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Geographical Indications for Agricultural Products (GIAP), as an intellectual property 
protection system, hold potential for driving agricultural green transformation. 
However, their impact mechanisms on agricultural carbon emissions (ACE) remain 
unclear. This study empirically investigates their impact using provincial panel data 
from China spanning 2004 to 2022 and employs a difference-in-differences (DID) 
model. The results indicate that the implementation of GIAP systems has a significant 
positive effect on reducing agricultural carbon emissions, each additional GIAP 
certification reduces ACE intensity by 0.3679 units on average. The conclusion 
that remains robust across a variety of specification tests. Mechanism analysis 
demonstrates that GIAP effectively lower agricultural carbon emissions primarily 
by facilitating farmland transfer, strengthening agricultural socialized services, 
increasing the proportion of grain crops, and improving technical efficiency. 
Furthermore, the empirical findings reveal significant spatial spillover effects 
associated with GIAP. Additional heterogeneity analysis shows that the carbon 
emission reduction effects of GIAP vary substantially across different regions, 
economic zones, functional areas, and “hot” and “cold” spatial clusters. Based 
on these findings, it is recommended that greater emphasis be placed on the 
development and refinement of the GIAP system, and that regionally differentiated 
strategies be adopted to further integrate GIAP policy with agricultural carbon 
reduction initiatives, thereby laying a solid institutional foundation for the green 
and low-carbon transformation of agriculture.
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1 Introduction

Global climate change stands among the most pressing challenges faced by contemporary 
society. Its consequences—rising sea levels, increased frequency of extreme weather events, 
and declining biodiversity—are profound and far-reaching. The principal driver of climate 
change is greenhouse gas emissions, with carbon dioxide (CO₂) identified as the most 
significant greenhouse gas. In response, governments, international organizations, and 
corporate entities have adopted numerous measures. Efforts have intensified to curtail carbon 
emissions and to achieve the targets of carbon peaking and carbon neutrality. Carbon 
reduction is not only a necessity for environmental protection but also a critical pathway 
toward sustainable development. Agricultural production has been recognized as a major 
source of greenhouse gas emissions. It is estimated that emissions from the agricultural sector 
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account for approximately 20–30% of global total emissions (Silvia 
Falasco et al., 2024). Agricultural carbon emissions (ACE) primarily 
originate from farmland soils, the use of agricultural machinery, and 
the application of fertilizers and pesticides. The reduction of ACE is 
therefore of utmost importance for mitigating climate change, 
safeguarding the environment, and advancing sustainable development.

Geographical Indication of Agricultural Products (GIAP), as a 
distinctive form of intellectual property protection, has assumed 
growing importance in shaping the future direction of agricultural 
development. It is a label used to denote that a product originates from 
a specific locality, with its quality, reputation, or other characteristics 
primarily attributable to inherent natural and human factors of that 
location. GIAP are often endowed with unique attributes and elevated 
market value. Such products can effectively enhance the added value 
of agricultural commodities and increase farmers’ incomes (Yan and 
Zhang, 2025), thereby narrowing the rural–urban income gap (Ai 
et al., 2025). A significant and continuously strengthening association 
has been observed between GIAP and regional agricultural economies 
(Xie et al., 2022). In fact, the environmental benefits of GIAP are also 
substantial. Due to rigorous requirements placed on both production 
environment and production processes, agricultural practitioners are 
usually compelled to adopt more environmentally friendly and 
sustainable farming practices. For instance, greater emphasis is placed 
on soil conservation, water management, biodiversity preservation, 
reducing the use of chemical fertilizers and pesticides, and promoting 
the efficient use of agricultural machinery. Consequently, agricultural 
carbon emissions are reduced during the production process.

As one of the largest agricultural countries in the world, China 
sees carbon emissions from agriculture account for approximately 
10% of its national total (Jin et al., 2021). On the other hand, China 
possesses abundant resources in GIAPs. By 2022, over 3,000 GIAPs 
had been registered in China,1 encompassing fruits, vegetables, tea, 
grains, and other categories. These products have played a significant 
role in promoting local economic development and protecting the 
ecological environment. Therefore, selecting China as the research 
context is both representative and valuable. By empirically analyzing 
the impact of GIAP on ACE in China, the latent role of GI in fostering 
sustainable agricultural development and reducing carbon emissions 
can be revealed. Scientific evidence may thus be provided for policy 
formulation, further advancing green agricultural development and 
the achievement of carbon reduction objectives.

The innovations of this study are manifested in three key aspects: 
firstly, the Geographical Indication for Agricultural Products 
(GIAP)—an intellectual property protection system—is systematically 
integrated into the agricultural carbon emission research framework, 
constructing a “institutional norms-market incentives-production 
optimization” triple-action mechanism. Secondly, a multi-period 
continuous Difference-in-Differences (DID) model is combined with 
a Spatial Durbin Model to precisely quantify GIAP’s local emission 
reduction effect and spatial spillover effects, overcoming limitations 
of traditional static assessments. Last, four quantifiable emission 
reduction pathways are empirically verified: scaling farmland transfer; 
improving socialized services; grain-oriented crop restructuring; 

1  Data collected and compiled by the author; see core variable measurement 

for details.

enhancing technical efficiency. This reveals the core characteristic of 
current reliance on management optimization over 
technological progress.

The remainder of this paper is structured as follows. Section 2 
reviews the relevant literature and further discusses the marginal 
contributions of this study. Section 3 presents the theoretical analysis, 
focusing on the mechanisms through which facility agriculture 
influences agricultural carbon emissions. Section 4 describes the research 
design and data, including variable selection and model specification. 
Section 5 conducts the empirical analysis, covering mechanism 
identification and heterogeneity analysis. Finally, Section 6 summarizes 
the main conclusions, offers policy recommendations, and discusses the 
limitations of the study as well as directions for future research.

2 Literature review

Existing studies have explored the sources and influencing factors 
of agricultural carbon emissions (ACE). Zhang et al. (2023, 2024) and 
Liu and Mu (2024) points out that farmland soil is one of the primary 
sources of ACE, accounting for more than 50% of total emissions. 
Livestock farming is another important source, contributing about 35% 
of total agricultural emissions (Arfini et al., 2019; Hu et al., 2024). In 
addition, the use of agricultural machinery and pesticides also 
significantly impacts ACE (Belletti et al., 2017; Tian et al., 2024). De 
Filippis et  al. (2022) proposed that improving tillage methods, 
increasing the use of organic fertilizers, and implementing farmland 
conservation measures can significantly reduce carbon emissions from 
farmland soil. Furthermore, the intensive use of mechanical power and 
the rational use of pesticides are also important measures for 
agricultural carbon reduction (Arfini et al., 2019; Li et al., 2024). Cross-
sectoral research also indicates that efficiency enhancement strategies 
such as circular economy models and total factor productivity 
optimization offer universal insights for achieving low-carbon 
transitions in multiple sectors, including agriculture (Wang et  al., 
2024). Waste resource utilization, as a crucial means of enhancing 
system efficiency and reducing net emissions, has also received 
significant attention in efficiency assessment research (Wang 
et al., 2025).

As a form of intellectual property protection, GIAP have received 
extensive attention in recent years, mainly focusing on their economic, 
social, and environmental benefits. GIAP protection can significantly 
enhance the market value of agricultural products and increase 
farmers’ incomes (Li C. et al., 2023; Li K. et al., 2023; Chen and Zhong, 
2024). GIAP certification also contributes to the preservation of 
traditional cultural heritage, promotes regional economic development, 
and helps reduce the urban–rural gap, yielding considerable social 
benefits (Qie et  al., 2023; Zhu and Qin, 2023). In addition, GIAP 
products have certain environmental benefits and help actualize the 
value of ecological products (Giua et al., 2024; Yi and Gu, 2023).

In summary, GIAP plays a discernible role in improving the quality 
of agricultural products, increasing farmers’ incomes, and promoting 
green agricultural development. However, the mechanisms and empirical 
verification of the impact of GIAP on ACE remain to be explored. This 
paper makes marginal contributions in the following aspects. First, it 
incorporates GIAP and ACE into a unified analytical framework, deeply 
enriching the development of institutional economics in the field of 
agriculture. Second, GIAP certification is regarded as a quasi-natural 
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experiment. A multi-period continuous difference-in-differences model 
has been employed to empirically analyze agricultural data from 31 
Chinese provinces during 2004–2022. Third, the mechanisms by which 
GIAP affects ACE are elucidated through four dimensions: scale effect, 
market effect, structural effect, and technological effect. In this way, 
theoretical support for the emission-reducing effect of GIAP certification 
is provided. The findings are expected to furnish policymakers with 
scientific evidence, support the widespread adoption of geographical 
indication (GI) certification, and facilitate the achievement of green 
agricultural development and carbon reduction objectives.

3 Theoretical mechanisms

GIAP plays an important role not only in protecting the reputation 
and quality of agricultural products from specific regions, but also 
imposes strict requirements on the production environment and 
processes. Producers are thus encouraged to adopt more 
environmentally friendly and sustainable agricultural practices, 
influencing ACE through several channels. It is shown in Figure 1.

3.1 Scale effect: accelerating farmland 
transfer and expanding operational scale

In China, land policy implements the separation of three rights: 
ownership, contract right, and management right. Farmland transfer has 
been recognized as a fundamental institutional cornerstone for modern 
agricultural development. Through enhancing market value and brand 
influence, GIAP attracts more investors and agricultural operators to 
apply for certification. Thus, farmland transfer and agricultural scale 
operation are promoted. The expansion of operational scale can reduce 
agricultural carbon emissions through several mechanisms.

First, the deepening of economies of scale can be achieved. Large-
scale operations can realize more efficient allocation and utilization 
of resources. Production costs and resource waste are thereby 
reduced. Expanded scale allows the adoption of more modernized, 
intensive, and mechanized production methods. Production 
efficiency is enhanced, while carbon emissions per unit output are 
reduced (Li and Shi, 2024). Second, the intensification of management 
is strengthened. Scale operation brings more professional and 
intensive agricultural management. Land use efficiency is improved, 
and excessive reclamation or degradation is curtailed, preserving soil 
carbon storage capacity. Scientific crop rotation and intercropping 
systems are more frequently implemented on large farms, maintaining 
soil fertility and structure, thus reducing carbon emissions from soil. 
Third, the acceleration of technology adoption is facilitated. Large-
scale farms possess greater capability to introduce and apply advanced 
agricultural technologies, including precision farming, intelligent 
irrigation systems, and biological control measures (Li et al., 2024). 
These technologies can not only boost production efficiency but also 
mitigate carbon emissions from agricultural production.

3.2 Market effect: promoting social 
services and improving market support

Agricultural social services include technical training, market 
information, and financial services. They play an important role in 
enhancing production efficiency and reducing carbon emissions. 
Through elevating market value and expanding economies of scale, 
GIAP has propelled the improvement and development of agricultural 
social services, thereby fostering ACE reduction in several respects.

First, the deepening of technical training and dissemination can 
be  observed. Through systematic technical training, farmers are 
enabled to master advanced agricultural technologies and management 

FIGURE 1

Mechanism analysis of GIAP’s impact on ACE.
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practices. Consequently, the use of fertilizers and pesticides is 
significantly reduced, production efficiency is increased, and both 
resource wastage and carbon emissions are curtailed (Tian and He, 
2023). Second, the optimization of market information services has 
been promoted. Enhanced market information services allow farmers 
to better understand market demand and price dynamics. Rational 
production planning can thereby be  adopted, avoiding blind 
production and resource waste. By utilizing market information 
services, farmers can adjust cropping patterns and production 
schedules in a timely manner, curtailing the production of unsalable 
products and reducing resource and energy consumption. Unnecessary 
carbon emissions are thus minimized. Third, the strengthening of 
financial service support has been facilitated. Improved agricultural 
financial services have provided more financial resources for farmers. 
Investment in advanced agricultural technologies and equipment, as 
well as in greenhouse gas mitigation technologies, is thereby made 
possible (He and Liao, 2024). With financial support, farmers are 
enabled to apply additional low-carbon technologies and equipment 
in production, which actively contributes to carbon emission reduction.

3.3 Structural effect: increasing grain crops 
and reducing cash crops

Significant differences exist in the environmental impacts of grain 
crops and cash crops during cultivation. GIAP promotes carbon 
emission reduction by adjusting cropping structures, increasing the 
area devoted to grain crops, and decreasing the area under cash crops.

First, an adjustment toward a grain-oriented cropping structure has 
been facilitated. Traditionally, grain crops possess lower market value 
than cash crops. However, after obtaining GI certification, additional 
value is conferred upon these products, thereby bridging the market 
value gap with cash crops. The cultivation of grain crops is generally less 
complex relative to cash crops. As a result, the area allocated to grain 
crops is expanded, while the area under cash crops is reduced, leading 
to lower carbon emissions. Second, the use of chemical fertilizers and 
pesticides is diminished. The production of grain crops typically requires 
fewer fertilizers and pesticides. In contrast, the cultivation of cash crops 
demands substantial inputs of these chemicals, which markedly increase 
carbon emissions (Tong et  al., 2024). Third, land use efficiency is 
elevated. Grain crops are often cultivated through large-scale and 
intensive methods, which improve the efficiency of land utilization. 
Grain crops also exert less detrimental impact on arable land, reducing 
soil erosion and nutrient loss. This preserves the soil’s carbon storage 
capacity and further enhances land use efficiency, which subsequently 
reduces carbon emissions. Therefore, GIAP can achieve carbon emission 
reduction by increasing the planting area of grain crops, reducing the 
cultivation of cash crops, and optimizing cropping structures.

3.4 Technological effect: advancing 
technological progress and improving 
technical efficiency

Technological progress is crucial for attaining agricultural 
sustainability. Technical efficiency refers to the rational allocation and 
effective utilization of production factors under given technological 
conditions. GIAP enhances the market value of agricultural products. 

Through this, investment in capital and technology is attracted. 
Continuous technological advancement is promoted, technical 
efficiency is improved, and the allocation and utilization of agricultural 
production resources are optimized, thereby enabling carbon 
emission reduction.

First, support for technological innovation can be observed. Due 
to the brand effect and market influence of GIAP, greater investments 
in research and development are often attracted from scientific 
institutions and enterprises. Innovation in low-carbon agricultural 
technologies and equipment is thereby stimulated, which advances 
agricultural science and technology (Luo and Wei, 2023). 
Technological innovation not only increases agricultural production 
efficiency, but also provides essential technical support for carbon 
emission reduction in agriculture. Second, optimization in resource 
allocation is achieved. Producers of GIAP generally adopt more 
scientific management practices. Production resources are thereby 
optimized and rational planting schedules are implemented. Repetitive 
tillage and resource wastage are avoided, while the efficiency of land 
and water use is improved, thus reducing carbon emissions (Ji 
et al., 2023).

Based on the above, this paper proposes Hypotheses 1, 2.

Hypothesis 1: GIAP can significantly reduce ACE.

Hypothesis 2: GIAP can significantly reduce ACE by promoting 
farmland circulation, developing social services, optimizing 
cropping structure, facilitating technological progress, and 
improving technical efficiency.

The promotion of GIAP may induce spatial spillover effects. First, 
the successful certification of GIAP in a particular region indicates the 
presence of favorable natural and geographical conditions for 
agricultural development. Adjacent areas are highly likely to possess 
similar resource endowments. Second, the effective promotion of 
GIAP may stimulate neighboring regions to prioritize GIAP 
certification and development, thereby expanding its sphere of 
influence. Economic issues are predominantly characterized by strong 
regional particularities. The impact of GIAP on ACE may therefore 
vary across different geographical regions, economic zones, functional 
zones, and in “hot” and “cold” spatial contexts (Zhou and Ying, 2012). 
The eastern region possesses richer market and demographic 
resources. Comparatively, the effects of GIAP may be  especially 
pronounced in the eastern area. The Yangtze River Economic Belt, 
being one of the most dynamic regions, may also experience strong 
internal effects from the promotion of GIs. From an agricultural 
perspective, Chinese provinces are classified into major producing 
areas, major marketing areas, and balanced areas. Heterogeneity in the 
effects of GIs may thereby arise across distinct functional zones (Zhou 
et al., 2022). Moreover, the ACE and GI certifications of a region can 
potentially influence its surrounding areas. Consequently, spatial 
econometric methods are incorporated. Regions are categorized into 
different “hot” and “cold” spatial clusters to further analyze whether 
the impacts of GIAP on ACE differ under varied spatial constraints 
and resource endowments.

Accordingly, Hypotheses 3, 4 are thus proposed in this paper.

Hypothesis 3: The impact of GIAP on ACE exhibits significant 
spatial spillover effects.
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Hypothesis 4: The impact of GIAP on ACE varies significantly 
across different regions, economic zones, functional zones, and 
“hot” and “cold” spatial clusters.

4 Model specification and variable 
measurement

4.1 Model specification

China officially implemented the registration and certification of 
GIAP in 2008. Therefore, the starting point of the GIAP policy is set 
as 2008. Since GIAP certification occurred in different regions at 
different times, the overall process can be viewed as a staggered policy 
intervention across regions. Thus, a multi-period difference-in-
differences (DID) model is adopted to identify the policy effect. 
Additionally, the treatment group in this study cannot be  simply 
represented by a 0–1 dummy variable; instead, the number of GIAPs 
registered and certified in each region at a given time better captures 
the policy intensity. Therefore, this study utilizes a multi-period 
continuous DID model. The following econometric model 
is established:

	 α β θ γ λ ε= + ⋅ + ⋅ + ⋅ +it it it i t itCgdp GIAP x 	 (1)

Where subscript i denotes province and t denotes year, Cgdpit 
represents the intensity of agricultural carbon emissions (ACE) in 
province i in year t, with higher values indicating greater ACE 
intensity. The specific measurement of ACE intensity will be detailed 
in the following section. α denotes the constant term. GIAPit is the 
policy variable for Geographical Indications for Agricultural Products, 
which accumulates the actual number of certified GIAPs in province 
i in year t. If a province had no GIAP certification before 2008 or never 
certified, the value is set to 0. β is the coefficient of interest, capturing 
the effect of GIAP on ACE. Xit is a vector of control variables. γ λ⋅i t  
denotes region-time interaction fixed effects, which are used to absorb 
the influence of varying regional characteristics and temporal 
fluctuations on the econometric results. εit denotes the stochastic 
error term.

4.2 Major variable measurement

4.2.1 Agricultural carbon emissions
The level of agricultural carbon emissions is measured using 

agricultural carbon intensity (Cgdp). First, the total agricultural 
carbon emissions are calculated. According to the method proposed 
by Li et al. (2011), the total agricultural carbon emissions are estimated 
based on six input factors: chemical fertilizers, pesticides, agricultural 
plastic film, agricultural diesel, total sown area of crops, and effectively 
irrigated area. The emission coefficients for each carbon source are 
shown in Table  1. The total agricultural carbon emissions are 
calculated using Equation 2, and carbon emission intensity is 
subsequently calculated using Equation 3.

	
δ

= =
= = ⋅∑ ∑

1 1

n n

it itk it k
k k

AEC e w
	

(2)

	
= it

it
it

AECCgdp
AGDP 	

(3)

In Equation 2, AECit denotes the agricultural carbon emissions of 
province i in year t. k represents the type of carbon source. eitk indicates 
the carbon emissions from different sources. wit and δk denotes the 
input quantity and emission coefficient of carbon source j, respectively. 
In Equation 3, Cgdpit represents the agricultural carbon emission 
intensity. And AGDPit indicates the agricultural added value.

4.2.2 Geographical indications of agricultural 
products

At the early stage of the development of GIs in China, their 
management was divided among three authorities: the Ministry of 
Agriculture, the State Administration for Industry and Commerce, 
and the General Administration of Quality Supervision, Inspection 
and Quarantine. After 2018, the responsibility was transferred to the 
China National Intellectual Property Administration (CNIPA), but all 
three certification systems are still in use today. In this study, GI data 
were collected separately from the GI Network, the China Trademark 
Network, and the China Green Food Development Center. Sample 
data from 1,598 counties across the country with agricultural product 
GIs were obtained and aggregated at the provincial level. For 

TABLE 1  Agricultural carbon sources and emission coefficients.

Carbon source Emission coefficient References

Chemical fertilizer 0.8956 kg/kg
West and Marland (2002); Oak Ridge National Laboratory, 

USA (Zhi and Gao, 2009)

Pesticide 4.9341 kg/kg Oak Ridge National Laboratory, USA (Zhi and Gao, 2009)

Plastic film 5.1800 kg/kg
Institute of Agricultural Resources and Environment, Nanjing 

Agricultural University1

Diesel 0.5927 kg/kg IPCC (Intergovernmental Panel on Climate Change)2

Sown area 312.60 kg/km2
College of Biological Sciences and Technology,

China Agricultural University (Wu et al., 2007)

Irrigated area 25 kg/km2 Dubey and Lal (2009)

1Data source: https://ireea.njau.edu.cn/. 2Data source: https://www.ipcc-nggip.iges.or.jp/EFDB/find_ef.php.
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duplicated registrations of GIs, only the earliest record was retained, 
and non-agricultural GIs were excluded.

4.2.3 Control variables
The first indicator is Per capita disposable income in rural areas 

(dpi). Industrial structure (indus) is measured by the ratio of value 
added of the tertiary industry to that of the secondary industry (Liu 
and Mu, 2024). Marketization level (market) is represented by Fan 
Gang’s marketization index (Hu et al., 2024). Agricultural financial 
support (fiscal) is measured by the ratio of agricultural financial 
expenditure to general budgetary expenditure (Tian et  al., 2024). 
Rural human capital (edurural) is calculated following the method of 
Zhang and Zhang (2021). Agricultural mechanization level (power) is 
measured by the ratio of total agricultural machinery power to arable 
land area (Li et al., 2024). Disaster status (damage) is measured by the 
ratio of affected area to arable land area (Chen and Zhong, 2024).

4.2.4 Mechanism variables
In addition, the subsequent mechanism analysis involves five 

variables. The first indicator is farmland transfer scale (transfer). It is 
measured by the ratio of transferred farmland area to contracted 
farmland area. Agricultural social services (service) is measured by 
the difference between the added value of agriculture, forestry, animal 
husbandry, and fishery and the added value of the primary industry. 
Cropping structure (structure) is measured by the ratio of grain crop 
sown area to arable land area. Technological progress (gtp) and 
technological efficiency (gte) are both measured using the Super 
Efficiency Slack-Based Measure Global Malmquist–Luenberger 
(SBM-GML) index based on Data Envelopment Analysis (DEA). 
Specifically, the input variables include crop sown area, the number of 
agricultural employees, total power of agricultural machinery, effective 
usage of chemical fertilizers (converted to pure amount), and 
agricultural water consumption. The desirable output variable is the 
actual total agricultural output. The undesirable output variable is 
ACE. Descriptive statistics for these variables are presented in Table 2.

To ensure data availability and completeness, this study selects a 
sample of 31 provinces (municipalities/autonomous regions, excluding 
Hong Kong, Macau, and Taiwan) in China covering the period 2004–
2022. The data are derived from the China Statistical Yearbook, China 
Rural Statistical Yearbook, China Environmental Statistical Yearbook, 
China Social Statistical Yearbook, China Urban and Rural Statistical 
Yearbook, China Rural Business Administration Statistical Yearbook, 
and relevant provincial statistical yearbooks. For individual cases of 
missing data, linear interpolation is employed for completion.

5 Empirical results analysis

5.1 Analysis of baseline regression results

Firstly, regressions are conducted with GIAP as the core 
explanatory variable. Meanwhile, bidirectional fixed effects and 
interactive fixed effects are set separately to examine the robustness 
of the estimation results. Columns (1) and (3) of Table 3 present the 
estimation results of GIAP under different fixed effects, with the 
estimated coefficients being significantly negative at the 1% level. 
Columns (2) to (4) show that after adding control variables, the 
estimated coefficients for GIAP remain significantly negative at the 
1% level, indicating that GIAP can significantly reduce agricultural 
carbon emissions, thus providing empirical support for Hypothesis 
1. The results demonstrate that each additional GIAP certification 
reduces ACE intensity by 0.3695 units. Then, additional control 
variables are included. And the regression coefficient is −0.3679. 
The results for other control variables are generally consistent with 
existing studies. The increase in rural residents’ disposable income, 
the optimization of industrial structure, fiscal support, and the 
enhancement of rural human capital can elevate the willingness of 
agricultural producers to pursue green transformation. These 
factors also provide an economic environment conducive to green 
agricultural development, thereby reducing agricultural carbon 

TABLE 2  Descriptive statistics of variables.

Variable Obs Mean Std. dev. Min Max Unit

cgdp 589 72.21 130.80 0.49 692.57
Hundred tons/100 

million yuan

giap 589 46.21 59.42 0.00 351.00 Piece

transfer 589 23.65 16.50 1.36 91.11 %

service 589 50.12 62.15 0.01 420.44 100 million yuan

structure 589 66.32 14.21 35.51 97.08 %

gtp 589 106.23 15.26 53.46 247.09 —

gte 589 100.83 11.72 40.76 260.67 —

dpi 589 12.01 5.50 3.75 34.91 Thousand yuan

indus 589 48.85 9.07 32.46 83.73 %

market 589 74.76 21.89 −16.10 128.64 —

fiscal 589 11.58 3.34 4.11 20.38 %

edurural 589 7.31 0.91 2.24 9.91 Person-year

power 589 6.97 3.67 2.50 26.98 Kilowatts per hectare

damage 589 6.97 3.67 2.50 26.98 %
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emissions. However, a higher level of marketization may compel 
agricultural producers to intensify the use of chemical inputs in 
order to expand production and maximize profits, which in turn 
exacerbates carbon emissions. Under the “large country, 
smallholder” conditions in China, the enhancement of agricultural 
mechanization power has not yet generated economies of scale or 
intensive effects, thereby aggravating agricultural carbon emissions. 
The coefficient of disaster incidence is negative but not 
statistically significant.

The GI system encourages the adoption of organic, ecological, or 
low-input agricultural practices, reducing the use of fertilizers and 
pesticides and thus lowering carbon emissions from agricultural 
activities. In addition, the GI system can enhance the market value and 
competitiveness of products (He et al., 2023), enabling producers to 
obtain higher returns. Market preference for GI products provides 
motivation for producers to maintain environmentally friendly 
production methods (Jiang et  al., 2023), in order to retain GI 
certification status, thereby further reducing the carbon footprint in 
the production process. Finally, GIAP strengthens consumer 
awareness regarding sustainable and low-carbon products. Consumers’ 
green consumption preferences, in turn, incentivize producers to 
adopt greener production practices. This creates a two-way positive 
feedback mechanism, driving the green transformation of both market 
supply and demand, and thus promoting the achievement of carbon 
reduction objectives at the macro level.

5.2 Parallel trend test and dynamic effect 
analysis

Since this study treats the certification of GIAP as a policy shock 
and uses a multi-period, continuous difference-in-differences (DID) 
model to identify policy effects. So it is necessary to test the 
fundamental assumption of parallel trends prior to policy 
implementation. Following the approach of Kudamatsu (2012) and 
Huang et al. (2022), an event-study method is employed to examine 
parallel trends and to analyze dynamic effects. The model is as follows:
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In Equation 4, iD =1 denotes the treatment group, while iD =0 
indicates the control group. ( )⋅I  represents the indicator function. 

DT  indicates the exact period of geographical indication (GI) 
certification for agricultural products, based on the relative time 
to the GI certification announcement ( − =Dt T s ). In this study, 

TABLE 3  Baseline regression results.

Variable Cgdp

(1) (2) (3) (4)

GIAP
−0.4534*** −0.3983*** −0.3695*** −0.3679***

(−4.31) (−3.45) (−3.37) (−3.07)

dpi
−0.1579*** −0.0839***

(−2.82) (−4.37)

indus
−0.3215*** −0.1820***

(−4.11) (−3.25)

market
0.1104*** 0.0818***

(3.21) (2.59)

fiscal
−0.5053*** −0.4573***

(−3.45) (−3.39)

edurural
−0.1535 −0.2360**

(−1.23) (−2.20)

power
0.0180*** 0.0152***

(5.01) (4.67)

damage
0.0144 −0.0007

(0.69) (−0.04)

cons
49.6949*** 1538.5031*** 3201.2322* −15618.9531***

(3.30) (2.84) (1.89) (−3.18)

Time and province Yes Yes No No

Time-province No No Yes Yes

N 589 589 589 589

R2 0.8920 0.9016 0.8831 0.8960

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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the year 2007 (i.e., s = −1) is taken as the baseline period and 
excluded from the model. All other variables are consistent with 
those in Equation 1. If the regression coefficient β pre

s  is not 
significantly different from zero, it indicates that the parallel 
trends assumption holds for the model constructed in this study. 
Meanwhile, if the regression coefficients β =0

current
s  and β las

s are 
significantly different from zero, it suggests that the 
implementation of GI certification has a significant dynamic 
effect on agricultural carbon emissions.

The parallel trend and dynamic effects are plotted in Figure 2. 
As shown, during the 3 years before policy implementation, the 
estimated coefficients of GIAP are not significantly different from 
zero, confirming the parallel trend assumption. In the 
implementation year (2008), the coefficient becomes negative but 
is not significant, indicating that the policy had an initial effect, 
though with a lag in policy effectiveness. Over time, the reduction 
effect of GIAP certifications on agricultural carbon emissions 
becomes increasingly significant.

5.3 Robustness checks

The analysis above has confirmed that GIAP can significantly 
promote the reduction of agricultural carbon emissions. To test the 
robustness of this conclusion, three robustness checks are conducted.

5.3.1 Re-measurement of the core variable
To avoid potential bias caused by indicator construction methods, 

the degree of agricultural carbon emissions is re-measured. Agricultural 
carbon emission intensity (Cgdp) is replaced with agricultural carbon 
emission density (Carea) and the agricultural carbon emission 
decoupling coefficient (Cdecoupling). Here, agricultural carbon 
emission density is represented by the ratio of total agricultural carbon 
emissions to arable land area. The decoupling coefficient is measured by 
the elasticity of agricultural carbon emissions relative to agricultural 
GDP. Columns (1) and (2) in Table 4 present the estimation results for 
Carea as the dependent variable under different fixed effects. The 
estimated coefficients of GIAP are found to be significantly negative at 

FIGURE 2

Parallel trends and dynamic effects.

TABLE 4  Robustness check I: re-measurement of core variables.

Variable Carea Cdecoupling

(3) (4) (7) (8)

GIAP
−0.0864*** −0.1088*** −0.2550** −0.2195***

(−2.69) (−2.89) (−2.46) (−5.51)

Control variables Yes Yes Yes Yes

Time and province Yes No Yes No

Time-province No Yes No Yes

N 589 589 589 589

R2 0.9360 0.9230 0.7336 0.3151

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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the 1% level. Columns (3) and (4) show the results for Cdecoupling as 
the dependent variable under different fixed effects. The coefficients for 
GIAP remain significant at the 5 and 1% levels, respectively. These 
findings further support Hypothesis 1.

5.3.2 Mitigation of endogeneity
To address potential endogeneity arising from reverse causality 

and omitted variable bias, all explanatory variables are included in the 
model with a one-period lag. In addition, the instrumental variable 
(IV) approach is employed to further alleviate endogeneity concerns. 
As instrumental variables, firstly, the lagged value of the most common 
core explanatory variable is used. Secondly, the interaction terms 
between the average slope and average elevation of each province and 
the time variable are selected. The rationale for the latter is that 
geographical slope and elevation represent regional geographic 
characteristics. It may affect the natural resource endowments of a 
region and thus influence the development of GIAP. However, slope 
and elevation theoretically have no direct effect on agricultural carbon 
emissions, making them reasonable choices for instrumental variables. 
Column (1) of Table  5 presents the regression results with all 
explanatory variables lagged by one period, which shows that the 
negative effect of GIAP on ACE remains robust. Columns (2), (3), and 
(4) report the IV regression results. The Anderson canonical 
correlation LM test and the Cragg-Donald Wald F test indicate that 

there are no issues of under-identification or weak instruments in the 
models. The estimated coefficients for GIAP are significantly negative 
at the 1% level, further confirming the robustness of the conclusions.

5.3.3 Placebo test with pseudo-treatment groups
To rule out the interference of other random factors, a common 

placebo test in difference-in-differences models is conducted using 
pseudo-treatment groups. Figures 3a–c present the distributions of 
estimated coefficients, t-values, and p-values, respectively, after 
randomly reassigning the treatment group 500 times. As shown, the 
mean estimated coefficient and the mean t-value of the GIAP are both 
close to zero, while the mean p-value ranges between 0.4 and 0.5, which 
is not statistically significant. This indicates that the observed effect of 
GIAP on agricultural carbon emissions is not driven by other random 
factors, thereby confirming the robustness of the main findings.

5.4 Mechanism analysis

The preceding mechanism analysis revealed that GI can 
significantly promote carbon emission reduction in agriculture 
through multiple channels. These include facilitating farmland 
transfer, enhancing social services, optimizing cropping structures, 
and advancing technological progress and efficiency. Empirical tests 

TABLE 5  Robustness check II: addressing endogeneity.

Variable Cgdp

(1) (2) (3) (4)

Lagged by one 
period

IV: lagged by one 
period

IV: slope IV: elevation

GIAP
−0.3593*** −0.4025*** −0.6216*** −0.5761***

(−5.33) (−3.53) (−11.53) (−6.54)

Control variables Yes Yes Yes Yes

Time-province Yes Yes Yes Yes

Anderson canon. Corr. LM statistic 488.75 (0.01) 298.73 (0.01) 110.68 (0.01)

Cragg-Donald Wald F statistic 6632.30 (16.38) 641.77 (16.38) 137.81 (16.38)

N 558 558 589 589

R2 0.9071 0.3108 0.2213 0.2286

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

FIGURE 3

Robustness check III: placebo test.
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are presented in Table  6. Except for technological progress, the 
coefficients of GIAP on farmland transfer, social services, grain crops, 
and technical efficiency are all significant at the 1% level.

GIAP promotes farmland transfer primarily because of the high 
added value of GI products, which attracts more capital and 
technology into the agricultural sector. Through land leasing and 
transfer, smallholder farmers can transfer land to more capable and 
skilled operators. These entities typically possess advanced technology 
and greater management expertise, thereby improving land use 
efficiency and reducing carbon emissions. Furthermore, GIAP 
promotes carbon emission reduction by strengthening social services. 
The certification of GIs is usually accompanied by investments in and 
improvements to agricultural infrastructure, resulting in increased 
efficiency in product circulation. In addition, a robust social service 
system enhances the dissemination of agricultural knowledge and 
technical training. Farmers’ acceptance and application of 
environmentally friendly agricultural techniques are thereby 
improved, making it easier to implement large-scale, mechanized, and 
intensive production. Moreover, carbon emissions are further reduced 
through the optimization of cropping structures enabled by GIAP. The 
market value and brand effect of GI products encourage farmers to 
prioritize grain crops in their production decisions. These crops 
generally exhibit higher per-unit-area carbon sequestration capacity 
and lower per-unit-yield emissions. The orientation toward grain 
cultivation enhances the land’s carbon sink function and reduces 
greenhouse gas emissions from agricultural activities. Finally, GIAP 
elevates technical efficiency. Through the introduction of standardized 
production and management protocols, overall technical levels and 
resource use efficiency are improved. GI certification requires 
producers to adhere to specific production standards and quality 
controls, which typically include environmental and sustainability 
requirements. By complying with these measures, producers are able 
to reduce resource wastage and improve input–output efficiency, 
ultimately leading to lower carbon emissions.

However, the carbon reduction effect of the technological progress 
mechanism has not yet become significant, which may be due to the 
fact that the cumulative effects of technological advances require a 
longer time horizon to fully materialize. In the early stages of the 
implementation of the GI system, producers tend to rely mainly on 
existing traditional technologies and experience, while the research, 
development, and diffusion of innovative technologies still require 
continuous time and financial investment (Dang et al., 2024). 
Although the promotion of the GI system helps enhance producers’ 

awareness and willingness to adopt new technologies, the actual 
implementation and widespread application of such innovations still 
necessitate a substantial period of accumulation. Overall, the GI 
system has significantly promoted agricultural carbon emission 
reduction through multiple mechanisms at various levels. Although 
the effect of the technological progress pathway has not yet been fully 
realized, other mechanisms have already demonstrated positive 
carbon reduction effects. This provides a solid theoretical foundation 
and practical guidance for further improving GI-related policy 
systems, promoting technological innovation, and advancing the 
green and low-carbon transformation of agriculture.

5.5 Analysis of spatial spillover effects

To examine whether the promotion of GIAP certification and 
agricultural carbon emissions in a specific region would influence the 
decisions and development of neighboring regions, this section 
employs a spatial econometric model to identify the spatial spillover 
effects of GIAP. Specifically, we construct the spatial weight matrix 
based on a nested matrix of per capita GDP and geographic distance. 
The economic distance nested matrix is chosen because it not only 
accounts for geographical proximity, but also reflects the similarity in 
economic development levels between regions, thereby better 
capturing real-world economic connections. The economic variable 
of per capita GDP is selected as it provides a more equitable and 
accurate measure of regional economic development, effectively 
eliminating the interference arising from differences in region size. 
After a series of tests, the spatial Durbin (SDM) difference-in-
differences model is ultimately adopted. The model is specified 
as follows:

	 α β θ γ λ ε= + ⋅ ⋅ + ⋅ ⋅ + ⋅ +it it it i t itCgdp w GIAP w x 	 (5)

In Equation 5, w denotes the nested economic distance matrix, 
while all other variables remain consistent with Equation 1. The 
empirical results are presented in Table  7. Column (1) shows the 
baseline regression results. Column (2) reports the estimation of 
spatial effects, indicating that GIAP significantly promotes the 
reduction of agricultural carbon emissions both locally and in 
surrounding areas. Column (3) reports the direct spatial effect, 
indicating that a one-unit increase in  local GIAP reduces local 
agricultural carbon emission intensity by 0.4294 units. This 

TABLE 6  Mechanism analysis.

Variable Cgdp

(1) (2) (3) (4) (5)

transfer service structure gte gtp

GIAP
0.0227** 0.1559** 0.4798*** 0.0118 0.0395***

(2.32) (2.45) (3.73) (0.79) (4.67)

Control variables Yes Yes Yes Yes Yes

Time-province Yes Yes Yes Yes Yes

N 589 589 589 589 589

R2 0.6701 0.3967 0.9674 0.6050 0.2363

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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incorporates both the local impact and the feedback effect—where 
GIAP’s spatial spillover to neighboring regions subsequently enhances 
local emission reduction. Column (4) presents the indirect spatial 
effect, revealing that GIAP exerts a significant negative spatial spillover 
on surrounding regions’ agricultural carbon emissions, with an 
estimated coefficient of −0.1329. The direct spatial effect is stronger 
than the indirect spatial effect. Column (5) presents the total spatial 
effect. These results provide empirical support for Hypothesis 3.

5.6 Heterogeneity analysis

China is a vast country with significant regional and economic 
disparities, and clear spatial patterns of “hot” and “cold” zones. The 
impact of GIAP on agricultural carbon emissions may therefore vary 
across different regions. In this section, we conduct heterogeneity 
analysis from several perspectives and employ varying coefficient 
models for empirical testing.

5.6.1 Heterogeneity by geographic region
The sample is divided into three subgroups according to 

geographic regions: central, eastern, and western. Columns (2–4) of 
Table 8 report the results. In the eastern region, GIAP significantly 
reduces agricultural carbon emissions, while in the central region, 
GIAP significantly increases agricultural carbon emissions. In the 
western region, the effect of GIAP on agricultural carbon emissions is 
negative but not statistically significant.

The heterogeneous effects of GIAP across regions highlight 
differences in economic development levels, technological 
conditions, market demand, and policy implementation capacity. 
In the eastern region, technological innovation and market 
mechanisms have effectively achieved carbon reduction goals. In 
the central region, the implementation of the GI system may have 
led to unfavorable adjustments in industrial structure and 
changes in production methods, thus increasing the risk of higher 
carbon emissions. Although GIAP potentially has environmentally 
friendly effects in the western region, the absence of necessary 

TABLE 7  Spatial Durbin model regression results.

Variable Cgdp

(1) (2) (3) (4) (5)

Main Wx Direct Indirect Total

GIAP
−0.2903*** −0.2587*** −0.4294*** −0.1329** −0.5624***

(−9.31) (−4.15) (−7.91) (−2.18) (−12.81)

Spatial −0.1385***

rho (−3.13)

Variance 1439.6165***

sigma2_e (17.11)

Hausman −0.06

Lmtest sar 13.607***

Lmtest sem 111.396***

Lrtest sdm sar 3.80*

Lrtest sdm sem 4.42**

Control variables Yes

N 589

r2 0.0246

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 8  Regression results of geographic heterogeneity.

Variable Cgdp

(1) (2) (3) (4)

Overall Eastern region Central region Western region

GIAP
−0.3679*** −0.6083*** 0.1809*** −0.0821

(−3.07) (−6.37) (2.00) (−0.85)

Control variables Yes Yes Yes Yes

Time-province Yes Yes Yes Yes

N 589 209 190 190

R2 0.8960 0.9115 0.9115 0.9115

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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technological support and market demand may have prevented 
such emission reduction effects from being realized.

5.6.2 Heterogeneity analysis by economic 
region

The sample is first divided into two subsamples according to 
whether the region is coastal or inland. It is then further classified 
based on whether the region belongs to the Yangtze River 
Economic Belt. Columns (2–5) of Table 9 report the results. In 
the inland areas, the effect of GIAP on agricultural carbon 
emissions is positive but not significant. By contrast, in the 
coastal regions, the Yangtze River Economic Belt, and the 
non-Yangtze River Economic Belt, GIAP significantly reduces 
agricultural carbon emissions. The significant reduction of 
agricultural carbon emissions by GIAP in the coastal and Yangtze 
River Economic Belt regions can be primarily attributed to higher 
levels of economic development and technological advancement, 
more mature market mechanisms, and stronger policy support 
for environmental protection in these areas. The non-Yangtze 
River Economic Belt also shows a significant reduction effect, 
possibly because it includes some coastal areas, which, in turn, 
helps promote agricultural carbon reduction in the entire region. 
In contrast, the effect of GIAP on agricultural carbon emissions 
in inland areas is positive but not significant, reflecting the 
challenges and limitations faced by these regions in implementing 

the GI system. The implementation of GIAP in inland areas may 
focus primarily on enhancing the market value of products, while 
lacking sufficient promotion and adoption of low-carbon 
production practices. In some cases, the pursuit of higher yield 
and quality may even lead to increases in chemical input and 
mechanization, thereby increasing carbon emissions.

5.6.3 Heterogeneity analysis by agricultural 
functional zone

As shown in columns (2–4) of Table 10, the impact of GIAP 
on agricultural carbon emissions varies significantly across 
different types of agricultural functional zones. In major grain-
producing areas, major grain-selling areas, and production-
marketing balance areas, GIAP significantly reduces agricultural 
carbon emissions. Among these, the emission reduction effect is 
greatest in major grain-selling areas, followed by major grain-
producing areas, and is smallest in production-marketing balance 
areas. The significant differences in the impact of GIAP on 
agricultural carbon emissions across various agricultural 
functional zones reflect disparities in market demand, production 
capacity, technological level, and policy support. In major grain-
selling areas, the strongest emission reduction effect can 
be attributed to high market demand and well-developed market 
mechanisms. In major grain-producing areas, significant emission 
reductions are achieved through economies of scale and 

TABLE 9  Regression results of economic region heterogeneity.

Variable Cgdp

(1) (2) (3) (4) (5)

Overall Inland region Coastal region Non-Yangtze river 
economic belt

Yangtze river 
economic belt

GIAP
−0.3679*** 0.0812 −0.6078*** −0.2873*** −0.3969***

(−3.07) (1.02) (−6.56) (−3.00) (−3.00)

Control variables Yes Yes Yes Yes Yes

Time-province Yes Yes Yes Yes Yes

N 589 361 228 209 380

R2 0.8960 0.9105 0.9105 0.8964 0.8964

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 10  Regression results of agricultural functional zone heterogeneity.

Variable Cgdp

(1) (2) (3) (4)

Overall Major producing 
region

Major marketing 
region

Production-
marketing balanced 

region

GIAP
−0.3679*** −0.3927*** −0.6759*** −0.2758*

(−3.07) (−3.18) (−3.85) (−1.81)

Control variables Yes Yes Yes Yes

Time-province Yes Yes Yes Yes

N 589 247 133 209

R2 0.8960 0.8981 0.8981 0.8981

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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technological advantages. Although the effect in production-
marketing balance areas is relatively smaller, carbon reduction can 
still be  realized through standardized production and 
market regulation.

5.6.4 “Hot-cold” spatial heterogeneity analysis
Based on the level of carbon emission and the status of GI 

certification across different regions, this study classifies regions 
into four types according to the quadrants: hot-hot regions 
(Quadrant I), cold-hot regions (Quadrant II), cold-cold regions 
(Quadrant III), and hot-cold regions (Quadrant IV), to analyze 
their spatial heterogeneity. Specifically, cold-cold regions refer to 
areas where both local and neighboring values of the variables are 
relatively low, while hot-hot regions indicate areas where both 
local and neighboring values are high. Cold-hot regions are 
characterized by low local values but relatively high values in the 
surrounding regions, and hot-cold regions represent the opposite 
situation. Table 11 reports the estimation results for the spatial 
heterogeneity of “hot-cold” patterns in carbon emission intensity. 
The GIAP coefficients for both cold-hot and cold-cold regions are 
significantly positive at the 1% level, with the effect being larger 
in cold-cold regions. Cold-cold regions, characterized by both low 
local and surrounding carbon emission intensities and a solid 
foundation for green development, benefit from GIAP through 
further standardization and enhancement of green agricultural 
production and agricultural carbon reduction, resulting in more 
pronounced effects. In cold-hot regions, although the carbon 
emission intensity of neighboring areas is relatively high, the local 

low-carbon environment provides a valuable demonstration effect 
and technological support. Guided by the GI system, agricultural 
producers are encouraged to engage in green agricultural 
production activities.

Table  12 presents the estimation results of the spatial 
heterogeneity of “hot-cold” distribution in GIAP. In hot-hot and 
cold-cold regions, GIs significantly reduce agricultural carbon 
emissions, with the emission reduction effect being greater in 
cold-cold regions. In cold-hot regions, the effect of geographical 
indications on carbon emissions is negative but not significant, 
while in hot-cold regions, the effect is positive but also not 
significant. The significant emission reduction in hot-hot and 
cold-cold regions can be  attributed to the base effects and 
environmental foundations unique to these regions, where GIAP 
can effectively reduce carbon emissions—especially the high 
marginal effect observed in cold-cold regions. Cold-hot regions 
have emission reduction potential. However, the effect is not 
significant due to the offsetting effect from the more developed 
GIs in surrounding areas. In hot-cold regions, the emission 
reduction effect is severely limited by the marginal diminishing 
effect of GIAP and insufficient support from neighboring regions.

6 Conclusion

This paper incorporates the GIAP system into the analytical 
framework of agricultural carbon emissions. The impact effects, 
underlying mechanisms, heterogeneity, and spatial spillover effects 

TABLE 11  Regression results of spatial heterogeneity of “hot-cold” patterns in carbon emission intensity.

Variable Cgdp

(1) (2) (3)

Overall Cold–hot region Cold–cold region

GIAP
−0.3679*** −0.3927*** −0.6759***

(−3.07) (−3.18) (−3.85)

Control variables Yes Yes Yes

Time-province Yes Yes Yes

N 589 152 437

R2 0.8960 0.8983 0.8983

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 12  Regression results of hot–cold spatial heterogeneity of geographical indications.

Variable Cgdp

(1) (2) (3) (4) (|5)

Overall Hot–hot region Cold–hot region Cold–cold 
region

Hot–cold region

GIAP
−0.3679*** −0.5132*** −0.0028 −0.8027*** 0.0128

(−3.07) (−4.66) (0.01) (−2.87) (0.16)

Control variables Yes Yes Yes Yes Yes

Time-province Yes Yes Yes Yes Yes

N 589 152 133 152 152

R2 0.8960 0.9062 0.9062 0.9062 0.9062

t statistics are in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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of GIAP on agricultural carbon emissions are examined in depth. 
The study shows that GIAP can significantly reduce agricultural 
carbon emissions. Each additional GIAP certification reduces ACE 
intensity by 0.3679 units on average. This reduction is achieved 
through several mechanisms, including promoting farmland 
transfer, advancing agricultural social services, adjusting cropping 
structures, and improving technical efficiency. However, the 
mechanism of technological progress remains insufficiently 
developed. Spatial spillover effects are statistically confirmed. A 
one-unit increase in local GIAP reduces local emission intensity by 
0.4294 units. GIAP exerts significant negative spillovers on 
neighboring regions. The coefficient is −0.1329. Critically, the 
direct effect is more pronounced than the indirect effect, indicating 
stronger local impacts. Further analysis indicates that the emission 
reduction effect of GIAP performs better in eastern regions, coastal 
areas, and the Yangtze River Economic Belt of China. Heterogeneity 
is observed across different agricultural functional zones and in 
varying spatial contexts. This study provides valuable support for 
sustainable agricultural development and ecological environment 
protection. Based on the findings, the following policy 
recommendations are proposed:

First, strengthen the certification and regulatory system for 
GIs. The government should increase its support for GIAP 
certification by optimizing certification standards, streamlining 
procedures, and improving service efficiency, thereby ensuring the 
quality and credibility of GI products. At the same time, a 
comprehensive regulatory mechanism for the entire process of 
GIAP should be established, with stricter enforcement to combat 
counterfeit and substandard products and effectively safeguard the 
brand value and market reputation of GIAP. Second, promote 
farmland transfer and large-scale farming. It is recommended to 
introduce more targeted policies to support farmland transfer, such 
as providing subsidies for farmland transactions and tax incentives. 
The improvement of farmland transfer service platforms should 
be  pursued to reduce transaction costs. By encouraging 
appropriately scaled operations, land use efficiency can 
be  enhanced, thereby unleashing the carbon reduction and 
economic benefits of large-scale agricultural production. Third, 
improve the agricultural socialized service system. The government 
should increase financial investment in basic services such as 
agricultural technical support, market information, and financial 
assistance, while encouraging diverse social entities to participate 
in the provision of agricultural socialized services. This may 
include establishing agricultural technology extension centers to 
provide farmers with practical technical training and advisory 
services free of charge or at low cost; improving the agricultural 
market information disclosure platforms to ensure timely and 
transparent release of key indicators such as supply, demand, and 
price; and expanding agricultural credit coverage by offering 
low-interest loans and risk protection, thereby helping farmers 
pursue green development and adopt advanced technologies. 
Fourth, promote the optimization of cropping structure and the 
adoption of green production practices. The government should 
guide farmers in rationally adjusting their cropping structure and 
expanding the cultivation area of GI products through subsidies 
and technical support. Farmers should be encouraged to adopt 
eco-friendly cultivation methods, reduce the use of chemical 
fertilizers and pesticides, and promote organic fertilizers and new 

green agricultural inputs. This joint approach will enhance both 
the quality of agricultural products and the effectiveness of 
agricultural carbon emission reduction.

Although this paper has thoroughly explored the role of GIAP 
in promoting agricultural carbon emission reduction, several 
limitations remain and require further research and refinement. 
First, data limitations exist. The analysis relies mainly on existing 
literature and Chinese statistical data, which may result in 
insufficient regional coverage. In future studies, data collection 
should be strengthened, particularly through field surveys and the 
accumulation of long-term dynamic data. A robust agricultural 
carbon emission database should be established. Second, there is a 
lack of multidimensional analysis of environmental impacts. This 
study focuses primarily on the impact of GIAP on agricultural 
carbon emissions, while other environmental factors—such as 
water resource utilization, soil health, and biodiversity—have not 
been comprehensively considered. Future research should take 
them into account. Through systematic environmental benefit 
assessments, a more comprehensive understanding of the overall 
ecological impact of GIAP can be  achieved. This will provide 
stronger support for broader green development policies.
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