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In recent years, with the accelerated development of science, technology and 
industry, aquatic ecosystems have been severely damaged, which not only profoundly 
affects the survival and metabolic stability of aquatic animals, but also has a certain 
impact on the flavor of aquatic products. The key flavor substances affecting the 
flavor of aquatic products include free amino acids (FAA), nucleotides and organic 
acids, which form the basis of the key taste of aquatic products. This review 
focuses on the research on main flavor substances in aquatic animals, as well as 
the physiological and metabolic changes of flavor substances under the action 
of typical marine pollutants (including persistent organic pollutants (POPs) and 
heavy metal stress). However, there are relatively few studies on the molecular 
mechanisms of taste substance metabolism, and most of them are conducted in 
the field setting. This review aims to provide a reference for in-depth exploration 
of the metabolic mechanism of aquatic organisms’ taste substances in response 
to marine pollution.
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1 Introduction

Aquatic products are highly favored due to their excellent nutritional value and rich flavor, 
and they play a crucial role in the global food system (Golden et al., 2021). According to the 
latest data published by the Food and Agriculture Organization of the United Nations (FAO), 
the total global output from fisheries and aquaculture reached 223.2 million tons in 2022. 
Notably, around 62% of this production was derived from marine sources, significantly 
contributing to the dietary protein requirements of approximately 3.2 billion people worldwide 
(FAO1). As a result, the ocean is recognized as a crucial source of high-quality animal protein 
for global food security. Simultaneously, aquatic products are instrumental in enhancing 
nutritional well-being and public health at a global scale (Cheng et al., 2023; Li C. et al., 2022). 
The market demand for high-quality aquatic foods has shown a steady increase. Flavor, 
particularly its distinctive taste, is a major determinant of product quality and consumer 
preference (Wu et al., 2023).

Aquatic organisms exhibit five fundamental taste modalities: sourness, sweetness, 
bitterness, saltiness, and umami. These taste-active substances are not only central to defining 
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the sensory attributes of aquatic species but also significantly influence 
consumer purchasing behavior (Jones et  al., 2022). However, 
accelerated technological and industrial advancements have expanded 
human influence over natural systems, leading to serious ecological 
degradation and extensive pollution of marine environments 
(Thiagarajan and Devarajan, 2025). Common forms of marine 
pollution include petroleum contamination, heavy metals, radioactive 
substances, harmful algal blooms, and marine debris. The expansion 
of chemical and petrochemical industries has intensified problems 
such as oil spills and elevated concentrations of heavy metals in 
seawater (Sharma et  al., 2024). Given that aquatic organisms are 
entirely dependent on water for their survival, fluctuations in water 
quality can disrupt physiological homeostasis (Bartley et al., 2006). 
Environmental pollutants, including persistent organic pollutants 
(POPs) and heavy metals, pose a serious threat to the survival and 
physiological stability of these organisms and have severe toxic effects 
on certain species (Ribeiro et al., 2005; Corsolini et al., 2014; Yan et al., 
2020). How marine pollution affects the taste and quality of aquatic 
products and how it interferes with the metabolism of taste substances 
in aquatic animals are important scientific issues of concern to people.

This article thoroughly introduces the main flavor substances and 
flavor characteristics of aquatic organisms, as well as their sensitivity 
to POPs and heavy metals. The purpose is to clarify the impact of 
marine pollution on flavor metabolism, provide scientific basis for 
marine ecological toxicology protection, and improve the nutrition, 
safety, and economic value of aquatic products.

2 Flavor substances of aquatic animals

Food flavor arises from the integrated sensory experience of smell, 
taste, and trigeminal nerve stimulation, with the balance of various 
substances shaping the final flavor (Khan et al., 2015). Food flavor 
encompasses volatile and non-volatile components, in which volatile 
substances, such as unsaturated aldehydes and ketones from fat 
oxidation, evoke aroma through olfactory stimulation (Wang et al., 
2020). And non-volatile substances, responsible for taste, include the 
five basic tastes: acid, sweet, bitter, salty, and umami. In addition, taste 
substances are categorized as nitrogen-containing (e.g., free amino 
acids, nucleotides, organic acids) and non-nitrogen-containing (e.g., 
organic acids, sugars, inorganic compounds) (Zhang et al., 2003).

Amino acids, nucleotides, and organic acids constitute the basic 
taste characteristics of aquatic products. Fish, shrimp, and shellfish 
contain various auxiliary flavor enhancing compounds that interact to 
produce different tastes (Liang et al., 2008; Lim et al., 2017; Michihata 
et al., 2000). Although flavor enhancing amino acids and nucleotides 
are the main sources of taste in aquatic animals, their metabolic 
pathways still need to be explored. Research mainly focuse on the 
genes that affect the flavor of fish meat, but the metabolic processes of 
flavor substances in shellfish and shrimp have not been studied to a 
large extent.

2.1 Flavor amino acids

Studies have shown that free amino acids (FAA) have a significant 
impact on the muscle flavor of aquatic animals. It is worth noting that 
glutamic acid (Glu) and aspartic acid (Asp) are the main sources of 

umami, while glycine (Gly) and alanine (Ala) have a sweet and 
refreshing taste. Arginine can enhance freshness, while sodium 
chloride, monosodium glutamate or adenosine can reduce the 
inherent bitterness of arginine. Histidine (His) enhances the flavor. In 
addition, methionine (Met) and valine (Val) are related to bitterness 
(Cheng et al., 2024). The research has found that the main umami and 
sweet amino acids in tilapia filets were Asp and Gly (Li R. et al., 2022).

Studies have revealed that Glu, Ser, proline (Pro), arginine (Arg), 
and lysine (Lys) are the main taste-active substances in Takifugu 
obscurus (Zhang et al., 2019a). For tilapia fillets, the primary umami 
and sweet-tasting amino acids are Asp and Gly (Li R. et al., 2022). In 
metabolomic analyses of Mercenaria mercenaria, researchers 
identified Glu, Gly, Arg, Ala, and Asp as the five free amino acids with 
the greatest contribution (Zhang et al., 2023). Additionally, the main 
umami sources in Chinese soft-shelled turtles (Pelodiscus sinensis) are 
Glu, Asp., Gly and Ala; the umami taste of their skirt tissues is superior 
to that of muscle, but the balance of amino acid composition is inferior 
to that of muscle (Xie et al., 2021). Thus, the amino acids contributing 
to umami substances vary across different species.

Shrimp cultured in low-salinity brackish water exhibit better 
amino acid nutritional status, with a total essential amino acid (TEAA) 
content of 238.41 ± 46.24 mg/mL, which is significantly higher than 
that in the standard seawater group (Qin et al., 2024). Supplementing 
the feed with an appropriate amount of Lys can increase the levels of 
alanine and glutamic acid in the muscle tissue of Litopenaeus 
vannamei, ultimately improving the palatability of this species in 
freshwater aquaculture (Wu et al., 2022). Koyama et al. (2018) found 
that high salinity enhances the expression of the Glu ligase gene in 
Marsupenaeus japonicus. Conversely, under low-salinity conditions, 
alanine may be  converted to pyruvate via the Ala-glyoxylate 
aminotransferase gene, leading to a decrease in Ala concentration. 
Similarly, other scholars evaluated changes in key amino acid 
metabolism genes in Crassostrea gigas. The results showed that under 
salinity stress, oysters regulate Gly levels primarily through the Gly 
dehydrogenase and aminomethyltransferase pathways (Meng 
et al., 2013).

2.2 Flavor nucleotides

At present, more than 30 kinds of taste-active nucleotides and 
their derivatives have been identified, among which inosine 
monophosphate (IMP), guanosine monophosphate (GMP) and 
adenosine monophosphate (AMP) are representative (Zhang et al., 
2016). IMP is abundant in the muscles of animals such as chickens, 
cattle and pigs, while aquatic species like shrimp, clams and abalones 
mainly contain AMP. The GMP levels of seafood are usually low 
(Chen et al., 2021).

Studies have found that IMP is the main nucleotide in fresh 
rainbow trout Oncorhynchus mykiss (Duan et al., 2020). Exogenous 
IMP improves the flesh quality, composition, and flavor of Carassius 
auratus gibelio by increasing the AMP/ATP ratio and activating the 
AMPK signaling pathway (Cai et al., 2022). In Antarctic krill Euphausia 
superba and Penaeus vannamei Boone, both IMP and AMP can 
significantly enhance umami flavor and show a synergistic effect 
(Chang and Fang, 2024). The IMP is generated through two metabolic 
pathways of ATP degradation, one of which produces AMP, which is 
then degraded into IMP or adenosine (AdR) (Seki et  al., 2017). 
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However, the existence of IMP in shellfish has long been controversial. 
Soldatov et al. (2022) identified two pathways for IMP degradation in 
the Anadara kagoshimensis, including the adenosine monophosphate 
dehydrogenase and adenosine monophosphate deaminase pathways. 
Recent studies have found the IMP in refrigerated M. meretrix, C. gigas, 
and Chlamys farreri (He et al., 2025; Liu et al., 2024; Zhang et al., 2023).

2.3 Flavor organic acids

In fish, shrimp and shellfish, organic acids can affect pH regulation 
and flavor. The organic acids that play a key role in flavor include succinic 
acid, lactic acid and pyruvic acid, whose composition and concentration 
are closely related to the biochemical reactions in the metabolic process 
(Cheng et al., 2023). Studies show that crustaceans contain organic acids 
such as succinic acid, lactic acid, acetic acid and oxalic acid, while lactic 
acid and succinic acid are dominant in the muscle tissues of fish and 
shellfish (Bampidis et al., 2023; Ding et al., 2022). Among shellfish, 
succinic acid, sodium succinate and disodium succinate are essential for 
maintaining freshness and acidity (Ma et al., 2020).

It was found that the levels of lactic acid and succinic acid 
increasing with the size of rainbow trout O. mykiss in muscles (Duan 
et al., 2020). In addition, researches have determined that the major 
organic acid in raw and high hydrostatic pressure-treated oysters 
Crassostrea hongkongensis is succinic acid (Liu et  al., 2021). 
Furthermore, succinic acid, citric acid and betaine are the major 
organic acids in oysters Crassostrea ariakensis (Liu et al., 2022).

2.4 Other flavor substances

Umami in aquatic products primarily arises from organic bases 
like betaine and trimethylamine oxide (TMAO) (Niizeki and 
Tanimoto, 2024). Betaine contributes to enhancing the sweetness of 
shellfish and shrimps. Additionally, betaine aldehyde dehydrogenase 
(BADH) may play a role in the osmoregulatory capacity of Litopenaeus 
vannamei (Chen et al., 2021; Delgado-Gaytán et al., 2017; Hefni et al., 
2021). Existing studies have shown that by-products of betaine induce 
a positive feeding response in abalones and can affect their unique 
umami and sweet tastes (Hernández et al., 2019). TMAO is widely 
present in the muscles of marine teleosts, which can counteract the 
harmful effects of urea on proteins and serves as an important flavor 
substance in fish and shrimps (Zerbst-Boroffka et al., 2005). It has been 
found that adding TMAO to the diet of Chinese mitten crab (Eriocheir 
sinensis) can improve the freshness of its muscle, and dietary TMAO 
may activate the mTOR pathway by influencing amino acid metabolism 
(Hua et al., 2025). However, there are currently no reports on the 
impact of marine pollution on TMAO in aquatic animals. Furthermore, 
inorganic ions also play a key role in the flavor of seafood. Among 
them, ions such as Na+, K+, Cl−, and PO₄3− are considered to have 
significant impacts on the flavor of shellfish, with the effects of Na+ and 
Cl− being particularly prominent (Fu et al., 2025; Liu et al., 2023).

2.5 Interactions among flavor substances

The synergistic effect between nucleotides and certain amino 
acids is usually quantified by equivalent umami concentration (EUC). 

The higher the EUC value, the stronger the synergistic effect (Zhang 
et al., 2019b). Using EUC calculations to predict that most mushrooms 
can enhance the flavor of Japanese fish (Mau, 2005). They suggest 
mixing fish and mushrooms in a 1:1 ratio to maximize the umami of 
the stock. The umami flavor in clams of Meretrix petechialis, Mactra 
veneriformis and Ruditapes philippinarum is mainly driven by the 
proliferative effects of Glu, Asp and nucleotides (Wang et al., 2019). A 
small amount of IMP can significantly improve the sweetness of Gly 
and Ala (Kawai et  al., 2002). In addition, the combination of 
nucleotide umami enhancers can significantly lower the threshold and 
enhance the umami effect (Vasilaki et al., 2021). Unlike fish, the taste 
components of shellfish are significantly different. Similar organisms 
such as squid, octopuses, shellfish, and similar organisms lack 
5’-IMP. Therefore, their umami taste comes from the combination of 
amino acids, polypeptides, succinic acid and inorganic ions. These 
ions are important flavor enhancers in seafood and are closely related 
to inorganic ions such as Na+, K+, PO4

3−, and Cl− (Sikorski, 2020).

3 Effects of marine pollutant stress on 
the metabolism of flavor substances in 
aquatic animals

3.1 POPs

It is well known that POPs have carcinogenic, teratogenic and 
mutagenic effects, posing significant risks to the reproductive, genetic, 
immune, nervous and endocrine systems of humans and animals 
(Ashraf, 2015; Nguyen et al., 2020). Once persistent organic pollutants 
enter the environment, they will persist in the food chain, 
bioaccumulate and bioamplify, reaching toxic concentrations in the 
atmosphere, water and soil, causing serious adverse effects (Akhtar 
et al., 2021).

Dichlorodiphenyltrichloroethane (DDT) and benzo[a]pyrene 
(B[a]P) are typical persistent organic pollutants, posing severe threats 
to aquatic organisms and environmental health. The results showed 
that DDT stress significantly altered metabolites in the gonads, 
including increased levels of alanine, glutamic acid, and glycine, while 
decreased arginine levels. Both DDT and B[a]P could induce signal 
transduction and oxidative stress, and the mixed stress group showed 
a similar trend to the DDT group (Song et al., 2016). In a metabolomic 
study on the adductor muscles of Mytilus galloprovincialis from the 
western regions of Italy, which were contaminated with excessive 
levels of polycyclic aromatic hydrocarbons (PAHs) and mercury, the 
results revealed disturbances in energy metabolism, alterations in 
amino acid metabolism, and disorders in osmoregulatory processes. 
Among flavor substances, Ala, Gly, and inosine significantly increased, 
while the levels of aspartic acid, arginine, taurine, and betaine 
significantly decreased (Cappello et al., 2017). The results of the toxic 
effects of B[a]P on the gills of Pinctada martensii showed that under 
exposure to 1 μg/L and 10 μg/L B[a]P, arginine levels were significantly 
higher than those in the control group, while the levels of flavor amino 
acids Thr and Glu were significantly lower compared with the control 
group, inducing signal transduction, transcriptional regulation, cell 
growth, stress response, and energy metabolism (Chen et al., 2018).

Studies have indicated that B[a]P has significant effects on the 
composition and taste activity values (TAV) of free amino acids, 
nucleotides, organic acids, flavor peptides, organic bases, 
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TABLE 1  The impact of heavy metal pollution on the amino acids of aquatic animals.

Heavy metals Main amino acids Interference effect Aquatic animals References

Cd Ser, Gly, Glu, Ala, Tyr Reducing the nutritional levels and increasing 

free amino acids and saturated fatty acids

Labeo rohita Begum et al. (2025)

Ser, Gly The expression of hydroxymethyltransferase 

was significantly upregulated

Perca flavescens Bougas et al. (2013, 2016)

Arg, Gly, Ser Under low concentration Cd exposure, the 

main flavor substances such as Arg, lactic acid 

and inosine, significantly increased. In the 

high exposure group, the content of Gly 

significantly increased while the content of 

Ser significantly decreased

Fenneropenaeus chinensis Lu et al. (2020)

Hg His, Thr, Arg, Ser, Glu, 

Gly, Asn

The content of these 7 amino acids is 

positively correlated with the total mercury 

content

Esox lucius Kozak et al. (2023)

Gln, Asp, Asn, Glu Significantly changed the amino acid content Zebrafish embryo Qiu et al. (2024)

Cu The level of amino acids 

has increased

A significant decrease in protein content and 

an increase in amino acid levels

Mystus vittatus Balakrishnan et al. (2023)

Pb Asp., Ala, Cys, Glu, Gly, 

His, Phe, Tyr, Try, Val

Increased plasma amino acid levels Mugil cephalus Hajirezaee et al. (2021)

Zn His, Cys The presence of His and Cys has a significant 

regulatory effect on the quantitative and 

qualitative absorption of Zn

Oncorhynchus mykiss Glover and Hogstrand (2002)

Cb, Cu, Cr, Ni, Pb, Zn Ala, Gly, Asp, Thr, Lys The levels of Ala and Gly decreased, while the 

levels of Asp., Thr, Lys and betaine increased

Crassostrea hongkongensis Cao and Wang (2016)

carbohydrates, and inorganic ions in Ruditapes philippinaru, as well 
as the gene expressions during their synthesis and decomposition 
processes. This suggests that B[a]P affects the levels of these taste 
substances by interfering with their metabolic processes, thereby 
altering the taste characteristics of R. philippinarum (reducing 
umami and sweetness, and enhancing bitterness) (Bi et al., 2024). 
Researchers pointed out that 38 μg/L B[a]P significantly reduced 
the content of flavor amino acids in C. farreri, leading to a significant 
decrease in TAV and EUC. Transcriptome analysis identified key 
pathways related to the metabolism of taste substances, and the 
expression levels of genes involved in the synthesis of Glu, Gly, Ala, 
and Arg were generally inhibited (He et al., 2025). However, current 
research on the molecular mechanisms of POPs on typical flavor 
substances in aquatic animals is relatively scarce.

3.2 Heavy metals

In addition to organic pollutants, heavy metals represent another 
class of marine pollutants that cannot be  ignored. Heavy metals, 
known for their toxicity, wide sources, persistence, and 
non-degradability, originate from various human activities such as 
mining, smelting, agriculture, petrochemical industry, printing, 
aquaculture, electronic industry, and municipal waste (Rainbow and 
Luoma, 2011). These metals are released into the marine environment, 
where they can accumulate in marine organisms and magnify through 
the food chain, leading to higher concentrations in predatory species, 
and the elevated levels of heavy metals in marine ecosystems raise 
ecological concerns and public health risks about seafood safety 

(Wang et al., 2005). Currently, the heavy metal elements polluting the 
ocean mainly include mercury, cadmium, lead, zinc, chromium, 
copper, etc., assessing the current pollution levels of heavy metals in 
coastal ecosystems is crucial for the seafood industry, public health, 
and the sustainable development of marine ecosystems (Wang 
et al., 2013).

Currently, the main heavy metal elements polluting the ocean 
include Cd, Hg, Cu, Pb, and Zn. Assessing the current pollution 
levels of heavy metals in coastal ecosystems is crucial for the 
seafood industry, public health, and the sustainable development of 
marine ecosystems (Wang et  al., 2013). When the marine 
environment is contaminated by heavy metals, these metals 
accumulate in aquatic organisms and enter the human body 
through the food chain. The examination of scalp hair samples from 
whale meat-eaters and large fish-eaters revealed that all the essential 
amino acids such as Ala, Val, Leu, etc., increased as the mercury 
concentration increased (Endo et al., 2017). Long-term exposure 
can lead to chronic poisoning, lung damage, and carcinogenic risks 
(Cao et  al., 2021; Petrovic et  al., 2022; Tek and Ng, 2024). As 
exemplified in Table 1 (line 521), different aquatic animals exhibit 
varying degrees of changes in their metabolic levels after being 
exposed to heavy metal pollution, with differences in the primary 
amino acids affected. This suggests that the toxic mechanisms of 
different heavy metals on aquatic animals may vary. Studies on the 
impact of heavy metal pollution on aquatic animals mainly focus 
on amino acids, while there are relatively few studies on organic 
acids and nucleotides and others. Moreover, experimental sampling 
is mainly conducted in the field, which could not rule out other 
influencing factors in the environment.
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4 Conclusion and perspectives

The research on the impact of marine pollution on aquatic animals 
mainly covers two areas: the accumulation and elimination of pollutants in 
economically important aquatic organisms, and the influence of pollution-
induced stress on physiological processes such as osmoregulation, energy 
metabolism, reproduction, and immunity. However, research on the 
molecular mechanism of flavor compound metabolism in aquatic products 
is still relatively limited, with most focusing on flavor amino acids. 
Additionally, studies on the effects of marine pollutant stress are mostly 
conducted through field sampling experiments.

In the future, metabolomics and transcriptomics technologies can 
be used to explore the interference mechanisms of pollutants on key 
flavor compounds in aquatic animals, and laboratory single-pollutant 
exposure experiments can be conducted to exclude the impact of 
other environmental factors on the research results.
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