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Introduction: Agricultural productive services (APS), as a vital component of
modern agricultural industrial systems, play a critical role in advancing green
agricultural transformation and sustainable development.

Methods: This study investigates the spatiotemporal evolution, regional
disparities, and influencing factors of the coupling coordination degree (CCD)
between APS and the carbon efficiency in rice production (RCE) in Jiangxi
Province, China. The spatiotemporal patterns, dynamic trends, and driving
mechanisms were analysed using kernel density estimation, Dagum Gini
coefficient decomposition, and the geographically and temporally weighted
regression (GTWR) model.

Results: The results indicate that the CCD between APS and RCE demonstrates
a weakly multipolar dynamic evolution pattern, exhibits an upward trend but
remains suboptimal, with significant regional disparities driven by interregional
hypervariable density (49.18% contribution). Influencing factors displayed
notable spatiotemporal heterogeneity, with contributions ranked as follows:
rural population-land scale > financial support for agriculture > planting structure
> urban-rural income gap > multiple cropping index > urbanization level.
Discussion: Our findings offer insights applicable to Global South countries
facing similar challenges in balancing productivity and decarbonization, and
we propose actionable strategies to enhance APS systems, establish cross-
regional coordination mechanisms, and optimize resource allocation for low-
carbon agricultural transitions.
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1 Introduction

As one of China’s three primary staple crops, rice is pivotal in
ensuring national food security. Fluctuations in its production
efficiency directly influence the stability of grain supply, serving as a
critical indicator for assessing food security conditions (Lin et al.,
2022; Liv and Zhou, 2021). Historically, productivity gains in Chinese
rice cultivation have predominantly relied on intensive inputs of water
resources, land, and agrochemicals. While this approach has partial ly
safeguarded stable yields and supply, it has concurrently imposed
substantial environmental costs, particularly regarding sustainability
(Xuetal, 2013; Yong et al., 2022). Empirical evidence reveals that rice
paddies contribute approximately 48% of total agricultural greenhouse
gas emissions in China, with methane (CH,) accounting for 94% of
these emissions (Bao et al., 2024; Lu et al., 2024). Such emissions
significantly exacerbate the risks of greenhouse effect and climate
change, underscoring the urgency of addressing this dual challenge.
Consequently, the central paradox confronting China’s rice production
system has evolved from a dualistic “resource-development
coordination” to a tripartite dilemma balancing “resource utilization,
environmental preservation, and developmental imperatives” (Yan
et al, 2025). Against the backdrop of China’s ongoing agricultural
green transition, reconciling food security objectives with the
imperative to mitigate greenhouse gas emissions during agricultural
processes has emerged as a critical pathway toward sustainable
agricultural development.

Under mounting pressures from tightening resource constraints,
escalating non-point source pollution risks, and structural
imbalances in ecosystems, traditional agricultural production
models characterized by high inputs, high pollution, and low
efficiency have become increasingly unsustainable and necessitate
urgent improvements in carbon efliciency within agricultural
systems—defined as achieving desired output growth while reducing
redundant carbon emissions under given factor inputs (Bai et al.,
2019; Zhu and Huo, 2022). As a critical metric for evaluating
low-carbon agricultural performance, carbon efficiency holistically
reflects the input-output relationship between agricultural resource
utilization and carbon mitigation effects (Bajan and Mrowczyniska-
Kaminska, 2020). While existing studies have measured and
analyzed carbon efficiency in broad or narrow agriculture (Han
et al, 2024; Liu and Yang, 2021; Yang et al., 2021) systematic
assessments focusing on single staple crops—particularly their
carbon efficiency dynamics—remain underexplored and warrant
deeper investigation. In addition, rice cultivation is a major
contributor to China’s agricultural carbon emissions (Shen et al.,
2025; Song et al., 2023). Despite generating substantial emissions
during production, rice ecosystems harbor significant carbon
sequestration potential through plant biomass and soil organic
carbon accumulation (Chen et al., 2021; Chen et al., 2022a, 2022b).
Prevailing methodologies for constructing carbon efficiency
evaluation systems, however, predominantly emphasize carbon
sources within agricultural ecosystems while neglecting the
quantifiable value of carbon sinks, resulting in fragmented and
incomplete assessment frameworks. This study advances traditional
carbon efficiency evaluation by integrating a “carbon reduction and
sink enhancement” perspective to address this gap. Specifically,
we distinguish rice carbon sinks as desirable outputs and carbon
emissions as undesirable outputs, thereby establishing a more
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scientific and precise composite carbon efficiency index for rice
production systems.

The development of agricultural productive services (APS) is a
critical component of agricultural modernization. It offers innovative
pathways to transform conventional farming practices and accelerate
green transitions in agriculture (Geng et al., 2024; Shi et al., 2024). Its
strategic implementation is significant for optimizing rice production
systems—transitioning cultivation paradigms, and enhancing
productivity (Li and Li, 2020; Wu et al., 2024). Functionally, APS is a
pivotal mechanism to reform extensive agricultural management
models and advance low-carbon transitions. Addressing inefficiencies
inherent in fragmented smallholder operations—such as suboptimal
factor allocation and low productivity—systematically resolves
structural bottlenecks in traditional farming systems (He et al., 2023;
Huan et al., 2022) Furthermore, APS permeates entire agricultural
value chains, with outsourcing service providers incentivized to adopt
low-carbon practices across production stages. This characteristic
enables APS to simultaneously mitigate ecosystem imbalances,
improve resource-use efficiency, and reduce environmental costs (Xu
etal, 2024; Yang et al., 2024). Consequently, the evolution of APS and
the restructuring of agricultural production systems are inextricably
linked during green transformation processes, necessitating integrated
policy design that synchronizes both dimensions (Qiu et al., 2022).
Given this context, establishing a synergistic development framework
that harmonizes APS with the carbon efficiency of rice production
(RCE) becomes imperative. Such integration safeguards national food
security and creates dual-win scenarios for sustainable agricultural
development, bearing substantial theoretical and practical relevance.

Extensive studies have corroborated the socioeconomic and
ecological benefits of APS, demonstrating their capacity to enhance
smallholder welfare (Mi et al., 2020; Xu et al., 2022a, 2022b) elevate
rural incomes (Benin, 2015; Lyne et al., 2018) facilitate land transfer
(Cai et al,, 2021; Liu et al., 2022), restructure production models (He
etal, 2023), and improve agricultural productivity (Chen et al., 2022a,
2022b; Xu et al, 2022a, 2022b). Additionally, APS has proven
instrumental in incentivizing farmland conservation practices (Chen
etal, 2022a,2022b; Emmanuel et al,, 2016) and reducing agrochemical
inputs (Chen and Liu, 2023; Huan and Zhan, 2022; Shi et al., 2023).
Nevertheless, there remains room for further research on the topic of
APS and RCE, and few studies have systematically examined their
coupling coordination relationship within a unified analytical
framework, leaving this nexus underexplored despite its relevance to
sustainable agriculture.

This study addresses this research void by constructing a
comprehensive analytical framework to unravel the intrinsic linkages
between APS and RCE. Leveraging panel data from 85 counties in
Jiangxi Province, China (2012-2022), we employ a modified coupling
coordination degree model to quantify their synergistic interactions.
Kernel density estimation and Dagum Gini coefficient decomposition
are applied to dissect temporal-spatial evolution patterns and regional
disparities. At the same time, the geographically and temporally
weighted regression (GTWR) model reveals the spatiotemporal
heterogeneity of influencing factors. The findings aim to inform
evidence-based policymaking for agricultural green transformation,
offering theoretical and practical insights into reconciling productivity
enhancement with low-carbon development.

The possible marginal contribution of this study may be as follows.
First, our study transcends the conventional unidirectional perspective
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that predominantly examines APS as drivers of agricultural carbon
efficiency. We systematically investigate the coupling coordination
relationship between APS and RCE by constructing an integrated
analytical framework. This approach addresses a critical gap in
existing research, which largely overlooks bidirectional synergies and
systemic interactions between these two dimensions. Secondly, this
study utilizes panel data from 85 counties in Jiangxi Province spanning
an 11-year period, with the analytical focus situated at the county
level. This approach offers a robust and granular foundation for
formulating targeted and region-specific agricultural environmental
policies. The findings not only support the low-carbon transformation
of agriculture in alignment with China’s “dual carbon” objectives but
also provide a replicable Chinese model with practical insights for
global food security and climate governance. Finally, This study also
used the GTWR model to reveal the spatiotemporal heterogeneity of
factors affecting the coupling coordination degree (CCD), which is of
great significance for understanding the complexity of the coupling
coordination relationship between APS and RCE under different time
and space backgrounds. Overall, the above contributions partially
compensate for the theoretical and practical shortcomings in
agricultural green transition strategies. This research provides
scientifically grounded, policy-adaptive guidance for major grain-
producing regions in China and offers transferable lessons for Global
South countries confronting similar sustainability challenges in
intensive cropping systems.

2 Theoretical analysis of the CCD
between APS and RCE

The coupling coordination degree (CCD) constitutes a pivotal
metric for quantifying the interdependence intensity and synergistic
development level between interconnected systems, providing a
quantifiable reflection of their interactive dynamics (Yang et al., 2020).
Within this framework, coupling denotes bidirectional interactions
and mutual influences among systems, while coordination
characterizes attaining a benign synergistic state through such
interactions. Building upon this conceptual foundation, the CCD
model in this study systematically examines the reciprocal influences,
dependency relationships, and harmonization levels between APS and
RCE. Existing studies identify three pivotal drivers of system
interactions: factor mobility and allocation, industrial restructuring
and upgrading, and technological innovation diffusion (Dong et al.,
2023; Sun et al.,, 2025). By extension, these mechanisms—manifested
through optimized factor allocation, industrial transformation, and
innovation spillovers—similarly govern the interactive pathways
between APS advancement and carbon efficiency enhancement in rice
cultivation systems.

On the one hand, APS exerts a catalytic role in advancing
RCE. During the pre-production phase, agricultural operation
guidance services provide technical and managerial support for rice
producers, enabling the formulation of low-carbon cultivation plans
and the adoption of green production methods (Chen et al., 2022a,
2022b). This facilitates systemic transformation toward low-carbon
farming practices. Concurrently, agricultural input supply services
optimize factor allocation based on soil diagnostics and crop
requirements, achieving source reduction of agrochemical-derived
emissions (Emmanuel et al.,, 2016). In the production phase, precision

Frontiers in Sustainable Food Systems

10.3389/fsufs.2025.1658655

agricultural machinery implements targeted field management to
mitigate emissions from excessive chemical applications (Qing et al.,
2023). Furthermore, optimized irrigation-drainage systems enhance
nutrient uptake efficiency while improving soil aeration, achieving
dual effects of “carbon mitigation and sink enhancement” (Choudhary
and Meena, 2024). During the post-production phase, agricultural
product processing and marketing services ensure rapid market access
for rice products, reducing energy consumption and carbon emissions
in intermediate links. Furthermore, integrated APS supply chains
promote the development of circular economy models in the rice
industry, delivering dual benefits of “quality improvement and
efficiency enhancement” (Lu et al., 2023).

On the other hand, RCE exerts feedback effects that drive APS
advancement. From the demand perspective, enhanced RCE signifies
innovations in low-carbon production technologies and management
systems within contexts of green agricultural transition. This
progression inherently elevates functional requirements for APS,
providing foundational impetus for service sector upgrading (He
etal., 2021). On the supply side, RCE improvement manifests through
either increased desirable outputs or reduced undesirable outputs
under equivalent factor inputs. Achieving these dual objectives
necessitates enhanced specialization and coordination among APS
entities, amplifying service demand. Furthermore, given defined
output targets, APS entities need fewer production factors and lower
production costs to improve carbon efficiency. This enables them to
generate higher benefits in the production services process, thereby
effectively enhancing the comprehensive benefits (Yu et al., 2024).

In conclusion, he advancement of APS and the enhancement of
RCE are mutually reinforcing. Within their respective domains, they
establish a synergistic mechanism through industrial structure
upgrading, optimization of factor allocation, and the diffusion of
technological innovation. These interrelated dynamics collectively
form the theoretical foundation for the coupled and coordinated
development of APS and RCE. The overall theoretical framework is
illustrated in Figure 1.

3 Research design
3.1 Research area and data

Jiangxi Province, situated in southeastern China (24°29'14"-
30°04'43"N, 113°34'18"-118°28'56"E), occupies the southern bank of the
middle-lower Yangtze River (Figure 2A). Its topography is predominantly
characterized by mountainous (36%) and hilly (42%) terrains, forming a
north-opening basin surrounded by eastern, southern, and western
peripheral ranges with alluvial plains in the central-northern region
(Figure 2B). It should be noted that the elevation data presented in
Figure 2B was obtained from the China Geospatial Data Cloud Platform.
Negative elevation values are referenced to mean sea level, with their
absolute magnitudes indicating the vertical distance between ground
surface points and the reference datum. Under a subtropical monsoon
climate regime, the province hosts four primary grain production zones:
Poyang Lake Plain, Ganfu Plain, Jitai Basin, and western Jiangxi region
(Figure 2C). As one of Chinas 13 major grain-producing provinces,
Jiangxi holds a national high typical and representative nationwide in rice
cultivation, consistently ranking third in paddy output and playing a
pivotal role in safeguarding national food security (Liang et al., 2024).
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FIGURE 1
Theoretical analysis framework of the coupling and coordination between APS and RCE

Notably, Jiangxi was among the first provinces to implement nationwide
pilot programs for comprehensive agricultural socialized services in 2013.
Multiple counties have since been designated as national APS
demonstration zones, establishing institutional foundations for green
agricultural transition and unlocking transformative potential in
sustainable farming practices.

This study focuses on county-level rice production systems in
Jiangxi Province. The analysis employs panel data from 85 counties
spanning 2012-2022, selected based on data accessibility and
consistency in statistical reporting standards. This temporal scope aligns
with Jiangxi’s pioneering role as one of China’sfirst provinces to initiate
APS pilot initiatives in 2013, ensuring policy relevance across the study
period. Primary data were sourced from the Jiangxi Statistical Yearbook
(2013-2023), Prefectural Statistical Yearbooks of Jiangxi (2013-2023),
and official county statistical bulletins. For the extremely small number
of missing values in the original data, linear interpolation or other
appropriate data processing methods were used to fill and handle them.

3.2 Research methodology

3.2.1 Measuring RCE with super-SBM model

The super-efficiency Slacks-Based Measure (SBM) model
demonstrates methodological advantages over conventional DEA
approaches by explicitly accounting for input-output slack variables.
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This framework enables precise differentiation among decision-
making units (DMUs) with efficiency scores >1 while ensuring robust
efficiency quantification ( ). The model is

presented as follows:

1 & X
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In , p represents the RCE of counties in Jiangxi
Province, values >1 indicate optimal frontier performance, and »
denotes the number of DMUs, corresponding to 85 county-level units
in Jiangxi. Each DMU incorporates m inputs, r; desirable outputs, and

r, undesirable outputs. The slack variables x, }d, and y" represent
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input, desirable, and undesirable output, respectively. x;;, yfj, and ygl-
denote the optimized input i, desirable output s, and undesirable
output q for DMU j after slack adjustment. 4; denotes the
weight coeflicient.

3.2.2 The modified coupling coordination model

Conventional coupling coordination degree (CCD) models often
yield overly concentrated result distributions, exhibiting limited
discriminative validity (Yin et al., 2023). We adopt a modified coupling
coordination model (Zhang et al., 2024) to address this methodological
constraint to quantify the interactive coordination between APS and
RCE. This enhanced framework provides a more nuanced
differentiation of coordination levels while maintaining measurement
fidelity. The model structure is expressed as:

n

> (ui-u) —

i>j, j=1 L 1
C= [1-—— T+ 3)
n i=1 max(U,)
>'m
m=1
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In Equation 3, n =2, U; and U; are APS and RCE, respectively.
Assuming maX(U,- ) is U,, Equation 1 can be simplified as:

i~

2

C

)

In Equation 4, C is the coupling degree between APS and RCE,
with a value range of [0, 1]. The coupling degree can only reflect the
interaction and impact between the level of APS and RCE, and it
cannot reflect the coordination relationship between the two. Further
CCD models need to be introduced as follows:

T= QUl + BUZ (5)
D=CxT 6)

In Equations 5-6, T is the comprehensive coordination index of
APS and RCE, a and f are undetermined coeflicients, which are
assigned to 0.5. D is the CCD of APS and RCE, and the value range is
[0, 1]. Referring to the existing literature (Sun et al., 2024), the actual
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measured CCD is divided into 10 grades by an equal interval division
method (Table 1).

3.2.3 Kernel density estimate

In this paper, Kernel density estimation is used to analyze the
dynamic evolution trend of the CCD between APS and RCE in all
counties and grain functional areas of Jiangxi Province. The specific
formula is as follows:

f(D)=n—1th(D;D‘ @)
i=1

In Equation 7, D; is the CCD between the APS and the RCE in i
county, D is the mean value of the CCD of all counties, # is the
number of counties, & is the bandwidth, k() is a kernel function,
which is defined as a Gaussian kernel function in this study.

3.2.4 Dagum Gini coefficient decomposition

Based on the existing literature (Li et al., 2024), this study used the
Dagum Gini coefficient decomposition method to analyze the spatial
difference and source of the CCD between APS and RCE. The
calculation and decomposition process of the Dagum Gini coefficient
is as follows:

k 1 n,

®)

Dj — Dy |

]lhhlrl

In Equation 8, G is the overall Gini coefficient, D is the mean
value of the CCD, n is the number of counties, k is the number of
regions, D ji(Dhr) is the CCD of any county in the j (h) region, n j("h)
is the number of counties in the j (h) region.

Based on the above formula, the Gini coefficient G i in each region
and the Gini coefficient Gj;, between regions are calculated. The
specific formula is as follows:

ii Dj; —Dy, 9)
G = 2r12DJ ;‘;;' d
0, n,
Zz Dji —Dpy
Gy —izlr=l 10
jh njnh(Dj+Dh) ( )

TABLE 1 Division of coupling coordination grade between APS and RCE.
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In Equations 9-10, D and Dy, are the mean values of the CCD in
the region, which is deﬁned as D > D The global overall Gini
coefficient is further decomposed 1nt0 1ntra regional Gini coefficient
contribution G,, and inter-regional Gini coefficient contribution Gy,
The specific decomposition is as follows:

ZGJJ 15 1
k j-1
Gb = Gjn (PSh +PrS;) (12)
i=2h=1
G=Gy +Gyp (13)

In Equations 11-13, Pj=n;/n and S]-:nij/nD are the proportion
of the number of counties in the region and the proportion of the
CCD value, respectively. The product of the two represents the weight
of the regional Gini coefficient.

Because of the cross term in the contribution of the inter-regional
Gini coefficient, the net value of the contribution of the inter-regional
Gini coefficient needs to be calculated:

~_th=Pn
T)h B tjh +Pjh 1
tih =I:IZ(Y—X)th(X)dFj (y) (15)
Pin =I§IZ(Y_X)dFj (x)th (y) (16)

In Equations 14-16, Ty, is the relative gap between the CCD
between the two regions of j and h, t ih is the difference between the
CCD between the two regions of j and &, and Py, is the super variable
first moment. Based on this, the inter-regional Gini coefficient
contribution Gy, is decomposed into the inter-regional Gini coefficient
net contribution G, and the super-variable density contribution G;.
The specific formula is as follows:

k j-1
Gnp :ZZGjh (PjSh +Pth)Tjh (17)
j=2h=1
k j-1
Ge=2 2 Gjn (PSn +PuS;)(1-Tn) (18)
j=2h=1

Coupling Coupling Grade Coupling Coupling

coordination coordination grade symbol coordination coordination grade

interval interval

0<D<0.1 Extreme imbalance I 0.5<D<0.6 Barely coordination VI
0.1<D<02 Severe imbalance I 06<D<0.7 Primary coordination Vil
02<D<03 Moderate imbalance 111 0.7<D<0.8 Intermediate coordination VII
03<D<04 Mild imbalance v 0.8<D<0.9 Good coordination IX
04<D<05 Marginal imbalance v 09<D«<1 High-quality coordination X
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The overall Gini coefficient G can be decomposed into:

G =Gy +Gpp + Gy (19)
3.2.5 GTWR model

The GTWR model can consider the non-stationarity of time and
space and can analyze the different characteristics of influencing
factors in time and space (He and Huang, 2018). This study employs
the GTWR model to conduct a spatiotemporal heterogeneity analysis
of the factors influencing the CCD between APS and RCE. The
specific model is as follows:

la~]

Yi =Bo (ui, vi, ti)+ Y Bi (ui, vi, ti) Xk + &
k=1

(20)

In Equation 20, Y; represents the dependent variable of the i th
county, which refers to the CCD in this paper; X;x represents the value
of the k th influencing factor in the i th county; £, (u,-,v,-,t,-) denotes
the intercept, where u;,v;,and t; are the longitude, latitude and time
of the i county, respectively. S (u,»,v,»,t,-) represents the regression
coefficient; >0 indicates a positive correlation between the
influencing factors and the CCD, and vice versa; ¢; is a random
disturbance term.

3.3 Variable selection

3.3.1 Construction of the index system for RCE

This study constructs an input index system from the three
dimensions of the labor force, land, and agricultural materials based
on the actual situation of rice production. It takes rice yield and
carbon sink as desirable output and rice carbon emissions as
undesirable output. The specific indicators and explanations are
shown in Table 2.

3.3.1.1 Input indicators

To ensure consistency between input indicators and rice output
metrics, this study employs a weighting coeflicient method to
disaggregate production factors (Lu et al., 2024). Two coeflicients are
defined: A = (Agricultural Output Value / Total Output Value of

TABLE 2 Input—output indicator system for RCE assessment.

10.3389/fsufs.2025.1658655

Agriculture, Forestry, Animal Husbandry, and Fishery) x (Rice Sown
Area / Total Sown Area of Crops); B = Rice Sown Area / Total Sown
Area of Crops. Land input retains the rice sown area metric. Labor
input is calculated as Coefficient A x Agricultural, forestry, animal
husbandry, and fishery industry employees, and all other input
indicators are multiplied by Coefficient B. It should be noted that the
original data pertaining to input indicators, including chemical
fertilizers, pesticides, agricultural mulch films, and agricultural
diesel, were sourced from the “Jiangxi Statistical Yearbook (2013-
2023), the “Statistical Yearbooks of Jiangxi’s Prefecture-level Cities
(2013-2023),” and the official county-level statistical bulletins
issued annually.

3.3.1.2 Output indicators

1 Carbon sink estimation. Rice carbon sinks are quantified
following the methodology proposed by Chen et al
(2022a, 2022b).

Cs=C, xY, x(1-W, )x(1+R, )/ H, (1),

In Equation 21, C, denotes the total carbon sink of rice cultivation,
C, represents the photosynthetic carbon assimilation rate of rice, Y is
the economic yield of rice crops, W, is the moisture content of the
economic product, R, is the root-to-shoot ratio coefficient, and H, is
the harvest index (economic coefficient). The rice crops’ carbon
absorption rate, water content, economic coefficient, and root-shoot
ratio were set to 0.41, 0.12, 0.45 and 0.60, respectively.

2 Calculation of carbon emissions from rice cultivation. Total
carbon emissions from rice production systems encompass
direct and indirect carbon emission equivalents generated
throughout the entire cultivation cycle, from field tillage to
harvest. Drawing on established methodologies (Chen et al.,
2022a, 2022b; Li et al, 2023; Wu et al., 2024), this study
quantifies carbon emissions using the emission factor
approach, addressing two primary sources: agricultural input
utilization and rice growth processes. To account for data
limitations in tillage area quantification, the actual sown area
of rice is adopted as a proxy for tillage area. All other

Category Variable Explanation Units
Input Labor Labor force engaged in rice production 10* persons
Land Cultivated area for rice 10 hectares
Chemical fertilizer Fertilizer consumption in rice production 10* metric tons
Pesticide Pesticide application in rice production 10* metric tons
Agricultural film Plastic film utilization in rice production 10* metric tons
Agricultural diesel Diesel fuel consumption in rice production 10* metric tons
Output
Desirable Output Economic benefit Rice yield 10* metric tons
Ecological benefit Rice ecosystem carbon sink 10* metric tons CO,-eq
Undesirable Output Environmental cost Total carbon emissions from rice farming 10* metric tons CO,-eq
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TABLE 3 Carbon-emission sources and coefficients.

10.3389/fsufs.2025.1658655

Category  Emission source Coefficient Unit Source
Agricultural Nitrogen fertilizer 1.74 kg CO,-eq kg™ Chen et al. (2022a, 2022b)
Inputs Phosphorus fertilizer 0.20
Potassium fertilizer 0.15
Compound fertilizer 0.38 Li et al. (2023)
Chemical pesticides 4.9341 Chen et al. (2020)
Agricultural film 5.18
Agricultural diesel 0.5927 Netz et al. (2007)
Irrigation 20.476 kg CO,-eq ha™ Dubey and Lal (2009)
Tillage 312.6 kg CO,-eq km™ Shen et al. (2025)
Rice growth Early-season rice 154.70 kg CH, ha™ Yun et al. (2014)
Mid-season rice 654.20
Late-season rice 458.00

agricultural inputs are multiplied by coefficient B. The
proposed model is formulated as follows:

(22)

n n
C,= Zek = 25](-(0

k=1 k=1

In Equation 22, C, denotes the total carbon emissions from the
rice production system (kg CO,-eq), where k represents emission
source categories (k = 1,2,3,...), encompassing agricultural inputs and
rice growth processes. The e, quantifies emissions from each source,
with 6 and w corresponding to the emission factor and actual input
quantity of the source, respectively. For analytical consistency, methane
(CH,) emissions are converted to carbon equivalents using the
standardized conversion: 1 t CH, = 6.82 t CO,-eq. Emission factors for
all sources and their referenced literature are detailed in Table 3.

3.3.2 Selection of indicators for APS

According to the classification by China’s National Bureau of
Statistics, the agriculture, forestry, animal husbandry, and fishery
services sector constitutes a component of the gross output value of
agriculture, forestry, animal husbandry, and fishery. The development
of APS is an important indicator of the deepening of the agricultural
division of labor and the upgrading of industrial structure. Its
development level is a comprehensive concept that can directly reflect
the proportion of the service industry in the entire agricultural
industry chain. This metric must align with statistical logic and
modern agricultural development objectives. On the basis of the
existing research (Shi et al., 2024; Wu et al., 2024; Xu et al., 2022a,
2022b) this study intends to use the ratio of the output value of
agriculture, forestry, animal husbandry, fishery and service industry
to the total output value of agriculture, forestry, animal husbandry and
fishery as a quantitative index to evaluate the development level of APS.

3.3.3 Selection and explanation of influencing
factors index of CCD

Current scholarship remains limited on factors influencing
the interactive coordination mechanisms between APS and
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RCE. According to the mechanism analysis of coupling coordination
and other correlation studies in the previous text, we operationalize
the IPAT theoretical (York et al., 2003) framework to construct a
multidimensional indicator system spanning economic, social, and
policy dimensions. At the economic level, the main factors include
the scale of rural population-land (SRPL), multiple cropping index
(MCI), and planting structure (PS). The social level includes the
urbanization level (URB) and the urban-rural income gap (URIG).
The policy level is the financial support for agriculture (FSA).
Therefore, the index system of CCD influencing factors was finally
constructed based on six factors at three levels (Table 4).

4 Results

4.1 Spatiotemporal evolution of APS and
RCE

To investigate the spatiotemporal patterns and evolutionary
trajectories of APS and RCE across Jiangxi’s counties, we conducted
quartile-based classification using the natural breaks method in
ArcGIS 10.8. The county-level APS and RCE metrics for 2012, 2015,
2018, and 2022 were systematically categorized into four tiers, as
visualized in Figure 3. For cartographic clarity and space optimization,
county identifiers in the maps are represented numerically, with
corresponding geographical labels cross-referenced to Figure 2 This
standardized visualization protocol ensures consistent spatial
referencing throughout the analysis.

4.1.1 Spatiotemporal evolution of APS

From 2012 to 2022, APS in Jiangxi Province experienced
significant growth. The average APS index increased from 0.0108 in
2012 to 0.0308 in 2022, representing nearly a threefold rise. Spatially,
the number of counties with high-level APS expanded from five
isolated regions in 2012—such as Dayu, Qingyuan, and Suichuan—to
eleven clustered areas in 2022, including Xinjian, Anyi, and Ruichang.
Meanwhile, the number of counties with medium-to-high-level APS
rose from 19 to 24, indicating an enhanced spatial agglomeration
effect. This transformation is closely associated with Jiangxi Province’s
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TABLE 4 Indicator system of influencing factors for CCD.
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Dimension  Indicator Symbol Description Unit
Economic Scale of rural population-land SRPL Cultivated land area / Rural population ha/capita
Multiple cropping index MCI Total crop sown area / Cultivated land area —
Planting structure PS Rice sown area / Total crop sown area —
Social Urbanization level URB Urban population / Total population %
Urban-rural income gap URIG Disposable income of urban residents — Disposable 10* CNY
income of rural residents
Policy Financial support for agriculture FSA Agriculture-related fiscal expenditure / General local —
government expenditure

policy initiatives aimed at advancing agricultural modernization and
optimizing regional development strategies.

From the perspective of grain production functional zones,
significant regional disparities persist. The core production zone of the
Poyang Lake Plain has consistently maintained the highest average
APS level (0.019), attributable to its flat topography, dense hydrological
network, well-developed agricultural infrastructure, and
comprehensive agricultural service system, all of which facilitate large-
scale and efficient farming operations. In contrast, the western high-
yield areas exhibit a relatively low APS level (average 0.007), likely
constrained by hilly and mountainous terrain, inadequate agricultural
investment, fragmented land management, and incomplete extension
of agricultural services. The ranking of APS development levels across
regions is as follows: Poyang Lake Plain > Ji-Tai Basin > Ganfu Plain
> Non-Primary Production Counties > Western High-Yield Areas,
highlighting the substantial impact of natural endowments and
foundational agricultural conditions on the spatial differentiation of

agricultural production systems.

4.1.2 Spatiotemporal dynamics of RCE

From 2012 to 2022, RCE in the counties of Jiangxi Province
exhibited a consistent upward trend, characterized by a spatial
distribution pattern of “high in the central regions and low in the
peripheral areas” The average RCE increased gradually from 0.4459 in
2012 to 0.6676 in 2022, with a particularly notable acceleration
observed after 2018, suggesting that agricultural green transformation
policies began to yield substantial results during the latter part of the
decade. Areas with high RCE were predominantly concentrated in key
production zones such as the Ganfu Plain and the Poyang Lake Plain,
where land resources are relatively concentrated and the level of
agricultural mechanization is high—conditions that facilitate the
adoption of water-saving, fertilizer-efficient, and environmentally
sustainable production technologies. In contrast, regions with low
RCE were primarily located in non-core production counties within
the southern Jitai Basin and the hilly terrains of southern Jiangxi,
where complex topography and high degrees of land fragmentation
present significant barriers to enhancing carbon efficiency.

The regional carbon efficiency pattern has remained largely stable,
with the following ranking: Ganfu Plain > Western High-Production
Area > Poyang Lake Plain > Jitai Basin > Non-Primary Production
Counties. Notably, high-efficiency areas have transitioned from
isolated pockets in 2012 to contiguous clusters by 2022, forming a
radiation-like spatial structure centered on the Ganfu Plain and
exhibiting a gradient decline outward toward peripheral regions.
Although carbon efficiency in each county has generally improved,
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regional disparities have not been substantially reduced, indicating
that natural endowments, economic foundations, and technological
diffusion capacities continue to exert significant influence on the
equitable enhancement of carbon efficiency. Moving forward, targeted
policy support and tailored technology transfer for underperforming
regions should be strengthened.

4.2 Evolution characteristics of CCD

4.2.1 Temporal evolution characteristics of CCD

Using the previously established CCD model, we calculated the
CCD between APS and RCE across 85 counties in Jiangxi Province
from 2012 to 2022. The coupling coordination levels were classified
according to the criteria in Table 1. Due to space constraints, only the
annual mean values are presented (Table 5); detailed temporal data are
available upon request.

Firstly, from the development level of the two systems (U, and
U,), while APS consistently lagged behind RCE in absolute
development levels, both systems demonstrated sustained upward
trends. Secondly, in terms of coupling degree (C), the coupling
degree exhibited a fluctuating upward trajectory, increasing from
0.5470 (2012) to 0.7101 (2022). These values remained within the
high-coupling regime (C > 0.7 after 2017), confirming strong
bidirectional interactions between APS and RCE systems. Finally,
from the perspective of CCD (D), the CCD progressed steadily
from 0.2682 (2012) to 0.4613 (2022), transitioning through three
distinct phases: moderate imbalance (2012-2015), mild imbalance
(2016-2019), and marginal imbalance (2020-2022). Notably,
although the development level of the CCD between the two
systems shows an overall upward trend, the level is relatively low,
substantial APS-RCE

indicating untapped potential for

synergy enhancement.

4.2.2 Spatial evolution characteristics of CCD

To visualize the spatial evolution of APS-RCE coupling
coordination across Jiangxi’s counties, we conducted spatial mapping
using ArcGIS 10.8 (Figure 4) based on coordination degree values
from 2012, 2015, 2018, and 2022.

From the overall analysis, the coordination levels exhibited an
upward trend with a persistent “central high, peripheral low” spatial
configuration, particularly pronounced by 2022. From 2012 to 2018,
the CCD of the whole province remained in a state of barely
coordination, and the counties achieving this level increased from 3
(2012) to 8 (2018), while those in severe imbalance decreased from
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TABLE 5 CCD between APS and RCE at county level in Jiangxi province during 2012-2022.

Year U, (APS) U, (RCE) Coupling Coordinating Coupling coordination = Coupling
degree (C) index (T) degree (D) coordination grade

2012 0.0957 0.1984 0.5470 0.1471 0.2682 Moderate imbalance
2013 0.1008 0.2150 0.5457 0.1579 02771 Moderate imbalance
2014 0.1055 02168 05570 0.1612 0.2854 Moderate imbalance
2015 0.1090 02179 0.5681 0.1634 0.2908 Moderate imbalance
2016 0.1365 02283 0.6556 0.1824 0.3339 Mild imbalance
2017 0.1833 0.2224 07128 0.2029 03731 Mild imbalance
2018 0.1999 0.2262 0.7193 02131 0.3828 Mild imbalance
2019 02075 0.2455 0.6968 0.2265 0.3890 Mild imbalance
2020 0.2024 02781 0.7070 0.2403 0.4010 Marginal imbalance
2021 0.2496 03109 0.7147 0.2803 0.4346 Marginal imbalance
2022 0.2890 0.3524 0.7101 0.3207 04613 Marginal imbalance

17 to 1. In 2022, the CCD of most counties has reached a barely
coordinated state or above. Xinjian and Hengfeng County emerged
as leaders, followed by six counties (e.g., Nanchang, Qingyuan,
Jinggangshan) attaining primary coordination. Notably, three
counties—Anyuan, Xiangdong, and Tonggu—remained in moderate
imbalance, and it is urgent to be vigilant that these counties become
the “short board” that hinders the development of agricultural green

Frontiers in Sustainable Food Systems

transformation. Conversely, high-performing counties (e.g., Xinjian,
Hengfeng, Nanchang) demonstrated the potential to act as
developmental anchors for neighboring regions.

4.2.3 Dynamic evolution characteristics of CCD
To comparatively analyze the dynamic evolutionary trends of
APS-RCE coupling coordination across Jiangxi Province and its major
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grain production areas, we employed Kernel Density Estimation — a
nonparametric technique particularly effective for identifying
distributional characteristics and convergence patterns. The derived
density curves were visualized using Origin 2022, enabling systematic
analysis of spatial polarization or convergence tendencies in
coordination development (Figure 5).

Firstly, the dynamic evolution trend of CCD across Jiangxi
Province’s entire territory from 2012 to 2022 is analyzed in Figure 5a.
The CCD curve demonstrates a consistent rightward shift throughout
the study period, indicating continuous improvement in coordination
levels that align with previous temporal analyses of CCD development
patterns. Notably, the primary peak value exhibits alternating
fluctuations, which indicates that the aggregation degree of CCD in
Jiangxi counties also fluctuates. Furthermore, the CCD curve develops
a pronounced right-skewed tail with slight expansion in its extension
range, and the lateral peak value gradually increases. The emergence
of this multimodal trend indicates that a limited number of counties
exhibit CCD values exceeding the provincial average, which play a
disproportionately significant role in elevating the overall coordination
status through spatial spillover effects.

Second, Figures 5b-f analyses the dynamic evolution of CCD
across Jiangxi’s major grain functional areas. As analyzed from
Figure 5b, the CCD curve trajectory of Poyang Lake Plain shows
sustained rightward migration from 2012 to 2022, indicating
continuous improvement in coordination levels. Although the
principal peak amplitude exhibits alternating fluctuations, annual
peaks after 2016 consistently exceed 2012 levels (with only 2017
showing a slight decline), suggesting strengthened spatial
agglomeration effects. Notably, the progressive disappearance of
tailing and bandwidth expansion implies that the development of
CCD is gradually balanced, with improving homogeneity in
coordination development. According to Figure 5¢, the CCD curve of
Ganfu Plain maintains upward coordination trends, but the principal
peak amplitude gradually declines from 2012 to 2022, indicating
reduced spatial concentration. The concurrent emergence of distinct
right-tailed distribution and bandwidth broadening reveals emerging
multimodal patterns characteristic of polarization phenomena where
high-performing counties disproportionately elevate regional averages
through spatial spillover effects. According to the analysis of Figure 5d,
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the coordination trajectory of Ji-Tai Basin exhibits cyclical amplitude
fluctuations, with 2016 representing an extreme change relative to
other years. This temporal pattern corresponds to shifting spatial
agglomeration dynamics. The progressive left-skewed tail development
indicates that a few counties with low CCD lag the overall level of the
region. According to Figure 5e, due to its limitation to four counties,
it failed to adequately present the dynamic evolution trend of the
Western Jiangxi high-yield area. The emergence of secondary peaks
suggests nascent polarization tendencies despite overall
homogenization trends. From the analysis of Figure 5f, despite
maintaining rising coordination levels of non-core production
counties, principal peak changes alternately indicate that the degree
of aggregation fluctuates. Concurrent right-tailed expansion confirms
that the CCD level of a few counties significantly pulls the region’s

overall level.

4.3 Regional difference analysis of CCD

The study employed the Dagum decomposition method to
quantify regional difference in CCD between APS and RCE across
Jiangxi’s counties from 2012 to 2022, and the overall, intraregional and
interregional Gini coefficients and contribution rates of CCD were
measured by Matlab 2021 software (Figure 6).

4.3.1 Overall regional difference

Analysis of Figure 6a revealed fluctuating downward trends in the
overall Gini coefficient of CCD, declining from 0.2133 in 2012 to
0.1340 in 2022, indicating a gradual reduction in regional difference
across counties. This temporal pattern suggests progressive
homogenization of CCD development at the provincial scale while
also emphasizing the need for coordinated development strategies to
prevent the potential widening of inter-county differences in future
agriculture green transformation.

4.3.2 Intraregional difference

Analysis of Figure 6b revealed distinct spatiotemporal patterns
in Intraregional Gini coeflicients across Jiangxis major grain
functional areas (Figure 6 legend: 1 = Poyang Lake Plain, 2 = Ganfu
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Plain, 3 =]Jitai Basin, 4= Western Jiangxi high-yield area,
5 = Non-core production counties) from 2012 to 2022. The average
intraregional difference demonstrated the following ranking:
Western Jiangxi high-yield area > Jitai Basin > Ganfu Plain > Poyang
Lake Plain > Non-core production counties. All regions exhibited
generally declining intraregional differences during the study period,
indicating that the spatial differentiation degree in each region is
gradually shrinking. From the perspective of the changing trends in
different regions over various periods, during the 2012-2015 period,
all study regions exhibited gradual decline rates in intraregional
differences. Notably, this downward trend accelerated significantly
from 2015 to 2019, with differentiation levels decreasing at nearly
triple the previous rate. This accelerated convergence coincided
temporally with Jiangxi Province’s pioneering implementation of
comprehensive agricultural socialization service reforms initiated in
2013,
production standardization across regions. However, post-2020, the

suggesting these policy interventions likely enhanced

degree of differentiation within each region tends to increase,
indicating that the differences within each region may intensify,
which should be paid attention to.

4.3.3 Interregional difference

From the analysis of Figure 6¢, the most substantial disparity in
CCD was observed between the Poyang Lake Plain and Non-core
production counties (1-5), with a mean value of 0.2329. Conversely,
minimal variation occurred between the Poyang Lake Plain and
Ganfu Plain (1-2), demonstrating a mean difference of 0.1345. These
metrics suggest pronounced developmental gaps in coupled
coordination systems between primary grain bases and non-core
production regions while showing relative consistency between
adjacent major production areas. Temporal analysis of coordination
degree fluctuations reveals two distinct phases: From 2012 to 2015,
interregional variations maintained relative stability, followed by
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intensified fluctuations during 2015-2022. Notably, the overall trend
indicates a progressive convergence in coordination levels across
regions, indicating that the differentiation degree of interregional
coupling coordination development level is shrinking.

4.3.4 Sources of regional differences and their
contribution rates

As revealed in Figure 6d, the regional difference in the CCD
between APS and RCE predominantly originated from interregional
super-variable density. Throughout the study period, its
contribution rate remained relatively stable at approximately 50%,
with an average contribution rate of 49.18%. Comparatively, the
average contribution rates from intraregional and interregional
differences were 22.13 and 28.68%, respectively. These findings
suggest that mitigating regional disparities in the coupling
coordination system should prioritize reducing cross-regional
interaction intensity between different geographical zones, as the
overlapping effects between regions emerge as the principal
determinant of regional heterogeneity.

4.4 Spatiotemporal heterogeneity analysis
of the influencing factors on the CCD
between APS and RCE

4.4.1 Selection of GTWR model

Before model implementation, we conducted variance inflation
factor (VIF) tests to assess potential multicollinearity among
independent variables that might compromise estimation reliability.
Diagnostic results (Table 6) revealed acceptable collinearity levels,
with all variance inflation factors (VIF) below 10 and tolerance values
exceeding 0.1 - within established statistical significance thresholds.
These diagnostic results confirm the absence of severe multicollinearity
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issues that could substantially distort the GTWR model
parameter estimates.

Furthermore, the geographically and temporally weighted
regression (GTWR) analysis was performed using the GTWR plugin
integrated into ArcGIS 10.8 software. The bandwidth was
automatically determined through an optimization process, with the
spatiotemporal distance parameter ratio maintained at 1 to ensure
balanced temporal and spatial weighting. A comprehensive model
comparison was conducted among GTWR, geographically weighted
regression (GWR), temporally weighted regression (TWR), and
ordinary least squares (OLS) approaches (Table 7). The Akaike
Information Criterion corrected (AICc), and goodness of fit statistic
(R? were adopted as statistical metrics for model evaluation and
selection, following established methodologies (Fernandez et al.,
2001). The comparative analysis demonstrated the superior
performance of the GTWR model. Notably, the GTWR model
achieved the lowest AICc value (—2450.80) and the highest R? value
(0.7696) compared to the GWR, TWR, and OLS models. These results
statistically confirm that the GTWR framework outperforms
conventional spatial or temporal regression approaches in explaining
the spatiotemporal heterogeneity of influencing factors on the CCD
between APS and RCE.
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TABLE 6 Results of multicollinearity test.

Variable = URB SRPL MCI URIG @ FSA
VIF 1.709 1.661 1.240 1.227 L113 | 1.097
1/VIF 0.585 0.602 0.806 0815 0899 = 0911

TABLE 7 Comparison of model evaluation indexes.

Model OLS TWR GWR
R? 0.3644 0.4056 0.7032 0.7696
AIC -1771.15 ~1802.74 —2342.45 —2450.80

4.4.2 Temporal variation of influencing factors

The spatiotemporal regression analysis employing the GTWR
model revealed the temporal variations in regression coefficients of
influencing factors affecting the CCD between APS and RCE across
county-level regions in Jiangxi Province. These results demonstrate the
differential spatial-temporal impacts of various determinants on the
coordinated development system. The temporal dynamics of these
influencing factors were subsequently visualized through boxplot
diagrams (Figure 7) generated using Origin 2022, which effectively
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illustrate the evolving patterns and fluctuation ranges of each factor’s
contribution over different temporal periods.

The analysis of economic drivers revealed distinct temporal
heterogeneity in factors influencing CCD. The scale of rural
population-land (Figure 7a) emerged as the most significant positive
contributor, with its average regression coefficient reaching 0.4584.
Notably, the dispersion of coefficients gradually narrowed, and
outliers disappeared over time, suggesting a strengthening consensus
on its beneficial role across counties. This phenomenon could
be attributed to expanded per capita arable land enhancing demand
for APS through economies of scale and optimized land use patterns,
improving carbon sequestration capacity. These dual effects
collectively elevate both APS and RCE, thereby promoting
CCD. Multiple cropping index (Figure 7b) demonstrated a negative
association with CCD, with its average regression coeflicient reaching
—0.0022, though its effect magnitude remained relatively limited. The
narrowing dispersion pattern indicates increasing consistency in its
inhibitory effects across time. Mechanistically, intensified cropping
frequency increases absolute carbon emissions while reducing
marginal carbon efficiency, creating a double burden constraining
coordinated development. The planting structure (Figure 7c¢)
exhibited moderate positive impacts (mean coefficient: 0.1064), and
the dispersion gradually expanded. This temporal variability likely
stems from differential capacities to leverage expanded rice
Where
concentration of rice planting enables specialized agricultural service

cultivation areas. implemented effectively, spatial
systems through industrial clustering effects and optimized resource
allocation efficiency via intensive management practices.

The regression coefficients of urbanization level (Figure 7d) on
coupling coordination development exhibited mixed positive and

negative values. A positive mean coeflicient was observed during

10.3389/fsufs.2025.1658655

2012-2016, while a negative mean emerged in 2017-2022. Notably,
the average coefficients across all study periods approached zero,
suggesting negligible overall impacts on coupling coordination
development. Concurrently, the increasing frequency of outliers in
urbanization  coefficients indicates growing inter-county
heterogeneity in spatial effects. In contrast, the urban-rural income
gap (Figure 7¢) demonstrated a consistent positive influence, with a
mean regression coefficient of 0.0984. The progressive expansion of
coefficient dispersion throughout the study period reveals the
persistent positive associations between income disparity and
coupling coordination development and intensifying regional
differentiation in these relationships across counties. This divergence
might be explained through a dual-channel mechanism: Elevated
income disparities exacerbate rural economic stagnation and
suppress farmers’ income growth, reducing capacity and incentives
for APS investments. Such underinvestment disrupts the potential
synergistic relationship between agricultural service and rice
production systems, ultimately impeding improvements in
coupling coordination.

The regression analysis revealed a statistically significant positive
association between financial support for agriculture (Figure 7f) and
coupling coordination development, with an average coeflicient of
0.2286. Notably, the dispersion of regression coeflicients gradually
narrowed, accompanied by a reduction in outliers, suggesting
diminishing regional disparities in the intensity of this relationship
across counties. These findings imply that enhanced agricultural
fiscal investments consistently strengthen the coupling coordination
mechanism. A plausible explanation lies in the synergistic effects of
fiscal agricultural support on structural optimization. Increased
funding facilitates land transfer and promotes large-scale agricultural

operations, thereby advancing the development of specialized
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agricultural services. Concurrently, such investments optimize the
allocation of agricultural production factors, improving production
efficiency and resource utilization rates. These systemic enhancements
further reduce energy consumption and carbon emissions per unit
output, fostering tighter integration between agricultural service
systems and low-carbon rice production practices.

4.4.3 Spatial variation of influencing factors

To better visualize the spatial variations of influencing factors
across the study period, we spatially visualized the average regression
coeflicients derived from the GTWR model using the Natural Breaks
classification method in ArcGIS 10.8 software (Figure 8). This
analytical approach effectively reveals the spatial heterogeneity
patterns of different driving factors while maintaining their intrinsic
statistical distribution characteristics.

The scale of rural population-land (Figure 8a) exhibited a
spatially heterogeneous impact on the CCD, characterized by a “high
in northern and southern regions, low in central areas” pattern. High-
impact zones are clustered predominantly in the major grain-
producing areas of western Jiangxi and non-core production counties
of southern Jiangxi (e.g., Shicheng County: 1.9408). In contrast,
low-impact zones are concentrated in the eastern Ganfu Plain (e.g.,
Jinxi County: —0.1711). This spatial disparity may arise from the dual
effects of population-land scale optimization: moderate scales

10.3389/fsufs.2025.1658655

enhance synergy between APS and RCE, whereas excessive scales
may decouple APS from practical agricultural demands, impeding
low-carbon technology adoption, while undersized scales restrict
APS development and limit carbon efficiency improvements. The
multiple cropping index (Figure 8b) demonstrated non-uniform
spatial effects on CCD, with high-impact zones concentrated in the
eastern Poyang Lake Plain (e.g., Yushan County: 0.1375) and
low-impact zones in the central Ganfu Plain (e.g., Anyi County:
—0.0758). A plausible explanation lies in its dual role: moderate
increases optimize resource allocation between APS and RCE,
whereas excessive indices may overcentralize short-term service
demands, compromising low-carbon service quality and destabilizing
their synergistic interactions. The planting structure (Figure 8c)
spatially influenced CCD with an “east-west high, north-south low”
configuration. High-impact areas dominated the eastern Poyang Lake
Plain and western Jitai Basin (e.g., Guangfeng District: 0.4620), while
low-impact zones prevailed in the western Poyang Lake Plain and
southern Jitai Basin (e.g., Wuning County: —0.2433). Mechanistically,
concentrated rice monoculture improves agricultural input efficiency
and carbon performance, whereas fragmented terrains elevate service
costs, constraining APS
CCD equilibrium.

The urbanization level (Figure 8d) showed marked spatial

development and  disrupting

heterogeneity in CCD impacts. High-value clusters emerged in the
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eastern Poyang Lake Plain and central Jitai Basin (e.g., Pengze County:
0.4722), contrasting with low-value areas in the western Poyang Lake
Plain (e.g., Xiushui County: —0.6863). This duality reflects
urbanization’s competing effects: while capital and technology inflows
strengthen APS-RCE coordination, rural labor migration and
agricultural regression may undermine synergistic momentum. The
urban-rural income gap (Figure 8¢) predominantly enhanced CCD
across Jiangxi. Enlarged income disparities accelerated rural-to-urban
labor transfer, fostering land consolidation that promoted scaled
farming and APS specialization. Concurrently, APS advancements
facilitated
improving RCE.

low-carbon technology diffusion, synergistically

The financial support for agriculture (Figure 8f) spatially
influenced CCD with a “south-high/north-low, east-high/west-low”
gradient, showing pronounced positive effects in southern Jiangxi.
Enhanced fiscal investments likely improved rural infrastructure,
reducing APS operational costs and enhancing service accessibility.
Furthermore, upgraded infrastructure supported agricultural
intensification and  carbon-efficient

APS-RCE coordination.

practices, reinforcing

5 Discussion

The coordinated development between APS and RCE constitutes
a complex and dynamic process. Through an empirical analysis at the
county level in Jiangxi Province, a central rice-producing region of
China, this study elucidates the spatiotemporal evolution patterns
and driving mechanisms of their coupling coordination, providing
theoretical and empirical foundations for advancing agricultural
green transition and sustainable development.

First, the suboptimal coupling coordination level (showing an
upward trend yet remaining at relatively low grades) between APS
and RCE reveals systemic barriers in aligning service-driven
productivity gains with carbon efficiency improvements. While
prior studies have emphasized the role of APS in enhancing
technical efficiency (Cai et al., 2024; Lin et al., 2023), our coupling
coordination analysis demonstrates that their interaction remains
constrained by structural mismatches. For instance, the reliance on
high-input mechanized services during pre-production stages may
inadvertently increase fossil fuel consumption, offsetting carbon
sequestration benefits achieved through optimized irrigation and
soil management in production stages. This paradox aligns with
critiques of “greenwashing” in agricultural service markets, where
short-term yield stability often overshadows long-term carbon
neutrality goals (Mendes et al., 2024; Qiu et al.,, 2021). These
findings underscore the necessity of prioritizing structural
optimization and quality enhancement of service provision over
mere quantitative expansion during the agricultural green
transition. Furthermore, the untapped potential of APS in
improving carbon efficiency may stem from demand-supply
mismatches or inadequate contextual adaptation during
service implementation.

Second, the spatial heterogeneity dominated by interregional
hypervariable density (average contribution rate: 49.18%)
challenges the effectiveness of homogeneous policy frameworks.
Diverging from previous assessments focusing on intraregional
disparities (Zhang et al., 2023), our Dagum Gini coeflicient
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decomposition identifies hypervariable density between developed
(e.g., Poyang Lake Plain) and lagging regions (e.g., non-core
production counties) as the primary source of spatial inequality.
Advanced regions likely benefit from mature APS and
infrastructure, whereas lagging areas suffer from service
accessibility gaps and insufficient incentives for low-carbon
practices. This finding revises conventional wisdom attributing
spatial imbalances solely to resource endowment differences (Zhang
et al., 2022). Practically, policymakers should prioritize cross-
regional knowledge diffusion and technology transfer mechanisms,
particularly in areas with pronounced spatial heterogeneity.
Concurrently, fostering diversified agricultural development
models tailored to regional socioeconomic and ecological
conditions becomes imperative (Jin et al., 2024). Future research
could explore policy innovations to enhance interregional
collaboration for balanced agricultural sustainability.

Finally, the spatiotemporal heterogeneity analysis of influencing
factors reveals that the scale of rural population-land (SRPL) and
financial support for agriculture (FSA) emerge as key drivers,
consistent with induced institutional innovation theory. Expanded
land consolidation and fiscal incentives facilitate service adoption
and resource optimization (Wu et al., 2024). The negative effect of
the multiple cropping index (MCI) corroborates existing evidence
that agricultural intensification without decarbonization measures
exacerbates greenhouse gas emissions (Janus and Ertung, 2023;
Sroufe and Watts, 2022). The spatially divergent effects of planting
structure (PS) reflect context-dependent synergies between
monoculture efficiency and biodiversity conservation. These results
resonate with the “just transition” framework, emphasizing the
balance between productivity enhancement and equitable access to
ecologically resilient services (Ullman and Kittner, 2024). Notably,
the paradoxical positive correlation between the urban-rural
income gap (URIG) and coordination levels in certain regions
suggests that labor transfer-induced farmland intensification may
boost short-term scale efficiency while neglecting long-term
ecological consequences. This evidence reinforces the urgency of
formulating policies harmonizing economic equity with
environmental integrity.

While this study provides novel perspectives and methodologies
for examining the relationship between APS and RCE, several
potential limitations should be acknowledged. First, climate
variability factors (e.g., precipitation, temperature) directly influence
rice yields and greenhouse gas emissions. Due to data availability
constraints, climate-related variables were not incorporated into the
indicator system of influencing factors, which may partially limit the
comprehensive interpretation of the coupling coordination
mechanisms between APS and RCE. Second, the reliance on county-
level data restricts insights into farmers’ micro-level decision-making
processes, particularly their trade-offs between service costs and
carbon reduction benefits. Future studies should prioritize
household-level investigations to elucidate the micro-level drivers of
this coupled system. Third, the exclusive focus on a single major
grain-producing province may constrain the generalizability of
findings across diverse agroecological contexts. Expanding the
sampling framework to include comparative analyses of key
agricultural ecological zones (e.g., the Yellow River Basin and Yangtze
River Basin) is recommended to enhance the universality and robustness
of conclusions.
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6 Conclusions and recommendations
6.1 Conclusion

Based on panel data from 85 county-level administrative units in
Jiangxi Province (2012-2022), this study assessed the coupling
coordination level between APS and RCE using a modified coupling
coordination model, kernel density estimation, Dagum Gini coefficient
decomposition, and geographically and temporally weighted regression
(GTWR). The spatiotemporal evolution patterns, dynamic trends, spatial
disparities, and spatiotemporal heterogeneity of influencing factors were
systematically investigated. Key findings are summarized as follows:

1 Temporal trends: The overall coupling coordination level in
Jiangxi’s counties was upward but remained relatively low. By
2022, only Xinjian District and Hengfeng County achieved
intermediate coordination, while most regions remained in
marginal imbalance or barely coordinated states, indicating
substantial potential for improvement.

Dynamic evolution: A weakly multipolar dynamic trend was
observed. The Poyang Lake Plain demonstrated balanced
development with minimal divergence, whereas the Ganfu
Plain, Jitai Basin, and non-core grain-producing areas displayed
pronounced multipolar characteristics. Peak kernel density
values showed an upward trend across regions, reflecting
increased agglomeration intensity.

Spatial disparities: Regional differences in coupling
coordination were predominantly driven by interregional
hypervariable density (average contribution: 49.18%), followed
by interregional (28.68%) and intraregional (22.13%)
disparities.

Spatiotemporal heterogeneity of influencing factors: Drivers
exhibited significant spatiotemporal heterogeneity, ranked by
impact magnitude: the scale of rural population-land >
financial support for agriculture > planting structure > urban-
rural income gap > multiple cropping index > urbanization
levels. The urban-rural income gap positively affected most
counties, while other factors showed spatially divergent

impacts (both positive and negative).

6.2 Recommendations

To enhance the CCD between APS and RCE across Jiangxi’s
counties, we propose the following evidence-based recommendations
informed by our research findings:

First, government departments should prioritize enhancing
APS systems through multi-dimensional interventions. Given the
critical constraints of regional imbalance and service quality
deficiency identified in our analysis, strategic measures should
include (1) establishing dedicated fiscal mechanisms to strengthen
financial support for service infrastructure development, (2)
formulating standardized quality evaluation protocols coupled
with rigorous monitoring frameworks to ensure service
standardization, and (3) creating provincial-level technology
innovation platforms to foster green agricultural technologies.
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These coordinated efforts would facilitate synergistic development

between service system and low-carbon

agricultural transitions.

optimization

Second, a regional collaborative mechanism should be established
to address spatial disparities in coupling coordination. Our
decomposition analysis reveals that hypervariable density between
regions constitutes the primary contributor to overall coordination
disparities. We recommend implementing cross-regional knowledge
dissemination and technology exchange programs, particularly
between core rice-producing zones (Poyang Lake Plain and Ganfu
Plain). This should be complemented by developing joint green
production standards and establishing demonstration zones for
coordinated low-carbon practices, thereby reducing inter-regional
development overlaps and enhancing spatial synergies.

Third, government agencies should exercise strategic leadership
in spatial differentiation management. Based on regional resource
endowment characteristics revealed by our GTWR analysis,
customized strategies should be formulated to (1) optimize cropping
intensity (multiple cropping index) through agronomic suitability
assessments, (2) restructure planting systems using carbon efficiency
metrics, (3) implement targeted mitigation measures for location-
specific negative influencing factors. This place-based governance
approach would effectively balance agricultural productivity with
carbon reduction objectives while maintaining regional ecological
carrying capacities.
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