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Can agricultural insurance 
enhance comprehensive grain 
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Introduction: Food security is essential for national development, and agricultural 
insurance is a crucial tool for managing agricultural risks. It plays a key role in 
enhancing grain production capacity, but its impact across various dimensions 
has not been thoroughly examined.

Methods: This study develops a multidimensional model of comprehensive 
grain production capacity based on production function theory. The model 
incorporates labor productivity, land use efficiency, agricultural technological 
innovation, and agricultural carbon emissions. We use panel data from 27 
Chinese provinces spanning from 2009 to 2021 and apply a fixed-effects model 
to assess the effects of agricultural insurance on these dimensions. Robustness 
and endogeneity tests are conducted to ensure the validity of the results.

Results: Our findings demonstrate that agricultural insurance significantly 
improves overall grain production capacity. The positive effects are particularly 
notable in labor productivity, land use efficiency, technological innovation, and 
a reduction in agricultural carbon emissions. Moreover, the impacts are more 
pronounced in non-major grain-producing areas compared to major ones.

Discussion: These results suggest that agricultural insurance has a vital role in 
enhancing sustainable grain production. We recommend that policymakers and 
insurers focus on strengthening the role of agricultural insurance, especially in 
regions that are less involved in major grain production.
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1 Introduction

Food security has long been a core policy concern in China. As a major agricultural 
country, the stability and development of grain production are of paramount importance for 
national development. Since the 18th National Congress of the Communist Party of China, 
food security has been established as a top priority in state governance. In 2024, China’s total 
grain output exceeded 700 million metric tons for the first time, representing a 1.6% year-on-
year increase. This achievement follows nine consecutive years of grain production remaining 
above 650 million metric tons, reflecting a gradual improvement in the country’s 
comprehensive grain production capacity (National Bureau of Statistics of China, 2024).
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Nevertheless, grain production in China remains highly 
vulnerable to natural disasters. According to the National Commission 
for Disaster Reduction, major disasters in 2024 included floods, 
geological hazards, typhoons, hailstorms, low temperatures, and 
snowstorms, alongside droughts, earthquakes, wildfires, and 
sandstorms. These events affected a total of 10.089 million hectares of 
cropland (State Council of the People’s Republic of China, 2025). In 
addition, substantial fluctuations in grain prices have significantly 
dampened the production incentives of grain farmers.

Agricultural insurance has emerged as a critical risk management 
tool, helping to mitigate agricultural risks, compensate for disaster-related 
losses, stabilize farmers’ incomes, and maintain production expectations. 
Since the launch of the central government’s premium subsidy pilot 
program in 2007, China has steadily expanded its agricultural insurance 
system. In 2018, full-cost insurance for the three major staple crops (rice, 
wheat, and corn) was introduced, and by 2024, this program had been 
rolled out nationwide. As a result, China’s agricultural insurance premium 
income has reached RMB 150 billion, providing risk coverage exceeding 
RMB 5 trillion, making it the largest agricultural insurance market 
globally (Zhang et al., 2025). The rapid expansion of agricultural insurance 
in China raises an important research question: does this growth merely 
reflect an increase in premium volume, or does it meaningfully contribute 
to enhancing comprehensive grain production capacity? Notably, 
improvements in grain production capacity should not be understood 
solely as increases in output. Rather, they represent a multidimensional 
construct that reflects the overall productivity and resilience of the 
agricultural sector, encompassing labor productivity, land use efficiency, 
technological innovation, and environmental sustainability. Establishing 
a robust and operationalizable framework for measuring this 
comprehensive capacity remains a critical challenge in both academic 
research and policy practice. Furthermore, as China continues to reform 
and modernize its agricultural insurance system, it is essential to examine 
how such reforms can more effectively support sustainable improvements 
in grain production. Addressing these questions constitutes the core 
motivation of this study.

To address this issue, this study constructs a comprehensive grain 
production capacity model based on economic growth theory. The 
model incorporates four key dimensions: labor productivity, land use 
efficiency, agricultural technological innovation, and agricultural 
carbon emissions. Using panel data from 27 provincial-level regions in 
China covering the period from 2009 to 2021, we conduct an empirical 
analysis to examine the effect of agricultural insurance on each 
dimension. The results indicate that agricultural insurance significantly 
improves labor productivity, land use efficiency, and technological 
innovation, while also significantly reducing carbon emissions in 
agriculture. Moreover, these effects vary significantly across regions.

This research contributes to the growing body of literature on 
agricultural insurance in both theoretical and empirical terms. While 
prior studies have explored various impacts of agricultural insurance—
such as on crop acreage (Goodwin et al., 2004; Yuan and Xu, 2024), 
crop selection (Jiang et al., 2022; Zhang and Gu, 2025), technology 
adoption (Mao et al., 2022; Wei et al., 2021), and production resilience 
(Xie et al., 2025)—most have focused on a single dimension of analysis. 
Few have conducted a multidimensional evaluation of agricultural 
insurance’s overall effect. Moreover, studies using index-based methods 
face limitations in indicator accuracy and system validity.

This study offers three key contributions. First, this study provides 
a comprehensive assessment of the impact of agricultural insurance 
on grain production capacity by examining four key dimensions: labor 

productivity, land use efficiency, technological innovation, and 
agricultural carbon emissions. In doing so, it contributes to the 
existing literature by extending both the theoretical understanding 
and empirical evidence on the role of agricultural insurance in 
agricultural development. While prior studies have typically focused 
on either single-dimensional analyses or aggregate composite indices, 
research adopting a multidimensional framework remains limited. 
This study helps to fill that gap by offering a more nuanced and holistic 
evaluation of agricultural insurance’s effects on production capacity. 
Second, it introduces a theoretical framework that captures the 
mechanisms through which agricultural insurance affects grain 
production, grounded in an extended production function approach. 
Third, it emphasizes the need to examine comprehensive outcomes, 
such as labor productivity, land efficiency, technological innovation, 
and environmental impacts, rather than focusing solely on scale or 
input-specific effects. These findings offer policy-relevant insights for 
both government decision-makers and insurance providers seeking to 
optimize product design and service delivery (see Figure 1).

The remainder of the paper is structured as follows: Section 2 reviews 
the relevant literature. Section 3 presents the theoretical framework and 
research hypotheses. Section 4 describes the data, empirical model, and 
variable definitions. Section 5 reports the empirical findings. Section 6 
offers concluding remarks and policy implications.

2 Literature review

As a key instrument for agricultural risk management, agricultural 
insurance has garnered increasing attention in both academic and 
policy circles in recent years. Existing studies have primarily focused 
on the multidimensional impacts of agricultural insurance on grain 
production, encompassing aspects such as input use, production 
potential, and agricultural resilience. This section reviews the literature 
across these major dimensions.

First, a substantial body of research has examined the influence of 
agricultural insurance on input use in crop production. Horowitz and 
Lichtenberg (1993) analyzed how crop insurance affected the use of 
fertilizers and pesticides among corn farmers in the U.S. Midwest. 
Similarly, Goodwin (1996) investigated the relationship between 
chemical input use and crop insurance purchasing decisions among 
dryland wheat farmers in Kansas. More recently, Ifft and Jodlowski 
(2024) employed unsupervised machine learning algorithms to assess 
conservation-oriented farming practices, finding a significant positive 
correlation between crop insurance participation and optimal 
nitrogen balance. In China, Wu et al. (2024) conducted an empirical 
study in Henan Province and reported that full-cost insurance for 
wheat significantly reduced pesticide usage.

Second, several studies have investigated the role of agricultural 
insurance in enhancing production potential. Birovljev et  al. (2015) 
argued that appropriately priced insurance premiums can stimulate 
agricultural production capacity. Li et al. (2025) demonstrated that the 
widespread adoption of crop insurance led to increased farm income and 
grain output. Zhou et  al. (2024) explored the impact of agricultural 
insurance on grain production resilience and found an inverted U-shaped 
relationship, with regional heterogeneity playing a significant role.

Third, research has explored the mechanisms through which 
agricultural insurance affects crop production. Zou et al. (2022) found 
that insurance coverage promotes labor productivity and land use 
efficiency while encouraging specialization among farmers, thereby 
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boosting agricultural output. Kouakou et al. (2024) emphasized that 
crop yields are vulnerable to climate and weather shocks, and that 
insurance mitigates these risks, stabilizing farm incomes—a factor that 
has drawn considerable public sector attention. Aglasan et al. (2024) 
observed that counties with higher crop insurance coverage 
experienced lower losses during droughts, heatwaves, and excessive 
rainfall events. Zheng and Ning (2025) found that agricultural 
insurance facilitates the reallocation of labor resources, which is 
critical for improving total factor productivity. Similarly, Quan et al. 
(2024) noted that policy-based agricultural insurance enhances 
agricultural resilience by promoting large-scale farming, optimizing 
crop structures, and boosting productivity—particularly in regions 
characterized by high natural risk and trade dependence.

Fourth, recent frontier research has explored the effects of green 
finance and green taxation on sustainable development, highlighting 
their positive roles in promoting environmental outcomes. Scholars 
have proposed various analytical frameworks and confirmed, through 
empirical investigations, the beneficial impacts of green instruments 
on green transformation. For instance, Wang C. F. et al. (2024) and 
Wang R. et al. (2024) developed a green innovation model mediated 
by green technology, based on survey data from 447 manufacturing 
firms in Dhaka, Bangladesh. Their findings indicate that both green 
logistics and green finance significantly promote green innovation. 
Zhen and Rahman (2024) examined the relationship between 
environmental management accounting (EMA), green financing, and 
ESG (environmental, social, and governance) performance. They 

found that sustainable production fully moderated the relationship 
between EMA and ESG outcomes, although it did not mitigate the 
link between green financing and ESG performance. In the domain of 
green taxation, Uddin et al. (2023) analyzed the mediating role of 
energy efficiency between green taxation and sustainability. Their 
results revealed that green taxes have a significant positive effect on 
environmental and social sustainability, though no impact was found 
on economic sustainability. Similarly, Rahman (2025) investigated the 
joint effects of renewable energy financing and governance quality on 
carbon emissions in BRICS countries. They reported that a 1% 
increase in renewable energy financing reduces carbon emissions by 
0.293%, and improved governance lowers emissions by 0.028%, while 
a 1% increase in fossil fuel financing leads to a 0.335% increase in 
carbon emissions. Lastly, Sun et al. (2024) assessed both the direct and 
mediating effects of green taxation and energy efficiency on ESG 
performance. The study found a significant positive association 
between green tax policies and ESG outcomes, with energy efficiency 
initiatives enhancing all dimensions of ESG performance. Moreover, 
green taxation was shown to play a mediating role between energy 
efficiency and ESG achievements.

Despite these valuable contributions, several research gaps 
remain. First, most existing studies focus on the effects of insurance 
on single production factors, lacking a comprehensive analysis of its 
multidimensional impacts. Second, empirical assessments often rely 
on singular proxy variables, such as total grain output or resilience 
indicators, which fall short of capturing the complexity of 

FIGURE 1

The mechanism of agricultural insurance’s impact on comprehensive grain production capacity.
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comprehensive production capacity. While composite indices offer a 
broader perspective, they are sensitive to the choice of indicators and 
methodology, leading to limitations in robustness and comparability. 
Third, many studies lack a clear theoretical framework to articulate 
the mechanisms through which agricultural insurance influences 
different dimensions of production.

In response to these gaps, the present study advances the literature 
by constructing a comprehensive production function model that 
integrates four critical dimensions: labor productivity, land use 
efficiency, technological innovation, and agricultural carbon emissions. 
We  analyze the impact of agricultural insurance on each of these 
dimensions and explore the underlying mechanisms of influence, 
thereby contributing new empirical and theoretical insights to the field.

3 Theoretical framework and research 
hypotheses

In the existing literature, scholars commonly employ classical 
production functions to analyze agricultural output. One widely used 
approach is the Cobb–Douglas (CD) production function, as exemplified 
by Cha et al. (2022) and Li et al. (2024). In addition to the standard form, 
several studies have proposed modifications to the CD function to better 
capture the dynamics of agricultural production (Luo and Song, 2022). 
Another commonly adopted framework is the Solow production 
function, originally developed by Solow (1956), which provides a 
foundational model for analyzing long-term growth (Kong, 2019; Duan, 
2015). The basic form of the Solow model can be expressed as follows (as 
shown in Equation 1):

 ( ) ( ) ( ) ( )( )= ,Y t F K t A t L t  (1)

where Yt represents output, Kt is capital, Lt is labor, and At denotes 
technology or labor efficiency at time t.

Although the Solow model provides a useful framework for 
understanding economic growth, it does not account for 
environmental constraints such as resource depletion or pollution. To 
address this limitation, scholars have proposed extended models. For 
instance, in Advanced Macroeconomics, Romer (2021) incorporates 
natural resources and land into a modified production function based 
on the Cobb–Douglas form (as shown in Equation 2):

 ( ) ( ) ( ) ( ) ( ) ( ) α β γα β γ − − −
 =  

1
Y t K t R t T t A t L t  (2)

 α β γ α β λ> > > + + =0, 0, 0, 1,

where Y(t) denotes output at time t; K(t) is capital input; R(t) 
represents natural resources; T(t) is land input; A(t) indicates the level 
of technology or knowledge; and L(t) is labor input. The exponents 
α > 0, β > 0, and γ > 0 are the output elasticities of capital, natural 
resources, and land, respectively. The term [A(t)L(t)]1 − α − β − γ reflects 
the contribution of labor and technology under the constraint that the 
sum of all output elasticities equals one, i.e., α + β + γ + λ = 1, ensuring 
constant returns to scale.

Building on the extended Solow model discussed above, this 
study recognizes that comprehensive grain production capacity 

must account for the essential inputs of production factors such as 
labor, land, and technology. At the same time, grain production is 
inherently linked to sustainability concerns, particularly with 
respect to environmental impacts. To incorporate these 
considerations, this paper draws on the “green Solow model” 
introduced by Ding and Wu (2017), which integrates environmental 
constraints into the production function. Specifically, agricultural 
pollution (denoted as 𝐸) is introduced as a negative externality to 
capture the environmental cost associated with agricultural 
activities. From this perspective, comprehensive grain production 
capacity should not be understood as a mere aggregate of grain 
output. Instead, it should be  assessed as a multidimensional 
construct that reflects the productive “capacity” across labor 
productivity, land use efficiency, technological innovation, and 
environmental impact.

Thus, we define the comprehensive grain production capacity 
function as shown in Equation 3:

 ( ) ( ) ( ) ( ) ( )γβ φ =  Y t T t A t L t E t  (3)

Where Y(t) represents the comprehensive grain production 
capacity at time t; T(t) is land input; A(t) denotes the level of 
agricultural technology or knowledge; L(t) is agricultural labor input; 
and E(t) captures agricultural pollution or carbon emissions. The 
parameters β > 0 and γ > 0 reflect the positive output elasticities of 
land and the combined effects of technology and labor, respectively, 
while φ < 0 captures the negative elasticity associated with 
environmental pollution, indicating its detrimental effect on 
agricultural productivity.

The integration of agricultural insurance into grain production 
serves as an effective risk management mechanism that can 
significantly mitigate production volatility, stabilize farmers’ income 
expectations, and provide a range of auxiliary services—including 
disaster preparedness training, early warning systems, post-disaster 
assistance, and claims settlement. Early warning mechanisms enable 
farmers to detect potential risks in advance and implement 
preventative measures, thereby enhancing production efficiency. For 
example, when insurers anticipate that accumulated temperatures in 
a given year may fall below historical norms, they issue timely alerts. 
Farmers can respond by adopting early-maturing crop varieties or 
adjusting planting schedules to minimize potential yield losses (Sun 
et al., 2025).

Post-disaster recovery efforts can help farmers minimize losses, 
while insurance claim services provide critical financial support for 
restoring agricultural production. For instance, in a maize field 
located in Changping District, Beijing, heavy rainfall on July 19–20, 
2016, caused severe flooding. In response, an agricultural research 
team conducted a damage assessment using LiDAR data collected 
via an unmanned aerial vehicle (UAV) platform (Gan et al., 2017). 
By extracting canopy height information from the LiDAR point 
cloud, the researchers developed a flood damage monitoring model 
based on variations in maize canopy height. Using a dual-threshold 
classification method grounded in normal distribution statistics, 
they were able to assess the severity of flood damage at a regional 
scale. Field measurements were used to validate the remote sensing 
results, yielding an overall classification accuracy of 72.15%. The 
findings not only provided a precise, data-driven basis for 
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agricultural insurance claims but also offered valuable insights for 
disaster recovery planning, policy development, and 
resource allocation.

These functions of agricultural insurance—particularly risk 
diversification and income stabilization—strengthen farmers’ 
confidence in future production and returns. As a result, participation 
in agricultural insurance may lead to improvements in key dimensions 
of grain production capacity, including labor productivity, land use 
efficiency, and technological innovation. Moreover, in some cases, 
agricultural insurance can also promote environmental sustainability 
by enforcing cleaner production standards and reducing agricultural 
pollution. A case in point is the fattening pig insurance policy in 
China, which explicitly requires insured animals to undergo harmless 
disposal after death, thereby reducing environmental contamination 
and public health risks (Wu et al., 2025).

However, agricultural insurance may also induce farmers to 
increase their overall capital investment. Under conditions of 
budgetary or resource constraints, this reallocation of funds may lead 
to a reduction in other essential inputs in grain production. Such 
crowding-out effects could, in turn, diminish land productivity, labor 
efficiency, and incentives for technological innovation in agriculture. 
Based on this potential trade-off, the following hypothesis is proposed:

H1a: Agricultural insurance enhances comprehensive grain 
production capacity across the dimensions of labor productivity, 
land use efficiency, technological innovation, and reduction of 
agricultural carbon emissions.

H1b: Agricultural insurance does not significantly enhance 
comprehensive grain production capacity across these dimensions.

In China, agricultural insurance policies and implementation 
differ significantly across regions, particularly between major grain-
producing and non-major grain-producing areas. According to policy 
documents issued by the Ministry of Finance, since 2003, 13 provinces 
(including Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, 
Henan, Shandong, Jiangsu, Anhui, Sichuan, Hunan, Hubei, and 
Jiangxi) have been designated as major grain-producing regions. 
These provinces generally enjoy better agricultural infrastructure and 
accounted for 78% of national grain output in 2024.

In contrast, non-major grain-producing areas, often located in 
hilly or mountainous regions, tend to have weaker agricultural 
infrastructure. However, driven by China’s rural revitalization strategy, 
these regions have experienced gradual improvements in agricultural 
conditions and rapid development of niche agricultural sectors. As a 
result, there are clear regional disparities in both the level of 
agricultural insurance development and the overall grain 
production capacity.

Accordingly, we  propose the following competing hypotheses 
regarding regional heterogeneity:

H2a: Agricultural insurance has no significant heterogeneous 
effect on comprehensive grain production capacity between major 
and non-major grain-producing areas.

H2b: Agricultural insurance has a significantly heterogeneous 
effect on comprehensive grain production capacity between major 
and non-major grain-producing areas.

4 Data sources, model specification, 
and variable descriptions

4.1 Data sources

The data used in this study are drawn primarily from several 
authoritative sources: China Rural Statistical Yearbook (2010–2022), 
China Insurance Yearbook (2010–2022), China Agricultural Yearbook 
(2010–2022), and China Education Yearbook (2010–2022). Due to 
significant data omissions for certain regions, the analysis focuses on 
27 provincial-level administrative units in mainland China, excluding 
Beijing, Shanghai, Tianjin, Hong Kong SAR, Macao SAR, and 
Taiwan Province.

4.2 Model specification

4.2.1 Baseline estimation model
Based on the theoretical framework presented earlier, we construct 

a two-way fixed effects model to examine the relationship between 
agricultural insurance and comprehensive grain production capacity. 
To mitigate heteroskedasticity and normalize the data, both dependent 
and independent variables are log-transformed. The baseline model is 
specified as follows (as shown in Equation 4):

 
α α β µ θ γ

=
= + + + + +∑

6

0 1
1

ln lnkit it l lit i t it
l

Y X Z
 

(4)

Where Ykit denotes the kth dimension of comprehensive grain 
production capacity for province iii in year ttt, including labor 
productivity, land use efficiency, agricultural technological innovation, 
and agricultural carbon emissions. Xit represents the agricultural 
insurance density, measured as the core explanatory variable. Zlit is a 
vector of control variables such as education level, rural Engel 
coefficient, industrial and urban–rural coordination levels, fiscal 
expenditure on agriculture, and disaster area ratio. μi and θt represent 
province-specific and time-specific fixed effects, respectively, which 
control for unobserved heterogeneity and macroeconomic shocks. γit 
is the idiosyncratic error term. For estimation, all continuous variables 
are transformed into natural logarithms to address heteroscedasticity 
and allow interpretation of coefficients as elasticities. This equation 
serves as the foundational model to investigate the multidimensional 
effects of agricultural insurance using provincial panel data from 
China spanning 2009 to 2021.

4.3 Variable descriptions

4.3.1 Dependent variable
Comprehensive grain production capacity is a multidimensional 

construct that cannot be accurately captured by a single indicator. 
While previous studies have employed composite indices or 
efficiency-based approaches such as Data Envelopment Analysis 
(DEA) and Stochastic Frontier Analysis (SFA) to assess grain 
production capacity, these methods often mask the individual 
contributions of specific production factors. As a result, they fail to 
identify structural weaknesses or diagnose issues within distinct 
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dimensions or stages of the production process. This limitation may 
ultimately introduce bias into the analysis and hinder a nuanced 
understanding of comprehensive grain production capacity. Given 
that grain production is highly sensitive to climatic conditions and 
input levels (Yang and Lin, 2021; Gong, 2021), we follow Yang et al. 
(2023) in using four distinct indicators to represent comprehensive 
capacity: labor productivity, land use efficiency, agricultural 
technological innovation, and agricultural carbon emissions. The 
theoretical mechanisms outlined in the preceding section are further 
validated through empirical analysis across four distinct dimensions. 
Detailed definitions and calculation methods are presented in 
Table 1.

4.3.2 Key independent variable
The core independent variable in this study is the level of 

agricultural insurance. While previous research has used total 
premium income (Yue et al., 2021) or indemnity payouts (Chen and 
Jiang, 2023) as proxies, these absolute measures may be biased due to 
regional disparities in economic development. To better reflect relative 
differences across provinces, we adopt agricultural insurance density 
(i.e., premiums per capita or per unit of rural population) as the main 
measure. For robustness checks and to address potential endogeneity, 
we also use agricultural insurance depth (i.e., premiums as a share of 
agricultural GDP) as an alternative measure.

4.3.3 Control variables
Control variables include a range of economic, social, and 

environmental indicators: Household characteristics, such as 
education level and rural Engel coefficient, capture household 
economic status and consumption structure; Industrial structure and 
regional development, measured through industrial coordination and 
urban–rural coordination indices, reflect the balance and integration 
of economic sectors; Government support, proxied by the ratio of 
agricultural, forestry, and water-related fiscal expenditure to total 
government spending, indicates the extent of state involvement in 
agricultural development; Natural conditions, represented by the ratio 
of disaster-affected arable land to total cultivated land, account for 
exposure to climate-related shocks.

4.4 Descriptive statistics

Table 1 presents the names, abbreviations, calculation methods, 
and units of all major variables. Table 2 summarizes the descriptive 
statistics. Substantial regional variation exists across all four 
dimensions of the dependent variable—labor productivity, land use 
efficiency, technological innovation, and agricultural carbon 
emissions. Similarly, agricultural insurance density varies widely 
across provinces, ranging from a minimum of 0.0040 to a maximum 

TABLE 1 List of variables.

Variable 
category

Variable category Variable 
category

Variable category Variable 
category

Dependent variables Labor productivity y1 Gross output of primary industry/Number of employees in the 

primary industry

Ten thousand/Person

Land productivity y2 Gross agricultural output/Sown area of crops Ten thousand/Hectare

Agricultural technology 

innovation

y3 Based on Zhang and Wang (2020), using the number of three 

categories of agricultural patents from the China National 

Knowledge Infrastructure patent database

Number

Agricultural carbon 

emissions

y4 Agricultural carbon emissions [calculated based on Ding et al. 

(2022) using carbon coefficients for various carbon sources such as 

fertilizers, pesticides, etc.]

Ten thousand tons

Explanatory variables Agricultural insurance 

density

x1 Agricultural premium income/Agricultural population Yuan/Person

Control variables Industry coordination z1 Agricultural industry structure adjustment index = 1 − 

(Agricultural output/Gross output of agriculture, forestry, animal 

husbandry, and fishery)

–

Urban–rural coordination z2 Binary comparison coefficient = Labor productivity of the primary 

industry/Labor productivity of the secondary and tertiary industries

–

Education level z3 Average years of education = (Number of people with primary 

education × 6 + Number with secondary education × 9 + Number 

with high school and vocational education × 12 + Number with 

college and higher education × 16)/Total population over 6 years

Years

Agricultural financial 

support

z4 Agricultural finance expenditure/Total fiscal expenditure –

Rural Engel coefficient z5 Directly obtained %

Crop disaster area proportion z6 Disaster area/Cultivated area –

Robustness test 

replacement variables

Agricultural insurance depth x2 Agricultural insurance premiums/Gross output of the primary 

industry

–
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of 7.33 hundred RMB per capita, with a mean of 0.9808 and a median 
of 0.56. These discrepancies indicate significant heterogeneity in the 
penetration and effectiveness of agricultural insurance across 
different regions.

5 Empirical analysis

5.1 Baseline regression results

This study employs a two-way fixed effects model to estimate the 
impact of agricultural insurance on comprehensive grain production 
capacity (see Equation 4). The regression results are reported in 
Table  3. Columns (1) and (2) present the effects of agricultural 
insurance on labor productivity. The positive and statistically 
significant coefficients suggest that agricultural insurance significantly 
enhances labor productivity in grain production. Columns (3) and (4) 
display the results for land use efficiency, with positive coefficients 
indicating that agricultural insurance contributes to more efficient 
land utilization. Columns (5) and (6) report the estimates for 
agricultural technological innovation, where the positive coefficients 
imply that insurance coverage facilitates innovation in agricultural 
practices. Finally, Columns (7) and (8) show that agricultural 
insurance has a statistically significant negative effect on agricultural 
carbon emissions, suggesting that insurance adoption may help reduce 
environmental impact.

5.2 Robustness and endogeneity tests

To validate the reliability of the baseline findings, we conduct a 
series of robustness and endogeneity checks. These include alternative 
variable specifications, instrumental variable regressions, and lagged 
independent variable models, with the following results:

5.2.1 Alternative explanatory variable
First, we  replace the core independent variable—agricultural 

insurance density—with agricultural insurance depth, which reflects 
the share of agricultural insurance premiums in agricultural GDP. This 

variable, often used in the literature (e.g., Wang C. F. et al., 2024; Wang 
R. et al., 2024; Wang et al., 2025), provides a complementary measure 
of insurance coverage. We also apply logarithmic transformation for 
consistency. As shown in Table 4, the regression results for all four 
dimensions of comprehensive production capacity remain significant 
and directionally consistent with the baseline model, supporting the 
robustness of our findings.

5.2.2 Instrumental variable estimation
To address potential endogeneity, we employ the per-unit disaster 

area indemnity expenditure as an instrument, defined as total 
indemnity payments divided by affected farmland area. This study 
employs the two-stage least squares (2SLS) method to address 
potential endogeneity. Table 5 presents the 2SLS regression results 
using “agricultural insurance compensation expenditure per unit of 
disaster-affected area” as the instrumental variable. The estimated 
coefficients are consistent with those from the baseline OLS 
regressions and remain statistically significant at the 1% level. To 
evaluate the strength of the instrumental variable, both the Cragg–
Donald Wald F-statistic and the Kleibergen–Paap Wald F-statistic are 
reported. The results indicate that the instrumental variable passes the 
weak instrument test, confirming its relevance and validity.

5.2.3 Lagged independent variable
Given that agricultural insurance may exhibit lagged effects—

wherein previous-year policy developments influence current 
production outcomes—we introduce a one-period lag of agricultural 
insurance density as an alternative instrument. This approach is also 
supported by prior studies (e.g., Zhu, 2022; Chen, 2024). Table  6 
presents the 2SLS results using this lagged variable. The instrument 
passes standard weak instrument diagnostics, and the regression results 
remain statistically significant and consistent with the baseline findings, 
suggesting that the effects of agricultural insurance persist over time.

5.3 Regional heterogeneity analysis

We further investigate whether the effects of agricultural insurance 
vary across regions, focusing on differences between major 

TABLE 2 Summary statistics.

VarName Obs Mean SD Min Median Max

y1 351 5.1204 2.857 0.7229 4.55 17.37

y2 351 3.5707 2.035 0.9709 3.12 13.56

y3 351 2601.231 3089.558 20 1,400 16,651

y4 351 370.0083 217.189 18.6911 344.75 995.75

x1 351 0.9808 1.223 0.0040 0.56 7.33

z1 351 0.4794 0.091 0.0940 0.50 0.69

z2 351 1.3536 3.850 0.1032 0.24 39.66

z3 351 7.6249 0.524 5.8476 7.75 8.80

z4 351 11.9965 2.770 5.0160 11.79 20.38

z5 351 34.5647 6.294 25.3000 33.60 53.10

z6 351 0.0801 0.067 0.0015 0.06 0.34

x2 351 0.0155 0.025 0.0001 0.01 0.19
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TABLE 3 Regression results of the impact of agricultural insurance on grain comprehensive production capacity.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

log_y1 log_y1 log_y2 log_y2 log_y3 log_y3 log_y4 log_y4

log_x1 0.0392*** 0.0266*** 0.0715*** −0.00483*

(0.00407) (0.00499) (0.0123) (0.00270)

z1 0.259 0.189 −1.396*** −1.444*** 1.394*** 1.265*** −0.0992 −0.0905

(0.235) (0.243) (0.205) (0.214) (0.311) (0.318) (0.0750) (0.0771)

z2 0.00931*** 0.00918*** −0.00199 −0.00208 −0.00443 −0.00468 −0.00118 −0.00117

(0.00281) (0.00276) (0.00190) (0.00186) (0.00327) (0.00326) (0.000796) (0.000791)

z3 0.117** 0.138** 0.123*** 0.138*** 0.0798 0.118 0.0227 0.0201

(0.0489) (0.0533) (0.0371) (0.0385) (0.121) (0.139) (0.0150) (0.0153)

z4 0.000619 0.00337 −0.00443 −0.00257 −0.0150 −0.00999 0.0172*** 0.0168***

(0.00673) (0.00659) (0.00595) (0.00588) (0.00877) (0.00793) (0.00253) (0.00250)

z5 −0.0216*** −0.0234*** −0.0161*** −0.0173*** −0.0277** −0.0310** 0.000105 0.000325

(0.00478) (0.00465) (0.00423) (0.00414) (0.0103) (0.0107) (0.00149) (0.00160)

z6 −0.0961 −0.133 −0.203 −0.228 −0.298 −0.366 −0.0418 −0.0372

(0.235) (0.258) (0.179) (0.195) (0.612) (0.656) (0.0682) (0.0714)

Constant 1.248** 1.100** 1.533*** 1.433*** 7.144*** 6.874*** 5.347*** 5.366***

(0.416) (0.475) (0.308) (0.346) (1.219) (1.317) (0.153) (0.157)

Province Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

Time Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

Observations 351 351 351 351 351 351 351 351

R-squared 0.1947 0.1406 0.3390 0.3109 0.1021 0.0642 0.1807 0.1756

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

TABLE 4 Robustness test (1)—regression results with replaced explanatory variables.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

log_y1 log_y1 log_y2 log_y2 log_y3 log_y3 log_y4 log_y4

log_x3 0.0985*** 0.0747*** 0.168*** −0.0147**

(0.0104) (0.0117) (0.0278) (0.00561)

z1 0.316 0.189 −1.348*** −1.444*** 1.481*** 1.265*** −0.109 −0.0905

(0.213) (0.243) (0.186) (0.214) (0.305) (0.318) (0.0734) (0.0771)

z2 0.00923*** 0.00918*** −0.00205 −0.00208 −0.00460 −0.00468 −0.00117 −0.00117

(0.00284) (0.00276) (0.00193) (0.00186) (0.00333) (0.00326) (0.000795) (0.000791)

z3 0.112** 0.138** 0.118*** 0.138*** 0.0735 0.118 0.0240 0.0201

(0.0455) (0.0533) (0.0356) (0.0385) (0.119) (0.139) (0.0144) (0.0153)

z4 0.00260 0.00337 −0.00315 −0.00257 −0.0113 −0.00999 0.0169*** 0.0168***

(0.00659) (0.00659) (0.00596) (0.00588) (0.00880) (0.00793) (0.00248) (0.00250)

z5 −0.0188*** −0.0234*** −0.0138*** −0.0173*** −0.0231** −0.0310** −0.000359 0.000325

(0.00464) (0.00465) (0.00407) (0.00414) (0.0104) (0.0107) (0.00139) (0.00160)

z6 −0.0800 −0.133 −0.188 −0.228 −0.275 −0.366 −0.0452 −0.0372

(0.216) (0.258) (0.161) (0.195) (0.584) (0.656) (0.0655) (0.0714)

Constant 1.578*** 1.100** 1.795*** 1.433*** 7.689*** 6.874*** 5.295*** 5.366***

(0.393) (0.475) (0.296) (0.346) (1.196) (1.317) (0.153) (0.157)

Observations 351 351 351 351 351 351 351 351

R-squared 0.2387 0.1406 0.3747 0.3109 0.1245 0.0642 0.1891 0.1756

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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grain-producing areas and non-major grain-producing areas 
(including grain-marketing and grain-balanced regions). Based on 
data availability, the analysis includes 27 provinces. As noted in 
Section 4.1, the excluded provinces are all non-major grain-
producing areas.

The classification identifies 13 major grain-producing provinces 
(e.g., Heilongjiang, Henan, Shandong, Sichuan, etc.) and 14 non-major 
grain-producing provinces (e.g., Fujian, Zhejiang, Guangdong, etc.).

Table  7 reports the regression results for the major grain-
producing areas. The coefficients show that agricultural insurance 

TABLE 5 Instrumental variable regression results.

Variables (1) (2) (3) (4)

log_y1 log_y2 log_y3 log_y4

log_x1 0.131*** 0.0963*** 0.240*** −0.0324***

(0.0173) (0.0194) (0.0417) (0.00698)

z1 0.743** −1.218*** 1.501*** −0.418***

(0.299) (0.241) (0.487) (0.117)

z2 0.0193*** 0.00368 0.00607 −0.00222**

(0.00474) (0.00291) (0.00553) (0.000933)

z3 0.221*** 0.138* 0.539** 0.0736***

(0.0847) (0.0799) (0.255) (0.0241)

z4 −0.000471 −0.00801 −0.00769 0.0186***

(0.0128) (0.00954) (0.0182) (0.00446)

z5 −0.0267*** −0.0150*** −0.0808*** −0.00914***

(0.00538) (0.00466) (0.0154) (0.00265)

z6 −0.360* −0.307* −0.838* −0.106

(0.213) (0.168) (0.505) (0.0981)

Cragg-Donald Wald F statistic 188.84 188.84 188.84 188.84

Kleibergen-Paap Wald F statistic 48.95 48.95 48.95 48.95

Observations 351 351 351 351

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

TABLE 6 Lagged regression results.

Variables (1) (2) (3) (4)

log_y1 log_y2 log_y3 log_y4

L.log_x1 0.132*** 0.0836*** 0.261*** −0.0176***

(0.0172) (0.0155) (0.0390) (0.00676)

z1 0.711** −1.250*** 1.358*** −0.437***

(0.295) (0.244) (0.439) (0.103)

z2 0.0191*** 0.00520 0.00470 −0.00310**

(0.00488) (0.00351) (0.00492) (0.00141)

z3 0.162** 0.0974 0.209 0.00228

(0.0758) (0.0686) (0.202) (0.0250)

z4 −0.00363 −0.00895 −0.0138 0.0145***

(0.0111) (0.00942) (0.0189) (0.00528)

z5 −0.0240*** −0.0165*** −0.0688*** −0.00441**

(0.00625) (0.00511) (0.0150) (0.00212)

z6 −0.374*** −0.371*** −0.761* 0.0536

(0.143) (0.127) (0.423) (0.0830)

Cragg-Donald Wald F statistic 316.759 316.759 316.759 316.759

Kleibergen-Paap Wald F statistic 113.361 113.361 113.361 113.361

Observations 324 324 324 324

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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does not significantly affect labor productivity, and it exhibits negative 
effects on land use efficiency, technological innovation, and carbon 
emissions. In contrast, Table  8 presents the results for non-major 
grain-producing areas, where agricultural insurance shows a 
consistently positive impact across labor productivity, land efficiency, 
and technological innovation, while also significantly reducing 
carbon emissions.

These findings suggest that agricultural insurance is more effective 
in enhancing comprehensive grain production capacity in non-major 
grain-producing areas. This may be  attributed to comparatively 
weaker agricultural infrastructure and limited policy support in these 
regions, where insurance mechanisms serve as a more critical buffer 
against risks.

6 Discussion

The empirical findings of this study confirm that agricultural 
insurance has significant positive effects on multiple dimensions of 
comprehensive grain production capacity in China, thereby 
supporting Hypothesis H1a. Specifically, agricultural insurance is 
found to enhance labor productivity, land use efficiency, and 
technological innovation, while also contributing to the reduction of 
agricultural carbon emissions. While these conclusions are broadly 
consistent with existing research, certain distinctions are worth noting.

In terms of labor productivity, our results align with prior studies. 
For instance, Chai et al. (2025) found that farmer participation in 
agricultural insurance significantly facilitates the reallocation of labor 
toward the agricultural sector. Similarly, Zou et al. (2022) reported 
that insurance coverage improves both labor productivity and per 

capita cultivated land. Our empirical analysis corroborates these 
findings, indicating that agricultural insurance meaningfully boosts 
labor productivity in grain production. Zou et al. (2022) findings 
suggest that agricultural insurance has a positive effect on labor 
productivity—a conclusion that is corroborated by the empirical 
evidence presented in this study. The results demonstrate that 
agricultural insurance significantly enhances labor productivity in 
grain production.

Regarding land use efficiency, although fewer studies have directly 
examined this dimension, existing evidence suggests that agricultural 
insurance may promote scale expansion in agricultural production. 
Zheng and Deng (2024) argued that insurance is an important driver 
of large-scale farming and green agricultural development. Pavlov 
et  al. (2016), using simulation analysis of Russian agricultural 
producers, found that low-premium crop insurance effectively 
stimulates production. Likewise, Yu et al. (2018) showed that premium 
subsidies can lead to increased planting areas. Our results further 
substantiate these conclusions by demonstrating that agricultural 
insurance significantly improves land use efficiency. Although this 
study does not directly examine the effect of agricultural insurance on 
the scale of agricultural production, the empirical results indicate that 
agricultural insurance significantly enhances land use efficiency. This 
finding suggests that agricultural insurance influences land utilization 
through improvements in efficiency.

With respect to technological innovation, prior research has also 
highlighted a positive linkage between insurance and the adoption of 
modern agricultural technologies. For example, Tang et al. (2019), 
based on field surveys in Heilongjiang and Jiangsu provinces, observed 
that weather index insurance significantly promotes technology 
adoption among farmers. Similarly, Zhang and Zhang (2025) 

TABLE 7 Regression Results for Grain-Producing Provinces.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

log_y1 log_y1 log_y2 log_y2 log_y3 log_y3 log_y4 log_y4

log_x1 −0.0270 −0.0425* −0.0749** −0.0312***

(0.0152) (0.0195) (0.0306) (0.00295)

z1 0.479 0.486 −1.561*** −1.550*** 1.115** 1.134** −0.0972 −0.0893

(0.276) (0.277) (0.268) (0.268) (0.481) (0.492) (0.0713) (0.0716)

z2 0.0102 0.00900 0.00858 0.00662 −0.0155 −0.0189 −0.00452 −0.00596*

(0.00590) (0.00610) (0.00511) (0.00513) (0.0136) (0.0136) (0.00341) (0.00328)

z3 −0.0219 −0.0140 0.0533 0.0659 0.150 0.172 0.0270 0.0361

(0.119) (0.115) (0.0574) (0.0562) (0.301) (0.299) (0.0188) (0.0221)

z4 0.0142 0.0142 −0.00343 −0.00346 −0.0327*** −0.0327*** 0.0237*** 0.0237***

(0.0105) (0.0106) (0.0103) (0.0104) (0.00929) (0.00829) (0.00211) (0.00201)

z5 −0.0171** −0.0175** −0.00850 −0.00911* 0.00461 0.00354 0.00181 0.00136

(0.00667) (0.00676) (0.00506) (0.00502) (0.0152) (0.0154) (0.00123) (0.00128)

z6 0.227 0.201 0.0828 0.0429 0.789 0.718 −0.0201 −0.0493

(0.330) (0.328) (0.180) (0.171) (1.040) (1.047) (0.105) (0.106)

Constant 1.880* 1.841* 1.673** 1.612** 5.853* 5.746* 5.661*** 5.616***

(1.037) (1.021) (0.634) (0.655) (2.754) (2.766) (0.178) (0.200)

Observations 169 169 169 169 169 169 169 169

R-squared 0.0925 0.0877 0.0877 0.0877 0.0755 0.0686 0.4162 0.3827

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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identified insurance participation as a key determinant in household 
farms’ decisions to adopt green technologies. These studies reinforce 
our finding that agricultural insurance plays a constructive role in 
encouraging technological innovation in agriculture. Zhang and 
Zhang (2025) findings are consistent with the empirical results of this 
study and further support the positive role of agricultural insurance 
in promoting technological innovation in agriculture. They suggest 
that insured farmers are more likely to adopt new technologies.

In terms of environmental outcomes, particularly agricultural 
carbon emissions, our results are in line with Ahmed et al. (2022), who 
showed that increasing insurance coverage or reducing air pollution 
contributes to higher green total factor productivity in agriculture. 
However, Zhang and Chen (2024), based on data from prefecture-level 
cities in Hubei Province, reported that the carbon-reduction effect of 
agricultural insurance weakens as farm size increases. In contrast, our 
study finds that agricultural insurance significantly reduces carbon 
emissions in both major and non-major grain-producing regions. This 
discrepancy may be  due to differences in sample scope and 
regional characteristics.

The regional heterogeneity analysis confirms Hypothesis H2b, 
revealing that agricultural insurance exerts significantly different 
effects on comprehensive grain production capacity across regions. 
Specifically, the positive impact of insurance is more pronounced in 
non-major grain-producing areas, whereas its effect is limited or 
insignificant in major grain-producing regions. This finding runs 
counter to initial expectations. Major grain-producing areas typically 
possess better agricultural infrastructure, earlier policy support, and 
more established insurance systems. However, the empirical results 
suggest that agricultural insurance does not significantly enhance 
production capacity in these regions.

Further examination of the data reveals that the average 
agricultural insurance density is higher in major grain-producing 
regions (1.1347) compared to non-major regions (0.8379). However, 
insurance depth—defined as the ratio of agricultural insurance 
premiums to agricultural GDP—is lower in major regions (0.0114) 
than in non-major ones (0.0193). This implies that despite broader 
insurance coverage in major regions, the intensity of coverage is 
relatively weak, which may explain the limited effect on production 
capacity. While no existing studies directly conclude that agricultural 
insurance has an insignificant impact on the comprehensive grain 
production outcomes in major grain-producing regions, several pieces 
of research offer related findings. For instance, Chen and Lin (2023) 
highlights significant regional heterogeneity in both the output and 
income effects of agricultural insurance. Similarly, in a study of 
provinces located in China’s key grain-producing areas, identifies 
regional disparities in the income-enhancing effects of agricultural 
insurance (Lv, 2024). Specifically, the positive income effect is more 
pronounced in the middle and lower reaches of the Yangtze River and 
in the Northeast, whereas in the Huang-Huai-Hai region, the effect is 
relatively weak. Moreover, Lv (2024) notes that agricultural insurance 
coverage remains relatively low in some regions and that its 
effectiveness is closely associated with farmers’ income levels. As 
income levels rise, the marginal income-enhancing effect of 
agricultural insurance tends to diminish. Lv (2024) findings suggest 
that the impact of agricultural insurance is not uniform across regions 
and may vary according to both geographic and socioeconomic factors.

Additionally, regional differences in agricultural development 
models and policy environments may contribute to these divergent 
outcomes. In major grain-producing regions, the presence of multiple 
central and provincial government agricultural initiatives may crowd 

TABLE 8 Regression results for non-grain-producing provinces.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

log_y1 log_y1 log_y2 log_y2 log_y3 log_y3 log_y4 log_y4

log_x1 0.0897*** 0.0320** 0.233*** −0.0168**

(0.0116) (0.0125) (0.0380) (0.00755)

z1 0.125 −0.0230 −1.407*** −1.460*** 1.586*** 1.200*** −0.127 −0.0998

(0.246) (0.282) (0.185) (0.180) (0.310) (0.332) (0.140) (0.140)

z2 0.00594** 0.00527** −0.00621*** −0.00645*** 0.000568 −0.00117 −0.00123 −0.00110

(0.00217) (0.00206) (0.00132) (0.00129) (0.00311) (0.00316) (0.000755) (0.000720)

z3 0.0473 0.0714 0.00107 0.00964 −0.103 −0.0409 −0.0111 −0.0155

(0.0657) (0.0609) (0.0516) (0.0468) (0.0980) (0.145) (0.0194) (0.0185)

z4 −0.0225*** −0.0163** −0.0170*** −0.0148*** −0.0124 0.00372 0.0118*** 0.0106***

(0.00642) (0.00612) (0.00465) (0.00458) (0.0146) (0.0142) (0.00385) (0.00334)

z5 −0.0219*** −0.0241*** −0.0165*** −0.0172*** −0.0435*** −0.0492*** −0.000823 −0.000415

(0.00498) (0.00491) (0.00483) (0.00462) (0.0114) (0.0148) (0.00241) (0.00232)

z6 0.00578 −0.132 −0.0801 −0.129 −0.469 −0.829* −0.0673 −0.0415

(0.154) (0.136) (0.119) (0.129) (0.366) (0.447) (0.0993) (0.0977)

Constant 2.107*** 1.926*** 2.744*** 2.679*** 8.931*** 8.461*** 5.256*** 5.289***

(0.473) (0.452) (0.349) (0.346) (0.805) (1.154) (0.197) (0.210)

Observations 182 182 182 182 182 182 182 182

R-squared 0.2820 0.2035 0.4653 0.4535 0.2239 0.1352 0.0975 0.0833

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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out the effects of insurance policies, thus diluting their impact. In 
contrast, in non-major grain-producing regions—where policy support 
and infrastructure are typically less robust—agricultural insurance may 
fill a critical gap in risk management systems, thereby yielding more 
substantial benefits in terms of production capacity. Zhou (2023) 
conducted a dynamic empirical analysis of subsidy policies in China’s 
major grain-producing regions, reaching conclusions that are largely 
consistent with those of the present study. He argues that policies such 
as the minimum purchase price policy, temporary grain storage policy, 
subsidies for agricultural machinery purchases, and agricultural 
insurance play a critical role in enhancing farmers’ incentives to grow 
grain, boosting grain output, and safeguarding national food security. 
However, the abrupt cancellation of any single policy may lead to a 
significant reduction in the planting area and market price of specific 
crops. Although a rebound may occur in subsequent years, the long-
term effect of such subsidies tends to diminish and eventually becomes 
statistically insignificant. In addition, Guo and Zhang (2023) contends 
that the current benefit-compensation mechanism for major grain-
producing areas remains inadequate. Guo and Zhang (2023) empirical 
findings suggest that the yield-enhancing effects of compensation 
policies have been gradually weakening over time.

7 Conclusion

Drawing on panel data from 27 Chinese provinces spanning the 
period 2009–2021, this study empirically investigates the impact of 
agricultural insurance on comprehensive grain production capacity. 
The findings reveal that agricultural insurance exerts a significant 
positive effect on labor productivity, land use efficiency, and 
agricultural technological innovation, while also significantly reducing 
agricultural carbon emissions. These results suggest that agricultural 
insurance serves not only as a risk management tool but also as an 
important driver of production efficiency and green transformation 
in the agricultural sector. The robustness and endogeneity tests further 
confirm the reliability of the empirical model.

Additionally, the analysis reveals substantial regional 
heterogeneity. In major grain-producing areas, the effect of 
agricultural insurance on comprehensive production capacity is 
statistically insignificant, potentially due to more mature agricultural 
infrastructure and long-standing policy support in these regions. In 
contrast, non-major grain-producing regions exhibit significantly 
stronger positive effects across all dimensions—particularly in 
enhancing labor productivity, improving land use efficiency, and 
fostering technological innovation—underscoring the role of 
insurance in filling institutional and infrastructural gaps.

7.1 Policy recommendations

Based on the empirical findings, the following policy 
recommendations are proposed:

First, at the governmental level, efforts should be  made to 
strengthen top-level policy design and further improve the 
agricultural insurance system. This includes advancing the legal 
framework for agricultural insurance, reinforcing the reinsurance 
system, expanding the coverage of catastrophic agricultural 
insurance, and continuously refining relevant supporting policies. 

The scope of full-cost insurance for grain should be  gradually 
expanded beyond the three major staple crops (rice, wheat, and corn) 
to include a broader range of grain varieties. Fiscal incentives such as 
tax exemptions, subsidies, and performance-based awards should 
be used to encourage more insurers to participate in agricultural 
insurance provision. Governments at all levels should intensify 
outreach efforts by leveraging both traditional media—such as radio, 
television, and bulletin boards—and modern platforms, including 
WeChat and the internet, to raise farmers’ awareness of agricultural 
insurance and increase participation rates. At the grassroots level, 
relevant government departments should take advantage of the 
agricultural off-season to organize training sessions on agricultural 
insurance, serving as a bridge between farmers and insurance 
providers. Moreover, they should foster effective communication and 
collaboration with insurers throughout the entire process—including 
underwriting, production cycle management, post-disaster 
assistance, and claims settlement—to ensure the smooth and efficient 
implementation of agricultural insurance programs. Full-process 
regulatory oversight should also be reinforced to ensure effective 
implementation and orderly operation of the insurance system.

Second, at the insurance industry level, although the market has 
begun transitioning from traditional indemnity-based products to 
more innovative income-based and index-based models, the current 
scope of these new products remains limited. Insurance companies 
should continue to innovate and develop regionally tailored products 
that address the diverse needs of farmers. Insurance companies should 
also strengthen operational management and leverage technologies 
such as mobile internet, 3S (Remote Sensing, GIS, and GPS), and big 
data analytics to enhance the efficiency and quality of agricultural 
insurance services. Furthermore, insurers should leverage agricultural 
insurance technologies (AgriTech) to improve product design and 
operational efficiency. Partnerships with technology firms can help 
create more user-friendly, data-driven products that align with the 
realities of Chinese agriculture, ultimately improving both insurance 
coverage and service quality.

7.2 Limitations and future research

While the robustness and endogeneity tests affirm the reliability 
of the empirical results, this study faces several limitations:

First, due to data constraints, the analysis does not account for the 
long-term effects of agricultural insurance on productivity. 
Investigating these temporal dynamics could offer deeper insights into 
the sustainability of insurance-driven improvements in production 
capacity. Future research should explore these long-term impacts 
using extended panel data or longitudinal survey methods.

Second, this study is based on provincial-level panel data, which 
limits the granularity of insights into farm-level behaviors and 
production decisions. Future studies could incorporate micro-level 
surveys or case studies to examine the actual implementation and 
effectiveness of agricultural insurance among different farmer groups, 
thereby enabling a more precise evaluation of its productivity-
enhancing mechanisms.

Finally, while this study focuses on four key dimensions—labor 
productivity, land use efficiency, technological innovation, and carbon 
emissions—comprehensive grain production capacity is a 
multidimensional construct that may include other relevant 
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indicators. Future research could develop a more comprehensive 
index system and examine additional influencing factors to provide a 
more nuanced understanding of the multifaceted role agricultural 
insurance plays in grain production systems.
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