
agriculture, forestry, animal husbandry, and fishery in the county
during year ¢, respectively. A higher gis value indicates a more
advanced agricultural structure in the region, while a lower value
suggests a less advanced structure.
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The indicator for the servitization of agricultural structure is  service industries to the total output value of the entire
constructed to reflect the scale and development level of the  agricultural sector. For the selection of control variables, detailed
agricultural service sector. It is measured as the ratio of the output  explanations are not provided here, as they are summarized in
value of the agricultural, forestry, animal husbandry, and fishery =~ Table 2.

TABLE 2 Descriptive statistics of variables.

Variables Variable name Maximum Minimum Standard

deviation

GTFP Index of Agricultural
GTFP

1.097 1.210 0.706 0.115

The explained TCH Index of Agricultural
1.085 1.213 0.805 0.090
variable Technological Progress

ECH Index of Agricultural
1.014 1.243 0.650 0.098
Technology Efficiency

his Index of Agricultural
Structural 0.181 0.762 —0.278 0.115

Rationalization

Core explanatory
gis Index of Agricultural
variable 1.455 2.219 0.720 0.186
Structural Upgrading

fis Index of Agricultural
3.082 18.506 0.208 2.151
Structural Servitization

DL The Degree of
Mediating variable Agricultural 11.246 49.574 0.537 10.102
Digitization (%)

PL Average Cultivated
Land per Laborer 0.188 0.995 0.059 0.107

(Hectares per Person)

PC Average Capital per
Laborer (10,000 Yuan 0.206 5.243 0.001 0.364

per Person)

PM The Mechanization
Level per Unit Area 7.442 29.674 0.608 4.465
(Kilowatts per Hectare)

PF The Fertilizer

Application Rate per
0.277 0.788 0.028 0.136
Unit Area (Tons per

Hectare)

PI The Irrigation Level per
Control variable 0.257 2.030 0.009 0.228
Unit Area

PG Per Capita GDP
(10,000 Yuan)

1.990 11.988 0.080 1.653

AP The Proportion of the
13.848 47.974 0.749 10.402
Primary Industry (%)

AE 'The Proportion of
Agricultural Fiscal 15.022 36.942 3.870 5.731
Expenditure (%)

UR The Urbanization Rate
(%)

18.802 53.864 3.966 8.178

RE The Electricity
Consumption in Rural

Areas (10,000 Kilowatt-

0.683 4916 0.011 0.744

hours)

Data source: Organization and calculation of raw data.
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To ensure the robustness of our empirical findings, we adopt two
widely recognized approaches based on authoritative literature. One
such approach involves replacing the core explanatory variable with
an alternative indicator. Furthermore, we utilize the degree of
industrial structure deviation as a proxy for the rationalization of the
agricultural structure. This index captures the mismatch between the
distribution of agricultural output and labor across subsectors,
providing a measure of resource allocation efficiency. A lower value
indicates a more balanced and rational structure, while a higher value
reflects structural imbalances. The degree of deviation is calculated
using a given Equation 5,

E=Y " [Y/L;/Y/L-1 (5)

where Y; denotes the output value of the j agricultural sector
within the county, while Y represents the total output value of
agriculture, forestry, animal husbandry, and fishery in the county. L;
indicates the number of employees in the j agricultural sector within
the county, and L represents the total number of employees across
these sectors in the county. The ratio Y/L signifies labor productivity.
According to classical economic theory, when the economy is in
equilibrium, the productivity levels across different industrial sectors
are equal. Therefore, under equilibrium conditions, Yi/Li = Y/L, and
at this point, the deviation degree of the industrial structure E = 0.
This index reflects the coupling between the output structure and the
input structure. A larger E value indicates a greater deviation from the
equilibrium  state, unreasonable

suggesting a  more

agricultural structure.

3.5 Selection of mediating variables

Broadband access is a critical indicator of network infrastructure
in rural areas and serves as a foundational prerequisite for advancing
agricultural digitalization. Reliable broadband coverage enables the
deployment of a wide range of digital applications and services in
agriculture, including online training in agricultural technologies,
precision farming tools, and e-commerce platforms for agricultural
product transactions. Agricultural digitalization is measured using the
ratio of rural households with broadband access to the total number
of rural households in each county, reflecting the extent of digital
infrastructure penetration in rural areas. A higher ratio indicates a
more developed state of digital infrastructure and, by extension, a
more advanced level of digitalization in agriculture.

4 Results and discussion
4.1 Relevant statistical tests

4.1.1 Spatial correlation analysis

Before constructing the spatial econometric model, it is necessary
to test whether the dependent variable exhibits spatial correlation. To
this end, this study employs Moran’s I index to assess the degree of
spatial autocorrelation in agricultural GTFP across counties. The
results of this analysis are presented in Table 3.

Frontiers in Sustainable Food Systems
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TABLE 3 Moran's | index statistical test.

Variables . GTFPP ECH  TCH

2004 0.090%*3* 0.086%** 0.120%*3*
2005 0.072%:%:* 0.105%** 0.171%%:*
2006 0.017%* 0.032%:%3* 0.057%:%:*
2007 0.005%* 0.007* 0.006%**
2008 0.017%* 0.012* 0.018%*
2009 0.081 %% 0.099%:%3* 0.120%:*:*
2010 0.001* 0.007* 0.072%:%:%
2011 0.018%:#:* 0.128%:%3* 0.029%:%:*
2012 0.078%:%* 0.123%:%% 0.034%:%3%
2013 0.019%:* 0.013* 0.060%:**
2014 0.014%3%* 0.084 %% 0.096%:*3*
2015 0.01 1%*3%% 0.079%:%* 0.15] %%
2016 0.009%3%* 0.077%:%% 0.155%:%:%
2017 0.007°%3%% 0.075%:%% 0.158%:%*
2018 0.01 3% 0.073%:%% 0.082%#:%3%
2019 0.01 2% 0.080%:%* 0.155%:%3%
2020 0.008%3* 0.067%%* 0.157%:%%
2021 0.006%%* 0.065%:%* 0.159%:%*
2022 0.004%3%* 0.058%:%% 0.164%%*

Data Source: Output from Stata 15.1. ***, ** and * indicate significance at the 1, 5, and 10%

levels, respectively.

Based on Moran’s [ index test results, it is evident that there exists
a significant spatial correlation in the agricultural GTFP among
counties. The formation of this spatial correlation can be attributed to
two primary factors: First, adjacent counties share similar resource
endowment characteristics, which may lead to correlated agricultural
GTFP levels. Second, the proximity of neighboring counties facilitates
more frequent and efficient economic interactions, promoting the flow
of production factors and technology spillovers, thereby generating
spatial spillover effects. Moreover, the positive value of Moran’s I index
indicates that this spatial correlation manifests as a positive spatial
spillover effect. Given the presence of spatial spillover effects, it is
essential to conduct diagnostic tests to verify the model’s reliability
before proceeding with estimation.

4.1.2 Multicollinearity, BP, and Hausman tests
Before model estimation, a series of diagnostic tests was
conducted to ensure the robustness and reliability of the analysis. The
first step involved assessing multicollinearity among the explanatory
variables. A preliminary correlation coefficient test revealed that the
highest pairwise correlation coefficient was 0.4423, indicating
relatively weak correlations among the variables. To further verify
these results, a variance inflation factor (VIF) test was performed. As
shown in Table 4, the maximum VIF value is 3.64, and the average VIF
is 2.17. These values fall well below the commonly accepted threshold
of 10, suggesting that multicollinearity is not a concern. Therefore,
based on the combined results of the correlation and VIF analyses, it
can be concluded that the dataset does not exhibit significant
multicollinearity among the selected variables (Table 4).
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TABLE 4 Results of the VIF test.

Variables VIF  1/VIF  Variables VIF  1/VIF
PC 3.64 0.275 PM 1.85 0.539
AP 2.85 0.351 PI 1.69 0.591
PG 2.83 0.353 PF 1.68 0.593
gis 2.63 0.380 UR 1.53 0.654
his 2.53 0.395 AE 1.51 0.660
PL 2.18 0.458 fis 1.34 0.746
RE 2.05 0.488 DL 1.17 0.499
Data Source: Output Generated by Stata 15.1 Software.
TABLE 5 Results of the BP and Hausman tests.
Model GTFP ECH TCH
BP 877.03%#* 2,866.927% %% 4,821.34%%*
Hausman 111.17%%%* 37.47%% 97.047%%%
Observations 31,374 31,374 31,374
Number 1,743 1,743 1,743

Data Source: Output Generated by Stata 15.1 Software. *** and ** indicate significance level
of parameters at the 1, and 5%, respectively.

The Breusch-Pagan (BP) test results show that all p-values are
0.0000, leading to the rejection of the null hypothesis that supports the
pooled regression model. This indicates that the random effects model
is statistically superior to the pooled model. Following this, the
Hausman test produces p-values of 0.0000, 0.0029, and 0.0000, which
also lead to the rejection of the null hypothesis favoring the random
effects model. These findings demonstrate that the fixed effects model
provides a better fit for the data than the random effects model.
Therefore, based on these diagnostic tests, the fixed effects model is
determined to be the most appropriate specification for this analysis
(Table 5).

4.2 Estimation of the benchmark model

The estimation results of the spatial econometric model indicate
that both the spatial autoregressive coeflicient (p) and the spatial error
term coefficient (1) are statistically significant. This finding
corroborates the Moran’s I test results, thereby justifying the necessity
of employing a spatial econometric model in this analysis. The
benchmark model utilized in this study is the SARAR model, which
yields results consistent with those of SDM. Subsequent analysis will
be conducted based on the SARAR model (Table 6).

This study first examines the impact of the agricultural structure
advancement index (GIS) on green total factor productivity (GTFP).
The estimation results indicate that agricultural structure advancement
has a significantly positive effect on GTFP, suggesting the presence of
a notable “scale effect” As the agricultural structure evolves toward
higher levels, it disrupts the traditional, siloed growth pattern of crop
farming, alters the input-output configuration of production factors,
and thereby enhances productivity. Additionally, the rapid growth of
the agricultural service sector facilitates more efficient allocation of
resources across sub-sectors, raising the marginal productivity of
agricultural inputs.

Frontiers in Sustainable Food Systems

10.3389/fsufs.2025.1639062

Next, the study evaluates the effect of the agricultural structure
rationalization index (HIS) on GTFP. The estimation results show a
significantly negative coefficient for HIS. Since HIS is inversely related
to the level of structural rationalization, this finding implies that
improved rationalization promotes GTFP. One explanation is that,
under the ecological civilization strategy, there has been a shift in
agricultural inputs from traditional to greener factors, optimizing
resource allocation and boosting GTFP. Another contributing factor
is the reallocation of rural labor—either to non-agricultural sectors or
within agriculture itself—which creates a substitution effect where
capital replaces labor. This reconfiguration enhances the
rationalization of the agricultural structure, and the resulting
alignment with regional factor endowments contributes to
improved productivity.

The analysis also explores the impact of the agricultural
structure servitization index (FIS) on GTFP. The results show that
FIS has a significantly negative effect on GTFP, indicating that a
higher proportion of output from the agricultural service sector
currently hinders productivity improvements. This suggests that,
at present, servitization does not exhibit a scale effect conducive
to GTFP growth—contrary to some previous findings (Sheng,
2014). Furthermore, the coeflicient of the linear term for FIS is
negative, while that of the quadratic term is positive, revealing a
U-shaped
GTEFP. Specifically, at low levels of servitization, the transformation

relationship ~ between servitization and
hampers productivity; however, once the level of servitization
surpasses a certain threshold, its effect shifts from negative to
positive. This may be due to the relatively small size and limited
development of the agricultural service sector in China, which has
not yet reached the scale required to significantly enhance
GTFP. As the sector matures and expands, its positive contribution
to productivity is expected to become more pronounced.

Finally, the study investigates the transmission mechanisms
through which structural adjustment affects GTFP. Results indicate
that the GIS index has a significant positive effect on technological
progress, but not on technical efficiency, implying that structural
advancement primarily enhances GTFP through the promotion of
innovation and technology adoption. In contrast, the HIS index
positively influences both technological progress and technical
efficiency, suggesting a dual pathway through which rationalization
boosts productivity. Conversely, the FIS index exerts a negative effect
on both components, indicating that the observed hindrance to GTFP
stems from simultaneous declines in both technical efficiency and
technological progress. Taken together, these findings empirically
validate Hypothesis H1, confirming that moderate adjustment of the
agricultural structure—particularly when aligned with factor
endowments and technological advancement—can enhance
agricultural green total factor productivity.

The estimation results also reveal important insights
regarding the influence of control variables on GTFP. Per capita
GDP (PC) demonstrates a significantly positive effect across most
model specifications, suggesting that higher levels of economic
development create favorable conditions for green productivity
growth in agriculture. This effect likely reflects the ability of
wealthier counties to invest in advanced technologies,
infrastructure, and environmental protection measures, thereby
enhancing GTFP. Similarly, the urbanization rate (UR), though
not always statistically significant, shows a generally positive
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TABLE 6 Estimation of spatial econometric models.

Variables

10.3389/fsufs.2025.1639062

gis 0.0426% 0.0043 0.0375% 004617 0.0137 003527
(0.0127) (0.0223) (0.0121) (0.0137) (0.0240) (0.0162)
his —0.1510%#* —0.0879%* —0.0418%# —0.1670%# —0.1110%%* —0.0404*
(0.0400) (0.0352) (0.0129) (0.0402) (0.0363) (0.0245)
fis —0.0053% —0.0026* —0.0019%* —0.0055% —0.0032:* —0.00217*
(0.0015) (0.0013) (0.0009) (0.0015) (0.0013) (0.0009)
gis2 0.2210%* 0.1770%* 0.0205 0.1910%* 0.1501% 0.0136
(0.0981) (0.0896) (0.0606) (0.0974) (0.0903) (0.0608)
his2 —0.1970%%%* —0.2020 0.0693 —0.1380%#* —0.191 0.0914
(0.0176) (0.1620) (0.1090) (0.0176) (0.163) (0.1100)
fis2 0.0005%* 0.0008%7* 00004773 0.0005* 000047 0.0005%7*
(0.0002) (0.0002) (0.0001) (0.0003) (0.0002) (0.0001)
PL 0.0695% 0.0675% 0.0615%* 0.0875%% 0.0851%* 0.0747%5%%
(0.0200) (0.0346) (0.0234) (0.0251) (0.0358) (0.0242)
PC 0.1150%* 0.0431%5% 005957 0.1230% 004047 0.065277
(0.0142) (0.0129) (0.0087) (0.0148) (0.0136) (0.0091)
PG 0.0066%* 0.0019 0.0028 0.0053* 0.0021 0.0020
(0.0028) (0.0025) (0.0017) (0.0029) (0.0026) (0.0018)
AE —0.0004 —0.0004 0.0002 —0.0001 —0.0005 0.0005
(0.0006) (0.0005) (0.0003) (0.0007) (0.0006) (0.0004)
UR 0.0003 0.0004 —0.0002 0.0001 0.0003 —0.0002
(0.0004) (0.0003) (0.0002) (0.0004) (0.0004) (0.0002)
PM 000247 0.0004 0.0021 %% 0.0023%* 0.0010 0.0015%%%
(0.0008) (0.0007) (0.0005) (0.0009) (0.0008) (0.0005)
PF —0.0470 —0.0773% 00451 —0.0521° —0.0940% 00511355
(0.0289) (0.0241) (0.0163) (0.0294) (0.0255) (0.0172)
Pl —0.0275 0.0038 —0.0373%%x —0.0255 —0.0087 —0.0259%*
(0.0172) (0.0144) (0.0097) (0.0172) (0.0150) (0.0101)
RE 00222 0.0162%#% 0.0049 0.0205%#% 0.0156%#% 0.0028
(0.0055) (0.0047) (0.0032) (0.0056) (0.0050) (0.0034)
AP 0.0019% 0.0012%55 0.0001 000213 0.0015%* 0.0028
(0.0004) (0.0004) (0.0002) (0.0004) (0.0004) (0.0032)
) 0.709%%% 0.612%% 0.864%% 0.506% 0.506%%* 0.788%*
(0.0447) (0.0587) (0.0222) (0.0723) (0.0710) (0.0351)
! 0,348 0.283%* 0,541 - - -
(0.0991) (0.1312) (0.1576) - - -
sigma2_e 0.0099%% 0.0086%7* 00039 0009737 0008477 000387
(0.0004) (0.0003) (0.0001) (0.0003) (0.0003) (0.0001)
Constant 0508077 0.5590%7 0.1250% 1.08707% 0.33807%* 0.4330*
(0.0731) (0.0740) (0.0388) (0.3990) (0.1330) (0.2430)
Observations 31,374 31,374 31,374 31,374 31,374 31,374
R 0.157 0.045 0.173 0.246 0.105 0.435
Number 1,743 1,743 1,743 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. ***, **, and * denote statistical significance of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in

parentheses.
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relationship with GTFP in some models. This indicates that
moderate urbanization can facilitate the diffusion of innovations,
strengthen market linkages between rural and urban areas, and
promote efficient allocation of agricultural resources. However,
the marginal effects of urbanization appear limited, possibly due
to diminishing returns or challenges in integrating rural
agricultural systems into rapidly urbanizing economies. To
validate the consistency of these empirical results, the following
section robustness  checks two

implements using

complementary approaches.

4.3 Robustness test

To ensure the robustness of our findings, we summarize and adopt
two primary methods for robustness testing based on existing
authoritative literature. The first approach involves variable
substitution, wherein the core explanatory variable is replaced to
assess the stability of the estimated relationships.

4.3.1 Replace the core explanatory variable

As part of the robustness checks, we replace the original core
explanatory variable with the degree of industrial structure deviation
to re-estimate the model. This variable effectively captures the extent
of imbalance between agricultural output and labor distributions,
thus serving as a reliable proxy for structural rationalization.
Consistent with theoretical expectations, we observe that regions with
lower deviation values—indicative of more rational agricultural
structures—exhibit statistically significant improvements in the
dependent variable. The empirical results remain robust and
consistent, thereby validating the credibility of our main findings even
under alternative variable specifications. Building on the theoretical
framework of Clark’s Theorem, scholars such as Yu (2015) and Song
and Zheng (2017) have employed the ratio of non-agricultural output
value to the total output value of agriculture, forestry, animal
husbandry, and fishery as a proxy variable to measure the
advancement of the agricultural structure. Similarly, following the
work of Yu et al. (2016), this study adopts the ratio of agricultural
service industry output to total agricultural output as a proxy for the
servitization of the agricultural structure. All other variables and
methodological procedures remain consistent with the main
specification of the study. Details of these proxy variables are
presented in Table 7.

Based on the spatial SARAR model analysis, the results
demonstrate that the surrogate variable for agricultural structural
upgrading has a significantly positive impact on agricultural
GTFP. Conversely, the surrogate variables for agricultural
structural rationalization and servitization have significantly
negative effects on GTFP, with both passing the 1% significance
level test. These findings are consistent with the estimation results
of the benchmark model. Additionally, the estimated impacts of
the three surrogate variables on technological progress and
technological efficiency remain largely consistent with those of
the benchmark model. Therefore, it can be concluded that the
model’s results remain robust after replacing the core explanatory
variables. The second robustness approach modifies the spatial
weight matrix to evaluate whether the results are sensitive to
alternative specifications of spatial dependence.
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4.3.2 Modification of the spatial weight matrix

This study conducts robustness checks by substituting alternative
forms of the spatial weight matrix to ensure the reliability of the
results. Specifically, a spatial adjacency matrix is constructed based on
the contiguity relationship between county-level units, where a value
of 1 is assigned if two counties share a common border, and 0
otherwise. To ensure the robustness of the baseline results, estimations
are conducted using both the spatial SARAR model and the spatial
Durbin model (SDM). The estimation outcomes are reported in
Table 8.

The empirical results demonstrate that the advancement of
agricultural structure exerts a significant positive effect on GTFP and
technological progress, but does not significantly influence agricultural
technical efficiency, findings which are consistent with the benchmark
model. The rationalization of agricultural structure positively impacts
GTFP, with all effects passing the 1% significance level test. It also has
a positive influence on both agricultural technical efficiency and
technological progress, aligning closely with the benchmark model.
Conversely, the servitization of agricultural structure has a significant
negative impact on GTEP, as well as on agricultural technical efficiency
and technological progress, results that are largely in line with the
benchmark model. Therefore, the estimation results remain robust
after altering the spatial adjacency matrix, confirming the consistency
with the benchmark model. With the robustness of the results
confirmed, the analysis now turns to examining potential mechanisms
and regional heterogeneity in the observed relationships.

5 Examination of the influence
mechanism

5.1 Analysis of heterogeneity

Table 9 displays the estimation results for counties in the eastern,
central, and western regions. The findings reveal that both the spatial
error term coefficient (1) and the spatial autoregressive term
coeflicient (p) are statistically significant, thereby corroborating the
results of the Moran’s I test. This underscores the necessity of
employing a spatial econometric model in this analysis. The
subsequent section provides a comparative analysis across
these regions.

This study first analyzes the impact of agricultural structure
on green total factor productivity (GTFP) across different regions.
The results show that the advancement of agricultural structure
has a significantly positive effect on GTFP in counties located in
the eastern, central, and western regions. However, the magnitude
of this effect decreases progressively from east to west. This
pattern may be explained by regional disparities in development:
eastern counties have achieved higher levels of structural
advancement earlier, allowing for more effective reallocation of
resources and integration of modern technologies, thus producing
a stronger impact on GTFP. In contrast, western counties remain
in earlier stages of structural transformation, limiting the extent
of productivity gains. The rationalization of the agricultural
structure has a significantly negative impact on GTFP in both
eastern and western counties, but shows no statistically significant
effect in central counties. This implies that improvements in
structural rationalization contribute positively to GTFP in the
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TABLE 7 Estimation of the spatial econometric model with replaced core explanatory variables.

10.3389/fsufs.2025.1639062

Variables
GIS 0.0138%* 0.0311 009845 0.0376* 0.0217* 0.0385%*
(0.0061) (0.0349) (0.0168) (0.0212) (0.0174) (0.0196)
HIS —0.1650% —0.1801%* —0.34007%5% —0.2700% —0.1510%* —0.2040%%
(0.0439) (0.0863) (0.0582) (0.0749) (0.0688) (0.0583)
FIS —0.0280%* —0.0148 —0.0947%% —0.0342* —0.0605%% —0.0351%5
(0.0078) (0.0164) (0.0111) (0.0182) (0.0214) (0.0113)
PG 0.0071%% 0.0022 0.0029% 0.0060%+ 0.0027 0.0034*
(0.0028) (0.0025) (0.0017) (0.0029) (0.0027) (0.0020)
AP 0.0015%#% 0.0010%* 0.0059%#% 0.0018%#% 0.0012%#% 0.0038*
(0.0004) (0.0004) (0.0002) (0.0004) (0.0004) (0.0017)
AE —0.0002 —0.0006 0.0001 —0.0004 —0.0007 0.0003
(0.0006) (0.0005) (0.0003) (0.0007) (0.0006) (0.0004)
UR 0.0001 0.0003 —0.0003 —0.0001 0.0001 —0.0003
(0.0004) (0.0003) (0.0002) (0.0004) (0.0004) (0.0002)
RE 00203 0.0147%#% 0.0040 0.0195%#% 0.0157%#5% 0.0019
(0.0053) (0.0049) (0.0033) (0.0056) (0.0051) (0.0034)
PL -0.0193 —0.0692%* 0.0599%* —0.0162 —0.0779%% 0.07147%
(0.0381) (0.0351) (0.0237) (0.0395) (0.0365) (0.0245)
PM 0.0026% 0.0005 0.0020%#% 0.0025%#% 0.0010 0.0016%%*
(0.0008) (0.0007) (0.0005) (0.0009) (0.0008) (0.0005)
PF —0.0350 —0.0757+%* 004735 —0.0436 —0.0888:# 0.05287%
(0.0262) (0.0241) (0.0162) (0.0277) (0.0257) (0.0172)
Pl —0.0211 0.0107 —0.0350%% —0.0170 —0.0016 —0.0238**
(0.0157) (0.0144) (0.0097) (0.0162) (0.0150) (0.0101)
PC 0.1080%#* 0.0397%#% 00577+ 0.1180%* 0.036277 0.06437%%%
(0.0140) (0.0129) (0.0087) (0.0147) (0.0136) (0.0091)
P 0.7220%#% 060607 086607+ 0.5020%#% 0.4900%% 0.8000%#%
(0.0443) (0.0592) (0.0221) (0.0705) (0.0724) (0.0332)
yl 0.327%#% 0.305%* 0.528%#% - - -
(0.0821) (0.1112) (0.1364) - - -
sigma2_e 0.0102%#% 0.0086%* 0.0039%+ 0.0100%#* 0.0085%%% 0.003875%
(0.0003) (0.0003) (0.0001) (0.0003) (0.0003) (0.0001)
Constant 0457 0.533%#% 0.124%#5 1.472%%% 0316 06927
(0.0697) (0.0728) (0.0388) (0.3210) (0.2460) (0.1930)
Observations 31,374 31,374 31,374 31,374 31,374 31,374
R 0.125 0.042 0.143 0.233 0.095 0.414
Number 1,743 1,743 1,743 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. *#*, #*, and * denote statistical significance of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in

parentheses.

eastern and western regions, whereas in the central region, this  integrated service sector may currently hinder productivity
relationship is less evident. The servitization of agricultural improvements, particularly in less developed areas.

structure exerts a significantly negative effect on GTFP across all Second, the analysis examines the pathways through which
regions, with the strongest inhibitory effect observed in western  agricultural structure affects GTFP. The results indicate that the
counties. This finding suggests that an underdeveloped or poorly =~ advancement of agricultural structure significantly promotes
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TABLE 8 Estimation of the model with modified spatial weight matrices.

Variables

10.3389/fsufs.2025.1639062

gis 0.0255% 0.0024 0.0189%% 0.0345%% 0.0063 0.026777%
(0.0055) (0.0222) (0.0048) (0.0079) (0.0248) (0.0065)
his —0.152%% —0.0902* —0.0301%* —0.160%%* —0.104%%% —0.0507*
(0.0397) (0.0351) (0.0134) (0.0408) (0.0370) (0.0300)
fis —0.0538* —0.0272%* —0.0189%* —0.04307% —0.0612%5 —0.0212%*
(0.0156) (0.0134) (0.0089) (0.0162) (0.0200) (0.0096)
PG 0.0064%* 0.0020 0.0026 0.0051% 0.0017 0.1350%*
(0.0028) (0.0025) (0.0017) (0.0029) (0.0027) (0.0619)
AP 0.0019%* 00012775 0009477 00021755 0.0016%%* 0.0217:5%
(0.0004) (0.0004) (0.0027) (0.0004) (0.0004) (0.0071)
AE 0.0001 —0.0002 0.0002 0.0001 —0.0005 0.0006
(0.0006) (0.0005) (0.0003) (0.0007) (0.0006) (0.0004)
UR 0.0004 0.0004 —0.0002 0.0003 0.0004 —0.0002
(0.0004) (0.0003) (0.0002) (0.0004) (0.0004) (0.0002)
RE 002227 0.0161%* 0.0051 00157355 0.0153%* 0.0003
(0.0055) (0.0047) (0.0031) (0.0059) (0.0053) (0.0035)
PL —0.0175 —0.0659* 0.0620%% —0.0204 —0.0861%* 0.0746%%%
(0.0398) (0.0345) (0.0230) (0.0395) (0.0355) (0.0236)
PM 0.00247%#% 0.0004 0.0020%#% 0.0020%* 0.0009 0.0013%*
(0.0008) (0.0007) (0.0005) (0.0009) (0.0008) (0.0005)
PF —0.0414 —0.0733 % 0.0455% —0.0498* —0.0838* 0.048777%
(0.0287) (0.0240) (0.0160) (0.0296) (0.0258) (0.0172)
PI —0.0280 0.00367 —0.0376%%* —0.0110 —0.0012 —0.0228%*
(0.0171) (0.0144) (0.0096) (0.0177) (0.0155) (0.0103)
pC 0.1140%%* 0.042775 00583 0.1170%:5 00358 0.0643%7
(0.0141) (0.0128) (0.0085) (0.0149) (0.0137) (0.0091)
Constant 0.480% 0.536%%* 0.104% 171655 1.327%% 0.94275
(0.0716) (0.0722) (0.0375) (0.5300) (0.4370) (0.3190)
P 0726 0,630 0,878 0.4507% 04927 0.746%%
(0.0427) (0.0563) (0.0209) (0.0789) (0.0739) (0.0397)
! 0427 0,583 0.786% - - -
(0.1411) (0.1568) (0.2168) - - -
sigma2_e 0.0098% 0.0085%7% 00038 0.0096%7* 000847 0.0037%%%
(0.0003) (0.0003) (0.0001) (0.0003) (0.0003) (0.0001)
Observations 31,374 31,374 31,374 31,374 31,374 31,374
R 0.162 0.045 0.151 0.258 0.110 0.480
Number 1,743 1,743 1,743 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. ***, **, and * denote statistical significance level of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in
parentheses.

technological progress in all three regions—eastern, central, and  significantly negative impact on technological progress is observed in
western—but does not have a statistically significant effect on  the eastern and western regions, while its effect on technical efficiency
technical efficiency. This suggests that GTFP improvements resulting  is not statistically significant. These findings indicate that the influence
from agricultural structural advancement are primarily achieved  of rationalization on GTFP in these regions operates mainly through
through innovation and technology adoption, rather than gains in ~ the pathway of technological progress, with limited evidence
resource use efficiency. In the case of structural rationalization, a  supporting technical efficiency as a transmission channel.
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TABLE 9 Estimation of spatial econometric models across different regions.

10.3389/fsufs.2025.1639062

Variables Eastern region Central region Western region
GTFP ECH TCH GTFP ECH GTFP ECH TCH
gis 0.4320%#% 0.1470 0.2220%* 0.2660%* 0.0227 0.1830* 0.1860%#% 0.0156 0.1440%%
(0.1180) (0.0972) (0.1100) (0.1170) (0.0414) (0.0974) (0.0482) (0.0162) (0.0478)
his —0.3890% —0.0179 —0.2390%% —0.1680 —0.0124 —0.0830 —0.1330%* —0.0121 —0.0954%%
(0.2010) (0.1660) (0.1011) (0.1630) (0.0613) (0.1360) (0.0416) (0.0157) (0.0412)
fis —0.0077%* —0.0009 —0.0059* —0.0098% —0.00411 —0.0057%* —0.011 1% —0.0024 —0.0115%*
(0.0034) (0.0028) (0.0034) (0.0036) (0.0029) (0.0020) (0.0033) (0.0016) (0.0054)
PL 0.0436%* 0.1490%#% 0.1100%* 0.2810%* 014185 0.1620%#% 0.0211% 0.0314%% 0.0195*
(0.0208) (0.0424) (0.0511) (0.1103) (0.0421) (0.0260) (0.0103) (0.0146) (0.0102)
PC 0.0583%#% 0.0323* —0.0147 0.0319%* 0.2030%#% 0.0468 0.0284%% 0.04917% 0.1220%
(0.0217) (0.0183) (0.0219) (0.0142) (0.0787) (0.1590) (0.0114) (0.0110) (0.0686)
PG —0.0051* —0.0028 0.0019 —0.0099 0.0070% —0.0164** —0.0011 0.0019 —0.0157+*
(0.0031) (0.0031) (0.0032) (0.0090) (0.0037) (0.0073) (0.0078) (0.0031) (0.0072)
AE —0.0821 0.0493 —0.0964 —0.2890%% —0.1070%* —0.1560* —0.0707%% —0.1840% 0.2640%#%
(0.1880) (0.1640) (0.1910) (0.1170) (0.0406) (0.0941) (0.0298) (0.0793) (0.0842)
UR —0.1200 —0.0509 —0.026 0.0979 0.0246 0.049 0.0730 0.05727* —0.127
(0.0926) (0.0773) (0.0936) (0.0994) (0.0412) (0.0819) (0.0818) (0.0266) (0.0807)
RE 0.0012%% 0.0009* 0.0057* 0.0275%#5% 0.0017 001845 0.0027 0.0052 0.0159
(0.0005) (0.0004) (0.0005) (0.0083) (0.0021) (0.0068) (0.0138) (0.0047) (0.0137)
PM —0.0028 0.0047 —0.0056 0.0071%* 0.0018%* 0.0078%* 0.0046%* 0.0067%%% 0.0054*
(0.0039) (0.0032) (0.0039) (0.0041) (0.0008) (0.0034) (0.0020) (0.0009) (0.0028)
PF —0.0446 0.0487 —0.0836 0.1170%* 0.0359%% —0.0197 —0.0489 0.03807%%% —0.1640%%
(0.0594) (0.0497) (0.0598) (0.0551) (0.0162) (0.0456) (0.0682) (0.0126) (0.0671)
Pl —0.0472 0.1270%+ —0.1100%* 03520 0.1150%# 0.1710%#% 0.0806%7 0.09207% 0.0753%
(0.0636) (0.0533) (0.0642) (0.0429) (0.0154) (0.0357) (0.0218) (0.0208) (0.0366)
AP 0.3010%* —0.0820 0.3340%* 0.1610%* 0.0829%#% 0.0386 0.0763* 0.0115%%+* 0.0893%*
(0.1400) (0.1400) (0.146) (0.0704) (0.0314) (0.0932) (0.0440) (0.0225) (0.0396)
P 0.565%#% 0.611%%* 0.870% 0,637+ 0.525% 0.828%#% 0483 041275 0.655%#%
(0.0562) (0.0535) (0.0224) (0.0501) (0.0662) (0.0285) (0.0601) (0.0645) (0.0411)
yl 0.544%#% 0.879% % 0.665%% 06977 0.828%% 0.561%#% 0.474%5% 0655 0.199%*
(0.0584) (0.0209) (0.0508) (0.0484) (0.0285) (0.0662) (0.0622) (0.0411) (0.0906)
Sigma2_e 000423 0.0029%#% 0.0043%#% 00084 00028 00058 0004375 0.001875% 0.004277
(0.0002) (0.0001) (0.0002) (0.0004) (0.0001) (0.0002) (0.0001) (0.0005) (0.0001)
Observations 7,560 7,560 7,560 10,692 10,692 10,692 13,122 13,122 13,122
R 0.114 0.047 0.019 0.310 0.097 0.073 0.096 0.155 0.153
Number 420 420 420 594 594 594 729 729 729

Data Source: Output generated by Stata 15.1 software. *#*, **, and * denote statistical significance level of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in

parentheses.

Finally, the servitization of the agricultural structure is found to
significantly inhibit technological progress in all three regions, while
having no significant effect on technical efficiency. This suggests that
the negative impact of servitization on GTFP stems predominantly
from its dampening effect on technological progress, potentially due
to inadequate development, insufficient scale, or poor integration of
the agricultural service sector with core production activities.

These findings suggest region-specific considerations for policy
design. In the eastern region, where structural advancement has
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already reached higher levels and significantly enhances GTFP,
policies should focus on consolidating these gains through
advanced digital technologies, precision farming, and sustainable
intensification practices. For the central region, where structural
rationalization shows limited effects, interventions should prioritize
optimizing resource allocation and strengthening market-oriented
reforms to unlock latent productivity potential. In contrast, the
western region requires targeted efforts to overcome the
underdevelopment of the agricultural service sector and accelerate
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structural transformation. Investments in basic digital
infrastructure, coupled with initiatives to scale up agricultural
service provision and improve connectivity between counties, could
help mitigate the strong inhibitory effect of servitization and create
conditions for a shift toward positive productivity impacts. Building
on the heterogeneity analysis, the next step examines the mediation
pathways through which agricultural structure adjustment

influences GTFP via digitalization.

5.2 Analysis of mediation effects

Table 10 presents the estimation results of the mediation effect
model. All regression coefficients, including the constant term, are
statistically significant at the 1% level, indicating strong explanatory
power of the included variables. The R? value further confirms that the
model accounts for a substantial proportion of the variation in the
dependent variable, suggesting a satisfactory overall fit. Based on these
initial results, a stepwise regression analysis is conducted to further
investigate and interpret the mediation pathways underlying the
relationship between agricultural structure adjustment, digitalization,
and green total factor productivity (GTFP).

The results demonstrate that the three core explanatory variables
of agricultural structure—namely, structural advancement,
rationalization, and service index—all influence agricultural GTFP
through the mediating variable of DL. In the first stage, the model in
Column 1 presents the baseline results without incorporating the
mediating variable. The findings indicate that structural advancement
has a significantly positive effect on GTFP, while rationalization and
service index have significantly negative effects, consistent with the
benchmark model. In the second stage, the model in Column 2
incorporates the mediating variable DL, revealing that structural

advancement, rationalization, and service index all have significant

TABLE 10 Estimation of the mediation effect model.

Varigbes ~ GTFP DL GTFP
) 0.03897%** 0.04477#%* 0.04677#%#%*
& (0.0128) (0.0124) (0.0124)
his —0.3865%** —0.1673%%* —0.1334%%*
(0.1011) (0.0430) (0.0411)
fis —0.0073%** —0.0093 % —0.0111%**
(0.0023) (0.0031) (0.0033)
DL 0.06217%#%#%*
(0.0152)
Constant 0.378%#* 0.423%** 0.458%%*
(0.0731) (0.0714) (0.0782)
Control variable Control Control Control
Regional fixation Control Control Control
Time fixation Control Control Control
R’ 0.007 0.003 0.005
Observations 31,374 31,374 31,374
Number 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. *** denote statistical significance the
level of parameters at the 1%. Standard errors are given in parentheses.
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impacts on agricultural digitalization, with all effects passing the 1%
significance level test. Finally, in the third stage, the model in Column
3 shows that both the core explanatory variables and the mediating
variable DL remain significant at the 1% level, confirming that
structural advancement, rationalization, and service level influence
GTEFP through the intermediary mechanism of digitalization. This
supports the hypothesis H2 that digitalization level plays a significant
mediating role.

6 Conclusion and policy implications

This study investigates how agricultural structural adjustments—
encompassing advancement, rationalization, and servitization—shape
green total factor productivity (GTFP) across 1,743 Chinese counties
from 2003 to 2022, while integrating digitalization as a mediating
mechanism. By moving beyond national or provincial scales, the
analysis provides fine-grained, county-level evidence that captures
spatial heterogeneity, non-linear effects, and inter-regional spillovers
often overlooked in prior research. The findings reveal three core
insights that advance existing knowledge. First, structural advancement
and rationalization consistently enhance GTFP, confirming the
“structural dividend” hypothesis in the agricultural context. Second,
the relationship between servitization and GTFP follows a U-shaped
pattern, with productivity benefits materializing only after surpassing
a development threshold—offering new empirical evidence on the
nuanced role of service-oriented agriculture. Third, digitalization
significantly amplifies the productivity gains from structural
transformation, underscoring its role as a critical enabler of
sustainable intensification.

These contributions extend the literature by clarifying the
mechanisms and conditions under which structural adjustments
yield sustainable productivity growth, and by empirically
demonstrating the mediating role of digital infrastructure in
agriculture. In the broader context of sustainable agriculture, the
results highlight that structural transformation, when coupled with
digital innovations, can balance productivity enhancement with
ecological stewardship. This alignment is essential for achieving both
food security and environmental goals.

Policy-wise, the findings call for differentiated regional strategies.
In the eastern region, where structural advancement is more mature,
efforts should focus on consolidating gains through precision
agriculture, smart farming, and eco-friendly intensification. The
central region would benefit from targeted measures to improve
resource allocation efficiency and market integration, while the
western region requires investment in digital and service infrastructure
to overcome the current productivity-inhibiting stage of servitization.
More broadly, policies should promote integrated planning of
structural reforms and digital transformation to maximize “structural
dividends” and foster long-term resilience in agricultural systems.

While this study fills key empirical and conceptual gaps,
limitations remain—particularly the reliance on proxy measures for
digitalization and the exclusion of institutional and behavioral
dimensions. Future research should employ richer, multidimensional
datasets, extend the analysis to cross-country comparisons, and
explore causal pathways using mixed methods. By addressing these
gaps and offering spatially sensitive policy guidance, this work
strengthens the evidence base for designing agricultural strategies that
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are economically viable, environmentally sound, and technologically
forward-looking.
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