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Geographical Indications for Agricultural Products (G/IAP), as an intellectual property
protection system, hold potential for driving agricultural green transformation.
However, their impact mechanisms on agricultural carbon emissions (ACE) remain
unclear. This study empirically investigates their impact using provincial panel data
from China spanning 2004 to 2022 and employs a difference-in-differences (DID)
model. The results indicate that the implementation of GIAP systems has a significant
positive effect on reducing agricultural carbon emissions, each additional GIAP
certification reduces ACE intensity by 0.3679 units on average. The conclusion
that remains robust across a variety of specification tests. Mechanism analysis
demonstrates that GIAP effectively lower agricultural carbon emissions primarily
by facilitating farmland transfer, strengthening agricultural socialized services,
increasing the proportion of grain crops, and improving technical efficiency.
Furthermore, the empirical findings reveal significant spatial spillover effects
associated with GIAP. Additional heterogeneity analysis shows that the carbon
emission reduction effects of GIAP vary substantially across different regions,
economic zones, functional areas, and "hot” and “cold” spatial clusters. Based
on these findings, it is recommended that greater emphasis be placed on the
development and refinement of the GIAP system, and that regionally differentiated
strategies be adopted to further integrate G/IAP policy with agricultural carbon
reduction initiatives, thereby laying a solid institutional foundation for the green
and low-carbon transformation of agriculture.

KEYWORDS

agricultural carbon emissions, geographical indications, difference-in-differences,
green agriculture, spatial spillover

1 Introduction

Global climate change stands among the most pressing challenges faced by contemporary
society. Its consequences—rising sea levels, increased frequency of extreme weather events,
and declining biodiversity—are profound and far-reaching. The principal driver of climate
change is greenhouse gas emissions, with carbon dioxide (CO,) identified as the most
significant greenhouse gas. In response, governments, international organizations, and
corporate entities have adopted numerous measures. Efforts have intensified to curtail carbon
emissions and to achieve the targets of carbon peaking and carbon neutrality. Carbon
reduction is not only a necessity for environmental protection but also a critical pathway
toward sustainable development. Agricultural production has been recognized as a major
source of greenhouse gas emissions. It is estimated that emissions from the agricultural sector
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account for approximately 20-30% of global total emissions (Silvia
Falasco et al., 2024). Agricultural carbon emissions (ACE) primarily
originate from farmland soils, the use of agricultural machinery, and
the application of fertilizers and pesticides. The reduction of ACE is
therefore of utmost importance for mitigating climate change,
safeguarding the environment, and advancing sustainable development.

Geographical Indication of Agricultural Products (GIAP), as a
distinctive form of intellectual property protection, has assumed
growing importance in shaping the future direction of agricultural
development. It is a label used to denote that a product originates from
a specific locality, with its quality, reputation, or other characteristics
primarily attributable to inherent natural and human factors of that
location. GIAP are often endowed with unique attributes and elevated
market value. Such products can effectively enhance the added value
of agricultural commodities and increase farmers’ incomes (Yan and
Zhang, 2025), thereby narrowing the rural-urban income gap (Ai
etal., 2025). A significant and continuously strengthening association
has been observed between GIAP and regional agricultural economies
(Xie et al,, 2022). In fact, the environmental benefits of GIAP are also
substantial. Due to rigorous requirements placed on both production
environment and production processes, agricultural practitioners are
usually compelled to adopt more environmentally friendly and
sustainable farming practices. For instance, greater emphasis is placed
on soil conservation, water management, biodiversity preservation,
reducing the use of chemical fertilizers and pesticides, and promoting
the efficient use of agricultural machinery. Consequently, agricultural
carbon emissions are reduced during the production process.

As one of the largest agricultural countries in the world, China
sees carbon emissions from agriculture account for approximately
10% of its national total (Jin et al., 2021). On the other hand, China
possesses abundant resources in GIAPs. By 2022, over 3,000 GIAPs
had been registered in China,' encompassing fruits, vegetables, tea,
grains, and other categories. These products have played a significant
role in promoting local economic development and protecting the
ecological environment. Therefore, selecting China as the research
context is both representative and valuable. By empirically analyzing
the impact of GIAP on ACE in China, the latent role of GI in fostering
sustainable agricultural development and reducing carbon emissions
can be revealed. Scientific evidence may thus be provided for policy
formulation, further advancing green agricultural development and
the achievement of carbon reduction objectives.

The innovations of this study are manifested in three key aspects:
firstly, the Geographical Indication for Agricultural Products
(GIAP)—an intellectual property protection system—is systematically
integrated into the agricultural carbon emission research framework,
constructing a “institutional norms-market incentives-production
optimization” triple-action mechanism. Secondly, a multi-period
continuous Difference-in-Differences (DID) model is combined with
a Spatial Durbin Model to precisely quantify GIAP’s local emission
reduction effect and spatial spillover effects, overcoming limitations
of traditional static assessments. Last, four quantifiable emission
reduction pathways are empirically verified: scaling farmland transfer;
improving socialized services; grain-oriented crop restructuring;

1 Data collected and compiled by the author; see core variable measurement

for details.
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enhancing technical efficiency. This reveals the core characteristic of

current reliance on  management optimization  over
technological progress.

The remainder of this paper is structured as follows. Section 2
reviews the relevant literature and further discusses the marginal
contributions of this study. Section 3 presents the theoretical analysis,
focusing on the mechanisms through which facility agriculture
influences agricultural carbon emissions. Section 4 describes the research
design and data, including variable selection and model specification.
Section 5 conducts the empirical analysis, covering mechanism
identification and heterogeneity analysis. Finally, Section 6 summarizes
the main conclusions, offers policy recommendations, and discusses the

limitations of the study as well as directions for future research.

2 Literature review

Existing studies have explored the sources and influencing factors
of agricultural carbon emissions (ACE). Zhang et al. (2023, 2024) and
Livand Mu (2024) points out that farmland soil is one of the primary
sources of ACE, accounting for more than 50% of total emissions.
Livestock farming is another important source, contributing about 35%
of total agricultural emissions (Arfini et al., 2019; Hu et al., 2024). In
addition, the use of agricultural machinery and pesticides also
significantly impacts ACE (Belletti et al., 2017; Tian et al,, 2024). De
Filippis et al. (2022) proposed that improving tillage methods,
increasing the use of organic fertilizers, and implementing farmland
conservation measures can significantly reduce carbon emissions from
farmland soil. Furthermore, the intensive use of mechanical power and
the rational use of pesticides are also important measures for
agricultural carbon reduction (Arfini et al., 2019; Li et al.,, 2024). Cross-
sectoral research also indicates that efficiency enhancement strategies
such as circular economy models and total factor productivity
optimization offer universal insights for achieving low-carbon
transitions in multiple sectors, including agriculture (Wang et al.,
2024). Waste resource utilization, as a crucial means of enhancing
system efficiency and reducing net emissions, has also received
significant attention in efficiency assessment research (Wang
et al., 2025).

As a form of intellectual property protection, GIAP have received
extensive attention in recent years, mainly focusing on their economic,
social, and environmental benefits. GIAP protection can significantly
enhance the market value of agricultural products and increase
farmers incomes (Li C. et al., 2023; Li K. et al., 2023; Chen and Zhong,
2024). GIAP certification also contributes to the preservation of
traditional cultural heritage, promotes regional economic development,
and helps reduce the urban-rural gap, yielding considerable social
benefits (Qie et al., 2023; Zhu and Qin, 2023). In addition, GIAP
products have certain environmental benefits and help actualize the
value of ecological products (Giua et al., 2024; Yi and Gu, 2023).

In summary, GIAP plays a discernible role in improving the quality
of agricultural products, increasing farmers’ incomes, and promoting
green agricultural development. However, the mechanisms and empirical
verification of the impact of GIAP on ACE remain to be explored. This
paper makes marginal contributions in the following aspects. First, it
incorporates GIAP and ACE into a unified analytical framework, deeply
enriching the development of institutional economics in the field of
agriculture. Second, GIAP certification is regarded as a quasi-natural
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experiment. A multi-period continuous difference-in-differences model
has been employed to empirically analyze agricultural data from 31
Chinese provinces during 2004-2022. Third, the mechanisms by which
GIAP affects ACE are elucidated through four dimensions: scale effect,
market effect, structural effect, and technological effect. In this way,
theoretical support for the emission-reducing effect of GIAP certification
is provided. The findings are expected to furnish policymakers with
scientific evidence, support the widespread adoption of geographical
indication (GI) certification, and facilitate the achievement of green
agricultural development and carbon reduction objectives.

3 Theoretical mechanisms

GIAP plays an important role not only in protecting the reputation
and quality of agricultural products from specific regions, but also
imposes strict requirements on the production environment and
processes. Producers are thus encouraged to adopt more
environmentally friendly and sustainable agricultural practices,
influencing ACE through several channels. It is shown in Figure 1.

3.1 Scale effect: accelerating farmland
transfer and expanding operational scale

In China, land policy implements the separation of three rights:
ownership, contract right, and management right. Farmland transfer has
been recognized as a fundamental institutional cornerstone for modern
agricultural development. Through enhancing market value and brand
influence, GIAP attracts more investors and agricultural operators to
apply for certification. Thus, farmland transfer and agricultural scale
operation are promoted. The expansion of operational scale can reduce
agricultural carbon emissions through several mechanisms.

10.3389/fsufs.2025.1644196

First, the deepening of economies of scale can be achieved. Large-
scale operations can realize more efficient allocation and utilization
of resources. Production costs and resource waste are thereby
reduced. Expanded scale allows the adoption of more modernized,
intensive, and mechanized production methods. Production
efficiency is enhanced, while carbon emissions per unit output are
reduced (Li and Shi, 2024). Second, the intensification of management
is strengthened. Scale operation brings more professional and
intensive agricultural management. Land use efficiency is improved,
and excessive reclamation or degradation is curtailed, preserving soil
carbon storage capacity. Scientific crop rotation and intercropping
systems are more frequently implemented on large farms, maintaining
soil fertility and structure, thus reducing carbon emissions from soil.
Third, the acceleration of technology adoption is facilitated. Large-
scale farms possess greater capability to introduce and apply advanced
agricultural technologies, including precision farming, intelligent
irrigation systems, and biological control measures (Li et al., 2024).
These technologies can not only boost production efficiency but also
mitigate carbon emissions from agricultural production.

3.2 Market effect: promoting social
services and improving market support

Agricultural social services include technical training, market
information, and financial services. They play an important role in
enhancing production efficiency and reducing carbon emissions.
Through elevating market value and expanding economies of scale,
GIAP has propelled the improvement and development of agricultural
social services, thereby fostering ACE reduction in several respects.

First, the deepening of technical training and dissemination can
be observed. Through systematic technical training, farmers are
enabled to master advanced agricultural technologies and management

FIGURE 1
Mechanism analysis of GIAP's impact on ACE.
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practices. Consequently, the use of fertilizers and pesticides is
significantly reduced, production efficiency is increased, and both
resource wastage and carbon emissions are curtailed (Tian and He,
2023). Second, the optimization of market information services has
been promoted. Enhanced market information services allow farmers
to better understand market demand and price dynamics. Rational
production planning can thereby be adopted, avoiding blind
production and resource waste. By utilizing market information
services, farmers can adjust cropping patterns and production
schedules in a timely manner, curtailing the production of unsalable
products and reducing resource and energy consumption. Unnecessary
carbon emissions are thus minimized. Third, the strengthening of
financial service support has been facilitated. Improved agricultural
financial services have provided more financial resources for farmers.
Investment in advanced agricultural technologies and equipment, as
well as in greenhouse gas mitigation technologies, is thereby made
possible (He and Liao, 2024). With financial support, farmers are
enabled to apply additional low-carbon technologies and equipment
in production, which actively contributes to carbon emission reduction.

3.3 Structural effect: increasing grain crops
and reducing cash crops

Significant differences exist in the environmental impacts of grain
crops and cash crops during cultivation. GIAP promotes carbon
emission reduction by adjusting cropping structures, increasing the
area devoted to grain crops, and decreasing the area under cash crops.

First, an adjustment toward a grain-oriented cropping structure has
been facilitated. Traditionally, grain crops possess lower market value
than cash crops. However, after obtaining GI certification, additional
value is conferred upon these products, thereby bridging the market
value gap with cash crops. The cultivation of grain crops is generally less
complex relative to cash crops. As a result, the area allocated to grain
crops is expanded, while the area under cash crops is reduced, leading
to lower carbon emissions. Second, the use of chemical fertilizers and
pesticides is diminished. The production of grain crops typically requires
fewer fertilizers and pesticides. In contrast, the cultivation of cash crops
demands substantial inputs of these chemicals, which markedly increase
carbon emissions (Tong et al., 2024). Third, land use efficiency is
elevated. Grain crops are often cultivated through large-scale and
intensive methods, which improve the efficiency of land utilization.
Grain crops also exert less detrimental impact on arable land, reducing
soil erosion and nutrient loss. This preserves the soil’s carbon storage
capacity and further enhances land use efficiency, which subsequently
reduces carbon emissions. Therefore, GIAP can achieve carbon emission
reduction by increasing the planting area of grain crops, reducing the
cultivation of cash crops, and optimizing cropping structures.

3.4 Technological effect: advancing
technological progress and improving
technical efficiency

Technological progress is crucial for attaining agricultural
sustainability. Technical efficiency refers to the rational allocation and
effective utilization of production factors under given technological
conditions. GIAP enhances the market value of agricultural products.
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Through this, investment in capital and technology is attracted.
Continuous technological advancement is promoted, technical
efficiency is improved, and the allocation and utilization of agricultural
production resources are optimized, thereby enabling carbon
emission reduction.

First, support for technological innovation can be observed. Due
to the brand effect and market influence of GIAP, greater investments
in research and development are often attracted from scientific
institutions and enterprises. Innovation in low-carbon agricultural
technologies and equipment is thereby stimulated, which advances
agricultural science and technology (Luo and Wei, 2023).
Technological innovation not only increases agricultural production
efficiency, but also provides essential technical support for carbon
emission reduction in agriculture. Second, optimization in resource
allocation is achieved. Producers of GIAP generally adopt more
scientific management practices. Production resources are thereby
optimized and rational planting schedules are implemented. Repetitive
tillage and resource wastage are avoided, while the efficiency of land
and water use is improved, thus reducing carbon emissions (Ji
etal., 2023).

Based on the above, this paper proposes Hypotheses 1, 2.

Hypothesis 1: GIAP can significantly reduce ACE.
Hypothesis 2: GIAP can significantly reduce ACE by promoting

farmland circulation, developing social services, optimizing
cropping structure, facilitating technological progress, and

improving technical efficiency.

The promotion of GIAP may induce spatial spillover effects. First,
the successful certification of GIAP in a particular region indicates the
presence of favorable natural and geographical conditions for
agricultural development. Adjacent areas are highly likely to possess
similar resource endowments. Second, the effective promotion of
GIAP may stimulate neighboring regions to prioritize GIAP
certification and development, thereby expanding its sphere of
influence. Economic issues are predominantly characterized by strong
regional particularities. The impact of GIAP on ACE may therefore
vary across different geographical regions, economic zones, functional
zones, and in “hot” and “cold” spatial contexts (Zhou and Ying, 2012).
The eastern region possesses richer market and demographic
resources. Comparatively, the effects of GIAP may be especially
pronounced in the eastern area. The Yangtze River Economic Belt,
being one of the most dynamic regions, may also experience strong
internal effects from the promotion of GIs. From an agricultural
perspective, Chinese provinces are classified into major producing
areas, major marketing areas, and balanced areas. Heterogeneity in the
effects of GIs may thereby arise across distinct functional zones (Zhou
etal,, 2022). Moreover, the ACE and GI certifications of a region can
potentially influence its surrounding areas. Consequently, spatial
econometric methods are incorporated. Regions are categorized into
different “hot” and “cold” spatial clusters to further analyze whether
the impacts of GIAP on ACE differ under varied spatial constraints
and resource endowments.

Accordingly, Hypotheses 3, 4 are thus proposed in this paper.

Hypothesis 3: The impact of GIAP on ACE exhibits significant
spatial spillover effects.

frontiersin.org
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Hypothesis 4: The impact of GIAP on ACE varies significantly
across different regions, economic zones, functional zones, and
“hot” and “cold” spatial clusters.

4 Model specification and variable
measurement

4.1 Model specification

China officially implemented the registration and certification of
GIAP in 2008. Therefore, the starting point of the GIAP policy is set
as 2008. Since GIAP certification occurred in different regions at
different times, the overall process can be viewed as a staggered policy
intervention across regions. Thus, a multi-period difference-in-
differences (DID) model is adopted to identify the policy effect.
Additionally, the treatment group in this study cannot be simply
represented by a 0-1 dummy variable; instead, the number of GIAPs
registered and certified in each region at a given time better captures
the policy intensity. Therefore, this study utilizes a multi-period
continuous DID model. The following econometric model
is established:

Cgdpiy =a+ B-GIAP; +0-xjs + ;- 4 + &t (1)

Where subscript i denotes province and t denotes year, Cgdp;
represents the intensity of agricultural carbon emissions (ACE) in
province i in year f, with higher values indicating greater ACE
intensity. The specific measurement of ACE intensity will be detailed
in the following section. a denotes the constant term. GIAP; is the
policy variable for Geographical Indications for Agricultural Products,
which accumulates the actual number of certified GIAPs in province
iin year . If a province had no GIAP certification before 2008 or never
certified, the value is set to 0. ff is the coefficient of interest, capturing
the effect of GIAP on ACE. X, is a vector of control variables. y; - 4;
denotes region-time interaction fixed effects, which are used to absorb
the influence of varying regional characteristics and temporal
fluctuations on the econometric results. ¢, denotes the stochastic
error term.

TABLE 1 Agricultural carbon sources and emission coefficients.

10.3389/fsufs.2025.1644196

4.2 Major variable measurement

4.2.1 Agricultural carbon emissions

The level of agricultural carbon emissions is measured using
agricultural carbon intensity (Cgdp). First, the total agricultural
carbon emissions are calculated. According to the method proposed
by Lietal (2011), the total agricultural carbon emissions are estimated
based on six input factors: chemical fertilizers, pesticides, agricultural
plastic film, agricultural diesel, total sown area of crops, and effectively
irrigated area. The emission coefficients for each carbon source are
shown in Table 1. The total agricultural carbon emissions are
calculated using Equation 2, and carbon emission intensity is
subsequently calculated using Equation 3.

n n
AECy = itk = ) it -k (2)
k=1 k=1
AEC;
Cgdpyy =——1 3
8apit AGDP; (3)

In Equation 2, AEC; denotes the agricultural carbon emissions of
province i in year t. k represents the type of carbon source. e indicates
the carbon emissions from different sources. w; and 5; denotes the
input quantity and emission coefficient of carbon source j, respectively.
In Equation 3, Cgdp; represents the agricultural carbon emission
intensity. And AGDP;, indicates the agricultural added value.

4.2.2 Geographical indications of agricultural
products

At the early stage of the development of GIs in China, their
management was divided among three authorities: the Ministry of
Agriculture, the State Administration for Industry and Commerce,
and the General Administration of Quality Supervision, Inspection
and Quarantine. After 2018, the responsibility was transferred to the
China National Intellectual Property Administration (CNIPA), but all
three certification systems are still in use today. In this study, GI data
were collected separately from the GI Network, the China Trademark
Network, and the China Green Food Development Center. Sample
data from 1,598 counties across the country with agricultural product
GIs were obtained and aggregated at the provincial level. For

Carbon source Emission coefficient References
West and Marland (2002); Oak Ridge National Laboratory,
Chemical fertilizer 0.8956 kg/kg
USA (Zhi and Gao, 2009)
Pesticide 4.9341 kg/kg Oak Ridge National Laboratory, USA (Zhi and Gao, 2009)
Institute of Agricultural Resources and Environment, Nanjing
Plastic film 5.1800 kg/kg
Agricultural University"
Diesel 0.5927 kg/kg IPCC (Intergovernmental Panel on Climate Change)*
College of Biological Sciences and Technology,
Sown area 312.60 kg/km*
China Agricultural University (Wu et al., 2007)
Irrigated area 25 kg/km? Dubey and Lal (2009)

'Data source: https://ireea.njau.edu.cn/. 2Data source: https://www.ipcc-nggip.iges.or.jp/EFDB/find_ef.php.
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duplicated registrations of GIs, only the earliest record was retained,
and non-agricultural GIs were excluded.

4.2.3 Control variables

The first indicator is Per capita disposable income in rural areas
(dpi). Industrial structure (indus) is measured by the ratio of value
added of the tertiary industry to that of the secondary industry (Liu
and Mu, 2024). Marketization level (market) is represented by Fan
Gang’s marketization index (Hu et al., 2024). Agricultural financial
support (fiscal) is measured by the ratio of agricultural financial
expenditure to general budgetary expenditure (Tian et al., 2024).
Rural human capital (edurural) is calculated following the method of
Zhang and Zhang (2021). Agricultural mechanization level (power) is
measured by the ratio of total agricultural machinery power to arable
land area (Li et al., 2024). Disaster status (damage) is measured by the
ratio of affected area to arable land area (Chen and Zhong, 2024).

4.2.4 Mechanism variables

In addition, the subsequent mechanism analysis involves five
variables. The first indicator is farmland transfer scale (transfer). It is
measured by the ratio of transferred farmland area to contracted
farmland area. Agricultural social services (service) is measured by
the difference between the added value of agriculture, forestry, animal
husbandry, and fishery and the added value of the primary industry.
Cropping structure (structure) is measured by the ratio of grain crop
sown area to arable land area. Technological progress (gtp) and
technological efficiency (gte) are both measured using the Super
Efficiency Slack-Based Measure Global Malmquist-Luenberger
(SBM-GML) index based on Data Envelopment Analysis (DEA).
Specifically, the input variables include crop sown area, the number of
agricultural employees, total power of agricultural machinery, effective
usage of chemical fertilizers (converted to pure amount), and
agricultural water consumption. The desirable output variable is the
actual total agricultural output. The undesirable output variable is
ACE. Descriptive statistics for these variables are presented in Table 2.

TABLE 2 Descriptive statistics of variables.

10.3389/fsufs.2025.1644196

To ensure data availability and completeness, this study selects a
sample of 31 provinces (municipalities/autonomous regions, excluding
Hong Kong, Macau, and Taiwan) in China covering the period 2004-
2022. The data are derived from the China Statistical Yearbook, China
Rural Statistical Yearbook, China Environmental Statistical Yearbook,
China Social Statistical Yearbook, China Urban and Rural Statistical
Yearbook, China Rural Business Administration Statistical Yearbook,
and relevant provincial statistical yearbooks. For individual cases of
missing data, linear interpolation is employed for completion.

5 Empirical results analysis
5.1 Analysis of baseline regression results

Firstly, regressions are conducted with GIAP as the core
explanatory variable. Meanwhile, bidirectional fixed effects and
interactive fixed effects are set separately to examine the robustness
of the estimation results. Columns (1) and (3) of Table 3 present the
estimation results of GIAP under different fixed effects, with the
estimated coefficients being significantly negative at the 1% level.
Columns (2) to (4) show that after adding control variables, the
estimated coefficients for GIAP remain significantly negative at the
1% level, indicating that GIAP can significantly reduce agricultural
carbon emissions, thus providing empirical support for Hypothesis
1. The results demonstrate that each additional GIAP certification
reduces ACE intensity by 0.3695 units. Then, additional control
variables are included. And the regression coefficient is —0.3679.
The results for other control variables are generally consistent with
existing studies. The increase in rural residents’ disposable income,
the optimization of industrial structure, fiscal support, and the
enhancement of rural human capital can elevate the willingness of
agricultural producers to pursue green transformation. These
factors also provide an economic environment conducive to green
agricultural development, thereby reducing agricultural carbon

Variable Obs Mean Std. dev. Min Max Unit
Hundred tons/100
cgdp 589 72.21 130.80 0.49 692.57
million yuan
giap 589 46.21 59.42 0.00 351.00 Piece
transfer 589 23.65 16.50 1.36 91.11 %
service 589 50.12 62.15 0.01 420.44 100 million yuan
structure 589 66.32 14.21 35.51 97.08 %
gtp 589 106.23 15.26 53.46 247.09 —
gte 589 100.83 11.72 40.76 260.67 —
dpi 589 12.01 5.50 3.75 3491 Thousand yuan
indus 589 48.85 9.07 32.46 83.73 %
market 589 74.76 21.89 —16.10 128.64 —
fiscal 589 11.58 3.34 4.11 20.38 %
edurural 589 7.31 0.91 2.24 9.91 Person-year
power 589 6.97 3.67 2.50 26.98 Kilowatts per hectare
damage 589 6.97 3.67 2.50 26.98 %
Frontiers in Sustainable Food Systems 06 frontiersin.org
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TABLE 3 Baseline regression results.

Variable

10.3389/fsufs.2025.1644196

—0.4534%%* —0.3983%#* —0.3695%#* —0.3679%**
GIAP
(—4.31) (—3.45) (=3.37) (-=3.07)
—0.1579%%%* —0.0839%%*
dpi
(-2.82) (—4.37)
—0.3215%%%* —0.1820%%*
indus
(—4.11) (=3.25)
0.1104%%* 0.08187***
market
(3.21) (2.59)
—0.5053%** —0.4573%%*
fiscal
(—3.45) (=3.39)
—0.1535 —0.2360%*
edurural
(-1.23) (=2.20)
0.0180%** 0.01527%*%*
power
(5.01) (4.67)
0.0144 —0.0007
damage
(0.69) (—0.04)
49.6949%7** 1538.503 1%+ 3201.2322% —15618.95317%##%*
cons
(3.30) (2.84) (1.89) (=3.18)
Time and province Yes Yes No No
Time-province No No Yes Yes
N 589 589 589 589
R’ 0.8920 0.9016 0.8831 0.8960

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

emissions. However, a higher level of marketization may compel
agricultural producers to intensify the use of chemical inputs in
order to expand production and maximize profits, which in turn
exacerbates carbon emissions. Under the “large country,
smallholder” conditions in China, the enhancement of agricultural
mechanization power has not yet generated economies of scale or
intensive effects, thereby aggravating agricultural carbon emissions.
The coefficient of disaster incidence is negative but not
statistically significant.

The GI system encourages the adoption of organic, ecological, or
low-input agricultural practices, reducing the use of fertilizers and
pesticides and thus lowering carbon emissions from agricultural
activities. In addition, the GI system can enhance the market value and
competitiveness of products (He et al., 2023), enabling producers to
obtain higher returns. Market preference for GI products provides
motivation for producers to maintain environmentally friendly
production methods (Jiang et al, 2023), in order to retain GI
certification status, thereby further reducing the carbon footprint in
the production process. Finally, GIAP strengthens consumer
awareness regarding sustainable and low-carbon products. Consumers’
green consumption preferences, in turn, incentivize producers to
adopt greener production practices. This creates a two-way positive
feedback mechanism, driving the green transformation of both market
supply and demand, and thus promoting the achievement of carbon
reduction objectives at the macro level.
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5.2 Parallel trend test and dynamic effect
analysis

Since this study treats the certification of GIAP as a policy shock
and uses a multi-period, continuous difference-in-differences (DID)
model to identify policy effects. So it is necessary to test the
fundamental assumption of parallel trends prior to policy
implementation. Following the approach of Kudamatsu (2012) and
Huang et al. (2022), an event-study method is employed to examine
parallel trends and to analyze dynamic effects. The model is as follows:

-1
ngpit=a+ Z ﬁspre[Di’I(t—TD :S):|

s=—4-#-1

+ B Dy I(t=Tp =s)]

14
+Zﬂslas[Di.I(t_TD:s):l+9-xit+}’i'/1¢+5it (4)

s=1

In Equation 4, D;=1 denotes the treatment group, while D;=0
indicates the control group. I () represents the indicator function.
Tp indicates the exact period of geographical indication (GI)
certification for agricultural products, based on the relative time
to the GI certification announcement (t —Tp =s). In this study,
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the year 2007 (i.e., s = —1) is taken as the baseline period and
excluded from the model. All other variables are consistent with
those in Equation 1. If the regression coefficient BF™ is not
significantly different from zero, it indicates that the parallel
trends assumption holds for the model constructed in this study.
Meanwhile, if the regression coefficients Beurent and ﬁslasare
that the
implementation of GI certification has a significant dynamic

significantly ~different from zero, it suggests
effect on agricultural carbon emissions.

The parallel trend and dynamic effects are plotted in Figure 2.
As shown, during the 3 years before policy implementation, the
estimated coeflicients of GIAP are not significantly different from
zero, confirming the parallel trend assumption. In the
implementation year (2008), the coeflicient becomes negative but
is not significant, indicating that the policy had an initial effect,
though with a lag in policy effectiveness. Over time, the reduction
effect of GIAP certifications on agricultural carbon emissions

becomes increasingly significant.

10.3389/fsufs.2025.1644196

5.3 Robustness checks

The analysis above has confirmed that GIAP can significantly
promote the reduction of agricultural carbon emissions. To test the
robustness of this conclusion, three robustness checks are conducted.

5.3.1 Re-measurement of the core variable

To avoid potential bias caused by indicator construction methods,
the degree of agricultural carbon emissions is re-measured. Agricultural
carbon emission intensity (Cgdp) is replaced with agricultural carbon
emission density (Carea) and the agricultural carbon emission
decoupling coefficient (Cdecoupling). Here, agricultural carbon
emission density is represented by the ratio of total agricultural carbon
emissions to arable land area. The decoupling coefficient is measured by
the elasticity of agricultural carbon emissions relative to agricultural
GDP. Columns (1) and (2) in Table 4 present the estimation results for
Carea as the dependent variable under different fixed effects. The
estimated coefficients of GIAP are found to be significantly negative at
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FIGURE 2
Parallel trends and dynamic effects.

TABLE 4 Robustness check I: re-measurement of core variables.

Variable

Cdecoupling

—0.0864*** —0.1088%*#* —0.2550%* —0.2195%%*
GIAP
(=2.69) (=2.89) (=2.46) (=5.51)

Control variables Yes Yes Yes Yes

Time and province Yes No Yes No

Time-province No Yes No Yes

N 589 589 589 589

R? 0.9360 0.9230 0.7336 0.3151
t statistics are in parentheses. *p < 0.1, #*p < 0.05, ***p < 0.01.
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the 1% level. Columns (3) and (4) show the results for Cdecoupling as
the dependent variable under different fixed effects. The coefficients for
GIAP remain significant at the 5 and 1% levels, respectively. These
findings further support Hypothesis 1.

5.3.2 Mitigation of endogeneity

To address potential endogeneity arising from reverse causality
and omitted variable bias, all explanatory variables are included in the
model with a one-period lag. In addition, the instrumental variable
(IV) approach is employed to further alleviate endogeneity concerns.
As instrumental variables, firstly, the lagged value of the most common
core explanatory variable is used. Secondly, the interaction terms
between the average slope and average elevation of each province and
the time variable are selected. The rationale for the latter is that
geographical slope and elevation represent regional geographic
characteristics. It may affect the natural resource endowments of a
region and thus influence the development of GIAP. However, slope
and elevation theoretically have no direct effect on agricultural carbon
emissions, making them reasonable choices for instrumental variables.
Column (1) of Table 5 presents the regression results with all
explanatory variables lagged by one period, which shows that the
negative effect of GIAP on ACE remains robust. Columns (2), (3), and
(4) report the IV regression results. The Anderson canonical
correlation LM test and the Cragg-Donald Wald F test indicate that

TABLE 5 Robustness check II: addressing endogeneity.

10.3389/fsufs.2025.1644196

there are no issues of under-identification or weak instruments in the
models. The estimated coefficients for GIAP are significantly negative
at the 1% level, further confirming the robustness of the conclusions.

5.3.3 Placebo test with pseudo-treatment groups
To rule out the interference of other random factors, a common
placebo test in difference-in-differences models is conducted using
pseudo-treatment groups. Figures 3a—c present the distributions of
estimated coefficients, t-values, and p-values, respectively, after
randomly reassigning the treatment group 500 times. As shown, the
mean estimated coefficient and the mean ¢-value of the GIAP are both
close to zero, while the mean p-value ranges between 0.4 and 0.5, which
is not statistically significant. This indicates that the observed effect of
GIAP on agricultural carbon emissions is not driven by other random
factors, thereby confirming the robustness of the main findings.

5.4 Mechanism analysis

The preceding mechanism analysis revealed that GI can
significantly promote carbon emission reduction in agriculture
through multiple channels. These include facilitating farmland
transfer, enhancing social services, optimizing cropping structures,
and advancing technological progress and efficiency. Empirical tests

Variable
(1) (2) (4)
Lagged by one IV: lagged by one IV: elevation
period period
—0.3593 %% —0.4025%** —0.6216%** —0.5761%%*

GIAP

(-5.33) (~3.53) (-11.53) (—6.54)
Control variables Yes Yes Yes Yes
Time-province Yes Yes Yes Yes
Anderson canon. Corr. LM statistic 488.75 (0.01) 298.73 (0.01) 110.68 (0.01)
Cragg-Donald Wald F statistic 6632.30 (16.38) 641.77 (16.38) 137.81 (16.38)
N 558 558 589 589
R 0.9071 0.3108 0.2213 0.2286

t statistics are in parentheses. *p < 0.1, #*p < 0.05, ***p < 0.01.
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FIGURE 3
Robustness check Ill: placebo test.
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TABLE 6 Mechanism analysis.

10.3389/fsufs.2025.1644196

Variable Cadp
(1) (2) (3)
transfer service structure
0.0227%%* 0.1559%%* 0.47987#%* 0.0118 0.0395%#%*

GIAP

(2.32) (2.45) (3.73) (0.79) (4.67)
Control variables Yes Yes Yes Yes Yes
Time-province Yes Yes Yes Yes Yes
N 589 589 589 589 589
R 0.6701 0.3967 0.9674 0.6050 0.2363

t statistics are in parentheses. *p < 0.1, #*p < 0.05, ***p < 0.01.

are presented in Table 6. Except for technological progress, the
coefficients of GIAP on farmland transfer, social services, grain crops,
and technical efficiency are all significant at the 1% level.

GIAP promotes farmland transfer primarily because of the high
added value of GI products, which attracts more capital and
technology into the agricultural sector. Through land leasing and
transfer, smallholder farmers can transfer land to more capable and
skilled operators. These entities typically possess advanced technology
and greater management expertise, thereby improving land use
efficiency and reducing carbon emissions. Furthermore, GIAP
promotes carbon emission reduction by strengthening social services.
The certification of GIs is usually accompanied by investments in and
improvements to agricultural infrastructure, resulting in increased
efficiency in product circulation. In addition, a robust social service
system enhances the dissemination of agricultural knowledge and
technical training. Farmers’ acceptance and application of
environmentally friendly agricultural techniques are thereby
improved, making it easier to implement large-scale, mechanized, and
intensive production. Moreover, carbon emissions are further reduced
through the optimization of cropping structures enabled by GIAP. The
market value and brand effect of GI products encourage farmers to
prioritize grain crops in their production decisions. These crops
generally exhibit higher per-unit-area carbon sequestration capacity
and lower per-unit-yield emissions. The orientation toward grain
cultivation enhances the land’s carbon sink function and reduces
greenhouse gas emissions from agricultural activities. Finally, GIAP
elevates technical efficiency. Through the introduction of standardized
production and management protocols, overall technical levels and
resource use efficiency are improved. GI certification requires
producers to adhere to specific production standards and quality
controls, which typically include environmental and sustainability
requirements. By complying with these measures, producers are able
to reduce resource wastage and improve input-output efficiency,
ultimately leading to lower carbon emissions.

However, the carbon reduction effect of the technological progress
mechanism has not yet become significant, which may be due to the
fact that the cumulative effects of technological advances require a
longer time horizon to fully materialize. In the early stages of the
implementation of the GI system, producers tend to rely mainly on
existing traditional technologies and experience, while the research,
development, and diffusion of innovative technologies still require
continuous time and financial investment (Dang et al, 2024).
Although the promotion of the GI system helps enhance producers’
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awareness and willingness to adopt new technologies, the actual
implementation and widespread application of such innovations still
necessitate a substantial period of accumulation. Overall, the GI
system has significantly promoted agricultural carbon emission
reduction through multiple mechanisms at various levels. Although
the effect of the technological progress pathway has not yet been fully
realized, other mechanisms have already demonstrated positive
carbon reduction effects. This provides a solid theoretical foundation
and practical guidance for further improving Gl-related policy
systems, promoting technological innovation, and advancing the
green and low-carbon transformation of agriculture.

5.5 Analysis of spatial spillover effects

To examine whether the promotion of GIAP certification and
agricultural carbon emissions in a specific region would influence the
decisions and development of neighboring regions, this section
employs a spatial econometric model to identify the spatial spillover
effects of GIAP. Specifically, we construct the spatial weight matrix
based on a nested matrix of per capita GDP and geographic distance.
The economic distance nested matrix is chosen because it not only
accounts for geographical proximity, but also reflects the similarity in
economic development levels between regions, thereby better
capturing real-world economic connections. The economic variable
of per capita GDP is selected as it provides a more equitable and
accurate measure of regional economic development, effectively
eliminating the interference arising from differences in region size.
After a series of tests, the spatial Durbin (SDM) difference-in-
differences model is ultimately adopted. The model is specified
as follows:

Cgdpyy =0+ -w-GIAP; +0-w-xjy +y; - Ay + & (5)

In Equation 5, w denotes the nested economic distance matrix,
while all other variables remain consistent with Equation 1. The
empirical results are presented in Table 7. Column (1) shows the
baseline regression results. Column (2) reports the estimation of
spatial effects, indicating that GIAP significantly promotes the
reduction of agricultural carbon emissions both locally and in
surrounding areas. Column (3) reports the direct spatial effect,
indicating that a one-unit increase in local GIAP reduces local
agricultural carbon emission intensity by 0.4294 units. This
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TABLE 7 Spatial Durbin model regression results.

10.3389/fsufs.2025.1644196

Variable
(4)
Indirect
—0.29037%%** —0.2587%** —0.4294%** —0.1329%%* —0.5624%%*
GIAP
(—9.31) (—4.15) (=7.91) (—2.18) (—12.81)
Spatial —0.1385%%*
rho (=3.13)
Variance 1439.6165%**
sigma2_e (17.11)
Hausman —0.06
Lmtest sar 13.6077%%*
Lmtest sem 111.396%%%
Lrtest sdm sar 3.80%
Lrtest sdm sem 4.42%%
Control variables Yes
N 589
r 0.0246

t statistics are in parentheses. *p < 0.1, *¥p < 0.05, ***p < 0.01.

TABLE 8 Regression results of geographic heterogeneity.

Variable
(2) (3) (4)
Eastern region Central region Western region
—0.3679%%** —0.6083%** 0.1809%** —0.0821
GIAP
(=3.07) (—6.37) (2.00) (-0.85)
Control variables Yes Yes Yes Yes
Time-province Yes Yes Yes Yes
N 589 209 190 190
R? 0.8960 0.9115 0.9115 0.9115

t statistics are in parentheses. *p < 0.1, #*p < 0.05, ***p < 0.01.

incorporates both the local impact and the feedback effect—where
GIAP’s spatial spillover to neighboring regions subsequently enhances
local emission reduction. Column (4) presents the indirect spatial
effect, revealing that GIAP exerts a significant negative spatial spillover
on surrounding regions’ agricultural carbon emissions, with an
estimated coefficient of —0.1329. The direct spatial effect is stronger
than the indirect spatial effect. Column (5) presents the total spatial
effect. These results provide empirical support for Hypothesis 3.

5.6 Heterogeneity analysis

China is a vast country with significant regional and economic
disparities, and clear spatial patterns of “hot” and “cold” zones. The
impact of GIAP on agricultural carbon emissions may therefore vary
across different regions. In this section, we conduct heterogeneity
analysis from several perspectives and employ varying coefficient
models for empirical testing.
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5.6.1 Heterogeneity by geographic region

The sample is divided into three subgroups according to
geographic regions: central, eastern, and western. Columns (2-4) of
Table 8 report the results. In the eastern region, GIAP significantly
reduces agricultural carbon emissions, while in the central region,
GIAP significantly increases agricultural carbon emissions. In the
western region, the effect of GIAP on agricultural carbon emissions is
negative but not statistically significant.

The heterogeneous effects of GIAP across regions highlight
differences in economic development levels, technological
conditions, market demand, and policy implementation capacity.
In the eastern region, technological innovation and market
mechanisms have effectively achieved carbon reduction goals. In
the central region, the implementation of the GI system may have
led to unfavorable adjustments in industrial structure and
changes in production methods, thus increasing the risk of higher
carbon emissions. Although GIAP potentially has environmentally
friendly effects in the western region, the absence of necessary
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technological support and market demand may have prevented
such emission reduction effects from being realized.

5.6.2 Heterogeneity analysis by economic
region

The sample is first divided into two subsamples according to
whether the region is coastal or inland. It is then further classified
based on whether the region belongs to the Yangtze River
Economic Belt. Columns (2-5) of Table 9 report the results. In
the inland areas, the effect of GIAP on agricultural carbon
emissions is positive but not significant. By contrast, in the
coastal regions, the Yangtze River Economic Belt, and the
non-Yangtze River Economic Belt, GIAP significantly reduces
agricultural carbon emissions. The significant reduction of
agricultural carbon emissions by GIAP in the coastal and Yangtze
River Economic Belt regions can be primarily attributed to higher
levels of economic development and technological advancement,
more mature market mechanisms, and stronger policy support
for environmental protection in these areas. The non-Yangtze
River Economic Belt also shows a significant reduction effect,
possibly because it includes some coastal areas, which, in turn,
helps promote agricultural carbon reduction in the entire region.
In contrast, the effect of GIAP on agricultural carbon emissions
in inland areas is positive but not significant, reflecting the
challenges and limitations faced by these regions in implementing

TABLE 9 Regression results of economic region heterogeneity.

10.3389/fsufs.2025.1644196

the GI system. The implementation of GIAP in inland areas may
focus primarily on enhancing the market value of products, while
lacking sufficient promotion and adoption of low-carbon
production practices. In some cases, the pursuit of higher yield
and quality may even lead to increases in chemical input and
mechanization, thereby increasing carbon emissions.

5.6.3 Heterogeneity analysis by agricultural
functional zone

As shown in columns (2-4) of Table 10, the impact of GIAP
on agricultural carbon emissions varies significantly across
different types of agricultural functional zones. In major grain-
producing areas, major grain-selling areas, and production-
marketing balance areas, GIAP significantly reduces agricultural
carbon emissions. Among these, the emission reduction effect is
greatest in major grain-selling areas, followed by major grain-
producing areas, and is smallest in production-marketing balance
areas. The significant differences in the impact of GIAP on
agricultural carbon emissions across various agricultural
functional zones reflect disparities in market demand, production
capacity, technological level, and policy support. In major grain-
selling areas, the strongest emission reduction effect can
be attributed to high market demand and well-developed market
mechanisms. In major grain-producing areas, significant emission
reductions are achieved through economies of scale and

Variable Cgdp
(2) (2) (3) (4) (5)
Overall Inland region Coastal region Non-Yangtze river Yangtze river
economic belt economic belt
—0.3679% 0.0812 —0.6078%% —0.2873%%# —0.3969%%
GIAP
(=3.07) (1.02) (—6.56) (—3.00) (—3.00)
Control variables Yes Yes Yes Yes Yes
Time-province Yes Yes Yes Yes Yes
N 589 361 228 209 380
R 0.8960 0.9105 0.9105 0.8964 0.8964

t statistics are in parentheses. *p < 0.1, *¥p < 0.05, **¥*p < 0.01.

TABLE 10 Regression results of agricultural functional zone heterogeneity.

Variable
(2) (3) (4)
Major producing Major marketing Production-
region region marketing balanced
region
—0.3679%** —0.3927%%* —0.6759%** —0.2758%
GIAP
(=3.07) (=3.18) (—3.85) (—1.81)
Control variables Yes Yes Yes Yes
Time-province Yes Yes Yes Yes
N 589 247 133 209
R? 0.8960 0.8981 0.8981 0.8981
t statistics are in parentheses. *p < 0.1, *¥p < 0.05, ***p < 0.01.
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TABLE 11 Regression results of spatial heterogeneity of “hot-cold” patterns in carbon emission intensity.

Variable Cgdp
(2) (3)
Cold—hot region Cold—-cold region
—0.3679%%* —0.3927#%* —0.67597##%*

GIAP

(-3.07) (=3.18) (=3.85)
Control variables Yes Yes Yes
Time-province Yes Yes Yes
N 589 152 437
R? 0.8960 0.8983 0.8983

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 12 Regression results of hot—cold spatial heterogeneity of geographical indications.

Variable Cadp
()] 2) (3) (4) (I5)
Overall Hot—hot region Cold—hot region Cold—cold Hot—cold region
region
—0.3679%** —0.5132%%* —0.0028 —0.80277%% 0.0128
GIAP
(-3.07) (~4.66) (0.01) (-2.87) (0.16)
Control variables Yes Yes Yes Yes Yes
Time-province Yes Yes Yes Yes Yes
N 589 152 133 152 152
R 0.8960 0.9062 0.9062 0.9062 0.9062

t statistics are in parentheses. *p < 0.1, *¥p < 0.05, ***p < 0.01.

technological advantages. Although the effect in production-
marketing balance areas is relatively smaller, carbon reduction can
still  be
market regulation.

realized through standardized production and

5.6.4 "Hot-cold” spatial heterogeneity analysis
Based on the level of carbon emission and the status of GI
certification across different regions, this study classifies regions
into four types according to the quadrants: hot-hot regions
(Quadrant I), cold-hot regions (Quadrant II), cold-cold regions
(Quadrant III), and hot-cold regions (Quadrant IV), to analyze
their spatial heterogeneity. Specifically, cold-cold regions refer to
areas where both local and neighboring values of the variables are
relatively low, while hot-hot regions indicate areas where both
local and neighboring values are high. Cold-hot regions are
characterized by low local values but relatively high values in the
surrounding regions, and hot-cold regions represent the opposite
situation. Table 11 reports the estimation results for the spatial
heterogeneity of “hot-cold” patterns in carbon emission intensity.
The GIAP coefficients for both cold-hot and cold-cold regions are
significantly positive at the 1% level, with the effect being larger
in cold-cold regions. Cold-cold regions, characterized by both low
local and surrounding carbon emission intensities and a solid
foundation for green development, benefit from GIAP through
further standardization and enhancement of green agricultural
production and agricultural carbon reduction, resulting in more
pronounced effects. In cold-hot regions, although the carbon
emission intensity of neighboring areas is relatively high, the local
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low-carbon environment provides a valuable demonstration effect
and technological support. Guided by the GI system, agricultural
producers are encouraged to engage in green agricultural
production activities.

Table 12 presents the estimation results of the spatial
heterogeneity of “hot-cold” distribution in GIAP. In hot-hot and
cold-cold regions, GIs significantly reduce agricultural carbon
emissions, with the emission reduction effect being greater in
cold-cold regions. In cold-hot regions, the effect of geographical
indications on carbon emissions is negative but not significant,
while in hot-cold regions, the effect is positive but also not
significant. The significant emission reduction in hot-hot and
cold-cold regions can be attributed to the base effects and
environmental foundations unique to these regions, where GIAP
can effectively reduce carbon emissions—especially the high
marginal effect observed in cold-cold regions. Cold-hot regions
have emission reduction potential. However, the effect is not
significant due to the offsetting effect from the more developed
GIs in surrounding areas. In hot-cold regions, the emission
reduction effect is severely limited by the marginal diminishing
effect of GIAP and insufficient support from neighboring regions.

6 Conclusion

This paper incorporates the GIAP system into the analytical
framework of agricultural carbon emissions. The impact effects,
underlying mechanisms, heterogeneity, and spatial spillover effects
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of GIAP on agricultural carbon emissions are examined in depth.
The study shows that GIAP can significantly reduce agricultural
carbon emissions. Each additional GIAP certification reduces ACE
intensity by 0.3679 units on average. This reduction is achieved
through several mechanisms, including promoting farmland
transfer, advancing agricultural social services, adjusting cropping
structures, and improving technical efficiency. However, the
mechanism of technological progress remains insufficiently
developed. Spatial spillover effects are statistically confirmed. A
one-unit increase in local GIAP reduces local emission intensity by
0.4294 units. GIAP exerts significant negative spillovers on
neighboring regions. The coefficient is —0.1329. Critically, the
direct effect is more pronounced than the indirect effect, indicating
stronger local impacts. Further analysis indicates that the emission
reduction effect of GIAP performs better in eastern regions, coastal
areas, and the Yangtze River Economic Belt of China. Heterogeneity
is observed across different agricultural functional zones and in
varying spatial contexts. This study provides valuable support for
sustainable agricultural development and ecological environment
protection. Based on the findings, the following policy
recommendations are proposed:

First, strengthen the certification and regulatory system for
GIs. The government should increase its support for GIAP
certification by optimizing certification standards, streamlining
procedures, and improving service efficiency, thereby ensuring the
quality and credibility of GI products. At the same time, a
comprehensive regulatory mechanism for the entire process of
GIAP should be established, with stricter enforcement to combat
counterfeit and substandard products and effectively safeguard the
brand value and market reputation of GIAP. Second, promote
farmland transfer and large-scale farming. It is reccommended to
introduce more targeted policies to support farmland transfer, such
as providing subsidies for farmland transactions and tax incentives.
The improvement of farmland transfer service platforms should
be pursued to reduce transaction costs. By encouraging
appropriately scaled operations, land use efficiency can
be enhanced, thereby unleashing the carbon reduction and
economic benefits of large-scale agricultural production. Third,
improve the agricultural socialized service system. The government
should increase financial investment in basic services such as
agricultural technical support, market information, and financial
assistance, while encouraging diverse social entities to participate
in the provision of agricultural socialized services. This may
include establishing agricultural technology extension centers to
provide farmers with practical technical training and advisory
services free of charge or at low cost; improving the agricultural
market information disclosure platforms to ensure timely and
transparent release of key indicators such as supply, demand, and
price; and expanding agricultural credit coverage by offering
low-interest loans and risk protection, thereby helping farmers
pursue green development and adopt advanced technologies.
Fourth, promote the optimization of cropping structure and the
adoption of green production practices. The government should
guide farmers in rationally adjusting their cropping structure and
expanding the cultivation area of GI products through subsidies
and technical support. Farmers should be encouraged to adopt
eco-friendly cultivation methods, reduce the use of chemical
fertilizers and pesticides, and promote organic fertilizers and new
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green agricultural inputs. This joint approach will enhance both
the quality of agricultural products and the effectiveness of
agricultural carbon emission reduction.

Although this paper has thoroughly explored the role of GIAP
in promoting agricultural carbon emission reduction, several
limitations remain and require further research and refinement.
First, data limitations exist. The analysis relies mainly on existing
literature and Chinese statistical data, which may result in
insufficient regional coverage. In future studies, data collection
should be strengthened, particularly through field surveys and the
accumulation of long-term dynamic data. A robust agricultural
carbon emission database should be established. Second, there is a
lack of multidimensional analysis of environmental impacts. This
study focuses primarily on the impact of GIAP on agricultural
carbon emissions, while other environmental factors—such as
water resource utilization, soil health, and biodiversity—have not
been comprehensively considered. Future research should take
them into account. Through systematic environmental benefit
assessments, a more comprehensive understanding of the overall
ecological impact of GIAP can be achieved. This will provide
stronger support for broader green development policies.
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