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Introduction: Agricultural carbon emissions are a major source of global
climate change. The new form of agricultural economy resulting from the deep
integration of agriculture and tourism (IAT) provides an innovative solution for
the low-carbon transformation of agriculture (LCTA).
Methods: This study took the historical data of 30 provinces in China from 2010
to 2022 as the observation sample, and used methods such as the two-way
fixed effects model and the quantile model to examine the impact effect and
mechanism path of IAT on agricultural carbon reduction. To synthesize the IAT
index, we also employ gray relational degree, factor analysis method and entropy
weight method.
Results: The research results show that the technological effect, labor
substitution and green environmental protection awareness of IAT are conducive
to improving the green productivity of agriculture and leading to LCTA. This result
still holds true after eliminating endogeneity and conducting multiple robustness
tests. However, the positive effect of IAT on carbon emission reduction is
heterogeneous. The results of the nonlinear test show that in areas with low
agricultural carbon emissions, IAT will play a stronger positive role, while the
positive role it can play in areas with high carbon emissions is limited. The
results of the mechanism test show that IAT will indirectly promote LCTA through
channels that facilitate land transfer and the aggregation of agricultural labor
force.
Discussion: This research is a beneficial exploration of agricultural carbon
reduction in the context of addressing climate change. The results of this
study are of guiding significance for accelerating the realization of sustainable
development goal 13 (SDGs 13).

KEYWORDS

integration of agriculture and tourism, agricultural carbon emissions, agricultural
socialized services, land transfer, industrial integration

1 Introduction

Recent years have witnessed an intensifying trend of global warming, characterized
by increasingly frequent extreme climate events. These phenomena pose significant
threats to human health and jeopardize the sustainable development of economies
and societies globally (Wang et al., 2024a; Wang Z. et al., 2025; Nian et al., 2025).
Mitigating carbon emissions is therefore imperative to avert a climate crisis. Within this
context, agricultural carbon emissions constitute a primary driver accelerating global
climate change. Empirical studies indicate that greenhouse gas emissions from China’s
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agricultural sector account for approximately 20% of national totals
(Ning et al., 2024). To address this challenge, China has established
ambitious strategic objectives: achieving peak carbon emissions by
2030 and carbon neutrality by 2060. Notably, the 2024 Report on
Low-Carbon Development of China’s Agriculture and Rural Areas
suggests that agricultural greenhouse gas emissions likely peaked
between 2015–2017 and are now in a phase of gradual decline.
Nevertheless, substantial decarbonization potential remains—
particularly within crop cultivation, livestock production, and rural
energy consumption systems. As the world’s largest developing
economy and carbon emitter, China faces significant challenges in
reconciling agricultural decarbonization with its mandate to ensure
food security and stable supplies of essential agricultural products.
Key constraints include: (1) Incomplete sectoral peaking. Certain
agricultural and rural subsystems have yet to achieve emission
peaks, with insufficient time remaining for phased transitions; (2)
Unrealized mitigation potential. Systematic pathways for sustained
agricultural emission reduction require further exploration, lacking
established long-term economic models; (3) Production system
trade-offs. Decarbonization necessitates transforming production
methods, potentially compromising food security and farm
income stability; (4) Economic implications. Transition costs may
increase consumer prices for low-carbon agricultural products,
reduce purchasing power, and escalate governmental expenditures
for environmental services (such as afforestation subsidies),
thereby straining public finances. Consequently, addressing these
multifaceted challenges necessitates accelerated development of
low-carbon agricultural systems and the rapid decarbonization of
both agricultural production and rural energy infrastructures.

With the continuous advancement of the rural revitalization
strategy, the integration of the three industries in rural areas has
risen to become the core task of the “agriculture, rural areas and
farmers” work of governments at all levels. As a key area for the
development of modern tourism, the integration of agriculture and
tourism holds strategic value in enhancing the ecological efficiency
of rural areas, driving the coordinated development of industries,
optimizing the agricultural industrial pattern, and promoting the
modernization transformation of agriculture (Qiu et al., 2021).
More importantly, the integrated development of agriculture and
tourism is a significant driving force for rural residents to change
their livelihood strategies. It not only effectively enhances farmers’
economic benefits but also serves as a crucial link in promoting
green agricultural development and fair social progress, as well
as achieving green emission reduction in agriculture (Huang
et al., 2022). At present, the integrated development of agriculture
and typical service industries is increasingly becoming a new
driving force for rural development. Among them, developing rural
leisure tourism based on local conditions and relying on local
characteristic agriculture and culture has become an important
means to achieve green development in rural areas. The allocation
effect of the integration of agriculture and tourism on the
endowment of factors such as labor, land, capital and technology
required for the green development of agriculture has given rise
to the rapid development of rural tourism, making the integration
of agriculture and tourism an important means to achieve green
emission reduction in agriculture. The Intergovernmental Panel
on Climate Change (IPCC) pointed out in its sixth assessment
report that global warming will make the adverse effects of climate
change on food security and water security even more severe. How

to reduce carbon emissions from agriculture and actively respond
to climate change is an urgent current issues that needs to be
addressed. This research aims to explore how the integration of
rural industries can influence the intensity of agricultural carbon
emissions, and to deeply analyze the relationship and mechanism
of action between the two, providing valuable inspirations for
promoting high-quality agricultural development and achieving
the “dual carbon” goals. The scientific goals that this research
needs to achieve are: (1) From a theoretical perspective, this paper
analyzes why IAT can reduce carbon emissions in agriculture
and achieve a low-carbon transformation of agriculture (LCTA).
Then, historical data from China is used to verify the positive
effect of IAT on LCTA. (2) The impact of IAT on the agricultural
sector is extensive and profound.. If there are positive effects, then
through what channels does IAT achieve its goals? (3) Is there any
heterogeneity in this positive effect?

2 Literature review

2.1 Agricultural carbon emissions

From the perspective of agricultural carbon reduction,
measuring agricultural greenhouse gas emissions and analyzing the
basic current situation are the basic prerequisites for achieving
low-carbon agriculture. Research related to agricultural carbon
emissions can be classified into the following three categories:

(1) Analysis of the sources of agricultural carbon emissions.
The diversity of agricultural production determines the
multi-source characteristics of agricultural carbon emissions.
Determining the sources of agricultural carbon emissions is
the prerequisite for measurement and analysis. Some literature
holds that agricultural carbon emissions mainly result from
the direct input of agricultural materials, the use of chemical
fertilizers, pesticides, agricultural diesel and agricultural films,
as well as the energy and fuel consumed in agricultural
irrigation (Zhang and Shen, 2025; Huang et al., 2024). From
the perspective of actual production, due to the differences in
geographical environment and production processes among
various regions, the use of agricultural fertilizers varies in
different areas, and the agricultural carbon emissions brought
about by different types of fertilizers also differ (Cai et al., 2025;
Fan et al., 2022). During the process of animal husbandry, the
carbon emissions produced by agriculture mainly come from
gases such as nitrous oxide and methane released during the
treatment of manure and the fermentation of animal intestines
(Luo et al., 2025; Du et al., 2024). There are also literatures
suggesting that greenhouse gas emissions are produced during
the cultivation and growth of crops (Wang et al., 2023b; Wang
M. et al., 2024). This is jointly determined by plant respiration,
farmland environment and soil organic matter content.

(2) Measurement of agricultural carbon emissions. After
calculating the agricultural CO2 emissions, it is possible
to conduct research on the spatio-temporal evolution and
dynamic evolution characteristics of the total agricultural
carbon emissions and the inter-provincial agricultural
carbon emissions. Published literatures have explored
the measurement indicators and calculation systems of

Frontiers in Sustainable Food Systems 02 frontiersin.org

https://doi.org/10.3389/fsufs.2025.1646260
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Wang and Pan 10.3389/fsufs.2025.1646260

agricultural carbon emissions, and proposed the emission
coefficient method, model simulation method, and field
measurement method (Hu et al., 2023; Lokupitiya and
Paustian, 2006; Vleeshouwers and Verhagen, 2002). In terms
of total volume and intensity, China’s agricultural carbon
emissions and carbon emission intensity have experienced
an inverted U-shaped trend of growth followed by decline
(Wen et al., 2022; Huan et al., 2024; Su et al., 2023; Wu
et al., 2024). The current carbon emission behavior is mainly
survival-oriented carbon emissions. Between 2015 and 2017,
agricultural carbon emissions reached a turning point of
decline. In terms of spatial form, there is a relatively obvious
spatial agglomeration effect of agricultural carbon emissions
in China, and the inter-provincial spatial correlation shows the
characteristics of “high-high” agglomeration and “low-low”
agglomeration (Wen et al., 2024). The regional heterogeneity
of agricultural carbon emissions in China is very obvious, and
the main carbon sources in different regions also vary (Tian
et al., 2014).

(3) Analysis of external factors promoting carbon emission
reduction in agriculture. Based on the precise calculation
of agricultural carbon emissions in China, scholars mainly
explored the impacts of the advancement of urban-rural
integration techniques, agricultural mechanization, digital
inclusive finance, agricultural industrial agglomeration, land
transfer and large-scale operation, and agricultural product
trade on agricultural carbon emissions (Peng et al., 2025;
Tang and Chen, 2022; Shen et al., 2023). Regarding the
issue of carbon emission reduction in agriculture, existing
research mainly unfolds from two dimensions. First, from
the theoretical level, explore the concept definition, practical
predicaments and emission reduction paths of agricultural
carbon reduction, conduct corresponding research on the
characteristics and influencing factors of agricultural carbon
emissions in China, and expand the research boundaries
based on sub-fields such as emission reduction potential
measurement, optimization of emission reduction policies
and improvement of emission reduction technologies (Franks
and Hadingham, 2012; You and Wu, 2014; Guo and Zhang,
2023). However, existing studies on the drivers of reduction
have predominantly focused on technological while largely
neglecting the potential role of cross-sectoral, such as the
synergy between agriculture and tourism (Chen et al., 2024;
Li et al., 2023; Leung and Lau, 2021; Liu et al., 2021).

2.2 The impact of IAT on the economy and
society

With the continuous deepening of the integration of agriculture
and tourism, its development effect has attracted the attention
of scholars. Literature review reveals that scholars’ research on
the impact of the integration of agriculture and tourism on rural
development mostly focuses on the analysis of economic and
social effects (Li and Yan, 2023). (1) Some scholars emphasize
that the integration of rural industries forms an ecological benefit
effect through three mechanisms: the improvement of governance

efficiency, the transformation and application of agricultural
scientific and technological innovation, and the upgrading of
consumer demand, providing a new model for the coordinated
development of rural revitalization and ecological civilization
(Ye and Jiang, 2025; Qin et al., 2022; Zhang and Zhang, 2024;
Shi and Liao, 2025). (2) Some scholars believe that although
the modernization of production conditions driven by industrial
integration has strengthened the market driving force, it may
trigger extensive production expansion and induce the risk of
agricultural non-point source pollution (Lai et al., 2023; Zhang
et al., 2021). Furthermore, some studies suggest that under the
background of the unbalanced development of rural industrial
integration, there are significant differences in the level of industrial
integration, the scale of cultivation of integration entities, and
the degree of extension of industrial chains among various
regions, which may lead to stage heterogeneity in the impact
of rural industrial integration on the ecological environment
(Li et al., 2023; Wang R. et al., 2023; Shen et al., 2024). (3).
Previous studies directly related to this research explored the
green development effects of ATI. In the process of integrating
agriculture and tourism, with the increase of disposable income,
farmers are willing to improve their living environment. In the
process of rural revitalization, farmers have injected new vitality
into tourism development by opening homestays, developing
local specialties, and promoting the humanistic stories and local
products of their hometowns through live streaming. This process
has imperceptibly strengthened the development and protection
of traditional villages, promoted the improvement of the rural
ecological environment, and thus achieved green development (Liu
et al., 2023; Chen et al., 2023). Under the traditional agricultural
production and operation mode, the allocation efficiency of
agricultural production factors is relatively low. The new business
forms formed by ATI have provided non-agricultural employment
and entrepreneurship opportunities for the surplus rural labor
force, attracted some labor force to separate from traditional
agricultural production activities, promoted the moderate-scale
and intensive operation of agricultural land resources, and thereby
formed a certain scale effect. ATI enables the market-based
flow and interaction of elements such as talents, information,
capital, technology and management in the two industries, thereby
promoting the optimal allocation of production factors, improving
the allocation efficiency of agricultural factors and driving the green
development of agriculture (Zhou et al., 2021; Wang et al., 2023a;
Chen et al., 2025).

2.3 Research gap

The existing literature has fully analyzed the external factors
influencing agricultural carbon emission reduction and the positive
role of IAT in the ecological environment. However, the above-
mentioned literature has not directly analyzed the impact of IAT
on carbon emissions, resulting in it being unclear whether IAT
has led to a reduction in agricultural carbon emissions (ACE).
If the answer is affirmative, then how does IAT achieve carbon
reduction? What is their mechanism of action? These problems
have not been completely solved at present. To sum up, the
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possible boundary contributions of this paper are as follows: (1)
Based on the concept of industrial integration, we regard the deep
integration of agriculture and tourism as a whole, revealing the
positive effect of IAT on LCTA. (2) From the perspective of the path
mechanism, this paper builds a brand-new research framework.
From the summary of the literature, the existing literature has
not yet explored the role played by land transfer and agricultural
socialized services in the influence of IAT on LCTA. Therefore,
this study incorporates LT and ASS into the research framework,
and the conclusions obtained enrich the relevant research on rural
tourism promoting agricultural carbon emission reduction. (3)
This study also employed panel quantile technology to examine
the nonlinear relationship between IAT and LCTA. It reveals the
heterogeneous results of the N-shaped pattern.

3 Theoretical mechanism and
research hypothesis

3.1 Direct influence mechanism

IAT is a new form of industrial integration based on
agriculture, blurring the original boundaries between agriculture
and tourism. The two intersect and permeate each other, eventually
integrating into one, thereby achieving the development of
agriculture driven by tourism. The integration of agriculture
and tourism not only reconstructs the economic form of rural
areas, but also forms carbon reduction efficiency through a triple
transmission path of technological penetration, factor reset and
industrial reconstruction. This impact is mainly reflected in the
following aspects:

(1) Technical effect. The integration of agriculture and
tourism promotes the substitution effect of low-carbon
technologies. The integration and coordinated development
of agriculture and tourism have given rise to the research
and development, integration and application of technologies
between agricultural business entities and tourism enterprises.
The demand for standardized services in the tourism industry
has driven the introduction of green technological equipment
such as precise fertilization systems and intelligent irrigation
devices at the production end in agriculture (Lu et al., 2022;
Liu Y. et al., 2025). Meanwhile, the digital management
experience formed in the operation of cultural and tourism
projects will directly accelerate the penetration of agricultural
Internet of Things technology. Through the clean substitution
effect of input factors, it will directly reduce carbon emissions
in agricultural production and operation activities (Li and
Wang, 2025).

(2) Green awareness effect. The integration of agriculture
and tourism has enhanced the ecological awareness of
agricultural producers and rural residents. Rural tourism
relies heavily on a good ecological environment and
organic agricultural products. To promote the sustainable
development of the tourism industry and increase operating
income, local residents are willing to adopt green and low-
carbon production technologies. Rural tourism operation
companies will also require their employees to enhance

their ecological and environmental protection awareness.
This is not only achieved by enhancing the human
capital of the industry, but also by strengthening the
education of new professional farmers through cultural and
tourism project management training, and incorporating
the awareness of ecological environment protection into
agricultural production decisions (Yang et al., 2025). It is
even more important to make good use of the structural
carbon reduction brought about by the intensive land system.
The composite development of leisure agricultural land will
further enhance the carbon carrying capacity of the land and
achieve the driving effect of green and low-carbon elements
(Xiao et al., 2022). By leveraging the consumption scenarios of
rural tourism to enhance the value of low-carbon agricultural
products, we can not only increase farmers’ income but
also promote the green and sustainable development of the
agricultural industry.

(3) The improvement of the comprehensive quality of workers.
The intensification of agricultural labor force, as an important
manifestation of the upgrading of agricultural human capital,
has always been regarded as an important strategic fulcrum
for alleviating agricultural carbon emissions (Han et al.,
2024). The development of IAT will not only promote non-
agricultural employment for farmers, but also attract “new
farmers” to flock to the agricultural sector, generating a labor
substitution effect. With the deepening of the integration of
agriculture and tourism and the reconstruction of the division
of labor system, new types of agricultural business entities
can transform and upgrade through management strategies
such as agricultural skills training and job optimization,
enhance the comprehensive quality and collaboration ability
of workers, further reduce agricultural production costs
and energy consumption, and thereby break through the
inefficient cycle in the traditional agricultural production
process, ultimately reducing carbon emissions in agricultural
production (Cao, 2024). The suction effect generated by the
service positions derived from the new forms of integration
of agriculture and tourism may lead to: on the one hand,
the transfer of young and middle-aged labor force to jobs
such as dormitory management and tourism reception,
which prompts the surplus rural power to enhance labor
productivity by borrowing agricultural machinery. On the
other hand, due to the seasonality of rural tourism, although
it may lead to fluctuations in employment, it will instead
increase the utilization rate of positions integrating agriculture
and tourism. Moreover, the integration of agriculture and
tourism can promote the development of rural tourism
training bases, precisely match industrial positions with the
application of smart agricultural technologies, and based
on the actual demands of the agricultural and tourism
market, promote the green development of agriculture and
tourism, effectively reducing carbon emissions (Gu et al., 2025;
Cheng et al., 2025). Based on this, this paper proposes the
first hypothesis:

Hypothesis 1 (H1): The technological effects, green awareness
and improvement of the quality of workers generated by IAT will
promote LCTA.
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3.2 Analysis of indirect mechanism

3.2.1 Analysis of the role of land transfer
According to the new economic growth theory, to achieve

LCTA, it is necessary to adopt efficient and rational utilization
of agricultural resources and reduce the negative externalities of
pollution in the process of intensive production (Hou et al., 2023).

Land transfer (LT) will generate a scale effect. The contiguous
land has endowed farmers with the possibility of large-scale
production (Lu H. et al., 2025; Ke et al., 2022). According
to the theory of returns to scale, as the production scale
expands, the cost per unit output will decrease. Due to the
limitations in terms of land, capital and management, small-
scale agricultural operations are not conducive to the application
of advanced agricultural technologies and equipment, hindering
the improvement of agricultural production efficiency and LCTA
(Zhou C. et al., 2024). The expansion of the scale of agricultural
land operation will prompt operators to adopt more advanced
production tools and technologies, such as improving the level
of mechanization and intensively using agricultural chemicals. LT
enables agricultural operators to adjust the scale of agricultural
operations more appropriately according to the actual situation,
achieve optimal scale operation, thereby making more effective
use of various production factors, reducing resource waste and the
input of agricultural chemicals, and lowering agricultural carbon
em1issions (Bai et al., 2025). In terms of agricultural operation
models, with the acceleration of LT and the expansion of operation
scale, agricultural producers can conduct refined management of
agricultural production and operation activities. For instance, with
the assistance of modern digital technology, farmers can precisely
plan the uses of their existing land and optimize the density and
spatial layout of agricultural factor input. This process will reduce
energy consumption and environmental pollution in agricultural
output, thereby reversing the inefficient state of decentralized
operation in traditional agriculture and ultimately achieving LCTA
(Zeng et al., 2022).

LT enhances the stability of agricultural property rights.
Different types of farmers will have differentiated agricultural land
investment behaviors due to the differences in their business goals
(Wang S. et al., 2025). New types of business entities, due to their
larger scale of operation and stronger dependence on agriculture,
pay more attention to the sustainability of agricultural production
and value the long-term benefits of agricultural production. They
tend to adopt production technologies with longer payback periods
such as straw returning to the field. Small-scale farmers, on the
other hand, tend to focus on short-term production benefits,
thus developing differentiated long-term investment behaviors
in agricultural land. With the advancement of land transfer
reform, the state’s recognition of the trading of agricultural land
management rights has increased. The standardized determination
of land management rights and property rights will prompt the
agricultural operation behaviors of new land contractors to tend
toward long-term strategies. To maximize long-term transfer-in
benefits, transferees will pay more attention to the sustainable use
of land, reduce the input of agricultural chemicals that are harmful
to the long-term development of land, and enhance the adoption
of green and low-carbon technologies, thereby helping to reduce
agricultural carbon emissions (Huang et al., 2023).

LT is conducive to strengthening the technological investment
in agricultural land. After the transfer, the scale operation entities,
in order to obtain long-term investment returns, are more willing to
adopt green technologies that can effectively improve soil moisture
and reduce the carbon emission output in the production and
operation process of the planting industry (Shen and Luo, 2025).
In most cases, land is transferred from small-scale farmers to
efficient agricultural business entities with advanced agricultural
technologies and financial strength. These new types of entities
can apply more advanced technologies, thereby reducing carbon
emissions in the agricultural production process and leading to
a low-carbon transformation of the entire agricultural economic
sector (Li et al., 2024).

Based on this, land transfer promotes the low-carbon
development of agriculture through three paths: scale effect,
technological innovation and stable property rights, ultimately
leading to LCTA. Based on this, Hypothesis 2 of this paper
is proposed:

Hypothesis 2 (H2): IAT will promote the realization of LCTA
through the channel of accelerating LT.

3.2.2 The role of agricultural socialized services
According to Smith’s theorem, the expansion of the

market scale can significantly enhance the overall production
efficiency through deepening the division of labor and
specialized production. In the agricultural sector, ASS integrate
environmentally friendly inputs (such as fertilizers, pesticides, and
agricultural films) with green production factors (such as capital,
technology, and machinery), becoming a key link connecting
small-scale farmers with green production methods and an
important measure to promote small-scale farmers’ integration
into the modern agricultural system (Jiang et al., 2025). The
core of it is manifested as follows: By purchasing third-party
services, farmers entrust part or all of the production links (from
cultivation to harvest) to professional service organizations
for completion. Essentially, ASS is the concrete practice of the
specialization of agricultural production processes. At the level of
production methods, ASS, with their advantages of mechanization,
specialization, technology and precision, have effectively changed
the factor input model of farmers based on empirical inertia.
ASS helps farmers reduce the use of chemical fertilizers and
pesticides by promoting technologies such as reduced application
of agricultural chemicals and precise irrigation, and promotes
the transformation of agricultural production methods toward
intensive operation (Lu Y. et al., 2025).

At the level of factor input, the promoting effect of ASS on the
LCTA is mainly reflected in the reconstruction of the combination
of agricultural production factors, that is, the introduction of
green technologies and environmental factors. Green technology
innovation and application are the core driving forces for achieving
the LCTA. There are usually two paths for farmers to adopt green
technologies: independent production or purchasing socialized
services. Independent production often requires the purchase of
agricultural machinery and equipment by oneself. However, due to
the high purchase cost of agricultural machinery and the sunk cost
caused by the low utilization rate, farmers’ willingness to purchase
agricultural machinery by themselves is generally low. By contrast,
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adopting ASS has become a more economical option. Professional
service organizations possess advanced agricultural machinery
and equipment as well as specialized production management
capabilities, which can effectively break through the “technical
barriers” faced by small-scale farmers (Zhu et al., 2025). For
instance, by introducing technologies such as soil testing and
formula fertilization, green control with plant protection drones,
collection of fertilizer efficiency information and soil nutrient
detection, service providers empower farmers to achieve precise
fertilization (enhancing nutrient utilization efficiency), apply deep
plowing and deep loosening services (improving farmland quality),
and adopt green control services (significantly reducing the use of
chemical pesticides). In addition, service providers have controlled
the use of agricultural chemicals from the source by optimizing the
allocation of input materials (such as organic fertilizers replacing
chemical fertilizers, biological pesticides replacing traditional
pesticides, and promoting green integrated pest and disease control
technologies). The reduced reliance of farmers on agricultural
films, pesticides and fertilizers will lead producers to cut down
on product production, ultimately facilitating the LCTA. At the
level of the labor factor, ASS, by exerting the accumulation and
spillover effects of human capital, effectively reduce the search and
supervision costs for farmers in the employment process, make
up for the problems of quantity shortage, quality decline and
insufficient skills caused by the non-agricultural transfer of family
labor force, thereby helping to alleviate the tendency of extensive
operation caused by labor constraints. It provides an important
labor force support for the green transformation of agriculture
(Liu Z. et al., 2025). Therefore, this study puts forward research
hypothesis 3:

Hypothesis 3 (H3): The IAT will achieve LCTA by promoting ASS.

3.3 The heterogeneity of the influence
effect

Due to the significant differences in economic development,
resource distribution, ecological environment and policy
implementation capacity among different regions in China,
as well as the varying degrees of emphasis placed on the integration
of agriculture and tourism and the intensity of agricultural carbon
emissions in different regions of China. Therefore, the actual effects
of the integration of IAT and the intensity of agricultural carbon
emissions will also vary among different regions and at different
levels (Zhou Q. et al., 2024).

(1) In economically developed regions, the government
departments attach great importance to the supportive policies for
the integration of agriculture and tourism as well as agricultural
ecological environment issues. The implementation cost of these
supportive policies for industrial integration is relatively low, and
there are relatively fewer obstacles in policy implementation. This
can better protect the agricultural ecological environment and also
help alleviate the problem of agricultural carbon emissions.

(2) In economically backward regions, due to external factors
such as relatively backward agricultural technology and relatively
poor ecological environment, the difficulty of implementing
policies that promote the integration of agriculture and tourism

has increased and the problem of agricultural carbon emissions
cannot be effectively alleviated. However, in the long term,
economically backward regions may experience a “learning effect”,
learning from economically developed regions and drawing on
the development experience of the integration of agriculture and
tourism in developed regions, thereby promoting the integration
of agriculture and tourism to alleviate the problem of agricultural
carbon emissions. In China, the economically backward regions
are mainly the central and western regions. Due to factors
such as backward technology, underdeveloped infrastructure and
immature operational experience, these regions can achieve a lower
carbon reduction effect from the IAT than the eastern regions.

(3) All the excellent natural resources and cultural landscapes
in the western regions of China. As rural tourism projects rely
heavily on natural resource endowments, this makes the IAT in
the western region have excellent natural conditions. In these
areas, humans do not need to make excessive modifications to
the natural landscapes to create high-quality tourist attractions.
This advantage makes the industrial chain and supporting facilities
related to IAT very complete, creating favorable conditions for
LCTA. What’s important is that the ecology in the western region
is extremely fragile. There are a large number of ecological reserves
in these places. People are not allowed to carry out large-scale
economic activities. Therefore, IAT in the western region will pay
more attention to the protection of the ecological environment.
However, in the western regions of China, there are a large
number of resource-based cities and heavy industrial bases. For
instance, Anhui and Henan provinces are highly dependent on
coal and aluminum. Importantly, the central region remains an
important grain-producing area in China. This area undertakes the
main function of China’s grain production. Therefore, agricultural
production in these regions also accounts for a very large share.
The input of production factors such as pesticides, agricultural films
and agricultural machinery required for agricultural production
is also very large. Combining the existing agricultural production
technologies and the extensive production mode, the carbon
reduction benefits that the central region can enjoy in the IAT
are limited.

(4) In regions with lower ACEI, the basic ecological
environment is better, which can better leverage the advantages of
green agriculture, have a higher capacity to curb agricultural carbon
emissions, and be more capable of integrating green technologies,
thereby achieving green and high-quality agricultural development.
In China, the main grain-producing areas are located in the central
region. The eastern region mainly focuses on foreign trade and
modern service industries, while the main industrial development
models in the western region are characteristic agriculture and
tourism, as well as primary processing and resource-dependent
industries. Therefore, in the central region, due to the large
amount of carbon emissions from agriculture, the economic and
production models mainly lean toward the secondary industry, and
the proportion of agriculture is very high. This limits the carbon
reduction role that IAT can play.

Based on this, this paper proposes the fourth hypothesis:
Hypothesis 4 (H4): The influence of IAT on LCTA shows regional

heterogeneity. Its specific manifestation is that the eastern region fully
enjoys the carbon reduction effect of IAT, while the central region can
enjoy relatively lower benefits.
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4 Research design and data sources

4.1 Empirical model

Due to the inherent characteristics of each province that
do not change over time (such as geographical conditions,
historical agricultural structure, and policy traditions), these factors
simultaneously affect the IAT and LCTA. The two-way fixed-effect
(TWFE) model adopts the intra-group mean removal approach
to eliminate the influence of unobstructed variables on the
explained variables, and has a good advantage when eliminating
the endogeneity problem caused by omitted variables. Combining
theoretical analysis and research hypothses, to verify the impact
of IAT on LCTA, this study constructed the following panel
data model:

LCTAit = a0 + a1IATit + a2
∑

CVit + λi + Vt + εit (1)

In Equation 1, LCTA is the explained variable. In this study,
it mainly represents the low-carbon transformation of agriculture;
IAT is the core explanatory variable. In this study, it mainly
represents the integration of agriculture and tourism; CV is a
collection that contains all the control variables; i is the individual,
t is the time, and εit is the random disturbance term that follows
the white noise process; λi is the individual fixed effect and νt is
the time fixed effect; a0 is a constant term, and a1 and a2 are the
regression coefficients to be calculated.

The traditional three-stage mediating effect model requires
modifying multiple equations to explain the statistical relationships
among variables. It observes whether the regression coefficients of
each model of the system of equations are in line with expectations.
However, this method simply regards the causal relationship
between the judgment variables as the change of regression
coefficients and significance. Accidental relationships among
variables can lead to serious endogeneity. Based on the theoretical
analysis given in the existing literature and the implemented testing
procedures, this study uses a two-stage mediating effect model to
carry out the mechanism test (Jiang, 2022; Shen, 2024; Shen and
Zhang, 2023). The practical approach of this theory is to focus
on explaining the impact of mechanism variables on LCTA in the
theoretical analysis and research hypothesis sections, while in the
empirical analysis section, it is necessary to clarify the influence
effect of IAT on mechanism variables and use relevant research
results or cases to support it. At this stage, it is regarded as having
a good advantage in dealing with endogeneity problems arising
from multiple models. To analyze the potential pathways through
which IAT affects LCTA, based on research hypotheses 2 and 3, the
following panel data model was constructed in this study:

MVit = b0 + b1IATit + b2
∑

CVit + λi + Vt + εit (2)

In Equaion 2, MV is a mechanism variable. In this study, it
mainly represents labor force agglomeration and land transfer; b0
is constant term, and b1 and b2 are the regression coefficients
to be calculated. The meanings represented by other symbols are
consistent with Equation 1.

According to the model Settings and variable Settings, the
flowchart of this study is shown in Figure 1.

4.2 Variable setting

4.2.1 Explained variable
Low-carbon transformation of agriculture (LCTA). Low-

carbon agriculture refers to an agricultural production mode
that aims to lower carbon emissions by reducing greenhouse
gas emissions, improving resource utilization efficiency and
protecting the ecological environment during the process of
agricultural production and rural development. Promoting low-
carbon agriculture can reduce the negative impact of agriculture
on climate change, enhance the sustainable development level
of agriculture, and facilitate the green transformation of the
rural economy. Adhering to the principles of “reduction”, “reuse”
and “resource utilization” in a low-carbon economy, low-carbon
agriculture is regarded as a new model of agricultural development
that changes the original pursuit of economic output as the sole
purpose. It requires minimizing the carbon footprint generated
by agricultural economic activities as much as possible on the
basis of resource recycling, and achieving the minimization
of production factor input and the maximization of economic
output (Mrówczyńska-Kamińska et al., 2021). Overall, promoting
LCTA means reducing greenhouse gas emissions from agricultural
activities and achieving good economic effects. Achieving LCTA
reflects a balance between environmental protection and economic
benefits. Therefore, based on the endogenous relationship between
agricultural input and output, this study used super slacks-based
measurement (SBM) model to calculate agricultural production
efficiency to measure LCTA. When setting the production
feasibility set, in order to achieve the cross-period comparability of
the measurement results, global production technology was used in
this study. Since data enveloping analysis (DEA) and SBM models
have been widely used, this study does not present the production
technology set and the computational equations for solving linear
programming. Their basic principles and mathematical concepts
can be found in the published literature (Wang et al., 2024b).

Based on the factor theory of agricultural economic
growth and the practice of existing literature (Zhao et al.,
2025; Wang et al., 2024d; Hamid et al., 2025), this study
constructed the input-output evaluation system of LCTA
on the basis of the narrow concept of agriculture. The
evaluation system for the low-carbon transformation of
agriculture is mainly developed from the perspective of input
and output. In the input indicators, we mainly rely on the
production factors that are essential for agricultural production,
such as land, irrigation, chemical fertilizers and necessary
agricultural technologies.

Table 1 reports the specific information of the LCTA evaluation
system.

According to the basic characteristics of the planting industry
and human activities, the sources of carbon emissions in the
agricultural sector can be classified into the following seven
categories: chemical fertilizers, pesticides, cultivation, the use of
agricultural machinery, irrigation, agricultural films and energy
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FIGURE 1

Study the flowchart.

TABLE 1 The input and output evaluation system of LCTA.

Indicator type Primary indicator Specific explanations of the indicators

Input variable Labor force The number of practitioners in the primary industry

Material input Agricultural films, chemical fertilizers, pesticides; irrigation

Land The total sown area of crops

Technology Total power of agricultural machinery

Output variable Expected output The actual added value of the primary industry

Unexpected output Agricultural carbon emissions

(Alhashim et al., 2021). The calculation process of carbon emissions
in the planting industry can refer to the published literature (Guo
et al., 2023; Li and Wang, 2023; Tang et al., 2025; Zhang and
Shen, 2025). Since the National Bureau of Statistics of China did
not calculate in detail the usage of fossil energy in rural areas,
this study used the electricity consumption of rural residents to
measure energy consumption. The calculation equation for carbon
emissions generated by electricity is CE = ES × F, among them,
ES represents electricity consumption, F is a factor of carbon
emissions in the power grid, and CE is the carbon emission
volume of the power grid. Thanks to the existing literature’s
research on soil, this study incorporated the carbon emissions
from agricultural land use when calculating agricultural carbon
emissions (Jul et al., 2025). They mainly involve CH4 and N2O
produced during the growth of crops due to photosynthesis
and respiration.

4.2.2 Core explanatory variable
Integration of agriculture and tourism (IAT) as an important

support for the modernization of agriculture, is a significant
indicator for achieving sustainable agricultural development.
The aim is to provide significant impetus for the high-quality
development of agriculture by integrating the resource and
technological advantages of agriculture and tourism.

4.2.2.1 Indicator system
Based on the methods and research frameworks provided in

the published literature (Zhou et al., 2021, 2022a), this study
constructed the evaluation system in Table 2. The construction
includes agriculture-tourism correlation, new integrated industry
form, economic and social effects of integrated development.
Unlike most studies, this research particularly takes the input-
output ratio of the agricultural industry and the tourism
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TABLE 2 index system for the integration of IAT.

Criteria Indicators

Industrial correlation degree Gray correlation degree of agriculture and tourism
industry

Domestic agricultural added value

Domestic tourism revenue

The total number of tourists received upon entry

Domestic tourism revenue

Regional foreign exchange tourism revenue

New integrated industry form The number of demonstration counties for leisure agriculture and rural tourism in each province

The number of national demonstration sites for leisure agriculture and rural tourism in each province

Economic and social effects of
integrated development of
agriculture and tourism

Investment Investment in fixed assets of rural households

New fixed asset investment in the agricultural sector

Orchard area

Employment The number of individual employees in rural areas

The number of employees in private enterprises in rural areas

Industrial development The ratio of total tourism revenue to economic growth in each province

The ratio of the added value of the primary industry to the GDP of each province

industry as important indicators to measure the integration of
IAT, and conducts an overall assessment of the synergy and
integration of agriculture and tourism. This not only helps
to improve the environment of the agricultural industry, but
also provides a development direction for achieving sustainable
development of the agricultural industry and promoting green
agricultural development.

4.2.2.2 Measurement method
According to the index system, this paper comprehensively

used the gray correlation degree and factor analysis method to
calculate the IAT. This paper first conducts a gray correlation
degree analysis on the input-output levels of agriculture and
tourism. Then, based on the results of the gray relational degree
analysis, this study uses the factor analysis method and entropy
weight method with objective performance to measure IAT (Ren
et al., 2020; Yang et al., 2020). Its calculation process mainly consists
of the following steps. (1) Measure the industrial correlation
between agriculture and tourism. As reported in Table 2, this study
used four indicators, namely agricultural added value, tourism
revenue, number of tourists and foreign exchange income from
tourism in each region, to conduct a gray correlation analysis. In the
actual operation process, we set the agricultural added value as the
reference sequence and the other three indicators as characteristic
variables. Then, the correlation coefficients of each feature sequence
are summed up and the average value is taken to finally obtain the
industrial correlation degree. The equation for calculating the mean
of the characteristic coefficients is:

GCD =
3∑

i=1

γi

3
(3)

In Equation 3, GCD is the industrial correlation degree that this
research needs to calculate, γ is the correlation coefficient of each
characteristic variable. The calculation process of the correlation
coefficients of each characteristic variables are as follows:

The first step is to process the indicators by using the
initialization method.

f (xk) =
xk

x1
= yk, x �= 0 (4)

In Equation 4, x1 is the first array, and xk is the kth data. The
meaning of this equation is that each indicator is divided by the
first data. Then, the mathematical model of gray relational degree
is used for calculation.

ψ[x0
(
k
)

, x1
(
k
)
] = �min + ρ�max

�ik + ρ�max
(5)

�min = min
i

min
k

|x0
(
k
) − xi

(
k
) | (6)

�max = max
i

max
k

∣∣x0
(
k
) − xi

(
k
)∣∣ (7)

�ik = |x0
(
k
) − xi

(
k
) | (8)

In Equations 5–8, ρ is the resolution coefficient, xi(k) is
the kth value to be initialized, x0(k) is the value of the kth
comparison sequence. � max and � min are the maximum and
minimum values respectively. Finally, we need to calculate the
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weighted average of the correlation coefficients between each of
its indicators and the corresponding elements of the reference
sequence respectively to reflect the correlation relationship between
each control device object and the reference sequence.

γi = 1
m

m∑

k=1

ψ[x0
(
k
)

, x1(k)] (9)

The result of Equation 9 is the correlation coefficient of each
characteristic variable. After calculating the degree of industrial
correlation, we need to integrate it with other indicators to obtain a
comprehensive score. As the evaluation system involves multiple
indicators, to avoid the trap of high-dimensional data, we used
factor molecules to extract the common factors with a higher
cumulative variance contribution rate. Suppose Yij is the score of
the jth factor in the ith sample, z is the total number of samples, and
c is the total number of factors. Then, by using the entropy weight
method to assign weights to each factor, we can obtain:

Yij =
yij − min(y1j, y2j, . . . yzj)

max(y1j, y2j, . . . yzj) − min(y1j, y2j, . . . yzj)
(10)

Equation 10 represents the standardization processing of the
original index using the range method.f Then, we need to calculate
the information entropy of each indicator.

Pij =
Yij1
z∑

i=1
Yij

(11)

ej = 1
1nz

z∑

i=1

Pij1nPij (12)

In Equations 11, 12, Pij represents the weight of each indicator
to all indicators, and ej is the information entropy. Then the weight
of each factor is:

Wj =
1 − ej

z∑
i=1

(1 − ej)
(13)

In Equation 13, W is the weight coefficient. Then, multiplying
the values of the weight coefficients and the common factors
can yield the result of ITA. Its calculation process is shown in
Equation 14.

IAT =
c∑

i=1

YijWj (14)

4.2.3 Control variables
Because there are many external factors affecting LCTA, in

order to reduce the negative impact of omitted variables on the
model estimation results, this study selected six variables as control

variables based on the published literature (Feng et al., 2025; Zhou
et al., 2022b). Urbanization rate (UR) is measured by the ratio of
the urban population to the total population. Population density
(PD) is measured by the ratio of the total urban population to the
administrative area. Planting structure (PS) is measured by the ratio
of the sown area of grain to the total sown area of crops. Fiscal
support for agriculture (FSA) is measured by the government’s
public fiscal budget expenditure in the agricultural and forestry
sectors. Local climate (LC) is measured by the average annual
rainfall. Level of economic development (LED) is measured by per
capita gross domestic product (GDP). Industrial structure (IS) is
measured by the ratio of the added value of the primary industry to
the GDP.

4.2.4 Mechanism variables
Land transfer (LT) This study uses the total area of household

contracted cultivated LT in each province announced by the
Ministry of Agriculture and Rural Affairs of China as a proxy
indicator for the transfer of agricultural land. It includes the
quantity of land transferred out by all farmers. Agricultural
socialized services (ASS). This study measures it by using the ratio
of the output value of agriculture, forestry, animal husbandry and
fishery services to the total output value of agriculture, forestry,
animal husbandry and fishery.

4.3 Data sources and descriptive statistics

To reflect the availability and comparability of relevant
indicators, the original data of relevant variables are from China
Statistical Yearbook, China Rural Statistical Yearbook, China
Environmental Statistical Yearbook, China Tourism Statistical
Yearbook, the statistics bureaus of each province and express
professional superior (EPS) data platform. Based on the availability
of the data, this study selected panel data from 30 provinces in
China from 2010 to 2022 as the observation samples. The data
of power grid emission factors are sourced from the Ministry of
Ecology and Environment of China. For a very small number of
missing values, this study used the linear interpolation method to
calculate them. Table 3 reports the descriptive statistical results and
representative symbols of each variable.

5 Analysis of empirical results

5.1 Benchmark regression results

Based on the results of the F-test and Hausman test, this study
selected the two-way fixed-effect model to calculate the results of
the Equation 1. Furthermore, in order to eliminate the negative
impact of heteroscedasticity and autocorrelation on the regression
results, this study employed robust standard errors.

The results of columns (1) and (3) in Table 4 show that in the
case of adding any control variables, the regression coefficients of
IAT for LCTA are 0.402 and 0.163 respectively, and are significant
at the 1% and 5% levels respectively. This result initially confirms
that IAT has a positive effect on LCTA. To eliminate the negative
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TABLE 3 Descriptive statistics of variables.

Variable Code N Mean Sd Min Max

Low-carbon
transformation of
agriculture

LCTA 390 −1.044 0.533 −2.329 0.204

Integration of agriculture
and tourism

IAT 390 0.389 0.606 −1.833 2.032

Urbanization rate UR 390 4.065 0.205 3.521 4.495

Financial support for
agriculture

FSA 390 6.149 0.611 4.207 7.215

Industrial structure IS 390 2.013 0.936 −1.609 3.262

Population density PD 390 7.901 0.407 6.639 8.669

Economic development
level

LED 390 10.864 0.478 9.482 12.156

Agricultural socialized
services

ASS 390 −3.282 0.670 −5.141 −0.951

Land transfer LT 390 15.964 1.188 11.865 18.049

Local climate LC 390 6.703 0.647 4.951 7.825

Planting structure PS 390 −0.457 0.223 −1.035 −0.029

TABLE 4 Benchmark regression result.

Variable (1) (2) (3) (4)

OLS OLS TWFE TEFE

IAT 0.402∗∗∗ (9.82) 0.161∗∗∗ (2.75) 0.163∗∗ (2.90) 0.059∗∗ (2.34)

PD 0.305∗∗∗(7.87) 0.140∗∗∗ (6.52)

IS 0.253∗∗∗ (8.60) 0.441∗∗∗ (6.75)

PS −0.971∗∗∗ (−9.97) −0.310∗∗ (−2.53)

FSA −0.042 (−0.75) −0.078 (−0.95)

UR 0.990∗∗∗ (3.97) 0.504∗∗∗ (4.27)

LED 0.425∗∗∗ (3.42) 0.739∗∗∗ (8.83)

LC 0.091∗∗∗ (3.20) −0.047 (−0.57)

Individual-fixed effect No No Yes Yes

Time-fixed effect No No Yes Yes

R-square 0.2087 0.6018 0.8047 0.8626

F-statistic 94.05∗∗∗ 463.90∗∗∗

Hausman test 18.85∗∗∗ 29.91∗∗∗

The t-statistic is in parentheses.
∗∗∗ and ∗∗ indicate significance at the 1% and 5% levels, respectively.

impact of individual differences on the regression results. This
study incorporated all control variables into the model. The
results of columns (2) and (4) in Table 4 show that the regression
coefficients of IAT for LCTA are 0.161 and 0.059 respectively, and
are significant at the 1% and 5% levels respectively. This result
once again confirms the positive effect of IAT on LCTA. Research
Hypothesis 1 was tested. By comparing the regression results of
ordinary least square (OLS) and TWFE, it can be known that in
TWFE, the regression coefficient of IAT is smaller than that of
OLS, and its significance is also lower. This result implies that
external factors that do not change with individuals and do not

change over time have an impact on LCTA. Adopting TWFE can
eliminate the endogeneity problem caused by omitted variables to
a certain extent.

5.2 Robustness test

To better prove the robustness of the baseline regression results,
this paper adapts the following four methods for verification.
Furthermore, to avoid the endogeneity problems that may occur in
regression, this paper first conduct endogeneity tests. The specific
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methods are as follows:

(1) Change the measurement method of LCTA. In the
benchmark regression model, this study used the super
SBM model to measure LCTA. However, this method
can only calculate the static efficiency value at a certain
point in time and cannot directly analyze the changing
trend of efficiency over time. Its major flaws are also
reflected in the inability to analyze the cross-temporal
evolution of efficiency and the inability to distinguish between
technological progress and the contribution of technological
efficiency. To eliminate this defect, this study used the SBM-
GML method to recalculate LCTA. This method quantifies the
growth rate of green total factor productivity by constructing
an intertemporal distance function, revealing the long-term
evolution state of production efficiency. Under the global
reference framework, it resolves the issues of cross-period
comparison, decomposition of technological progress, and
quantification of green productivity that super SBM model
cannot handle, providing a more comprehensive temporal
insight for policy-making. It can be known from column
(1) of Table 5 that the regression coefficient of IAT is 0.171
and significant at the 1% level. Compared with the result
of the benchmark regression, in this method, the sign and
significance of IAT have not changed significantly, indicating
that the result of LCTA promoted by IAT is robust.

(2) Control the spatial spillover effect. According to the new
economic geography theory, there exist spatial spillover effects
of mutual imitation, mutual influence and mutual connection
among economic variables. For rural tourism, individuals with
geographical proximity imitate the business experience of
advanced individuals and then develop projects with similar
functions based on the local natural endowment, thereby
generating a competitive effect. Under the background of
rural revitalization, the Chinese government will also organize
leading village organizations and agricultural enterprises in
the industry to hold experience-sharing sessions for other
market entities that do not have advantages, and provide
necessary technical assistance. In this mode, the spatial
spillover effect among individuals needs to be paid attention
to. For LCTA, advanced experience will also affect the
agricultural production models in neighboring areas. To
eliminate the bias caused by not considering the spatial
spillover effect, this study uses the geographical distances
between provincial capital cities to construct the spatial
weight matrix and employs the spatial Durbin model (SDM)
to calculate the equation. It can be known from column
(2) of Table 5 that the regression coefficient of IAT is
0.231 and significant at the 10% level. Although all the
significance decreased, there was still statistical significance.
This result implies that the conclusion that IAT promotes
LCTA still holds.

(3) Changing the model. Because economic growth is related
to the existing production methods and business models. In the
agricultural sector, LCTA is also closely related to past low-
carbon behaviors. To fully reflect the path dependence of economic
variables, this study incorporates the time lag term of LCTA into

TABLE 5 Result of the robustness.

Variable SBM-GML SDM SYS-GMM

(1) (2) (3)

ATI 0.171∗∗∗ (3.52) 0.231∗ (1.89) 0.481∗∗∗ (3.91)

CV Yes Yes Yes

Individual-fixed effect Yes Yes Yes

Time-fixed effect Yes Yes Yes

AR(1) 0.002

AR(2) 0.256

Hansen 0.223

N 390 390 360

∗∗∗ and ∗ indicate significance at the 1% and 10% levels. The t-statistic is reported
in parentheses.

the model and employs the system GMM model to eliminate
potential endogeneity. It is notable that the p-value of AR (1) is
less than 1, while the result of AR (2) is greater than 1, indicating
that there is no sequence correlation in the model. It can be
known from column (3) of Table 5 that in the GMM model, the
regression coefficient of IAT is 0.481 and significant at the 1% level.
This result indicates that the positive effect of IAT on LCTA still
holds true.

5.3 Identification of causal relationship

Considering that the traditional bidirectional fixed effect
evaluation model may have estimation bias and endogeneity
problems, terrain undulation degree is selected as the instrumental
variable (IV) of this paper (Xu et al., 2025a,b). The influence
of terrain on IAT is very significant. The endowment of natural
resources directly affects the presentation form of this rural tourism
project. The terrain of China is characterized by being higher in
the west and lower in the east, distributed in a stepped pattern.
The terrain of high mountains and river valleys in the west
is particularly common. Due to the limitations of terrain, the
development of agriculture and tourism in mountainous and river
valley areas often has shortcomings in transportation, land and
other aspects, making it difficult to exert the advantages of scale and
clustering like in plain areas. Therefore, the process of ITA is mostly
slow and difficult. From the perspective of economic benefits, the
influence of terrain also has a double-edged sword phenomenon.
Landscape scarcity and the development of experience economy
projects are important sources of positive revenue. Undulating
terrain is prone to form unique visual assets, providing natural
conditions for creating distinctive tourism projects and creating
core selling points for enhancing the tourism appeal of agricultural
landscapes. The slope resources can be developed into experience
projects such as hiking, grass sliding and mountain biking, creating
secondary consumption scenarios and increasing the per capita
consumption of tourists. For example, the photography tourism
in the terraced fields of Yuanyang, Yunnan. High-value economic
crops can be laid out in steep slope areas. Meanwhile, viewing
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platforms can be built by taking advantage of the slope views
to achieve land reuse of “agricultural production + landscape
consumption”. Its negative impact is reflected in the construction
cost and large-scale development. The agricultural mechanization
rate in steep slope areas is low and relies on human labor.
Fragmented plots of land hinder large-scale agricultural projects
and make it difficult to form supply chain advantages. The cost
of laying roads and water and electricity pipelines is 30% to 50%
higher than that on flat land, and the maintenance cost increases
with the slope. Since the terrain undulation is a fixed constant
value and does not change over time, it will be eliminated by the
mean removal method of TWFE. Therefore, based on the practical
methods in the existing literature (Angrist and Krueger, 1991), this
study interacts it with the temporal dummy variable to form a
new variable.

5.3.1 The traditional instrumental variable
method

Under the strict exogenous assumption, the two-stage least
squares (2SLS) method is applied to test the causal relationship
between IAT and LCTA. The specific test results are shown in
column (1) of Table 6. As can be seen, the value of LM statistic
is 40.678 and is significant at the 1% level. This indicates that
there is no obvious problem of weak instrumental variables
in the benchmark regression of this paper. Furthermore, the
coefficient value of Wald F statistic is 44.124, which is much
greater than the critical value of the 10% significance level. It
rejects the null hypothesis that the selected instrumental variable
is unrecognizable, proves that the selection of the instrumental
variable is scientific and reasonable. It can also be found from
column (1) that in the first stage of 2SLS, the regression coefficient
of the instrumental variable to IAT is −2.453 and is significant
at the 1% level. This result implies that the steep terrain is not
conducive to the development of rural tourism projects. The
principle of correlation of instrumental variables has been verified.
The results in column (2) of Table 5 show that in the second
stage of 2SLS, the regression coefficient of IAT is 0.374 and
significant at the 5% level. This result is consistent with the result
of the benchmark regression, indicating that after eliminating the
endogeneity problem, the conclusion that IAT promotes LCTA
still holds.

5.3.2 Relax the exogenous constraints of
instrumental variables

Although instrumental variables selected from a natural
perspective have effectively addressed the issue of endogeneity to
a certain extent, complete exogenicity of instrumental variables
is merely an ideal state. In recent years, an increasing number
of econometricians have begun to relax the model Settings of
traditional IV estimation and discuss robust inference methods
under approximately exogenous instrumental variables. To address
concerns over the exogeneity constraints of instrumental variables,
this paper employs plausibly exogenous (PE) estimates to conduct
causal inferences again. Conely et al. (2012) proposed that replacing
strict exclusivity constraints with instrumental variables would have
a certain impact on the explained variables. Therefore, confidence

intervals for regression coefficients were constructed based on
the prior information of the parameters to test the robustness of
the estimation results when the instrumental variables were not
completely exogenous. In this paper, the local to zero (LTZ) is
used to test the robustness of the estimation results when the
instrumental variables are not completely exogenous. Since it is
only weakly endogenous, the deviation of the IV estimator is still
smaller than that of OLS, so the IV estimator still has its value. At
present, this method has been widely applied in supplementary tests
for causal inference (Zheng and Jin, 2024; Liu et al., 2024; Li and He,
2025).

From the results in column (3) of Table 6, the regression
coefficient of IAT is 0.572 and is significant at the 5% level. This
result implies that, in the case of relaxing the exogeneity assumption
of the instrumental variable, in other words, we assume that IV
has a slight endogeneity, and the causality of IAT promoting LCTA
still holds. This result reinforces the causal relationship obtained by
using the 2SLS model.

5.3.3 Heteroskedasticity based instrumental
variable

Linear regression models with endogenous variables are
typically identified using external information such as exogenous
external tools or parameter distribution assumptions. However,
at present, some studies have obtained recognition results by
taking advantage of the properties of heteroscedasticity without
exogenous tools. The Heteroskedasticity based instrumental
variables (HBIV) method proposed by Lewbel (2012) is an
important innovation in econometrics. It constructs instrumental
variables by taking advantage of the heteroskedasticity within
the model. It has solved the problem of scarcity of traditional
instrumental variables. The advantages of this method are as
follows: (1) It does not rely on external instrumental variables. It
does not need to search for external instrumental variables but
directly generates instrumental variables from heteroscedasticity
within the model. (2) Relax the exclusivity constraint requirements.
Instrumental variables are constructed from the higher-order
moments of endogenous variables, avoiding the direct causal path
problem that may exist with external tools. The revolutionary
advantage of this method lies in: shifting the source of instrumental
variables from “external search” to “internal generation”, which
greatly expands the application boundaries of causal inference. At
present, a large number of literatures have used this method for
causal inference (Zhou and Chen, 2020; Qi and Zhang, 2022; Liu
et al., 2024).

The P-value of the Breusch-Pagan test shows that at the 1%
level, the null hypothesis that the data have homoscedasticity
is strongly rejected, and it is considered that the data in this
paper have heteroscedasticity. Therefore, the prerequisite for using
HBIV is met. It can be found from the results in column
(4) of Table 6 that the regression coefficient of IAT is 0.455
and is significant at the 1% level. This means that the results
estimated by using the instrumental variables constructed with
the model residuals confirm the causal relationship between the
two. This result once again reinforces the reliability of the 2SLS
estimation results.
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TABLE 6 The result of the endogeneity test.

Variable 2SLS LTZ HBIV DML

(1) (2) (3) (4) (5) (6)

IAT 0.347∗∗ (2.22) 0.572∗∗ (2.13) 0.455∗∗∗ (3.64) 0.328∗∗ (1.99) 0.625∗∗ (3.57)

IV −2.453∗∗∗ (−13.51)

CV Yes Yes Yes Yes Yes Yes

Individual-fixed effect Yes Yes Yes Yes Yes Yes

Time-fixed effect Yes Yes Yes Yes Yes Yes

LM statistics 40.678

F statistics 44.124

Breusch-Pagan test 0.001

∗∗∗p < 0.01, ∗∗p < 0.05, and ∗p < 0.1.

5.3.4 Policy evaluation
The concept of the rural complex originated from the

implementation of the “Oriental Village” project in Yangshan
Town, Wuxi City in 2012. The aim is to promote agricultural
efficiency, increase farmers’ income and rural greening through the
integration of rural industries. The rural complex is an important
development model that has emerged under China’s rural
revitalization strategy in recent years, integrating functions such
as modern agriculture, leisure tourism, and rural communities (or
rural communities). In June 2017, the Ministry of Finance issued
the “Notice on Carrying Out Pilot Policies for Rural Complex
Construction”. This document has identified the provinces in
China that will implement rural complexes. It also mentioned
that local governments need to determine the goals and long-term
plans for the pilot areas of the complex based on the “foundation,
advantages, characteristics, scale and potential” of villages and
industries. The pilot project of rural complex construction aims
to encourage local governments to make full use of rural
resources and develop diversified industrial projects. By using the
fiscal funds of the Ministry of Finance in the form of special
funds, encourage relevant units to explore and implement a
comprehensive rural development model that combines modern
agriculture, leisure tourism and rural communities in accordance
with local conditions. It has now become an important measure
to promote the high-quality development of rural industries. As
the integrated development model of rural areas also emphasizes
industrial integration and calls for efficient agricultural production
and livable rural living communities. This concept has a high degree
of integration with IAT. Therefore, this study takes the policy issued
by the Ministry of Finance in 2017 as a quasi-natural experiment
and then uses dual machine learning (DML) for estimation. At
present, DML has been widely used for causal inference in policy
evaluation scenarios (Liu and Wei, 2025; Pan and Hua, 2024).

Columns (5) and (6) in Table 6 respectively report the
estimation results of the random forest and the neural network
algorithm with a sample segmentation ratio of 1:3. As can be
seen from Table 6, the regression coefficients of IAT in the two
DML algorithm cases are 0.328 and 0.625 respectively. They
are significant at the 5% and 1% levels respectively. This result
indicates that the implementation of the rural complex policy has
significantly promoted LCTA.

TABLE 7 Result of the mechanism test.

Variable ASS LT

(1) (2)

IAT 0.571∗∗∗ (3.29) 0.229∗∗ (2.69)

Control variables Yes Yes

Individual-fixed effect Yes Yes

Time-fixed effect Yes Yes

∗∗∗ and ∗∗ respectively indicate significance at the 1% and 5% levels. The t-statistic is reported
in parentheses.

6 Mechanism analysis and
heterogeneity analysis

6.1 Mechanism analysis

To examine the mediating path of IAT promoting LCTA,
combined with research hypotheses 2 and 3, this study once again
used the TWFE model to calculate Equation 2.

6.1.1 Analysis of the mechanism of land transfer
It can be known from column (3) of Table 7 that the regression

coefficient of IAT is 0.229 and significant at the 5% level. This
result implies that IAT has a positive effect on LT. According to
the two-stage mediating effect theory, the fact that the result of the
second stage is in line with expectations means that IAT will achieve
LCTA through the channel of accelerating LT. Research Hypothesis
2 was tested.

The core mechanism by which IAT promotes LT can be
summarized as enhancing the marginal revenue of land and
reducing the resistance of LT. From the perspective of land revenue,
under the traditional small-scale farming operation model, the
marginal revenue of land decreases, the transfer rent is lower than
the non-agricultural opportunity cost, and farmers are reluctant to
pay rent. With the assistance of IAT, the tourism function endows
agricultural land with landscape value and experience value, and
the revenue per unit area has expanded from a single agricultural
product output to a compound revenue of “agricultural products +
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services”. For instance, the ticket revenue of the picking garden is 3
to 5 times that of the planting income. This will increase the value
of the land. In a typical case in China, after developing a tea and
tourism complex through land transfer in Ji’an County, Zhejiang
Province, the land rent rose from 800 yuan per mu for pure planting
to 3,000 yuan per mu. Therefore, IAT endows agricultural land
with more economic value and will attract farmers’ willingness
to increase LT (Wang M. et al., 2024). From the perspective of
rural tourism project development, IAT (such as homestay clusters
and main farms) require contiguic land, and this practical demand
forces the integration and transfer of scattered plots. The high
returns of emerging tourism projects have driven agricultural and
tourism enterprises, cooperatives, and urban capital to replace
traditional farmers as tenants with a high willingness to pay. High-
price acquisitions will prevent the existing land from being sold
on the market, thereby reducing transaction costs and frictions,
and most importantly, accelerating the process of LT. IAT also
allows farmers to invest their assets as shares and enjoy dividend
income from profits. For farmers, developing an IAT in rural
areas increases their opportunities to seek non-agricultural jobs.
For instance, farmers can work as service staff or tour guides in
tourism projects, achieving employment that leaves the land but not
their hometowns. As a result, the risk of unemployment decreases
after the transfer. Meanwhile, some contracts stipulate that farmers
contribute their land as shares to receive dividends and share
the value-added benefits of tourism. Driven by multiple benefits,
farmers are more willing to transfer their land.

6.1.2 Analysis of the mechanism of agricultural
socialized services

It can be known from column (1) of Table 7 that the regression
coefficient of IAT is 0.571 and is significant at the 1% level. This
result implies that IAT will promote the development of ASS.
According to the two-stage mediating effect theory, the significant
regularity of the IAT result indicates that IAT can achieve LCTA
by promoting the development of ASS. Research Hypothesis 3
was tested.

From the perspective of agricultural economics, the core
mechanism by which IAT promotes the development of ASS can be
summarized as: reshaping the demand structure and reconstructing
the industrial organizational relationship. Generally speaking, the
demand for third-party services in traditional agriculture includes
the cultivation and harvesting of agricultural machinery, the sale
of agricultural products, and the control of pests and diseases.
From the perspective of agricultural production, the application
of IAT means that a large number of rural residents flock to
rural tourism projects to achieve non-agricultural employment.
The reduction of human labor force has prompted large-scale
agricultural machinery to be outsourced to third-party services.
Therefore, the rapid development of ASS has been positively
influenced by IAT. From the perspective of requirements, IAT
has put forward more complex requirements for ASS. Under the
development of IAT, market entities have increased new demands
for landscape-based planting design, the development of interactive
experience courses for tourists, and the creation of agricultural
tourism brand Internet protocol (IP). This new demand has

promoted new types of socialized services such as agronomic
landscape planning services and rural brand marketing services.
This change has made the division of labor in the agricultural sector
more explicit. Specialized social services have enhanced agricultural
production efficiency and economic value. From the perspective
of enterprise organizational relationships, the main characteristics
of the demand for ASS in traditional agricultural applications
are short-term service outsourcing and single-operation billing.
However, the impact of IAT on ASS is manifested as long-term
service equity investment sharing and full industrial chain service
package payment. This service model and profit-sharing model
help to reduce costs and achieve economies of scope. Therefore,
IAT provides a market environment for the further development
of ASS.

6.2 Heterogeneity analysis

To further clarify the impact of IAT on the LCTA, the
heterogeneous effects of regression in different regions and
quantiles were explored. This not only enriches the understanding
of the IAT, but also provides a more refined perspective for the
formulation of agricultural environmental policies and agricultural
development policies in the future.

6.2.1 Geographical regional heterogeneity
Due to the differences in resource endowments and economic

development stages among different regions in China, the
mechanism of IAT on agricultural carbon emissions may show
significant geographical heterogeneity (Chen et al., 2023). For this
purpose, in this study, the samples were divided into three major
regions: the east, the middle, and the west for group regression.

It can be known from the results of columns (1) to (3)
in Table 8 that the regression coefficients of IAT on LCTA are
0.261, 0.053 and 0.146 respectively, and are significant at the 5%,
10% and 1% levels respectively. By comparing the magnitudes of
the regression coefficients in the three regions, it can be known
that the positive effect of IAT is the strongest in the eastern
region, followed by the western region, and finally the central
region. The reason for this result might be that the developed
eastern regions have accelerated the transformation and upgrading
of traditional agriculture to ecological service industries through
IAT. The terrain in the eastern region is flatter, and the rainfall
and climate are also suitable for agricultural production. The
eastern region is also a densely populated area in China and has
an exceptionally developed economy. This natural geographical
location is conducive to the large-scale development of modern
agriculture and promotes the development and growth of rural
tourism. The developed economy has placed digital technology
innovation in the eastern region at the forefront. Relevant
enterprises utilize digital technologies to optimize agricultural
production processes. Relying on the geographical advantage of
being close to the suburbs, they better develop low-carbon leisure
agriculture and achieve LCTA. Furthermore, as the clean energy
and digital infrastructure in the eastern region are more developed
than those in other regions, it is more capable of providing technical

Frontiers in Sustainable Food Systems 15 frontiersin.org

https://doi.org/10.3389/fsufs.2025.1646260
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Wang and Pan 10.3389/fsufs.2025.1646260

TABLE 8 Result of regional heterogeneity.

Variable Eastern Central Western

(1) (2) (3)

IAT 0.261∗∗

(2.47)
0.093∗ (1.67) 0.146∗∗∗ (3.17)

Control variable Yes Yes Yes

Individual-fixed
effect

Yes Yes Yes

Time-fixed effect Yes Yes Yes

∗∗∗ , ∗∗ , and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. The t-statistic
is reported in parentheses.

support for green agricultural production methods, thereby further
reducing the generation of agricultural carbon emissions. Although
the IAT in the central region has a positive effect on LCTA,
the effect is low and the significance is only 10%. This result
implies that rural tourism resources in the central region are
scarce, the development of IAT is relatively slow, and its impact
on agricultural carbon emission reduction is weak. Although
the utilization efficiency of some resources has been improved
through industrial integration, the mechanism for the coordinated
development of agricultural modernization and tourism has not
yet been fully established. The insufficient depth of research and
application of green and low-carbon agricultural technologies has
led to the failure to fully unleash the green emission reduction
effects of agriculture. Furthermore, the functional positioning of the
central region as a major grain-producing area makes it face more
constraints in the process of balancing food security and industrial
transformation. It is notable that the IAT in the western region
has a significant promoting effect on LCTA, and the influence
coefficient is significantly positive at the 1% level. It means that the
development of IAT in the western region is beneficial to LCTA.
From the perspective of natural conditions, the western region of
China has a large number of high mountains, rivers and plateaus,
and natural conditions have a significant impact on economic
development. The cultural resources in the western region are also
exceptionally rich, as it is home to the largest number of ethnic
minorities in China. Therefore, the western region has significant
advantages in developing IAT.

6.2.2 Nonlinear analysis
The advantage of quantile regression lies in its ability to capture

the structural differences of the ACEI conditional distribution by
selecting the quantiles of different conditional distributions, reveal
the heterogeneous influence of independent variables on dependent
variables, especially focusing on extreme values, and thereby
capture the potential nonlinear relationships among variables (Li
et al., 2023; Koenker and Hallock, 2001; Che et al., 2023). To this
end, this study selected four quantiles of 10%, 25%, 50%, 75%,
and 90% to explore the dynamic characteristics of the intensity of
the effect of IAT on ACE at different emission levels. To test the
nonlinear relationship between IAT and LCTA, this study used the
panel quantile model for calculation.

The results of the five regression junctions in Table 9 show
that the positive impact of IAT on LCTA has always been valid.
However, the role of IAT also shows heterogeneity. Its role in Q10
and Q25 is greater than that in Q50. Furthermore, the role played
by IAT continues to increase after exceeding the 50% quantile.
At Q75 and Q90, the regression coefficients of IAT were 0.303
and 0.402 respectively. This result implies that IAT plays a more
positive role in provinces with a higher level of LCTA. Overall,
the positive effect of IAT on LCTA shows an N-shaped evolution
trend of first increasing, then decreasing and then increasing
again. This nonlinear variation result indicates that the carbon
reduction effect of IAT is closely related to the ACE between
regions and the green production efficiency of agriculture (Yang
and Wang, 2020). The agricultural ecological foundation in areas
with low emissions is relatively good. IAT is more likely to optimize
the production mode through the technology spillover effect.
For instance, the combination of low-carbon tourism projects
and precision agriculture can rapidly reduce marginal carbon
emissions. In areas with medium emissions, large-scale agriculture
coexists with tourism as the dominant sector. Improper allocation
of resources leads to insufficient release of emission reduction
potential. In high-emission regions, due to the high carbon lock-
in effect, the role played by IAT in carbon reduction is weaker than
that in low-emission regions.

7 Conclusions and policy
recommendations

7.1 Conclusion and discussion

Based on the panel data of 30 provinces in China from 2010 to
2022, this study employed TWFE and a two-stage mediating effect
model to verify the impact and mechanism of IAT on LCTA. The
main conclusions of this study are:

(1) IAT has a strong positive effect on LCTA. This conclusion
still holds true after conducting robustness tests using
multiple methods and eliminating endogeneity problems by
applying the 2SLS model. This conclusion is consistent with
the results of the existing literature (Wang et al., 2024c).
This indicates that IAT promotes the transformation and
upgrading of traditional agriculture to low-carbon service-
oriented agriculture by reconfiguring factor allocation and
upgrading business forms, providing a path reference for
agricultural emission reduction in developing countries.
It is particularly necessary to note that in order to
strengthen the causal relationship between IAT and LCTA, this
study also used 2SLS, approximate exogenous instrumental
variables, heteroscedas-based instrumental variables, and
policy evaluation for verification. In the policy assessment,
we mainly employed dual machine learning. These results
confirmed their causal relationship.

(2) The results of the mechanism analysis show that LT and
ASS are important mechanism paths for IAT to promote
LCTA. This conclusion is consistent with the results of the
existing literature (Yang et al., 2024) LT has promoted the
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TABLE 9 The result of quantile regression.

Variable Q10 Q25 Q50 Q75 Q90

(1) (2) (3) (4) (5)

IAT 0.255∗∗∗ (2.64) 0.289∗ (1.74) 0.253∗∗ (2.25) 0.303∗∗ (2.34) 0.402∗∗∗ (3.78)

Control variable Yes Yes Yes Yes Yes

Individual-fixed effect Yes Yes Yes Yes Yes

Time-fixed effect Yes Yes Yes Yes Yes

∗∗∗ , ∗∗ , and ∗ respectively indicate significance at the 1%, 5%, and 10% levels. The t-statistic is reported in parentheses.

determination of agricultural property rights and the large-
scale development of production methods, and is conducive to
the rise and development of modern agricultural production
models. This change will significantly reduce high energy-
consuming production factors and inputs as well as resource
waste. Through land integration and precise management, the
intensification of agricultural production has enhanced the
efficiency of agricultural resource utilization. By embedding
green technologies in the production process, it has reduced
reliance on agricultural chemical pollutants and formed a
low-carbon path of large-scale operation. Furthermore, LT
has also promoted the adoption of low-carbon agricultural
technologies. The development of ASS has promoted the
specialization of agricultural production. This transformation
has enhanced agricultural production efficiency and reduced
the repeated purchase of agricultural machinery.

(3) The results of the regional heterogeneity analysis indicate
that the positive impact of IAT on LCTA is the strongest
in the eastern region, followed by the western region, and
finally the central region. The results calculated by the panel
quantile model show that the influence of IAT on LCTA is
nonlinear. It plays the most positive role in provinces with
lower agricultural carbon emissions, corresponding to the
two quantiles Q75 and Q90. It can also play a good and
positive role in regions with a relatively low degree of LCTA,
corresponding to the two quantiles Q10 and Q25. However,
the positive role it can play at Q50 is limited. Overall, the
influence of IAT on LCTA shows an N-shaped evolution trend.

By analyzing the impact and mechanism path of IAT on
agricultural carbon reduction, the conclusions drawn in this
article have significant practical significance for addressing climate
change. Agriculture is not only a significant source of global
greenhouse gas emissions but also a huge carbon sink system.
The practical significance of this research lies in the discovery
that the integrated development of agriculture and tourism plays a
significant role in mitigating carbon reduction in the agricultural
sector. It reveals that developing tourism in rural areas to
enhance production efficiency and the value chain of agricultural
products can effectively reduce greenhouse gas emissions from
the production sector. Meanwhile, this study holds that labor
division and large-scale production are important channels for
reducing carbon emissions in the agricultural sector. However,
the positive effects brought by these two factors can be achieved
through the development of rural tourism projects. Through

this research, agricultural management departments, agricultural-
related enterprises and farmers can gain management insights
for balancing economic effects and environmental protection.
The theoretical contribution of this research lies in that it
has constructed a theoretical framework for the influence of
IAT on LCTA. It reveals why ITA can reduce agricultural
carbon emissions by establishing an analytical framework for
land transfer and agricultural socialized services. This study
also employed a quantile model to verify their nonlinear
relationship. To some extent, it confirms the applicability of
the environmental Kuznets curve in the greenhouse gas and
control sectors.

7.2 Policy recommendations

To fully unleash the ecological benefits brought by industrial
integration to agricultural carbon reduction, combined with the
research results, the following management implications can
be obtained:

(1) Strengthen regional differentiated infrastructure and
collaborative models. Based on regional heterogeneity conclusions,
eastern regions should leverage digital technology advantages
to establish a collaborative development platform for “low-
carbon agriculture + eco-tourism,” prioritizing the construction
of an agricultural-tourism carbon accounting system covering
the entire industrial chain. Carbon emission intensity indicators
should be integrated into the rating system for demonstration
parks, such as embedding carbon footprint tracking modules
in smart greenhouses and homestay clusters. Central and
western regions need to prioritize pilot agri-tourism integration
projects in low-emission zones like ecological protection areas,
strictly controlling the scale and energy consumption standards
of tourism facilities to avoid farmland encroachment and
ecological disturbances caused by overdevelopment. For example,
lightweight ecological research programs should be promoted
in karst landform regions to replace traditional energy-intensive
agritainment models, mitigating carbon emission rebound effects
in western regions.

(2) Deepen the Construction of Intermediary Mechanisms
for Intensification Pathways. In response to the mediating effects
of LT and ASS, special funds should be established to support
large-scale application of green technologies such as precision
fertilization and waste recycling systems. For instance, targeted
subsidies from agri-tourism integration project funds could be
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allocated for smart irrigation equipment procurement to reduce
fertilizer use per unit output. Meanwhile, agri-tourism skill training
centers should be established at the county level, incorporating
mandatory courses on digital agricultural management and low-
carbon tourism services to enhance labor force adaptability in
ecological cultivation and green service domains. Virtual reality
technology could simulate precision fertilization operations to
strengthen technical proficiency among practitioners.

(3) Implement a tiered carbon emission intensity access
system. Based on quantile regression results, a three-tier carbon
emission intensity access standard should be established: low-
emission zones may develop comprehensive tourism reception
facilities but must construct biogas power generation and
other circular systems; moderate-emission zones should be
limited to light industries like eco-tourism, with mandatory
implementation of cultivated land requisition-compensation
balance and carbon sequestration compensation; high-emission
zones, such as resource-based western provinces, should only
permit scientific research and monitoring projects, with dynamic
assessment mechanisms for ecological restoration and carbon
emission offsets.

7.3 Future expectations

Future research can be deepened and expanded from the
following two dimensions: (1) refine the observation scale and
data dimensions. This study uses provincial panel data to reveal
the macro impact of the integration of agriculture and tourism
on ACEI, but the micro transmission mechanism still needs
to be analyzed in depth. Subsequently, business data at the
county and enterprise levels can be collected. By combining
the scale of land transfer, the skills of the labor force, and the
differences in the integration models of different business entities,
the micro-path of the emission reduction effect of the integration
of agriculture and tourism can be revealed. (2) Strengthen the
research on the dynamic coupling between the policy environment
and multiple factors. Further construct a dynamic system model
including climate conditions, technological progress, and labor
force structure, especially the nonlinear matching relationship
between technology diffusion and the behavior of the main body.
To further reveal the long-term mechanism and spatio-temporal
heterogeneity characteristics of the integration of agriculture
and tourism on ACEI, and to provide more precise theoretical
support for improving the governance system of the integration
of agriculture and tourism. (3) Although this study utilized the
two-stage least square method to eliminate the endogeneity of
the model, TWFE is not the mainstream method for causal
identification. The research methods and results of this paper
have certain limitations. In future research, the authors suggest
conducting policy evaluation using the DID method based on
the pilot policy of rural complex issued by the Ministry of
Finance of China. This method can not only eliminate the

endogeneity of the model, but also alleviate the defects of the ATI
evaluation system.
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