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Introduction: Sustainable agricultural productivity is a key priority for China as it 
navigates environmental challenges and growing food demand. Understanding the 
impact of agricultural structural adjustments, including crop-livestock integration, 
service-based agriculture, and digital transformation, on Green Total Factor 
Productivity (GTFP) is essential for formulating effective agricultural policies.
Methods: This study analyzes data from 1,743 counties in China spanning from 
2003 to 2022. Using econometric models, we examine the relationship between 
agricultural structural adjustments and GTFP growth, focusing on the roles of 
technological progress, structural changes, and digitalization. The study accounts 
for regional variations in agricultural productivity.
Results: Our analysis finds that technological progress is the primary driver of GTFP 
growth. Agricultural structural changes, particularly crop-livestock integration 
and service-based models, contribute a “structural dividend,” enhancing sectoral 
efficiency and advancement. Interestingly, service-oriented models initially slow 
productivity but yield long-term benefits. Digital transformation significantly amplifies 
these positive effects. Regional analysis reveals that eastern and western regions 
benefit more from structural upgrades than central regions.
Discussion: These findings highlight the importance of designing policies tailored to 
local contexts, especially considering regional differences in agricultural productivity. 
The integration of digital technologies and service-oriented models plays a crucial 
role in advancing GTFP. Policy-makers should focus on promoting inclusive, 
sustainable, and technologically-driven agricultural development to meet China’s 
future food security needs.
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1 Introduction

In the pursuit of high-quality and sustainable agricultural development, China’s food 
production has historically relied on input-intensive strategies, where the expansion of 
production scale primarily drove growth (Liu et  al., 2023). However, this approach—
characterized by the excessive use of land, water, and chemical inputs—has resulted in 
diminishing marginal returns and significant ecological degradation, rendering it ecologically 
and economically unsustainable in the long term (He and Shen, 2018). Such unsustainability 
reflects broader risks observed in other sectors, where unbalanced expansion without adequate 
safeguards can lead to systemic collapse (Duan and Li, 2023). This situation poses a pressing 
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challenge: how to shift from scale-driven growth to a more sustainable 
and efficient model that balances productivity with environmental 
stewardship. Amid growing concerns over environmental degradation 
and the imperative to build an ecological civilization, there is an 
urgent need to reorient agricultural systems toward practices that 
emphasize resource efficiency, ecological protection, and long-term 
resilience (Zhang et al., 2025). Aligning agricultural transformation 
with broader sustainable development spillovers can strengthen the 
synergy between economic, environmental, and social outcomes (Cai 
et al., 2025).

Within this context, enhancing GTFP has become a strategic 
priority for achieving sustainable food production and consumption. 
A central concept in this transformation is the “structural dividend”—
the productivity gains realized when resources are reallocated from 
less efficient to more efficient sectors or activities within the economy 
(Xu et al., 2025; Wang et al., 2019). Evidence from policy experiments 
suggests that financial and institutional reforms, such as green finance, 
can accelerate inclusive green growth, which supports these structural 
adjustments (Xu et  al., 2025). In agriculture, such structural 
adjustments include crop–livestock integration, mechanization, and 
the adoption of digital and smart farming practices, all of which 
contribute to improved resource use efficiency and environmental 
sustainability. The integration of digital intelligence into agricultural 
resource management can further enhance collaborative mechanisms 
and market-based coordination (Li et al., 2025).

Another key transformation is agricultural “servitization,” which 
refers to the transition from traditional, production-centric farming 
toward service-oriented agricultural models. These services—ranging 
from machinery leasing and soil testing to technical advisory 
support—are increasingly recognized as vital for raising productivity 
and reducing environmental burdens (Qin et  al., 2017). Adaptive 
policy adjustments in other resource-dependent contexts have shown 
that flexible governance approaches can yield co-benefits for 
ecosystems, agriculture, and local economies (Jiang et  al., 2023). 
Similarly, agricultural transformation must also account for land-use 
change patterns, which are influenced by both local drivers and 
broader geopolitical or socio-economic dynamics (Sulieman, 2024).

Nonetheless, the productivity impacts of servitization are often 
non-linear and highly region-specific, presenting an analytical 
challenge for policy development. This complexity parallels findings 
from advanced econometric analyses, where heterogeneous responses 
emerge across different groups and contexts (Yang et al., 2024). Green 
innovation, such as that driven by green bond financing, can also 
interact with structural transformation by enhancing environmentally 
friendly production practices (Dong and Yu, 2024). Additionally, 
hidden yet persistent disparities in rural capabilities—similar to the 
“long tail” phenomenon in rural education—can limit the equal 
distribution of productivity gains and must be addressed for truly 
inclusive agricultural transformation (Dong and Yu, 2024).

Despite growing interest in structural transformation, several 
critical gaps remain in the existing literature. Most studies focus on 
macro-level impacts at the provincial or national scale, providing 
limited insights into how structural adjustments operate at the local 
level. Additionally, the evidence on the effectiveness of agricultural 
production services remains inconclusive, largely due to the failure to 
capture regional heterogeneity and non-linear relationships (Qin et al., 
2017). Another overlooked area is the mediating role of digitalization, 
which has become increasingly important in enabling structural 

transitions but is seldom integrated into empirical analyses. These 
limitations hinder the formulation of context-sensitive, spatially 
differentiated strategies for green productivity enhancement.

To address these challenges, this study makes three key 
contributions. First, it conducts a fine-grained, county-level analysis 
of agricultural structural adjustment and its impact on GTFP across 
1,743 counties in China from 2003 to 2022, capturing spatial 
heterogeneity and local dynamics often overlooked in aggregated 
studies. Second, it examines potential non-linear effects—specifically, 
a U-shaped relationship between agricultural servitization and 
GTFP—to identify thresholds where servitization shifts from 
inhibiting to promoting productivity. Third, it incorporates 
digitalization as a mediating mechanism, shedding light on how 
digital infrastructure and technologies strengthen the productivity 
gains from structural adjustments.

This research investigates whether structural adjustments produce 
productivity-enhancing “structural dividends” and how these effects 
differ across regions. GTFP is measured using the DEA–Malmquist 
index, which captures changes in dynamic efficiency over time. A 
Spatial Autoregressive model with Autoregressive Disturbances 
(SARAR) model is employed to examine inter-regional spillovers and 
reveal the mechanisms through which structural transformation 
influences GTFP, guided by the structural dividend hypothesis. By 
integrating spatial heterogeneity and digital mediation, this study 
provides policy-relevant insights into how region-specific structural 
shifts can contribute to more sustainable and resilient agricultural 
systems in China.

The remainder of this paper is structured as follows. Section 2 
develops the theoretical framework and presents the research 
hypotheses. Section 3 describes the data sources, measurement of key 
variables, and empirical methodology, including the spatial 
econometric model. Section 4 reports the empirical findings, 
including baseline results, robustness checks, and regional 
heterogeneity analyses. Section 5 investigates the underlying 
mechanisms through mediation analysis. Finally, Section 6 concludes 
the paper and offers policy implications based on the study’s findings. 
Building on this outline, the next section develops the theoretical 
framework underpinning the study and formulates the 
research hypotheses.

2 Theoretical background

2.1 Direct effect

The concept of the “structural dividend” was originally developed 
within the context of national industrial restructuring but is equally 
applicable to the agricultural sector. When structural adjustments 
occur in agriculture, and production factors such as labor, land, or 
capital shift from lower-productivity activities to higher-productivity 
ones, GTFP increases. This improvement is referred to as a structural 
dividend. Conversely, if production factors are reallocated from high-
productivity to low-productivity sectors, it leads to a decline in GTFP, 
resulting in what is known as a structural negative benefit.

The relationship between agricultural structural adjustment and GTFP 
is strongly influenced by the alignment between the evolving agricultural 
structure and local factor endowments. When structural adjustments are 
consistent with regional comparative advantages—reflecting the optimal 
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use of land, labor, and other inputs—resource allocation becomes more 
efficient, releasing structural dividends that enhance GTFP. However, when 
agricultural restructuring deviates from the regional factor endowment or 
proceeds in an excessive or imbalanced manner, it can create structural 
distortions. In such cases, the adjustments may weaken the positive effects 
on productivity or even act as a constraint on GTFP improvement.

A key dimension of this transformation is the servitization of 
agriculture. When agriculture becomes excessively service-oriented 
or when the transition toward service-based activities outpaces local 
capacity and ecological balance, the original structure may 
be destabilized, resulting in negative consequences for productivity. 
Nonetheless, a rational and moderate degree of servitization can 
significantly benefit GTFP. By allowing agricultural producers to 
concentrate on their core strengths while outsourcing non-core 
activities to specialized service providers, transaction costs are 
reduced, and farmers’ incomes increase—both of which positively 
influence productivity. Furthermore, collaboration between 
agricultural service industries and producers encourages a coordinated 
division of labor that leverages the comparative advantages of both 
parties. This synergy enhances production efficiency and drives 
further gains in GTFP. A theoretical framework of the study is given 
in Figure 1.

Based on this theoretical rationale, this study proposes the 
following hypothesis:

H1: Moderate adjustment of the agricultural structure facilitates 
improvements in agricultural green total factor productivity.

2.2 Indirect effect

The adjustment of the agricultural structure contributes to the 
improvement of green total factor productivity (GTFP) through 
the enhancement of digitalization. Structural upgrading in 
agriculture incentivizes all segments of the sector to adopt digital 
technologies more actively, leading to a general rise in the level of 
digitalization. This increased digital integration impacts GTFP 
through several pathways: it improves production efficiency, 
optimizes the allocation of resources, broadens market access, and 
raises the added value of agricultural products. As a result, a clear 
transmission mechanism emerges agricultural structure 

upgrading leads to higher levels of digitalization, which in turn 
promotes an increase in GTFP.

Digitalization thus functions as a mediating factor that transforms 
the benefits of structural upgrading—such as industrial transformation 
and the optimization of agricultural business models—into tangible 
improvements in productivity. By enabling more precise, data-driven 
use of production inputs across different stages of industrial 
expansion, product refinement, and enterprise scaling, digitalization 
allows for better responsiveness to market demands and the generation 
of greater economic value. This digital transformation ultimately 
enhances the efficiency and sustainability of agricultural production 
systems, contributing to the growth of GTFP.

Based on this rationale, the study proposes the 
following hypothesis:

H2: Moderate adjustment of the agricultural structure can 
promote improvements in agricultural green total factor 
productivity through the enhancement of digitalization levels.

Having established the hypotheses, the following section outlines 
the selection of the empirical model and variables used to test them.

3 Materials and methods

3.1 Selection of model

Considering the potential spatial correlation among 
macroeconomic variables and the impact of spatial distance on 
regional GTFP (Zhang, 2012), this study employs a spatial 
econometric model to test the proposed hypotheses. In terms of 
model selection, given that both spatial lag and error terms may 
coexist in spatial models, we  introduce the SARAR model with a 
spatial autoregressive error term for analysis (Sun et al., 2017). The 
specific form of the SARAR model is as in Equation 1:

	 ρ β µ µ λ µ ε= + + = +,Y WY X W 	 (1)

where Y represents the dependent variable, X denotes the 
independent variables, W is the spatial weight matrix, β is the vector 
of coefficients, ε is the random disturbance term, ε ~ N (0,σ2In). λ is the 

FIGURE 1

Theoretical analysis framework.

https://doi.org/10.3389/fsufs.2025.1639062
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Li et al.� 10.3389/fsufs.2025.1639062

Frontiers in Sustainable Food Systems 04 frontiersin.org

autoregressive coefficient for the residuals, and ρ is the spatial 
autoregressive coefficient.

3.2 Source of data

A substantial share of China’s agricultural production is 
concentrated in county-level regions, making counties an ideal unit of 
analysis for agricultural research. Utilizing county-level data not only 
improves the representativeness of the study but also significantly 
expands the sample size compared to analyses conducted at the 
provincial or municipal level. In this study, county-level administrative 
divisions, as defined in 2022, serve as the basis for sample selection. 
Following a rigorous screening process, the final dataset includes 
1,743 counties observed over a 19-year period, yielding a total of 
33,117 panel observations. The primary data sources comprise the 
China County Statistical Yearbook (County and City Volume) (2014–
2018), as well as provincial and municipal statistical yearbooks 
spanning 2014–2023. The analysis begins in 2003, the year China 
adopted a revised national industrial classification standard, which 
integrated the output value of agricultural, forestry, animal husbandry, 
and fishery services into the overall output value of the agriculture, 
forestry, animal husbandry, and fishery sector. With the model 
framework established, the next step is to define the dependent 
variable and its associated measurement indicators.

3.3 Selection of the dependent variable

In this study, agricultural green total factor productivity (GTFP) 
is selected as the dependent variable. Before calculating GTFP, it is 
necessary to define appropriate output and input indicators. The 

output indicators are categorized into expected and non-expected 
outputs. The expected output is measured using the gross output value 
of agriculture, forestry, animal husbandry, and fishery at the county 
level. To ensure consistency over time, this value is adjusted to 
constant prices using the 2003 base year and deflated with the 
corresponding year’s gross national product (GNP) deflator. The 
non-expected output is captured by agricultural carbon emissions, 
which account for CO2 emissions generated through key agricultural 
activities, including the use of fertilizers, pesticides, and irrigation. 
Detailed descriptions of these indicators are provided in Table 1.

This study adopts physical agricultural inputs as the input 
indicators for measuring agricultural green total factor productivity 
(GTFP). Specifically, labor input is measured by the number of 
individuals employed in agriculture, forestry, animal husbandry, and 
fishery within each county across the study period. Capital inputs are 
captured through four indicators: the total power of agricultural 
mechanization, the net amount of fertilizer applied, the quantity of 
pesticide used, and the effective irrigated area—all of which reflect key 
dimensions of capital utilization in agricultural production. Land 
input is represented by the total sown area of crops in each county 
over the years. To estimate GTFP, the Malmquist index approach is 
employed. The defined input and output indicators are entered into 
DEAP 2.1 software, which calculates county-level GTFP values. Due 
to the structure of the DEA–Malmquist index method—where the 
first year serves as the base period and calculations begin from the 
second year—the resulting GTFP measurements span the period from 
2004 to 2022.

Figure 2 presents the trends in China’s agricultural green total 
factor productivity (GTFP) and its decomposition indices from 2004 
to 2022. Overall, agricultural GTFP displays a pattern of initial decline 
followed by a gradual recovery, accompanied by fluctuations 
throughout the period. Despite these fluctuations, the GTFP growth 
rate remained positive in all years. The highest recorded growth 
occurred in 2004, reaching 18.80%, while the lowest was observed in 
2017 at 0.80%. The period from 2009 to 2017 was marked by a gradual 
decline in GTFP, which may be  linked to the broader economic 
transition from a phase of “structural acceleration” during 
industrialization to a phase of “structural deceleration” during 
urbanization (Sun et al., 2017). From 2017 to 2022, GTFP showed a 
steady upward trend, likely driven by the deepening of ecological 
civilization initiatives and a shift in agricultural production models 
from extensive, input-heavy practices to more intensive and 
environmentally sustainable approaches.

The decomposition of the GTFP index reveals that technological 
progress maintained a consistent pattern of positive growth across the 
entire study period. In contrast, technical efficiency fluctuated within 
a relatively narrow range and registered negative growth in several 
years. Notably, the trajectory of overall GTFP growth closely aligns 
with that of technological progress. On average, technological progress 
accounted for 93.5% of the annual GTFP growth, while technical 
efficiency contributed only 6.5%. These findings indicate that 
technological progress has been the principal engine driving 
improvements in agricultural GTFP in China. Consequently, the gains 
in GTFP over this period were largely propelled by what can 
be characterized as a “single-track drive” centered on technological 
advancement. Building on the assessment of GTFP trends, the 
subsequent step is to define the core explanatory variables, focusing 
on agricultural structure adjustment.

TABLE 1  Indicators for the measurement of agricultural GTFP index.

Indicator 
category

Variable name Variable 
explanation

Output index

Agricultural Output 

(Expected)

The total output value of 

agriculture (10,000 Yuan)

Carbon Emissions 

(Unintended)

CO2 emissions attributable 

to fertilizers, pesticides, and 

irrigation (10,000 t)

Input index

Input of labor Agricultural workforce 

(10,000 persons)

Input of machinery The aggregate power 

capacity of agricultural 

machinery (10,000 kW)

Input of chemical 

fertilizers

The application rate of 

chemical fertilizers 

(10,000 t)

Input of pesticides The quantity of pesticide 

application (10,000 t)

Input of irrigation The area of effective 

irrigation (10,000 hm2)

Input of land The cultivated area of crop 

sowing (10,000 hm2)
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3.4 Selection of explanatory variables

In this study, agricultural structure adjustment is quantified using 
three key indices: rationalization, sophistication, and service orientation. 
The rationalization index is adapted from established methodologies 
used to evaluate industrial structure upgrading, capturing the degree of 
integration, coordination, and efficiency in resource allocation across 
various agricultural sub-sectors (Liu and Zhang, 2008). To operationalize 
this, the agricultural system is divided into three structural tiers: the 
primary sector, comprising the planting industry; the secondary sector, 
which includes forestry, animal husbandry, and fishery; and the tertiary 
sector, consisting of services related to agriculture, forestry, animal 
husbandry, and fishery. This classification allows for a comprehensive 
assessment of how balanced and efficient the structural distribution of 
agricultural activities is across different functional domains. The specific 
formula used to calculate these indices is given in Equation 2.

	 =

  
= ∗        
∑
3

1
ln /j j

jj

Y Y Yhis
Y L L

	
(2)

where his represents the rationalization index of the agricultural 
structure in county. Yj and Lj denote the output value and the 
number of employees, respectively, in the j agricultural sector 
within the county. Y and L represent the total output value and the 
total number of employees across all agricultural sectors 
(agriculture, forestry, animal husbandry, and fishery) in the county. 
According to the definitions provided by scholars such as and Yu 
(2015), the rationalization index operates inversely to the level of 
rationalization. Specifically, a higher rationalization index indicates 
a lower degree of rationalization in the agricultural structure, while 
a lower index suggests a higher degree of rationalization. When 
his = 0, the agricultural economic system is in equilibrium. A larger 
rationalization index implies greater deviation from this 
equilibrium state.

Due to the unavailability of employee data for each sector of the 
agricultural industry in macro-level datasets, it is necessary to process 
and estimate the relevant indicators pertaining to the number of 

employees in each agricultural sector. A weighting coefficient 
approach is applied to disaggregate labor input across the various 
sectors within the broader agricultural domain. The formula for the 
weighting coefficient can be written in Equation 3.

	 ( ) ( )= ∗/ /jA a b Y Y 	 (3)

where A represents the weight coefficient for labor input in each 
agricultural sector within the county. Specifically, a denotes the 
sown area of crops, b indicates the area of commonly used cultivated 
land, Yj represents the output value of the j agricultural sector, and 
Y signifies the total output value of agriculture, forestry, animal 
husbandry, and fishery in the county. The labor input indicator for 
each agricultural sector is calculated by multiplying the annual 
number of employees engaged in agriculture, forestry, animal 
husbandry, and fishery in the county by the weight coefficient A.

The index for the advancement of agricultural structure is 
quantified using a methodology analogous to that employed for 
measuring industrial structure advancement. Specifically, within the 
broader agricultural sector, crop farming is classified as the primary 
industry, while forestry, animal husbandry, and fishery are collectively 
categorized as the secondary industry. The tertiary industry 
encompasses services related to agriculture, forestry, animal 
husbandry, and fishery. The specific formula can be written in 
Equation 4.

	
= + +1 2 32 3t t tY Y Ygis

Y Y Y 	
(4)

where gis represents the index of agricultural structural 
advancement for the county. Specifically, Y1t, Y2t and Y3t denote the 
output values of the planting industry, the combined forestry, animal 
husbandry, and fishery sector, and the service sector related to 
agriculture, forestry, animal husbandry, and fishery in the county 
during year t, respectively. A higher gis value indicates a more 
advanced agricultural structure in the region, while a lower value 
suggests a less advanced structure.

FIGURE 2

Trends in GTFP and its decomposition into technical efficiency and technological progress across Chinese counties.
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The indicator for the servitization of agricultural structure is 
constructed to reflect the scale and development level of the 
agricultural service sector. It is measured as the ratio of the output 
value of the agricultural, forestry, animal husbandry, and fishery 

service industries to the total output value of the entire 
agricultural sector. For the selection of control variables, detailed 
explanations are not provided here, as they are summarized in 
Table 2.

TABLE 2  Descriptive statistics of variables.

Type Variables Variable name Mean Maximum Minimum Standard 
deviation

The explained 

variable

GTFP Index of Agricultural 

GTFP
1.097 1.210 0.706 0.115

TCH Index of Agricultural 

Technological Progress
1.085 1.213 0.805 0.090

ECH Index of Agricultural 

Technology Efficiency
1.014 1.243 0.650 0.098

Core explanatory 

variable

his Index of Agricultural 

Structural 

Rationalization

0.181 0.762 −0.278 0.115

gis Index of Agricultural 

Structural Upgrading
1.455 2.219 0.720 0.186

fis Index of Agricultural 

Structural Servitization
3.082 18.506 0.208 2.151

Mediating variable

DL The Degree of 

Agricultural 

Digitization (%)

11.246 49.574 0.537 10.102

Control variable

PL Average Cultivated 

Land per Laborer 

(Hectares per Person)

0.188 0.995 0.059 0.107

PC Average Capital per 

Laborer (10,000 Yuan 

per Person)

0.206 5.243 0.001 0.364

PM The Mechanization 

Level per Unit Area 

(Kilowatts per Hectare)

7.442 29.674 0.608 4.465

PF The Fertilizer 

Application Rate per 

Unit Area (Tons per 

Hectare)

0.277 0.788 0.028 0.136

PI The Irrigation Level per 

Unit Area
0.257 2.030 0.009 0.228

PG Per Capita GDP 

(10,000 Yuan)
1.990 11.988 0.080 1.653

AP The Proportion of the 

Primary Industry (%)
13.848 47.974 0.749 10.402

AE The Proportion of 

Agricultural Fiscal 

Expenditure (%)

15.022 36.942 3.870 5.731

UR The Urbanization Rate 

(%)
18.802 53.864 3.966 8.178

RE The Electricity 

Consumption in Rural 

Areas (10,000 Kilowatt-

hours)

0.683 4.916 0.011 0.744

Data source: Organization and calculation of raw data.
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To ensure the robustness of our empirical findings, we adopt two 
widely recognized approaches based on authoritative literature. One 
such approach involves replacing the core explanatory variable with 
an alternative indicator. Furthermore, we  utilize the degree of 
industrial structure deviation as a proxy for the rationalization of the 
agricultural structure. This index captures the mismatch between the 
distribution of agricultural output and labor across subsectors, 
providing a measure of resource allocation efficiency. A lower value 
indicates a more balanced and rational structure, while a higher value 
reflects structural imbalances. The degree of deviation is calculated 
using a given Equation 5,

	 =
= −∑ 1 / / / 1n

j jjE Y L Y L
	

(5)

where Yj denotes the output value of the j agricultural sector 
within the county, while Y represents the total output value of 
agriculture, forestry, animal husbandry, and fishery in the county. Lj 
indicates the number of employees in the j agricultural sector within 
the county, and L represents the total number of employees across 
these sectors in the county. The ratio Y/L signifies labor productivity. 
According to classical economic theory, when the economy is in 
equilibrium, the productivity levels across different industrial sectors 
are equal. Therefore, under equilibrium conditions, Yi/Li = Y/L, and 
at this point, the deviation degree of the industrial structure E = 0. 
This index reflects the coupling between the output structure and the 
input structure. A larger E value indicates a greater deviation from the 
equilibrium state, suggesting a more unreasonable 
agricultural structure.

3.5 Selection of mediating variables

Broadband access is a critical indicator of network infrastructure 
in rural areas and serves as a foundational prerequisite for advancing 
agricultural digitalization. Reliable broadband coverage enables the 
deployment of a wide range of digital applications and services in 
agriculture, including online training in agricultural technologies, 
precision farming tools, and e-commerce platforms for agricultural 
product transactions. Agricultural digitalization is measured using the 
ratio of rural households with broadband access to the total number 
of rural households in each county, reflecting the extent of digital 
infrastructure penetration in rural areas. A higher ratio indicates a 
more developed state of digital infrastructure and, by extension, a 
more advanced level of digitalization in agriculture.

4 Results and discussion

4.1 Relevant statistical tests

4.1.1 Spatial correlation analysis
Before constructing the spatial econometric model, it is necessary 

to test whether the dependent variable exhibits spatial correlation. To 
this end, this study employs Moran’s I index to assess the degree of 
spatial autocorrelation in agricultural GTFP across counties. The 
results of this analysis are presented in Table 3.

Based on Moran’s I index test results, it is evident that there exists 
a significant spatial correlation in the agricultural GTFP among 
counties. The formation of this spatial correlation can be attributed to 
two primary factors: First, adjacent counties share similar resource 
endowment characteristics, which may lead to correlated agricultural 
GTFP levels. Second, the proximity of neighboring counties facilitates 
more frequent and efficient economic interactions, promoting the flow 
of production factors and technology spillovers, thereby generating 
spatial spillover effects. Moreover, the positive value of Moran’s I index 
indicates that this spatial correlation manifests as a positive spatial 
spillover effect. Given the presence of spatial spillover effects, it is 
essential to conduct diagnostic tests to verify the model’s reliability 
before proceeding with estimation.

4.1.2 Multicollinearity, BP, and Hausman tests
Before model estimation, a series of diagnostic tests was 

conducted to ensure the robustness and reliability of the analysis. The 
first step involved assessing multicollinearity among the explanatory 
variables. A preliminary correlation coefficient test revealed that the 
highest pairwise correlation coefficient was 0.4423, indicating 
relatively weak correlations among the variables. To further verify 
these results, a variance inflation factor (VIF) test was performed. As 
shown in Table 4, the maximum VIF value is 3.64, and the average VIF 
is 2.17. These values fall well below the commonly accepted threshold 
of 10, suggesting that multicollinearity is not a concern. Therefore, 
based on the combined results of the correlation and VIF analyses, it 
can be  concluded that the dataset does not exhibit significant 
multicollinearity among the selected variables (Table 4).

TABLE 3  Moran’s I index statistical test.

Variables GTFP ECH TCH

2004 0.090*** 0.086*** 0.120***

2005 0.072*** 0.105*** 0.171***

2006 0.017** 0.032*** 0.057***

2007 0.005** 0.007* 0.006***

2008 0.017** 0.012* 0.018**

2009 0.081*** 0.099*** 0.120***

2010 0.001* 0.007* 0.072***

2011 0.018*** 0.128*** 0.029***

2012 0.078*** 0.123*** 0.034***

2013 0.019** 0.013* 0.060***

2014 0.014*** 0.084*** 0.096***

2015 0.011*** 0.079*** 0.151***

2016 0.009*** 0.077*** 0.155***

2017 0.007*** 0.075*** 0.158***

2018 0.013*** 0.073*** 0.082***

2019 0.012*** 0.080*** 0.155***

2020 0.008*** 0.067*** 0.157***

2021 0.006*** 0.065*** 0.159***

2022 0.004*** 0.058*** 0.164***

Data Source: Output from Stata 15.1. ***, **, and * indicate significance at the 1, 5, and 10% 
levels, respectively.
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The Breusch–Pagan (BP) test results show that all p-values are 
0.0000, leading to the rejection of the null hypothesis that supports the 
pooled regression model. This indicates that the random effects model 
is statistically superior to the pooled model. Following this, the 
Hausman test produces p-values of 0.0000, 0.0029, and 0.0000, which 
also lead to the rejection of the null hypothesis favoring the random 
effects model. These findings demonstrate that the fixed effects model 
provides a better fit for the data than the random effects model. 
Therefore, based on these diagnostic tests, the fixed effects model is 
determined to be the most appropriate specification for this analysis 
(Table 5).

4.2 Estimation of the benchmark model

The estimation results of the spatial econometric model indicate 
that both the spatial autoregressive coefficient (ρ) and the spatial error 
term coefficient (λ) are statistically significant. This finding 
corroborates the Moran’s I test results, thereby justifying the necessity 
of employing a spatial econometric model in this analysis. The 
benchmark model utilized in this study is the SARAR model, which 
yields results consistent with those of SDM. Subsequent analysis will 
be conducted based on the SARAR model (Table 6).

This study first examines the impact of the agricultural structure 
advancement index (GIS) on green total factor productivity (GTFP). 
The estimation results indicate that agricultural structure advancement 
has a significantly positive effect on GTFP, suggesting the presence of 
a notable “scale effect.” As the agricultural structure evolves toward 
higher levels, it disrupts the traditional, siloed growth pattern of crop 
farming, alters the input–output configuration of production factors, 
and thereby enhances productivity. Additionally, the rapid growth of 
the agricultural service sector facilitates more efficient allocation of 
resources across sub-sectors, raising the marginal productivity of 
agricultural inputs.

Next, the study evaluates the effect of the agricultural structure 
rationalization index (HIS) on GTFP. The estimation results show a 
significantly negative coefficient for HIS. Since HIS is inversely related 
to the level of structural rationalization, this finding implies that 
improved rationalization promotes GTFP. One explanation is that, 
under the ecological civilization strategy, there has been a shift in 
agricultural inputs from traditional to greener factors, optimizing 
resource allocation and boosting GTFP. Another contributing factor 
is the reallocation of rural labor—either to non-agricultural sectors or 
within agriculture itself—which creates a substitution effect where 
capital replaces labor. This reconfiguration enhances the 
rationalization of the agricultural structure, and the resulting 
alignment with regional factor endowments contributes to 
improved productivity.

The analysis also explores the impact of the agricultural 
structure servitization index (FIS) on GTFP. The results show that 
FIS has a significantly negative effect on GTFP, indicating that a 
higher proportion of output from the agricultural service sector 
currently hinders productivity improvements. This suggests that, 
at present, servitization does not exhibit a scale effect conducive 
to GTFP growth—contrary to some previous findings (Sheng, 
2014). Furthermore, the coefficient of the linear term for FIS is 
negative, while that of the quadratic term is positive, revealing a 
U-shaped relationship between servitization and 
GTFP. Specifically, at low levels of servitization, the transformation 
hampers productivity; however, once the level of servitization 
surpasses a certain threshold, its effect shifts from negative to 
positive. This may be due to the relatively small size and limited 
development of the agricultural service sector in China, which has 
not yet reached the scale required to significantly enhance 
GTFP. As the sector matures and expands, its positive contribution 
to productivity is expected to become more pronounced.

Finally, the study investigates the transmission mechanisms 
through which structural adjustment affects GTFP. Results indicate 
that the GIS index has a significant positive effect on technological 
progress, but not on technical efficiency, implying that structural 
advancement primarily enhances GTFP through the promotion of 
innovation and technology adoption. In contrast, the HIS index 
positively influences both technological progress and technical 
efficiency, suggesting a dual pathway through which rationalization 
boosts productivity. Conversely, the FIS index exerts a negative effect 
on both components, indicating that the observed hindrance to GTFP 
stems from simultaneous declines in both technical efficiency and 
technological progress. Taken together, these findings empirically 
validate Hypothesis H1, confirming that moderate adjustment of the 
agricultural structure—particularly when aligned with factor 
endowments and technological advancement—can enhance 
agricultural green total factor productivity.

The estimation results also reveal important insights 
regarding the influence of control variables on GTFP. Per capita 
GDP (PC) demonstrates a significantly positive effect across most 
model specifications, suggesting that higher levels of economic 
development create favorable conditions for green productivity 
growth in agriculture. This effect likely reflects the ability of 
wealthier counties to invest in advanced technologies, 
infrastructure, and environmental protection measures, thereby 
enhancing GTFP. Similarly, the urbanization rate (UR), though 
not always statistically significant, shows a generally positive 

TABLE 4  Results of the VIF test.

Variables VIF 1/VIF Variables VIF 1/VIF

PC 3.64 0.275 PM 1.85 0.539

AP 2.85 0.351 PI 1.69 0.591

PG 2.83 0.353 PF 1.68 0.593

gis 2.63 0.380 UR 1.53 0.654

his 2.53 0.395 AE 1.51 0.660

PL 2.18 0.458 fis 1.34 0.746

RE 2.05 0.488 DL 1.17 0.499

Data Source: Output Generated by Stata 15.1 Software.

TABLE 5  Results of the BP and Hausman tests.

Model GTFP ECH TCH

BP 877.03*** 2,866.92*** 4,821.34***

Hausman 111.17*** 37.47** 97.04***

Observations 31,374 31,374 31,374

Number 1,743 1,743 1,743

Data Source: Output Generated by Stata 15.1 Software. *** and ** indicate significance level 
of parameters at the 1, and 5%, respectively.
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TABLE 6  Estimation of spatial econometric models.

Variables SARAR SDM

GTFP ECH TCH GTFP ECH TCH

gis 0.0426*** 0.0043 0.0375*** 0.0461*** 0.0137 0.0352**

(0.0127) (0.0223) (0.0121) (0.0137) (0.0240) (0.0162)

his −0.1510*** −0.0879** −0.0418*** −0.1670*** −0.1110*** −0.0404*

(0.0400) (0.0352) (0.0129) (0.0402) (0.0363) (0.0245)

fis −0.0053*** −0.0026* −0.0019** −0.0055*** −0.0032** −0.0021**

(0.0015) (0.0013) (0.0009) (0.0015) (0.0013) (0.0009)

gis2 0.2210** 0.1770** 0.0205 0.1910** 0.1501* 0.0136

(0.0981) (0.0896) (0.0606) (0.0974) (0.0903) (0.0608)

his2 −0.1970*** −0.2020 0.0693 −0.1380*** −0.191 0.0914

(0.0176) (0.1620) (0.1090) (0.0176) (0.163) (0.1100)

fis2 0.0005** 0.0008*** 0.0004*** 0.0005* 0.0004** 0.0005***

(0.0002) (0.0002) (0.0001) (0.0003) (0.0002) (0.0001)

PL 0.0695*** 0.0675* 0.0615*** 0.0875*** 0.0851** 0.0747***

(0.0200) (0.0346) (0.0234) (0.0251) (0.0358) (0.0242)

PC 0.1150*** 0.0431*** 0.0595*** 0.1230*** 0.0404*** 0.0652***

(0.0142) (0.0129) (0.0087) (0.0148) (0.0136) (0.0091)

PG 0.0066** 0.0019 0.0028 0.0053* 0.0021 0.0020

(0.0028) (0.0025) (0.0017) (0.0029) (0.0026) (0.0018)

AE −0.0004 −0.0004 0.0002 −0.0001 −0.0005 0.0005

(0.0006) (0.0005) (0.0003) (0.0007) (0.0006) (0.0004)

UR 0.0003 0.0004 −0.0002 0.0001 0.0003 −0.0002

(0.0004) (0.0003) (0.0002) (0.0004) (0.0004) (0.0002)

PM 0.0024*** 0.0004 0.0021*** 0.0023** 0.0010 0.0015***

(0.0008) (0.0007) (0.0005) (0.0009) (0.0008) (0.0005)

PF −0.0470 −0.0773*** 0.0451*** −0.0521* −0.0940*** 0.0511***

(0.0289) (0.0241) (0.0163) (0.0294) (0.0255) (0.0172)

PI −0.0275 0.0038 −0.0373*** −0.0255 −0.0087 −0.0259**

(0.0172) (0.0144) (0.0097) (0.0172) (0.0150) (0.0101)

RE 0.0222*** 0.0162*** 0.0049 0.0205*** 0.0156*** 0.0028

(0.0055) (0.0047) (0.0032) (0.0056) (0.0050) (0.0034)

AP 0.0019*** 0.0012*** 0.0001 0.0021*** 0.0015*** 0.0028

(0.0004) (0.0004) (0.0002) (0.0004) (0.0004) (0.0032)

ρ 0.709*** 0.612*** 0.864*** 0.506*** 0.506*** 0.788***

(0.0447) (0.0587) (0.0222) (0.0723) (0.0710) (0.0351)

λ 0.348*** 0.283** 0.541*** – – –

(0.0991) (0.1312) (0.1576) – – –

sigma2_e 0.0099*** 0.0086*** 0.0039*** 0.0097*** 0.0084*** 0.0038***

(0.0004) (0.0003) (0.0001) (0.0003) (0.0003) (0.0001)

Constant 0.5080*** 0.5590*** 0.1250*** 1.0870*** 0.3380** 0.4330*

(0.0731) (0.0740) (0.0388) (0.3990) (0.1330) (0.2430)

Observations 31,374 31,374 31,374 31,374 31,374 31,374

R2 0.157 0.045 0.173 0.246 0.105 0.435

Number 1,743 1,743 1,743 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. ***, **, and * denote statistical significance of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in 
parentheses.
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relationship with GTFP in some models. This indicates that 
moderate urbanization can facilitate the diffusion of innovations, 
strengthen market linkages between rural and urban areas, and 
promote efficient allocation of agricultural resources. However, 
the marginal effects of urbanization appear limited, possibly due 
to diminishing returns or challenges in integrating rural 
agricultural systems into rapidly urbanizing economies. To 
validate the consistency of these empirical results, the following 
section implements robustness checks using two 
complementary approaches.

4.3 Robustness test

To ensure the robustness of our findings, we summarize and adopt 
two primary methods for robustness testing based on existing 
authoritative literature. The first approach involves variable 
substitution, wherein the core explanatory variable is replaced to 
assess the stability of the estimated relationships.

4.3.1 Replace the core explanatory variable
As part of the robustness checks, we replace the original core 

explanatory variable with the degree of industrial structure deviation 
to re-estimate the model. This variable effectively captures the extent 
of imbalance between agricultural output and labor distributions, 
thus serving as a reliable proxy for structural rationalization. 
Consistent with theoretical expectations, we observe that regions with 
lower deviation values—indicative of more rational agricultural 
structures—exhibit statistically significant improvements in the 
dependent variable. The empirical results remain robust and 
consistent, thereby validating the credibility of our main findings even 
under alternative variable specifications. Building on the theoretical 
framework of Clark’s Theorem, scholars such as Yu (2015) and Song 
and Zheng (2017) have employed the ratio of non-agricultural output 
value to the total output value of agriculture, forestry, animal 
husbandry, and fishery as a proxy variable to measure the 
advancement of the agricultural structure. Similarly, following the 
work of Yu et al. (2016), this study adopts the ratio of agricultural 
service industry output to total agricultural output as a proxy for the 
servitization of the agricultural structure. All other variables and 
methodological procedures remain consistent with the main 
specification of the study. Details of these proxy variables are 
presented in Table 7.

Based on the spatial SARAR model analysis, the results 
demonstrate that the surrogate variable for agricultural structural 
upgrading has a significantly positive impact on agricultural 
GTFP. Conversely, the surrogate variables for agricultural 
structural rationalization and servitization have significantly 
negative effects on GTFP, with both passing the 1% significance 
level test. These findings are consistent with the estimation results 
of the benchmark model. Additionally, the estimated impacts of 
the three surrogate variables on technological progress and 
technological efficiency remain largely consistent with those of 
the benchmark model. Therefore, it can be concluded that the 
model’s results remain robust after replacing the core explanatory 
variables. The second robustness approach modifies the spatial 
weight matrix to evaluate whether the results are sensitive to 
alternative specifications of spatial dependence.

4.3.2 Modification of the spatial weight matrix
This study conducts robustness checks by substituting alternative 

forms of the spatial weight matrix to ensure the reliability of the 
results. Specifically, a spatial adjacency matrix is constructed based on 
the contiguity relationship between county-level units, where a value 
of 1 is assigned if two counties share a common border, and 0 
otherwise. To ensure the robustness of the baseline results, estimations 
are conducted using both the spatial SARAR model and the spatial 
Durbin model (SDM). The estimation outcomes are reported in 
Table 8.

The empirical results demonstrate that the advancement of 
agricultural structure exerts a significant positive effect on GTFP and 
technological progress, but does not significantly influence agricultural 
technical efficiency, findings which are consistent with the benchmark 
model. The rationalization of agricultural structure positively impacts 
GTFP, with all effects passing the 1% significance level test. It also has 
a positive influence on both agricultural technical efficiency and 
technological progress, aligning closely with the benchmark model. 
Conversely, the servitization of agricultural structure has a significant 
negative impact on GTFP, as well as on agricultural technical efficiency 
and technological progress, results that are largely in line with the 
benchmark model. Therefore, the estimation results remain robust 
after altering the spatial adjacency matrix, confirming the consistency 
with the benchmark model. With the robustness of the results 
confirmed, the analysis now turns to examining potential mechanisms 
and regional heterogeneity in the observed relationships.

5 Examination of the influence 
mechanism

5.1 Analysis of heterogeneity

Table 9 displays the estimation results for counties in the eastern, 
central, and western regions. The findings reveal that both the spatial 
error term coefficient (λ) and the spatial autoregressive term 
coefficient (ρ) are statistically significant, thereby corroborating the 
results of the Moran’s I  test. This underscores the necessity of 
employing a spatial econometric model in this analysis. The 
subsequent section provides a comparative analysis across 
these regions.

This study first analyzes the impact of agricultural structure 
on green total factor productivity (GTFP) across different regions. 
The results show that the advancement of agricultural structure 
has a significantly positive effect on GTFP in counties located in 
the eastern, central, and western regions. However, the magnitude 
of this effect decreases progressively from east to west. This 
pattern may be explained by regional disparities in development: 
eastern counties have achieved higher levels of structural 
advancement earlier, allowing for more effective reallocation of 
resources and integration of modern technologies, thus producing 
a stronger impact on GTFP. In contrast, western counties remain 
in earlier stages of structural transformation, limiting the extent 
of productivity gains. The rationalization of the agricultural 
structure has a significantly negative impact on GTFP in both 
eastern and western counties, but shows no statistically significant 
effect in central counties. This implies that improvements in 
structural rationalization contribute positively to GTFP in the 
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eastern and western regions, whereas in the central region, this 
relationship is less evident. The servitization of agricultural 
structure exerts a significantly negative effect on GTFP across all 
regions, with the strongest inhibitory effect observed in western 
counties. This finding suggests that an underdeveloped or poorly 

integrated service sector may currently hinder productivity 
improvements, particularly in less developed areas.

Second, the analysis examines the pathways through which 
agricultural structure affects GTFP. The results indicate that the 
advancement of agricultural structure significantly promotes 

TABLE 7  Estimation of the spatial econometric model with replaced core explanatory variables.

Variables SARAR SDM

GTFP ECH TCH GTFP ECH TCH

GIS 0.0138** 0.0311 0.0984*** 0.0376* 0.0217* 0.0385**

(0.0061) (0.0349) (0.0168) (0.0212) (0.0174) (0.0196)

HIS −0.1650*** −0.1801** −0.3400*** −0.2700*** −0.1510** −0.2040***

(0.0439) (0.0863) (0.0582) (0.0749) (0.0688) (0.0583)

FIS −0.0280*** −0.0148 −0.0947*** −0.0342* −0.0605*** −0.0351***

(0.0078) (0.0164) (0.0111) (0.0182) (0.0214) (0.0113)

PG 0.0071** 0.0022 0.0029* 0.0060** 0.0027 0.0034*

(0.0028) (0.0025) (0.0017) (0.0029) (0.0027) (0.0020)

AP 0.0015*** 0.0010** 0.0059*** 0.0018*** 0.0012*** 0.0038**

(0.0004) (0.0004) (0.0002) (0.0004) (0.0004) (0.0017)

AE −0.0002 −0.0006 0.0001 −0.0004 −0.0007 0.0003

(0.0006) (0.0005) (0.0003) (0.0007) (0.0006) (0.0004)

UR 0.0001 0.0003 −0.0003 −0.0001 0.0001 −0.0003

(0.0004) (0.0003) (0.0002) (0.0004) (0.0004) (0.0002)

RE 0.0203*** 0.0147*** 0.0040 0.0195*** 0.0157*** 0.0019

(0.0053) (0.0049) (0.0033) (0.0056) (0.0051) (0.0034)

PL −0.0193 −0.0692** 0.0599** −0.0162 −0.0779** 0.0714***

(0.0381) (0.0351) (0.0237) (0.0395) (0.0365) (0.0245)

PM 0.0026*** 0.0005 0.0020*** 0.0025*** 0.0010 0.0016***

(0.0008) (0.0007) (0.0005) (0.0009) (0.0008) (0.0005)

PF −0.0350 −0.0757*** 0.0473*** −0.0436 −0.0888*** 0.0528***

(0.0262) (0.0241) (0.0162) (0.0277) (0.0257) (0.0172)

PI −0.0211 0.0107 −0.0350*** −0.0170 −0.0016 −0.0238**

(0.0157) (0.0144) (0.0097) (0.0162) (0.0150) (0.0101)

PC 0.1080*** 0.0397*** 0.0577*** 0.1180*** 0.0362*** 0.0643***

(0.0140) (0.0129) (0.0087) (0.0147) (0.0136) (0.0091)

ρ 0.7220*** 0.6060*** 0.8660*** 0.5020*** 0.4900*** 0.8000***

(0.0443) (0.0592) (0.0221) (0.0705) (0.0724) (0.0332)

λ 0.327*** 0.305** 0.528*** – – –

(0.0821) (0.1112) (0.1364) – – –

sigma2_e 0.0102*** 0.0086*** 0.0039*** 0.0100*** 0.0085*** 0.0038***

(0.0003) (0.0003) (0.0001) (0.0003) (0.0003) (0.0001)

Constant 0.457*** 0.533*** 0.124*** 1.472*** 0.316 0.692***

(0.0697) (0.0728) (0.0388) (0.3210) (0.2460) (0.1930)

Observations 31,374 31,374 31,374 31,374 31,374 31,374

R2 0.125 0.042 0.143 0.233 0.095 0.414

Number 1,743 1,743 1,743 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. ***, **, and * denote statistical significance of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in 
parentheses.
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technological progress in all three regions—eastern, central, and 
western—but does not have a statistically significant effect on 
technical efficiency. This suggests that GTFP improvements resulting 
from agricultural structural advancement are primarily achieved 
through innovation and technology adoption, rather than gains in 
resource use efficiency. In the case of structural rationalization, a 

significantly negative impact on technological progress is observed in 
the eastern and western regions, while its effect on technical efficiency 
is not statistically significant. These findings indicate that the influence 
of rationalization on GTFP in these regions operates mainly through 
the pathway of technological progress, with limited evidence 
supporting technical efficiency as a transmission channel.

TABLE 8  Estimation of the model with modified spatial weight matrices.

Variables SARAR SDM

GTFP ECH TCH GTFP ECH TCH

gis 0.0255*** 0.0024 0.0189*** 0.0345*** 0.0063 0.0267***

(0.0055) (0.0222) (0.0048) (0.0079) (0.0248) (0.0065)

his −0.152*** −0.0902** −0.0301** −0.160*** −0.104*** −0.0507*

(0.0397) (0.0351) (0.0134) (0.0408) (0.0370) (0.0300)

fis −0.0538*** −0.0272** −0.0189** −0.0430*** −0.0612*** −0.0212**

(0.0156) (0.0134) (0.0089) (0.0162) (0.0200) (0.0096)

PG 0.0064** 0.0020 0.0026 0.0051* 0.0017 0.1350**

(0.0028) (0.0025) (0.0017) (0.0029) (0.0027) (0.0619)

AP 0.0019*** 0.0012*** 0.0094*** 0.0021*** 0.0016*** 0.0217***

(0.0004) (0.0004) (0.0027) (0.0004) (0.0004) (0.0071)

AE 0.0001 −0.0002 0.0002 0.0001 −0.0005 0.0006

(0.0006) (0.0005) (0.0003) (0.0007) (0.0006) (0.0004)

UR 0.0004 0.0004 −0.0002 0.0003 0.0004 −0.0002

(0.0004) (0.0003) (0.0002) (0.0004) (0.0004) (0.0002)

RE 0.0222*** 0.0161*** 0.0051 0.0157*** 0.0153*** 0.0003

(0.0055) (0.0047) (0.0031) (0.0059) (0.0053) (0.0035)

PL −0.0175 −0.0659* 0.0620*** −0.0204 −0.0861** 0.0746***

(0.0398) (0.0345) (0.0230) (0.0395) (0.0355) (0.0236)

PM 0.0024*** 0.0004 0.0020*** 0.0020** 0.0009 0.0013**

(0.0008) (0.0007) (0.0005) (0.0009) (0.0008) (0.0005)

PF −0.0414 −0.0733*** 0.0455*** −0.0498* −0.0838*** 0.0487***

(0.0287) (0.0240) (0.0160) (0.0296) (0.0258) (0.0172)

PI −0.0280 0.00367 −0.0376*** −0.0110 −0.0012 −0.0228**

(0.0171) (0.0144) (0.0096) (0.0177) (0.0155) (0.0103)

PC 0.1140*** 0.0427*** 0.0583*** 0.1170*** 0.0358*** 0.0643***

(0.0141) (0.0128) (0.0085) (0.0149) (0.0137) (0.0091)

Constant 0.480*** 0.536*** 0.104*** 1.716*** 1.327*** 0.942***

(0.0716) (0.0722) (0.0375) (0.5300) (0.4370) (0.3190)

ρ 0.726*** 0.630*** 0.878*** 0.450*** 0.492*** 0.746***

(0.0427) (0.0563) (0.0209) (0.0789) (0.0739) (0.0397)

λ 0.427*** 0.583*** 0.786*** – – –

(0.1411) (0.1568) (0.2168) – – –

sigma2_e 0.0098*** 0.0085*** 0.0038*** 0.0096*** 0.0084*** 0.0037***

(0.0003) (0.0003) (0.0001) (0.0003) (0.0003) (0.0001)

Observations 31,374 31,374 31,374 31,374 31,374 31,374

R2 0.162 0.045 0.151 0.258 0.110 0.480

Number 1,743 1,743 1,743 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. ***, **, and * denote statistical significance level of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in 
parentheses.
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Finally, the servitization of the agricultural structure is found to 
significantly inhibit technological progress in all three regions, while 
having no significant effect on technical efficiency. This suggests that 
the negative impact of servitization on GTFP stems predominantly 
from its dampening effect on technological progress, potentially due 
to inadequate development, insufficient scale, or poor integration of 
the agricultural service sector with core production activities.

These findings suggest region-specific considerations for policy 
design. In the eastern region, where structural advancement has 

already reached higher levels and significantly enhances GTFP, 
policies should focus on consolidating these gains through 
advanced digital technologies, precision farming, and sustainable 
intensification practices. For the central region, where structural 
rationalization shows limited effects, interventions should prioritize 
optimizing resource allocation and strengthening market-oriented 
reforms to unlock latent productivity potential. In contrast, the 
western region requires targeted efforts to overcome the 
underdevelopment of the agricultural service sector and accelerate 

TABLE 9  Estimation of spatial econometric models across different regions.

Variables Eastern region Central region Western region

GTFP ECH TCH GTFP ECH TCH GTFP ECH TCH

gis 0.4320*** 0.1470 0.2220** 0.2660** 0.0227 0.1830* 0.1860*** 0.0156 0.1440***

(0.1180) (0.0972) (0.1100) (0.1170) (0.0414) (0.0974) (0.0482) (0.0162) (0.0478)

his −0.3890* −0.0179 −0.2390** −0.1680 −0.0124 −0.0830 −0.1330*** −0.0121 −0.0954**

(0.2010) (0.1660) (0.1011) (0.1630) (0.0613) (0.1360) (0.0416) (0.0157) (0.0412)

fis −0.0077** −0.0009 −0.0059* −0.0098*** −0.00411 −0.0057** −0.0111*** −0.0024 −0.0115**

(0.0034) (0.0028) (0.0034) (0.0036) (0.0029) (0.0020) (0.0033) (0.0016) (0.0054)

PL 0.0436** 0.1490*** 0.1100** 0.2810** 0.1418*** 0.1620*** 0.0211** 0.0314** 0.0195*

(0.0208) (0.0424) (0.0511) (0.1103) (0.0421) (0.0260) (0.0103) (0.0146) (0.0102)

PC 0.0583*** 0.0323* −0.0147 0.0319** 0.2030*** 0.0468 0.0284** 0.0491*** 0.1220*

(0.0217) (0.0183) (0.0219) (0.0142) (0.0787) (0.1590) (0.0114) (0.0110) (0.0686)

PG −0.0051* −0.0028 0.0019 −0.0099 0.0070* −0.0164** −0.0011 0.0019 −0.0157**

(0.0031) (0.0031) (0.0032) (0.0090) (0.0037) (0.0073) (0.0078) (0.0031) (0.0072)

AE −0.0821 0.0493 −0.0964 −0.2890** −0.1070*** −0.1560* −0.0707** −0.1840** 0.2640***

(0.1880) (0.1640) (0.1910) (0.1170) (0.0406) (0.0941) (0.0298) (0.0793) (0.0842)

UR −0.1200 −0.0509 −0.026 0.0979 0.0246 0.049 0.0730 0.0572** −0.127

(0.0926) (0.0773) (0.0936) (0.0994) (0.0412) (0.0819) (0.0818) (0.0266) (0.0807)

RE 0.0012** 0.0009* 0.0057* 0.0275*** 0.0017 0.0184*** 0.0027 0.0052 0.0159

(0.0005) (0.0004) (0.0005) (0.0083) (0.0021) (0.0068) (0.0138) (0.0047) (0.0137)

PM −0.0028 0.0047 −0.0056 0.0071* 0.0018** 0.0078** 0.0046** 0.0067*** 0.0054*

(0.0039) (0.0032) (0.0039) (0.0041) (0.0008) (0.0034) (0.0020) (0.0009) (0.0028)

PF −0.0446 0.0487 −0.0836 0.1170** 0.0359** −0.0197 −0.0489 0.0380*** −0.1640**

(0.0594) (0.0497) (0.0598) (0.0551) (0.0162) (0.0456) (0.0682) (0.0126) (0.0671)

PI −0.0472 0.1270** −0.1100* 0.3520*** 0.1150*** 0.1710*** 0.0806*** 0.0920*** 0.0753**

(0.0636) (0.0533) (0.0642) (0.0429) (0.0154) (0.0357) (0.0218) (0.0208) (0.0366)

AP 0.3010** −0.0820 0.3340** 0.1610** 0.0829*** 0.0386 0.0763* 0.0115*** 0.0893**

(0.1400) (0.1400) (0.146) (0.0704) (0.0314) (0.0932) (0.0440) (0.0225) (0.0396)

ρ 0.565*** 0.611*** 0.870*** 0.637*** 0.525*** 0.828*** 0.483*** 0.412*** 0.655***

(0.0562) (0.0535) (0.0224) (0.0501) (0.0662) (0.0285) (0.0601) (0.0645) (0.0411)

λ 0.544*** 0.879*** 0.665*** 0.697*** 0.828*** 0.561*** 0.474*** 0.655*** 0.199**

(0.0584) (0.0209) (0.0508) (0.0484) (0.0285) (0.0662) (0.0622) (0.0411) (0.0906)

Sigma2_e 0.0042*** 0.0029*** 0.0043*** 0.0084*** 0.0028*** 0.0058*** 0.0043*** 0.0018*** 0.0042***

(0.0002) (0.0001) (0.0002) (0.0004) (0.0001) (0.0002) (0.0001) (0.0005) (0.0001)

Observations 7,560 7,560 7,560 10,692 10,692 10,692 13,122 13,122 13,122

R2 0.114 0.047 0.019 0.310 0.097 0.073 0.096 0.155 0.153

Number 420 420 420 594 594 594 729 729 729

Data Source: Output generated by Stata 15.1 software. ***, **, and * denote statistical significance level of parameters at the 1, 5, and 10% levels, respectively. Standard errors are given in 
parentheses.
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structural transformation. Investments in basic digital 
infrastructure, coupled with initiatives to scale up agricultural 
service provision and improve connectivity between counties, could 
help mitigate the strong inhibitory effect of servitization and create 
conditions for a shift toward positive productivity impacts. Building 
on the heterogeneity analysis, the next step examines the mediation 
pathways through which agricultural structure adjustment 
influences GTFP via digitalization.

5.2 Analysis of mediation effects

Table 10 presents the estimation results of the mediation effect 
model. All regression coefficients, including the constant term, are 
statistically significant at the 1% level, indicating strong explanatory 
power of the included variables. The R2 value further confirms that the 
model accounts for a substantial proportion of the variation in the 
dependent variable, suggesting a satisfactory overall fit. Based on these 
initial results, a stepwise regression analysis is conducted to further 
investigate and interpret the mediation pathways underlying the 
relationship between agricultural structure adjustment, digitalization, 
and green total factor productivity (GTFP).

The results demonstrate that the three core explanatory variables 
of agricultural structure—namely, structural advancement, 
rationalization, and service index—all influence agricultural GTFP 
through the mediating variable of DL. In the first stage, the model in 
Column 1 presents the baseline results without incorporating the 
mediating variable. The findings indicate that structural advancement 
has a significantly positive effect on GTFP, while rationalization and 
service index have significantly negative effects, consistent with the 
benchmark model. In the second stage, the model in Column 2 
incorporates the mediating variable DL, revealing that structural 
advancement, rationalization, and service index all have significant 

impacts on agricultural digitalization, with all effects passing the 1% 
significance level test. Finally, in the third stage, the model in Column 
3 shows that both the core explanatory variables and the mediating 
variable DL remain significant at the 1% level, confirming that 
structural advancement, rationalization, and service level influence 
GTFP through the intermediary mechanism of digitalization. This 
supports the hypothesis H2 that digitalization level plays a significant 
mediating role.

6 Conclusion and policy implications

This study investigates how agricultural structural adjustments—
encompassing advancement, rationalization, and servitization—shape 
green total factor productivity (GTFP) across 1,743 Chinese counties 
from 2003 to 2022, while integrating digitalization as a mediating 
mechanism. By moving beyond national or provincial scales, the 
analysis provides fine-grained, county-level evidence that captures 
spatial heterogeneity, non-linear effects, and inter-regional spillovers 
often overlooked in prior research. The findings reveal three core 
insights that advance existing knowledge. First, structural advancement 
and rationalization consistently enhance GTFP, confirming the 
“structural dividend” hypothesis in the agricultural context. Second, 
the relationship between servitization and GTFP follows a U-shaped 
pattern, with productivity benefits materializing only after surpassing 
a development threshold—offering new empirical evidence on the 
nuanced role of service-oriented agriculture. Third, digitalization 
significantly amplifies the productivity gains from structural 
transformation, underscoring its role as a critical enabler of 
sustainable intensification.

These contributions extend the literature by clarifying the 
mechanisms and conditions under which structural adjustments 
yield sustainable productivity growth, and by empirically 
demonstrating the mediating role of digital infrastructure in 
agriculture. In the broader context of sustainable agriculture, the 
results highlight that structural transformation, when coupled with 
digital innovations, can balance productivity enhancement with 
ecological stewardship. This alignment is essential for achieving both 
food security and environmental goals.

Policy-wise, the findings call for differentiated regional strategies. 
In the eastern region, where structural advancement is more mature, 
efforts should focus on consolidating gains through precision 
agriculture, smart farming, and eco-friendly intensification. The 
central region would benefit from targeted measures to improve 
resource allocation efficiency and market integration, while the 
western region requires investment in digital and service infrastructure 
to overcome the current productivity-inhibiting stage of servitization. 
More broadly, policies should promote integrated planning of 
structural reforms and digital transformation to maximize “structural 
dividends” and foster long-term resilience in agricultural systems.

While this study fills key empirical and conceptual gaps, 
limitations remain—particularly the reliance on proxy measures for 
digitalization and the exclusion of institutional and behavioral 
dimensions. Future research should employ richer, multidimensional 
datasets, extend the analysis to cross-country comparisons, and 
explore causal pathways using mixed methods. By addressing these 
gaps and offering spatially sensitive policy guidance, this work 
strengthens the evidence base for designing agricultural strategies that 

TABLE 10  Estimation of the mediation effect model.

Variables GTFP DL GTFP

gis
0.0389*** 

(0.0128)

0.0447*** 

(0.0124)

0.0467*** 

(0.0124)

his −0.3865*** 

(0.1011)

−0.1673*** 

(0.0430)

−0.1334*** 

(0.0411)

fis −0.0073*** 

(0.0023)

−0.0093*** 

(0.0031)

−0.0111*** 

(0.0033)

DL
0.0621*** 

(0.0152)

Constant
0.378*** 

(0.0731)

0.423*** 

(0.0714)

0.458*** 

(0.0782)

Control variable Control Control Control

Regional fixation Control Control Control

Time fixation Control Control Control

R2 0.007 0.003 0.005

Observations 31,374 31,374 31,374

Number 1,743 1,743 1,743

Data Source: Output generated by Stata 15.1 software. *** denote statistical significance the 
level of parameters at the 1%. Standard errors are given in parentheses.
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are economically viable, environmentally sound, and technologically 
forward-looking.
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