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Introduction: Agricultural productive services (APS), as a vital component of 
modern agricultural industrial systems, play a critical role in advancing green 
agricultural transformation and sustainable development.
Methods: This study investigates the spatiotemporal evolution, regional 
disparities, and influencing factors of the coupling coordination degree (CCD) 
between APS and the carbon efficiency in rice production (RCE) in Jiangxi 
Province, China. The spatiotemporal patterns, dynamic trends, and driving 
mechanisms were analysed using kernel density estimation, Dagum Gini 
coefficient decomposition, and the geographically and temporally weighted 
regression (GTWR) model.
Results: The results indicate that the CCD between APS and RCE demonstrates 
a weakly multipolar dynamic evolution pattern, exhibits an upward trend but 
remains suboptimal, with significant regional disparities driven by interregional 
hypervariable density (49.18% contribution). Influencing factors displayed 
notable spatiotemporal heterogeneity, with contributions ranked as follows: 
rural population-land scale > financial support for agriculture > planting structure 
> urban–rural income gap > multiple cropping index > urbanization level.
Discussion: Our findings offer insights applicable to Global South countries 
facing similar challenges in balancing productivity and decarbonization, and 
we  propose actionable strategies to enhance APS systems, establish cross-
regional coordination mechanisms, and optimize resource allocation for low-
carbon agricultural transitions.
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1 Introduction

As one of China’s three primary staple crops, rice is pivotal in 
ensuring national food security. Fluctuations in its production 
efficiency directly influence the stability of grain supply, serving as a 
critical indicator for assessing food security conditions (Lin et al., 
2022; Liu and Zhou, 2021). Historically, productivity gains in Chinese 
rice cultivation have predominantly relied on intensive inputs of water 
resources, land, and agrochemicals. While this approach has partial ly 
safeguarded stable yields and supply, it has concurrently imposed 
substantial environmental costs, particularly regarding sustainability 
(Xu et al., 2013; Yong et al., 2022). Empirical evidence reveals that rice 
paddies contribute approximately 48% of total agricultural greenhouse 
gas emissions in China, with methane (CH4) accounting for 94% of 
these emissions (Bao et al., 2024; Lu et al., 2024). Such emissions 
significantly exacerbate the risks of greenhouse effect and climate 
change, underscoring the urgency of addressing this dual challenge. 
Consequently, the central paradox confronting China’s rice production 
system has evolved from a dualistic “resource-development 
coordination” to a tripartite dilemma balancing “resource utilization, 
environmental preservation, and developmental imperatives” (Yan 
et al., 2025). Against the backdrop of China’s ongoing agricultural 
green transition, reconciling food security objectives with the 
imperative to mitigate greenhouse gas emissions during agricultural 
processes has emerged as a critical pathway toward sustainable 
agricultural development.

Under mounting pressures from tightening resource constraints, 
escalating non-point source pollution risks, and structural 
imbalances in ecosystems, traditional agricultural production 
models characterized by high inputs, high pollution, and low 
efficiency have become increasingly unsustainable and necessitate 
urgent improvements in carbon efficiency within agricultural 
systems—defined as achieving desired output growth while reducing 
redundant carbon emissions under given factor inputs (Bai et al., 
2019; Zhu and Huo, 2022). As a critical metric for evaluating 
low-carbon agricultural performance, carbon efficiency holistically 
reflects the input–output relationship between agricultural resource 
utilization and carbon mitigation effects (Bajan and Mrówczyńska-
Kamińska, 2020). While existing studies have measured and 
analyzed carbon efficiency in broad or narrow agriculture (Han 
et  al., 2024; Liu and Yang, 2021; Yang et  al., 2021) systematic 
assessments focusing on single staple crops—particularly their 
carbon efficiency dynamics—remain underexplored and warrant 
deeper investigation. In addition, rice cultivation is a major 
contributor to China’s agricultural carbon emissions (Shen et al., 
2025; Song et al., 2023). Despite generating substantial emissions 
during production, rice ecosystems harbor significant carbon 
sequestration potential through plant biomass and soil organic 
carbon accumulation (Chen et al., 2021; Chen et al., 2022a, 2022b). 
Prevailing methodologies for constructing carbon efficiency 
evaluation systems, however, predominantly emphasize carbon 
sources within agricultural ecosystems while neglecting the 
quantifiable value of carbon sinks, resulting in fragmented and 
incomplete assessment frameworks. This study advances traditional 
carbon efficiency evaluation by integrating a “carbon reduction and 
sink enhancement” perspective to address this gap. Specifically, 
we distinguish rice carbon sinks as desirable outputs and carbon 
emissions as undesirable outputs, thereby establishing a more 

scientific and precise composite carbon efficiency index for rice 
production systems.

The development of agricultural productive services (APS) is a 
critical component of agricultural modernization. It offers innovative 
pathways to transform conventional farming practices and accelerate 
green transitions in agriculture (Geng et al., 2024; Shi et al., 2024). Its 
strategic implementation is significant for optimizing rice production 
systems—transitioning cultivation paradigms, and enhancing 
productivity (Li and Li, 2020; Wu et al., 2024). Functionally, APS is a 
pivotal mechanism to reform extensive agricultural management 
models and advance low-carbon transitions. Addressing inefficiencies 
inherent in fragmented smallholder operations—such as suboptimal 
factor allocation and low productivity—systematically resolves 
structural bottlenecks in traditional farming systems (He et al., 2023; 
Huan et al., 2022) Furthermore, APS permeates entire agricultural 
value chains, with outsourcing service providers incentivized to adopt 
low-carbon practices across production stages. This characteristic 
enables APS to simultaneously mitigate ecosystem imbalances, 
improve resource-use efficiency, and reduce environmental costs (Xu 
et al., 2024; Yang et al., 2024). Consequently, the evolution of APS and 
the restructuring of agricultural production systems are inextricably 
linked during green transformation processes, necessitating integrated 
policy design that synchronizes both dimensions (Qiu et al., 2022). 
Given this context, establishing a synergistic development framework 
that harmonizes APS with the carbon efficiency of rice production 
(RCE) becomes imperative. Such integration safeguards national food 
security and creates dual-win scenarios for sustainable agricultural 
development, bearing substantial theoretical and practical relevance.

Extensive studies have corroborated the socioeconomic and 
ecological benefits of APS, demonstrating their capacity to enhance 
smallholder welfare (Mi et al., 2020; Xu et al., 2022a, 2022b) elevate 
rural incomes (Benin, 2015; Lyne et al., 2018) facilitate land transfer 
(Cai et al., 2021; Liu et al., 2022), restructure production models (He 
et al., 2023), and improve agricultural productivity (Chen et al., 2022a, 
2022b; Xu et  al., 2022a, 2022b). Additionally, APS has proven 
instrumental in incentivizing farmland conservation practices (Chen 
et al., 2022a, 2022b; Emmanuel et al., 2016) and reducing agrochemical 
inputs (Chen and Liu, 2023; Huan and Zhan, 2022; Shi et al., 2023). 
Nevertheless, there remains room for further research on the topic of 
APS and RCE, and few studies have systematically examined their 
coupling coordination relationship within a unified analytical 
framework, leaving this nexus underexplored despite its relevance to 
sustainable agriculture.

This study addresses this research void by constructing a 
comprehensive analytical framework to unravel the intrinsic linkages 
between APS and RCE. Leveraging panel data from 85 counties in 
Jiangxi Province, China (2012–2022), we employ a modified coupling 
coordination degree model to quantify their synergistic interactions. 
Kernel density estimation and Dagum Gini coefficient decomposition 
are applied to dissect temporal–spatial evolution patterns and regional 
disparities. At the same time, the geographically and temporally 
weighted regression (GTWR) model reveals the spatiotemporal 
heterogeneity of influencing factors. The findings aim to inform 
evidence-based policymaking for agricultural green transformation, 
offering theoretical and practical insights into reconciling productivity 
enhancement with low-carbon development.

The possible marginal contribution of this study may be as follows. 
First, our study transcends the conventional unidirectional perspective 
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that predominantly examines APS as drivers of agricultural carbon 
efficiency. We systematically investigate the coupling coordination 
relationship between APS and RCE by constructing an integrated 
analytical framework. This approach addresses a critical gap in 
existing research, which largely overlooks bidirectional synergies and 
systemic interactions between these two dimensions. Secondly, this 
study utilizes panel data from 85 counties in Jiangxi Province spanning 
an 11-year period, with the analytical focus situated at the county 
level. This approach offers a robust and granular foundation for 
formulating targeted and region-specific agricultural environmental 
policies. The findings not only support the low-carbon transformation 
of agriculture in alignment with China’s “dual carbon” objectives but 
also provide a replicable Chinese model with practical insights for 
global food security and climate governance. Finally, This study also 
used the GTWR model to reveal the spatiotemporal heterogeneity of 
factors affecting the coupling coordination degree (CCD), which is of 
great significance for understanding the complexity of the coupling 
coordination relationship between APS and RCE under different time 
and space backgrounds. Overall, the above contributions partially 
compensate for the theoretical and practical shortcomings in 
agricultural green transition strategies. This research provides 
scientifically grounded, policy-adaptive guidance for major grain-
producing regions in China and offers transferable lessons for Global 
South countries confronting similar sustainability challenges in 
intensive cropping systems.

2 Theoretical analysis of the CCD 
between APS and RCE

The coupling coordination degree (CCD) constitutes a pivotal 
metric for quantifying the interdependence intensity and synergistic 
development level between interconnected systems, providing a 
quantifiable reflection of their interactive dynamics (Yang et al., 2020). 
Within this framework, coupling denotes bidirectional interactions 
and mutual influences among systems, while coordination 
characterizes attaining a benign synergistic state through such 
interactions. Building upon this conceptual foundation, the CCD 
model in this study systematically examines the reciprocal influences, 
dependency relationships, and harmonization levels between APS and 
RCE. Existing studies identify three pivotal drivers of system 
interactions: factor mobility and allocation, industrial restructuring 
and upgrading, and technological innovation diffusion (Dong et al., 
2023; Sun et al., 2025). By extension, these mechanisms—manifested 
through optimized factor allocation, industrial transformation, and 
innovation spillovers—similarly govern the interactive pathways 
between APS advancement and carbon efficiency enhancement in rice 
cultivation systems.

On the one hand, APS exerts a catalytic role in advancing 
RCE. During the pre-production phase, agricultural operation 
guidance services provide technical and managerial support for rice 
producers, enabling the formulation of low-carbon cultivation plans 
and the adoption of green production methods (Chen et al., 2022a, 
2022b). This facilitates systemic transformation toward low-carbon 
farming practices. Concurrently, agricultural input supply services 
optimize factor allocation based on soil diagnostics and crop 
requirements, achieving source reduction of agrochemical-derived 
emissions (Emmanuel et al., 2016). In the production phase, precision 

agricultural machinery implements targeted field management to 
mitigate emissions from excessive chemical applications (Qing et al., 
2023). Furthermore, optimized irrigation-drainage systems enhance 
nutrient uptake efficiency while improving soil aeration, achieving 
dual effects of “carbon mitigation and sink enhancement” (Choudhary 
and Meena, 2024). During the post-production phase, agricultural 
product processing and marketing services ensure rapid market access 
for rice products, reducing energy consumption and carbon emissions 
in intermediate links. Furthermore, integrated APS supply chains 
promote the development of circular economy models in the rice 
industry, delivering dual benefits of “quality improvement and 
efficiency enhancement” (Lu et al., 2023).

On the other hand, RCE exerts feedback effects that drive APS 
advancement. From the demand perspective, enhanced RCE signifies 
innovations in low-carbon production technologies and management 
systems within contexts of green agricultural transition. This 
progression inherently elevates functional requirements for APS, 
providing foundational impetus for service sector upgrading (He 
et al., 2021). On the supply side, RCE improvement manifests through 
either increased desirable outputs or reduced undesirable outputs 
under equivalent factor inputs. Achieving these dual objectives 
necessitates enhanced specialization and coordination among APS 
entities, amplifying service demand. Furthermore, given defined 
output targets, APS entities need fewer production factors and lower 
production costs to improve carbon efficiency. This enables them to 
generate higher benefits in the production services process, thereby 
effectively enhancing the comprehensive benefits (Yu et al., 2024).

In conclusion, he advancement of APS and the enhancement of 
RCE are mutually reinforcing. Within their respective domains, they 
establish a synergistic mechanism through industrial structure 
upgrading, optimization of factor allocation, and the diffusion of 
technological innovation. These interrelated dynamics collectively 
form the theoretical foundation for the coupled and coordinated 
development of APS and RCE. The overall theoretical framework is 
illustrated in Figure 1.

3 Research design

3.1 Research area and data

Jiangxi Province, situated in southeastern China (24°29′14″–
30°04′43″N, 113°34′18″–118°28′56″E), occupies the southern bank of the 
middle-lower Yangtze River (Figure 2A). Its topography is predominantly 
characterized by mountainous (36%) and hilly (42%) terrains, forming a 
north-opening basin surrounded by eastern, southern, and western 
peripheral ranges with alluvial plains in the central-northern region 
(Figure  2B). It should be  noted that the elevation data presented in 
Figure 2B was obtained from the China Geospatial Data Cloud Platform. 
Negative elevation values are referenced to mean sea level, with their 
absolute magnitudes indicating the vertical distance between ground 
surface points and the reference datum. Under a subtropical monsoon 
climate regime, the province hosts four primary grain production zones: 
Poyang Lake Plain, Ganfu Plain, Jitai Basin, and western Jiangxi region 
(Figure  2C). As one of China’s 13 major grain-producing provinces, 
Jiangxi holds a national high typical and representative nationwide in rice 
cultivation, consistently ranking third in paddy output and playing a 
pivotal role in safeguarding national food security (Liang et al., 2024). 
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Notably, Jiangxi was among the first provinces to implement nationwide 
pilot programs for comprehensive agricultural socialized services in 2013. 
Multiple counties have since been designated as national APS 
demonstration zones, establishing institutional foundations for green 
agricultural transition and unlocking transformative potential in 
sustainable farming practices.

This study focuses on county-level rice production systems in 
Jiangxi Province. The analysis employs panel data from 85 counties 
spanning 2012–2022, selected based on data accessibility and 
consistency in statistical reporting standards. This temporal scope aligns 
with Jiangxi’s pioneering role as one of China’sfirst provinces to initiate 
APS pilot initiatives in 2013, ensuring policy relevance across the study 
period. Primary data were sourced from the Jiangxi Statistical Yearbook 
(2013–2023), Prefectural Statistical Yearbooks of Jiangxi (2013–2023), 
and official county statistical bulletins. For the extremely small number 
of missing values in the original data, linear interpolation or other 
appropriate data processing methods were used to fill and handle them.

3.2 Research methodology

3.2.1 Measuring RCE with super-SBM model
The super-efficiency Slacks-Based Measure (SBM) model 

demonstrates methodological advantages over conventional DEA 
approaches by explicitly accounting for input–output slack variables. 

This framework enables precise differentiation among decision-
making units (DMUs) with efficiency scores ≥1 while ensuring robust 
efficiency quantification (Fukuyama and Weber, 2009). The model is 
presented as follows:
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In Equations 1–2, ρ represents the RCE of counties in Jiangxi 
Province, values ≥1 indicate optimal frontier performance, and n 
denotes the number of DMUs, corresponding to 85 county-level units 
in Jiangxi. Each DMU incorporates m inputs, r1 desirable outputs, and 
r2 undesirable outputs. The slack variables x , dy , and uy  represent 

FIGURE 1

Theoretical analysis framework of the coupling and coordination between APS and RCE.
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input, desirable, and undesirable output, respectively. ijx , d
sjy , and u

qjy  
denote the optimized input i, desirable output s, and undesirable 
output q for DMU j after slack adjustment. λ j  denotes the 
weight coefficient.

3.2.2 The modified coupling coordination model
Conventional coupling coordination degree (CCD) models often 

yield overly concentrated result distributions, exhibiting limited 
discriminative validity (Yin et al., 2023). We adopt a modified coupling 
coordination model (Zhang et al., 2024) to address this methodological 
constraint to quantify the interactive coordination between APS and 
RCE. This enhanced framework provides a more nuanced 
differentiation of coordination levels while maintaining measurement 
fidelity. The model structure is expressed as:

	

( )
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In Equation 3, n = 2, Ui and Uj are APS and RCE, respectively. 
Assuming ( )max iU  is U2, Equation 1 can be simplified as:

	
( ) = − − × 

1
2 1

2

UC 1 U U
U 	

(4)

In Equation 4, C is the coupling degree between APS and RCE, 
with a value range of [0, 1]. The coupling degree can only reflect the 
interaction and impact between the level of APS and RCE, and it 
cannot reflect the coordination relationship between the two. Further 
CCD models need to be introduced as follows:

	 = α +β1 2T U U 	 (5)

	 = ×D C T 	 (6)

In Equations 5–6, T is the comprehensive coordination index of 
APS and RCE, α and β are undetermined coefficients, which are 
assigned to 0.5. D is the CCD of APS and RCE, and the value range is 
[0, 1]. Referring to the existing literature (Sun et al., 2024), the actual 

FIGURE 2

Geographical distribution of the study area.
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measured CCD is divided into 10 grades by an equal interval division 
method (Table 1).

3.2.3 Kernel density estimate
In this paper, Kernel density estimation is used to analyze the 

dynamic evolution trend of the CCD between APS and RCE in all 
counties and grain functional areas of Jiangxi Province. The specific 
formula is as follows:

	
( )

=

 −
=  

 
∑
n´

i

i 1

1 D Df D K
nh h 	

(7)

In Equation 7, Di is the CCD between the APS and the RCE in i 
county, D  is the mean value of the CCD of all counties, n is the 
number of counties, h is the bandwidth, k(•) is a kernel function, 
which is defined as a Gaussian kernel function in this study.

3.2.4 Dagum Gini coefficient decomposition
Based on the existing literature (Li et al., 2024), this study used the 

Dagum Gini coefficient decomposition method to analyze the spatial 
difference and source of the CCD between APS and RCE. The 
calculation and decomposition process of the Dagum Gini coefficient 
is as follows:

	 = = = =
= −∑∑∑∑

j hn nk k

ji hr2
j 1h 1i 1r 1

1G D D
2n D 	

(8)

In Equation 8, G is the overall Gini coefficient, D  is the mean 
value of the CCD, n is the number of counties, k is the number of 
regions, jiD ( hrD ) is the CCD of any county in the j (h) region, jn ( hn ) 
is the number of counties in the j (h) region.

Based on the above formula, the Gini coefficient jjG  in each region 
and the Gini coefficient jhG  between regions are calculated. The 
specific formula is as follows:

	 = =
= −∑∑
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In Equations 9–10, jD  and hD  are the mean values of the CCD in 
the region, which is defined as jD > hD . The global overall Gini 
coefficient is further decomposed into intra-regional Gini coefficient 
contribution wG  and inter-regional Gini coefficient contribution bG . 
The specific decomposition is as follows:

	 =
=∑
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In Equations 11–13, jP = jn /n and jS = j jn D /nD  are the proportion 
of the number of counties in the region and the proportion of the 
CCD value, respectively. The product of the two represents the weight 
of the regional Gini coefficient.

Because of the cross term in the contribution of the inter-regional 
Gini coefficient, the net value of the contribution of the inter-regional 
Gini coefficient needs to be calculated:
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+
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In Equations 14–16, jhT  is the relative gap between the CCD 
between the two regions of j and h, jht  is the difference between the 
CCD between the two regions of j and h, and jhP  is the super variable 
first moment. Based on this, the inter-regional Gini coefficient 
contribution bG  is decomposed into the inter-regional Gini coefficient 
net contribution nbG  and the super-variable density contribution tG . 
The specific formula is as follows:
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TABLE 1  Division of coupling coordination grade between APS and RCE.

Coupling 
coordination 
interval

Coupling 
coordination grade

Grade 
symbol

Coupling 
coordination 

interval

Coupling 
coordination grade

Grade 
symbol

0 ≤ D < 0.1 Extreme imbalance I 0.5 ≤ D < 0.6 Barely coordination VI

0.1 ≤ D < 0.2 Severe imbalance II 0.6 ≤ D < 0.7 Primary coordination VII

0.2 ≤ D < 0.3 Moderate imbalance III 0.7 ≤ D < 0.8 Intermediate coordination VII

0.3 ≤ D < 0.4 Mild imbalance IV 0.8 ≤ D < 0.9 Good coordination IX

0.4 ≤ D < 0.5 Marginal imbalance V 0.9 ≤ D < 1 High-quality coordination X
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The overall Gini coefficient G can be decomposed into:

	 = + +w nb tG G G G 	 (19)

3.2.5 GTWR model
The GTWR model can consider the non-stationarity of time and 

space and can analyze the different characteristics of influencing 
factors in time and space (He and Huang, 2018). This study employs 
the GTWR model to conduct a spatiotemporal heterogeneity analysis 
of the factors influencing the CCD between APS and RCE. The 
specific model is as follows:

	
( ) ( )

=
= β + β + ε∑

p

i 0 i i i k i i i ik i
k 1

Y u v t u v t X, , , , 

	
(20)

In Equation 20, iY  represents the dependent variable of the i th 
county, which refers to the CCD in this paper; ikX  represents the value 
of the k th influencing factor in the i th county; ( )β0 , ,i i iu v t  denotes 
the intercept, where , ,andi i iu v t  are the longitude, latitude and time 
of the i county, respectively. ( )β , ,k i i iu v t  represents the regression 
coefficient; β > 0 indicates a positive correlation between the 
influencing factors and the CCD, and vice versa; εi is a random 
disturbance term.

3.3 Variable selection

3.3.1 Construction of the index system for RCE
This study constructs an input index system from the three 

dimensions of the labor force, land, and agricultural materials based 
on the actual situation of rice production. It takes rice yield and 
carbon sink as desirable output and rice carbon emissions as 
undesirable output. The specific indicators and explanations are 
shown in Table 2.

3.3.1.1 Input indicators
To ensure consistency between input indicators and rice output 

metrics, this study employs a weighting coefficient method to 
disaggregate production factors (Lu et al., 2024). Two coefficients are 
defined: A = (Agricultural Output Value / Total Output Value of 

Agriculture, Forestry, Animal Husbandry, and Fishery) × (Rice Sown 
Area / Total Sown Area of Crops); B = Rice Sown Area / Total Sown 
Area of Crops. Land input retains the rice sown area metric. Labor 
input is calculated as Coefficient A × Agricultural, forestry, animal 
husbandry, and fishery industry employees, and all other input 
indicators are multiplied by Coefficient B. It should be noted that the 
original data pertaining to input indicators, including chemical 
fertilizers, pesticides, agricultural mulch films, and agricultural 
diesel, were sourced from the “Jiangxi Statistical Yearbook (2013–
2023),” the “Statistical Yearbooks of Jiangxi’s Prefecture-level Cities 
(2013–2023),” and the official county-level statistical bulletins 
issued annually.

3.3.1.2 Output indicators

	 1	 Carbon sink estimation. Rice carbon sinks are quantified 
following the methodology proposed by Chen et  al. 
(2022a, 2022b).

	 ( ) ( )= × × − × +1 1 /s r r r r rC C Y W R H 	 (21).

In Equation 21, Cs denotes the total carbon sink of rice cultivation, 
Cr represents the photosynthetic carbon assimilation rate of rice, Yr is 
the economic yield of rice crops, Wr is the moisture content of the 
economic product, Rr is the root-to-shoot ratio coefficient, and Hr is 
the harvest index (economic coefficient). The rice crops’ carbon 
absorption rate, water content, economic coefficient, and root-shoot 
ratio were set to 0.41, 0.12, 0.45 and 0.60, respectively.

	 2	 Calculation of carbon emissions from rice cultivation. Total 
carbon emissions from rice production systems encompass 
direct and indirect carbon emission equivalents generated 
throughout the entire cultivation cycle, from field tillage to 
harvest. Drawing on established methodologies (Chen et al., 
2022a, 2022b; Li et  al., 2023; Wu et  al., 2024), this study 
quantifies carbon emissions using the emission factor 
approach, addressing two primary sources: agricultural input 
utilization and rice growth processes. To account for data 
limitations in tillage area quantification, the actual sown area 
of rice is adopted as a proxy for tillage area. All other 

TABLE 2  Input–output indicator system for RCE assessment.

Category Variable Explanation Units

Input Labor Labor force engaged in rice production 104 persons

Land Cultivated area for rice 103 hectares

Chemical fertilizer Fertilizer consumption in rice production 104 metric tons

Pesticide Pesticide application in rice production 104 metric tons

Agricultural film Plastic film utilization in rice production 104 metric tons

Agricultural diesel Diesel fuel consumption in rice production 104 metric tons

Output

  Desirable Output Economic benefit Rice yield 104 metric tons

Ecological benefit Rice ecosystem carbon sink 104 metric tons CO₂-eq

  Undesirable Output Environmental cost Total carbon emissions from rice farming 104 metric tons CO₂-eq
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agricultural inputs are multiplied by coefficient B. The 
proposed model is formulated as follows:

	
δ ω

= =
= =∑ ∑

1 1
·

n n

e k k
k k

C e
	

(22)

In Equation 22, Ce denotes the total carbon emissions from the 
rice production system (kg CO₂-eq), where k represents emission 
source categories (k = 1,2,3,…), encompassing agricultural inputs and 
rice growth processes. The ek quantifies emissions from each source, 
with δ and ω corresponding to the emission factor and actual input 
quantity of the source, respectively. For analytical consistency, methane 
(CH₄) emissions are converted to carbon equivalents using the 
standardized conversion: 1 t CH₄ = 6.82 t CO₂-eq. Emission factors for 
all sources and their referenced literature are detailed in Table 3.

3.3.2 Selection of indicators for APS
According to the classification by China’s National Bureau of 

Statistics, the agriculture, forestry, animal husbandry, and fishery 
services sector constitutes a component of the gross output value of 
agriculture, forestry, animal husbandry, and fishery. The development 
of APS is an important indicator of the deepening of the agricultural 
division of labor and the upgrading of industrial structure. Its 
development level is a comprehensive concept that can directly reflect 
the proportion of the service industry in the entire agricultural 
industry chain. This metric must align with statistical logic and 
modern agricultural development objectives. On the basis of the 
existing research (Shi et al., 2024; Wu et al., 2024; Xu et al., 2022a, 
2022b) this study intends to use the ratio of the output value of 
agriculture, forestry, animal husbandry, fishery and service industry 
to the total output value of agriculture, forestry, animal husbandry and 
fishery as a quantitative index to evaluate the development level of APS.

3.3.3 Selection and explanation of influencing 
factors index of CCD

Current scholarship remains limited on factors influencing 
the interactive coordination mechanisms between APS and 

RCE. According to the mechanism analysis of coupling coordination 
and other correlation studies in the previous text, we operationalize 
the IPAT theoretical (York et al., 2003) framework to construct a 
multidimensional indicator system spanning economic, social, and 
policy dimensions. At the economic level, the main factors include 
the scale of rural population-land (SRPL), multiple cropping index 
(MCI), and planting structure (PS). The social level includes the 
urbanization level (URB) and the urban–rural income gap (URIG). 
The policy level is the financial support for agriculture (FSA). 
Therefore, the index system of CCD influencing factors was finally 
constructed based on six factors at three levels (Table 4).

4 Results

4.1 Spatiotemporal evolution of APS and 
RCE

To investigate the spatiotemporal patterns and evolutionary 
trajectories of APS and RCE across Jiangxi’s counties, we conducted 
quartile-based classification using the natural breaks method in 
ArcGIS 10.8. The county-level APS and RCE metrics for 2012, 2015, 
2018, and 2022 were systematically categorized into four tiers, as 
visualized in Figure 3. For cartographic clarity and space optimization, 
county identifiers in the maps are represented numerically, with 
corresponding geographical labels cross-referenced to Figure 2 This 
standardized visualization protocol ensures consistent spatial 
referencing throughout the analysis.

4.1.1 Spatiotemporal evolution of APS
From 2012 to 2022, APS in Jiangxi Province experienced 

significant growth. The average APS index increased from 0.0108 in 
2012 to 0.0308 in 2022, representing nearly a threefold rise. Spatially, 
the number of counties with high-level APS expanded from five 
isolated regions in 2012—such as Dayu, Qingyuan, and Suichuan—to 
eleven clustered areas in 2022, including Xinjian, Anyi, and Ruichang. 
Meanwhile, the number of counties with medium-to-high-level APS 
rose from 19 to 24, indicating an enhanced spatial agglomeration 
effect. This transformation is closely associated with Jiangxi Province’s 

TABLE 3  Carbon-emission sources and coefficients.

Category Emission source Coefficient Unit Source

Agricultural 

Inputs

Nitrogen fertilizer 1.74 kg CO₂-eq kg−1 Chen et al. (2022a, 2022b)

Phosphorus fertilizer 0.20

Potassium fertilizer 0.15

Compound fertilizer 0.38 Li et al. (2023)

Chemical pesticides 4.9341 Chen et al. (2020)

Agricultural film 5.18

Agricultural diesel 0.5927 Netz et al. (2007)

Irrigation 20.476 kg CO₂-eq ha−1 Dubey and Lal (2009)

Tillage 312.6 kg CO₂-eq km−2 Shen et al. (2025)

Rice growth Early-season rice 154.70 kg CH₄ ha−1 Yun et al. (2014)

Mid-season rice 654.20

Late-season rice 458.00
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policy initiatives aimed at advancing agricultural modernization and 
optimizing regional development strategies.

From the perspective of grain production functional zones, 
significant regional disparities persist. The core production zone of the 
Poyang Lake Plain has consistently maintained the highest average 
APS level (0.019), attributable to its flat topography, dense hydrological 
network, well-developed agricultural infrastructure, and 
comprehensive agricultural service system, all of which facilitate large-
scale and efficient farming operations. In contrast, the western high-
yield areas exhibit a relatively low APS level (average 0.007), likely 
constrained by hilly and mountainous terrain, inadequate agricultural 
investment, fragmented land management, and incomplete extension 
of agricultural services. The ranking of APS development levels across 
regions is as follows: Poyang Lake Plain > Ji-Tai Basin > Ganfu Plain 
> Non-Primary Production Counties > Western High-Yield Areas, 
highlighting the substantial impact of natural endowments and 
foundational agricultural conditions on the spatial differentiation of 
agricultural production systems.

4.1.2 Spatiotemporal dynamics of RCE
From 2012 to 2022, RCE in the counties of Jiangxi Province 

exhibited a consistent upward trend, characterized by a spatial 
distribution pattern of “high in the central regions and low in the 
peripheral areas.” The average RCE increased gradually from 0.4459 in 
2012 to 0.6676  in 2022, with a particularly notable acceleration 
observed after 2018, suggesting that agricultural green transformation 
policies began to yield substantial results during the latter part of the 
decade. Areas with high RCE were predominantly concentrated in key 
production zones such as the Ganfu Plain and the Poyang Lake Plain, 
where land resources are relatively concentrated and the level of 
agricultural mechanization is high—conditions that facilitate the 
adoption of water-saving, fertilizer-efficient, and environmentally 
sustainable production technologies. In contrast, regions with low 
RCE were primarily located in non-core production counties within 
the southern Jitai Basin and the hilly terrains of southern Jiangxi, 
where complex topography and high degrees of land fragmentation 
present significant barriers to enhancing carbon efficiency.

The regional carbon efficiency pattern has remained largely stable, 
with the following ranking: Ganfu Plain > Western High-Production 
Area > Poyang Lake Plain > Jitai Basin > Non-Primary Production 
Counties. Notably, high-efficiency areas have transitioned from 
isolated pockets in 2012 to contiguous clusters by 2022, forming a 
radiation-like spatial structure centered on the Ganfu Plain and 
exhibiting a gradient decline outward toward peripheral regions. 
Although carbon efficiency in each county has generally improved, 

regional disparities have not been substantially reduced, indicating 
that natural endowments, economic foundations, and technological 
diffusion capacities continue to exert significant influence on the 
equitable enhancement of carbon efficiency. Moving forward, targeted 
policy support and tailored technology transfer for underperforming 
regions should be strengthened.

4.2 Evolution characteristics of CCD

4.2.1 Temporal evolution characteristics of CCD
Using the previously established CCD model, we calculated the 

CCD between APS and RCE across 85 counties in Jiangxi Province 
from 2012 to 2022. The coupling coordination levels were classified 
according to the criteria in Table 1. Due to space constraints, only the 
annual mean values are presented (Table 5); detailed temporal data are 
available upon request.

Firstly, from the development level of the two systems (U1 and 
U2), while APS consistently lagged behind RCE in absolute 
development levels, both systems demonstrated sustained upward 
trends. Secondly, in terms of coupling degree (C), the coupling 
degree exhibited a fluctuating upward trajectory, increasing from 
0.5470 (2012) to 0.7101 (2022). These values remained within the 
high-coupling regime (C ≥ 0.7 after 2017), confirming strong 
bidirectional interactions between APS and RCE systems. Finally, 
from the perspective of CCD (D), the CCD progressed steadily 
from 0.2682 (2012) to 0.4613 (2022), transitioning through three 
distinct phases: moderate imbalance (2012–2015), mild imbalance 
(2016–2019), and marginal imbalance (2020–2022). Notably, 
although the development level of the CCD between the two 
systems shows an overall upward trend, the level is relatively low, 
indicating substantial untapped potential for APS-RCE 
synergy enhancement.

4.2.2 Spatial evolution characteristics of CCD
To visualize the spatial evolution of APS-RCE coupling 

coordination across Jiangxi’s counties, we conducted spatial mapping 
using ArcGIS 10.8 (Figure 4) based on coordination degree values 
from 2012, 2015, 2018, and 2022.

From the overall analysis, the coordination levels exhibited an 
upward trend with a persistent “central high, peripheral low” spatial 
configuration, particularly pronounced by 2022. From 2012 to 2018, 
the CCD of the whole province remained in a state of barely 
coordination, and the counties achieving this level increased from 3 
(2012) to 8 (2018), while those in severe imbalance decreased from 

TABLE 4  Indicator system of influencing factors for CCD.

Dimension Indicator Symbol Description Unit

Economic Scale of rural population-land SRPL Cultivated land area / Rural population ha/capita

Multiple cropping index MCI Total crop sown area / Cultivated land area —

Planting structure PS Rice sown area / Total crop sown area —

Social Urbanization level URB Urban population / Total population %

Urban–rural income gap URIG Disposable income of urban residents − Disposable 

income of rural residents

104 CNY

Policy Financial support for agriculture FSA Agriculture-related fiscal expenditure / General local 

government expenditure

—
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17 to 1. In 2022, the CCD of most counties has reached a barely 
coordinated state or above. Xinjian and Hengfeng County emerged 
as leaders, followed by six counties (e.g., Nanchang, Qingyuan, 
Jinggangshan) attaining primary coordination. Notably, three 
counties—Anyuan, Xiangdong, and Tonggu—remained in moderate 
imbalance, and it is urgent to be vigilant that these counties become 
the “short board” that hinders the development of agricultural green 

transformation. Conversely, high-performing counties (e.g., Xinjian, 
Hengfeng, Nanchang) demonstrated the potential to act as 
developmental anchors for neighboring regions.

4.2.3 Dynamic evolution characteristics of CCD
To comparatively analyze the dynamic evolutionary trends of 

APS-RCE coupling coordination across Jiangxi Province and its major 

FIGURE 3

Spatiotemporal evolution characteristics of APS and RCE.

TABLE 5  CCD between APS and RCE at county level in Jiangxi province during 2012–2022.

Year U1 (APS) U2 (RCE) Coupling 
degree (C)

Coordinating 
index (T)

Coupling coordination 
degree (D)

Coupling 
coordination grade

2012 0.0957 0.1984 0.5470 0.1471 0.2682 Moderate imbalance

2013 0.1008 0.2150 0.5457 0.1579 0.2771 Moderate imbalance

2014 0.1055 0.2168 0.5570 0.1612 0.2854 Moderate imbalance

2015 0.1090 0.2179 0.5681 0.1634 0.2908 Moderate imbalance

2016 0.1365 0.2283 0.6556 0.1824 0.3339 Mild imbalance

2017 0.1833 0.2224 0.7128 0.2029 0.3731 Mild imbalance

2018 0.1999 0.2262 0.7193 0.2131 0.3828 Mild imbalance

2019 0.2075 0.2455 0.6968 0.2265 0.3890 Mild imbalance

2020 0.2024 0.2781 0.7070 0.2403 0.4010 Marginal imbalance

2021 0.2496 0.3109 0.7147 0.2803 0.4346 Marginal imbalance

2022 0.2890 0.3524 0.7101 0.3207 0.4613 Marginal imbalance
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grain production areas, we employed Kernel Density Estimation – a 
nonparametric technique particularly effective for identifying 
distributional characteristics and convergence patterns. The derived 
density curves were visualized using Origin 2022, enabling systematic 
analysis of spatial polarization or convergence tendencies in 
coordination development (Figure 5).

Firstly, the dynamic evolution trend of CCD across Jiangxi 
Province’s entire territory from 2012 to 2022 is analyzed in Figure 5a. 
The CCD curve demonstrates a consistent rightward shift throughout 
the study period, indicating continuous improvement in coordination 
levels that align with previous temporal analyses of CCD development 
patterns. Notably, the primary peak value exhibits alternating 
fluctuations, which indicates that the aggregation degree of CCD in 
Jiangxi counties also fluctuates. Furthermore, the CCD curve develops 
a pronounced right-skewed tail with slight expansion in its extension 
range, and the lateral peak value gradually increases. The emergence 
of this multimodal trend indicates that a limited number of counties 
exhibit CCD values exceeding the provincial average, which play a 
disproportionately significant role in elevating the overall coordination 
status through spatial spillover effects.

Second, Figures 5b–f analyses the dynamic evolution of CCD 
across Jiangxi’s major grain functional areas. As analyzed from 
Figure  5b, the CCD curve trajectory of Poyang Lake Plain shows 
sustained rightward migration from 2012 to 2022, indicating 
continuous improvement in coordination levels. Although the 
principal peak amplitude exhibits alternating fluctuations, annual 
peaks after 2016 consistently exceed 2012 levels (with only 2017 
showing a slight decline), suggesting strengthened spatial 
agglomeration effects. Notably, the progressive disappearance of 
tailing and bandwidth expansion implies that the development of 
CCD is gradually balanced, with improving homogeneity in 
coordination development. According to Figure 5c, the CCD curve of 
Ganfu Plain maintains upward coordination trends, but the principal 
peak amplitude gradually declines from 2012 to 2022, indicating 
reduced spatial concentration. The concurrent emergence of distinct 
right-tailed distribution and bandwidth broadening reveals emerging 
multimodal patterns characteristic of polarization phenomena where 
high-performing counties disproportionately elevate regional averages 
through spatial spillover effects. According to the analysis of Figure 5d, 

the coordination trajectory of Ji-Tai Basin exhibits cyclical amplitude 
fluctuations, with 2016 representing an extreme change relative to 
other years. This temporal pattern corresponds to shifting spatial 
agglomeration dynamics. The progressive left-skewed tail development 
indicates that a few counties with low CCD lag the overall level of the 
region. According to Figure 5e, due to its limitation to four counties, 
it failed to adequately present the dynamic evolution trend of the 
Western Jiangxi high-yield area. The emergence of secondary peaks 
suggests nascent polarization tendencies despite overall 
homogenization trends. From the analysis of Figure  5f, despite 
maintaining rising coordination levels of non-core production 
counties, principal peak changes alternately indicate that the degree 
of aggregation fluctuates. Concurrent right-tailed expansion confirms 
that the CCD level of a few counties significantly pulls the region’s 
overall level.

4.3 Regional difference analysis of CCD

The study employed the Dagum decomposition method to 
quantify regional difference in CCD between APS and RCE across 
Jiangxi’s counties from 2012 to 2022, and the overall, intraregional and 
interregional Gini coefficients and contribution rates of CCD were 
measured by Matlab 2021 software (Figure 6).

4.3.1 Overall regional difference
Analysis of Figure 6a revealed fluctuating downward trends in the 

overall Gini coefficient of CCD, declining from 0.2133  in 2012 to 
0.1340 in 2022, indicating a gradual reduction in regional difference 
across counties. This temporal pattern suggests progressive 
homogenization of CCD development at the provincial scale while 
also emphasizing the need for coordinated development strategies to 
prevent the potential widening of inter-county differences in future 
agriculture green transformation.

4.3.2 Intraregional difference
Analysis of Figure 6b revealed distinct spatiotemporal patterns 

in Intraregional Gini coefficients across Jiangxi’s major grain 
functional areas (Figure 6 legend: 1 = Poyang Lake Plain, 2 = Ganfu 

FIGURE 4

Spatial evolution characteristics of CCD.
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Plain, 3 = Jitai Basin, 4 = Western Jiangxi high-yield area, 
5 = Non-core production counties) from 2012 to 2022. The average 
intraregional difference demonstrated the following ranking: 
Western Jiangxi high-yield area > Jitai Basin > Ganfu Plain > Poyang 
Lake Plain > Non-core production counties. All regions exhibited 
generally declining intraregional differences during the study period, 
indicating that the spatial differentiation degree in each region is 
gradually shrinking. From the perspective of the changing trends in 
different regions over various periods, during the 2012–2015 period, 
all study regions exhibited gradual decline rates in intraregional 
differences. Notably, this downward trend accelerated significantly 
from 2015 to 2019, with differentiation levels decreasing at nearly 
triple the previous rate. This accelerated convergence coincided 
temporally with Jiangxi Province’s pioneering implementation of 
comprehensive agricultural socialization service reforms initiated in 
2013, suggesting these policy interventions likely enhanced 
production standardization across regions. However, post-2020, the 
degree of differentiation within each region tends to increase, 
indicating that the differences within each region may intensify, 
which should be paid attention to.

4.3.3 Interregional difference
From the analysis of Figure 6c, the most substantial disparity in 

CCD was observed between the Poyang Lake Plain and Non-core 
production counties (1–5), with a mean value of 0.2329. Conversely, 
minimal variation occurred between the Poyang Lake Plain and 
Ganfu Plain (1–2), demonstrating a mean difference of 0.1345. These 
metrics suggest pronounced developmental gaps in coupled 
coordination systems between primary grain bases and non-core 
production regions while showing relative consistency between 
adjacent major production areas. Temporal analysis of coordination 
degree fluctuations reveals two distinct phases: From 2012 to 2015, 
interregional variations maintained relative stability, followed by 

intensified fluctuations during 2015–2022. Notably, the overall trend 
indicates a progressive convergence in coordination levels across 
regions, indicating that the differentiation degree of interregional 
coupling coordination development level is shrinking.

4.3.4 Sources of regional differences and their 
contribution rates

As revealed in Figure 6d, the regional difference in the CCD 
between APS and RCE predominantly originated from interregional 
super-variable density. Throughout the study period, its 
contribution rate remained relatively stable at approximately 50%, 
with an average contribution rate of 49.18%. Comparatively, the 
average contribution rates from intraregional and interregional 
differences were 22.13 and 28.68%, respectively. These findings 
suggest that mitigating regional disparities in the coupling 
coordination system should prioritize reducing cross-regional 
interaction intensity between different geographical zones, as the 
overlapping effects between regions emerge as the principal 
determinant of regional heterogeneity.

4.4 Spatiotemporal heterogeneity analysis 
of the influencing factors on the CCD 
between APS and RCE

4.4.1 Selection of GTWR model
Before model implementation, we conducted variance inflation 

factor (VIF) tests to assess potential multicollinearity among 
independent variables that might compromise estimation reliability. 
Diagnostic results (Table 6) revealed acceptable collinearity levels, 
with all variance inflation factors (VIF) below 10 and tolerance values 
exceeding 0.1 - within established statistical significance thresholds. 
These diagnostic results confirm the absence of severe multicollinearity 

FIGURE 5

Dynamic evolution of CCD.
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issues that could substantially distort the GTWR model 
parameter estimates.

Furthermore, the geographically and temporally weighted 
regression (GTWR) analysis was performed using the GTWR plugin 
integrated into ArcGIS 10.8 software. The bandwidth was 
automatically determined through an optimization process, with the 
spatiotemporal distance parameter ratio maintained at 1 to ensure 
balanced temporal and spatial weighting. A comprehensive model 
comparison was conducted among GTWR, geographically weighted 
regression (GWR), temporally weighted regression (TWR), and 
ordinary least squares (OLS) approaches (Table  7). The Akaike 
Information Criterion corrected (AICc), and goodness of fit statistic 
(R2) were adopted as statistical metrics for model evaluation and 
selection, following established methodologies (Fernandez et  al., 
2001). The comparative analysis demonstrated the superior 
performance of the GTWR model. Notably, the GTWR model 
achieved the lowest AICc value (−2450.80) and the highest R2 value 
(0.7696) compared to the GWR, TWR, and OLS models. These results 
statistically confirm that the GTWR framework outperforms 
conventional spatial or temporal regression approaches in explaining 
the spatiotemporal heterogeneity of influencing factors on the CCD 
between APS and RCE.

4.4.2 Temporal variation of influencing factors
The spatiotemporal regression analysis employing the GTWR 

model revealed the temporal variations in regression coefficients of 
influencing factors affecting the CCD between APS and RCE across 
county-level regions in Jiangxi Province. These results demonstrate the 
differential spatial–temporal impacts of various determinants on the 
coordinated development system. The temporal dynamics of these 
influencing factors were subsequently visualized through boxplot 
diagrams (Figure 7) generated using Origin 2022, which effectively 

FIGURE 6

Change of Gini coefficient and its contribution rate of CCD.

TABLE 6  Results of multicollinearity test.

Variable URB SRPL MCI URIG FSA SE

VIF 1.709 1.661 1.240 1.227 1.113 1.097

1/VIF 0.585 0.602 0.806 0.815 0.899 0.911

TABLE 7  Comparison of model evaluation indexes.

Model OLS TWR GWR GTWR

R2 0.3644 0.4056 0.7032 0.7696

AIC −1771.15 −1802.74 −2342.45 −2450.80
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FIGURE 7

Time series variation trend of GTWR regression coefficients.

illustrate the evolving patterns and fluctuation ranges of each factor’s 
contribution over different temporal periods.

The analysis of economic drivers revealed distinct temporal 
heterogeneity in factors influencing CCD. The scale of rural 
population-land (Figure 7a) emerged as the most significant positive 
contributor, with its average regression coefficient reaching 0.4584. 
Notably, the dispersion of coefficients gradually narrowed, and 
outliers disappeared over time, suggesting a strengthening consensus 
on its beneficial role across counties. This phenomenon could 
be attributed to expanded per capita arable land enhancing demand 
for APS through economies of scale and optimized land use patterns, 
improving carbon sequestration capacity. These dual effects 
collectively elevate both APS and RCE, thereby promoting 
CCD. Multiple cropping index (Figure 7b) demonstrated a negative 
association with CCD, with its average regression coefficient reaching 
−0.0022, though its effect magnitude remained relatively limited. The 
narrowing dispersion pattern indicates increasing consistency in its 
inhibitory effects across time. Mechanistically, intensified cropping 
frequency increases absolute carbon emissions while reducing 
marginal carbon efficiency, creating a double burden constraining 
coordinated development. The planting structure (Figure  7c) 
exhibited moderate positive impacts (mean coefficient: 0.1064), and 
the dispersion gradually expanded. This temporal variability likely 
stems from differential capacities to leverage expanded rice 
cultivation areas. Where implemented effectively, spatial 
concentration of rice planting enables specialized agricultural service 
systems through industrial clustering effects and optimized resource 
allocation efficiency via intensive management practices.

The regression coefficients of urbanization level (Figure 7d) on 
coupling coordination development exhibited mixed positive and 
negative values. A positive mean coefficient was observed during 

2012–2016, while a negative mean emerged in 2017–2022. Notably, 
the average coefficients across all study periods approached zero, 
suggesting negligible overall impacts on coupling coordination 
development. Concurrently, the increasing frequency of outliers in 
urbanization coefficients indicates growing inter-county 
heterogeneity in spatial effects. In contrast, the urban–rural income 
gap (Figure 7e) demonstrated a consistent positive influence, with a 
mean regression coefficient of 0.0984. The progressive expansion of 
coefficient dispersion throughout the study period reveals the 
persistent positive associations between income disparity and 
coupling coordination development and intensifying regional 
differentiation in these relationships across counties. This divergence 
might be explained through a dual-channel mechanism: Elevated 
income disparities exacerbate rural economic stagnation and 
suppress farmers’ income growth, reducing capacity and incentives 
for APS investments. Such underinvestment disrupts the potential 
synergistic relationship between agricultural service and rice 
production systems, ultimately impeding improvements in 
coupling coordination.

The regression analysis revealed a statistically significant positive 
association between financial support for agriculture (Figure 7f) and 
coupling coordination development, with an average coefficient of 
0.2286. Notably, the dispersion of regression coefficients gradually 
narrowed, accompanied by a reduction in outliers, suggesting 
diminishing regional disparities in the intensity of this relationship 
across counties. These findings imply that enhanced agricultural 
fiscal investments consistently strengthen the coupling coordination 
mechanism. A plausible explanation lies in the synergistic effects of 
fiscal agricultural support on structural optimization. Increased 
funding facilitates land transfer and promotes large-scale agricultural 
operations, thereby advancing the development of specialized 
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agricultural services. Concurrently, such investments optimize the 
allocation of agricultural production factors, improving production 
efficiency and resource utilization rates. These systemic enhancements 
further reduce energy consumption and carbon emissions per unit 
output, fostering tighter integration between agricultural service 
systems and low-carbon rice production practices.

4.4.3 Spatial variation of influencing factors
To better visualize the spatial variations of influencing factors 

across the study period, we spatially visualized the average regression 
coefficients derived from the GTWR model using the Natural Breaks 
classification method in ArcGIS 10.8 software (Figure  8). This 
analytical approach effectively reveals the spatial heterogeneity 
patterns of different driving factors while maintaining their intrinsic 
statistical distribution characteristics.

The scale of rural population-land (Figure  8a) exhibited a 
spatially heterogeneous impact on the CCD, characterized by a “high 
in northern and southern regions, low in central areas” pattern. High-
impact zones are clustered predominantly in the major grain-
producing areas of western Jiangxi and non-core production counties 
of southern Jiangxi (e.g., Shicheng County: 1.9408). In contrast, 
low-impact zones are concentrated in the eastern Ganfu Plain (e.g., 
Jinxi County: −0.1711). This spatial disparity may arise from the dual 
effects of population-land scale optimization: moderate scales 

enhance synergy between APS and RCE, whereas excessive scales 
may decouple APS from practical agricultural demands, impeding 
low-carbon technology adoption, while undersized scales restrict 
APS development and limit carbon efficiency improvements. The 
multiple cropping index (Figure  8b) demonstrated non-uniform 
spatial effects on CCD, with high-impact zones concentrated in the 
eastern Poyang Lake Plain (e.g., Yushan County: 0.1375) and 
low-impact zones in the central Ganfu Plain (e.g., Anyi County: 
−0.0758). A plausible explanation lies in its dual role: moderate 
increases optimize resource allocation between APS and RCE, 
whereas excessive indices may overcentralize short-term service 
demands, compromising low-carbon service quality and destabilizing 
their synergistic interactions. The planting structure (Figure  8c) 
spatially influenced CCD with an “east–west high, north–south low” 
configuration. High-impact areas dominated the eastern Poyang Lake 
Plain and western Jitai Basin (e.g., Guangfeng District: 0.4620), while 
low-impact zones prevailed in the western Poyang Lake Plain and 
southern Jitai Basin (e.g., Wuning County: −0.2433). Mechanistically, 
concentrated rice monoculture improves agricultural input efficiency 
and carbon performance, whereas fragmented terrains elevate service 
costs, constraining APS development and disrupting 
CCD equilibrium.

The urbanization level (Figure  8d) showed marked spatial 
heterogeneity in CCD impacts. High-value clusters emerged in the 

FIGURE 8

Spatial evolution of GTWR regression coefficients.
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eastern Poyang Lake Plain and central Jitai Basin (e.g., Pengze County: 
0.4722), contrasting with low-value areas in the western Poyang Lake 
Plain (e.g., Xiushui County: −0.6863). This duality reflects 
urbanization’s competing effects: while capital and technology inflows 
strengthen APS-RCE coordination, rural labor migration and 
agricultural regression may undermine synergistic momentum. The 
urban–rural income gap (Figure 8e) predominantly enhanced CCD 
across Jiangxi. Enlarged income disparities accelerated rural-to-urban 
labor transfer, fostering land consolidation that promoted scaled 
farming and APS specialization. Concurrently, APS advancements 
facilitated low-carbon technology diffusion, synergistically 
improving RCE.

The financial support for agriculture (Figure  8f) spatially 
influenced CCD with a “south-high/north-low, east-high/west-low” 
gradient, showing pronounced positive effects in southern Jiangxi. 
Enhanced fiscal investments likely improved rural infrastructure, 
reducing APS operational costs and enhancing service accessibility. 
Furthermore, upgraded infrastructure supported agricultural 
intensification and carbon-efficient practices, reinforcing 
APS-RCE coordination.

5 Discussion

The coordinated development between APS and RCE constitutes 
a complex and dynamic process. Through an empirical analysis at the 
county level in Jiangxi Province, a central rice-producing region of 
China, this study elucidates the spatiotemporal evolution patterns 
and driving mechanisms of their coupling coordination, providing 
theoretical and empirical foundations for advancing agricultural 
green transition and sustainable development.

First, the suboptimal coupling coordination level (showing an 
upward trend yet remaining at relatively low grades) between APS 
and RCE reveals systemic barriers in aligning service-driven 
productivity gains with carbon efficiency improvements. While 
prior studies have emphasized the role of APS in enhancing 
technical efficiency (Cai et al., 2024; Lin et al., 2023), our coupling 
coordination analysis demonstrates that their interaction remains 
constrained by structural mismatches. For instance, the reliance on 
high-input mechanized services during pre-production stages may 
inadvertently increase fossil fuel consumption, offsetting carbon 
sequestration benefits achieved through optimized irrigation and 
soil management in production stages. This paradox aligns with 
critiques of “greenwashing” in agricultural service markets, where 
short-term yield stability often overshadows long-term carbon 
neutrality goals (Mendes et  al., 2024; Qiu et  al., 2021). These 
findings underscore the necessity of prioritizing structural 
optimization and quality enhancement of service provision over 
mere quantitative expansion during the agricultural green 
transition. Furthermore, the untapped potential of APS in 
improving carbon efficiency may stem from demand–supply 
mismatches or inadequate contextual adaptation during 
service implementation.

Second, the spatial heterogeneity dominated by interregional 
hypervariable density (average contribution rate: 49.18%) 
challenges the effectiveness of homogeneous policy frameworks. 
Diverging from previous assessments focusing on intraregional 
disparities (Zhang et  al., 2023), our Dagum Gini coefficient 

decomposition identifies hypervariable density between developed 
(e.g., Poyang Lake Plain) and lagging regions (e.g., non-core 
production counties) as the primary source of spatial inequality. 
Advanced regions likely benefit from mature APS and 
infrastructure, whereas lagging areas suffer from service 
accessibility gaps and insufficient incentives for low-carbon 
practices. This finding revises conventional wisdom attributing 
spatial imbalances solely to resource endowment differences (Zhang 
et  al., 2022). Practically, policymakers should prioritize cross-
regional knowledge diffusion and technology transfer mechanisms, 
particularly in areas with pronounced spatial heterogeneity. 
Concurrently, fostering diversified agricultural development 
models tailored to regional socioeconomic and ecological 
conditions becomes imperative (Jin et al., 2024). Future research 
could explore policy innovations to enhance interregional 
collaboration for balanced agricultural sustainability.

Finally, the spatiotemporal heterogeneity analysis of influencing 
factors reveals that the scale of rural population-land (SRPL) and 
financial support for agriculture (FSA) emerge as key drivers, 
consistent with induced institutional innovation theory. Expanded 
land consolidation and fiscal incentives facilitate service adoption 
and resource optimization (Wu et al., 2024). The negative effect of 
the multiple cropping index (MCI) corroborates existing evidence 
that agricultural intensification without decarbonization measures 
exacerbates greenhouse gas emissions (Janus and Ertunç, 2023; 
Sroufe and Watts, 2022). The spatially divergent effects of planting 
structure (PS) reflect context-dependent synergies between 
monoculture efficiency and biodiversity conservation. These results 
resonate with the “just transition” framework, emphasizing the 
balance between productivity enhancement and equitable access to 
ecologically resilient services (Ullman and Kittner, 2024). Notably, 
the paradoxical positive correlation between the urban–rural 
income gap (URIG) and coordination levels in certain regions 
suggests that labor transfer-induced farmland intensification may 
boost short-term scale efficiency while neglecting long-term 
ecological consequences. This evidence reinforces the urgency of 
formulating policies harmonizing economic equity with 
environmental integrity.

While this study provides novel perspectives and methodologies 
for examining the relationship between APS and RCE, several 
potential limitations should be  acknowledged. First, climate 
variability factors (e.g., precipitation, temperature) directly influence 
rice yields and greenhouse gas emissions. Due to data availability 
constraints, climate-related variables were not incorporated into the 
indicator system of influencing factors, which may partially limit the 
comprehensive interpretation of the coupling coordination 
mechanisms between APS and RCE. Second, the reliance on county-
level data restricts insights into farmers’ micro-level decision-making 
processes, particularly their trade-offs between service costs and 
carbon reduction benefits. Future studies should prioritize 
household-level investigations to elucidate the micro-level drivers of 
this coupled system. Third, the exclusive focus on a single major 
grain-producing province may constrain the generalizability of 
findings across diverse agroecological contexts. Expanding the 
sampling framework to include comparative analyses of key 
agricultural ecological zones (e.g., the Yellow River Basin and Yangtze 
River Basin) is recommended to enhance the universality and robustness 
of conclusions.
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6 Conclusions and recommendations

6.1 Conclusion

Based on panel data from 85 county-level administrative units in 
Jiangxi Province (2012–2022), this study assessed the coupling 
coordination level between APS and RCE using a modified coupling 
coordination model, kernel density estimation, Dagum Gini coefficient 
decomposition, and geographically and temporally weighted regression 
(GTWR). The spatiotemporal evolution patterns, dynamic trends, spatial 
disparities, and spatiotemporal heterogeneity of influencing factors were 
systematically investigated. Key findings are summarized as follows:

	 1	 Temporal trends: The overall coupling coordination level in 
Jiangxi’s counties was upward but remained relatively low. By 
2022, only Xinjian District and Hengfeng County achieved 
intermediate coordination, while most regions remained in 
marginal imbalance or barely coordinated states, indicating 
substantial potential for improvement.

	 2	 Dynamic evolution: A weakly multipolar dynamic trend was 
observed. The Poyang Lake Plain demonstrated balanced 
development with minimal divergence, whereas the Ganfu 
Plain, Jitai Basin, and non-core grain-producing areas displayed 
pronounced multipolar characteristics. Peak kernel density 
values showed an upward trend across regions, reflecting 
increased agglomeration intensity.

	 3	 Spatial disparities: Regional differences in coupling 
coordination were predominantly driven by interregional 
hypervariable density (average contribution: 49.18%), followed 
by interregional (28.68%) and intraregional (22.13%) 
disparities.

	 4	 Spatiotemporal heterogeneity of influencing factors: Drivers 
exhibited significant spatiotemporal heterogeneity, ranked by 
impact magnitude: the scale of rural population-land > 
financial support for agriculture > planting structure > urban–
rural income gap > multiple cropping index > urbanization 
levels. The urban–rural income gap positively affected most 
counties, while other factors showed spatially divergent 
impacts (both positive and negative).

6.2 Recommendations

To enhance the CCD between APS and RCE across Jiangxi’s 
counties, we propose the following evidence-based recommendations 
informed by our research findings:

First, government departments should prioritize enhancing 
APS systems through multi-dimensional interventions. Given the 
critical constraints of regional imbalance and service quality 
deficiency identified in our analysis, strategic measures should 
include (1) establishing dedicated fiscal mechanisms to strengthen 
financial support for service infrastructure development, (2) 
formulating standardized quality evaluation protocols coupled 
with rigorous monitoring frameworks to ensure service 
standardization, and (3) creating provincial-level technology 
innovation platforms to foster green agricultural technologies. 

These coordinated efforts would facilitate synergistic development 
between service system optimization and low-carbon 
agricultural transitions.

Second, a regional collaborative mechanism should be established 
to address spatial disparities in coupling coordination. Our 
decomposition analysis reveals that hypervariable density between 
regions constitutes the primary contributor to overall coordination 
disparities. We recommend implementing cross-regional knowledge 
dissemination and technology exchange programs, particularly 
between core rice-producing zones (Poyang Lake Plain and Ganfu 
Plain). This should be  complemented by developing joint green 
production standards and establishing demonstration zones for 
coordinated low-carbon practices, thereby reducing inter-regional 
development overlaps and enhancing spatial synergies.

Third, government agencies should exercise strategic leadership 
in spatial differentiation management. Based on regional resource 
endowment characteristics revealed by our GTWR analysis, 
customized strategies should be formulated to (1) optimize cropping 
intensity (multiple cropping index) through agronomic suitability 
assessments, (2) restructure planting systems using carbon efficiency 
metrics, (3) implement targeted mitigation measures for location-
specific negative influencing factors. This place-based governance 
approach would effectively balance agricultural productivity with 
carbon reduction objectives while maintaining regional ecological 
carrying capacities.
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