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Microplastic abundance and
characterization in the anaerobic
co-digestion of food waste and
dairy manure

Abbey L. Whitney?, Kristina M. Chomiak'?, Callie W. Babbitt?,
Nathan C. Eddingsaas® and Anna Christina Tyler!*

Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY,
United States, 2Golisano Institute for Sustainability, Rochester Institute of Technology, Rochester, NY,
United States, *School of Chemistry and Materials Science, Rochester Institute of Technology,
Rochester, NY, United States

Microplastics (MP) are an emerging contaminant in organic waste recycling, yet
their occurrence and fate in anaerobic digestion (AD) systems remain poorly
understood due to challenges in isolating MP from complex matrices. This study
developed and validated a novel extraction method using peroxide oxidation and
an EDTA-Triton X-100 solution that achieved >96% recovery without polymer
degradation. This method was applied to characterize MP in manure, digester effluent
(digestate), and lagoon storage at a full-scale food waste—manure co-digestion
facility. MP were consistently detected across all sources, with concentrations
ranging from 120 MP kg™ (manure) to >3,300 MP kg™ (lagoon). Abundance
was highly variable over time, shaped by feedstock composition and digester
management practices. The MP observed likely stemmed from multiple pathways,
including food waste inputs, packaging residues, on-farm sources, atmospheric
deposition, and fragmentation of larger plastics during digestion. Polyethylene
terephthalate (PET) fibers dominated across all samples. These findings provide
the first quantitative evidence of microplastic (MP) occurrence throughout the
AD process and highlight how management decisions influence contamination.
By advancing extraction methods and generating new field-scale data, this study
establishes a foundation for assessing the risks of MP release from AD systems
to agricultural soils and downstream ecosystems.
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1 Introduction

Food waste is a growing sustainability challenge facing global food systems. An estimated
30-40% of food produced in the United States is never consumed (ReFED, 2023; US EPA,
2023a), equivalent to $218 billion annually in lost value (United Nations Environment
Programme, 2021). In the United States, the majority of wasted food is ultimately discarded
in landfills, leading to greenhouse gas emissions and climate impact (US EPA, 2021b). In an
effort to reduce impacts of food waste, recent policy and research efforts have focused on
alternative technologies, such as anaerobic digestion (AD), to divert waste from landfills while
recovering the energy, carbon, and nutrients contained in discarded food. AD systems are well
suited for many food waste feedstocks (Paritosh et al., 2017), as they capitalize on the naturally
occurring microbial breakdown of organic matter in the absence of oxygen, leading to the
production of biogas, which can displace fossil fuel energy sources, and liquid digestate, a
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nutrient-rich soil amendment that can be land-applied as a
fertilizer replacement.

Despite the promise of AD as a food waste solution, increased
adoption of this technology may lead to new risks of plastic
contamination within food systems (Sobhi et al., 2024). AD feedstocks
may include source-separated food waste from commercial,
institutional, and industrial sources, which may contain plastic
contaminants originating from upstream use of plastic packaging,
containers, produce stickers, and serviceware (Dybka-Stepien et al.,
2021; Kenny, 2021; Ruggero et al., 2021; US EPA, 2024; US EPA,
2021a). Existing contaminant control methods, such as manual picking
and mechanical screening and de-packaging, have limited effectiveness
State
Contamination Reduction Workgroup, 2017). Therefore, contaminated

for complete plastic removal (Washington Organics
food waste feedstocks likely serve as a vector for plastic debris to enter
the environment (Weithmann et al., 2018; Schwinghammer et al,,
2020), particularly in the form of microplastics, which are plastic
particles <5 mm in any one dimension. MP released from AD would
likely include secondary particles resulting from breakdown of larger
plastic pieces (Yang et al., 2022), as well as both primary and secondary
MP already contained in the food being treated (e.g., Rochman et al,,
2015; Kosuth et al., 2018; Oliveri Conti et al., 2020).

Ensuring the sustainability of AD systems will require proactive
evaluation and minimization of environmental and human health
risks associated with MP releases (Winiarska et al., 2024; Rashid et al.,
2025). For example, when liquid digestate is land applied as a soil
amendment, MP may migrate via wind, surface runoff, soil erosion,
and movement of soil organisms (Rillig, 2012; Rillig et al., 2017; Li
etal., 2020). Agricultural practices like plowing and tillage can drive
MP deeper into the soil, leading to accumulation and altered soil
characteristics (Khalid et al., 2020). MP typically has a large surface
area and is highly hydrophobic, with potential to adsorb heavy metals,
antibiotics, and pesticides and modify nutrient levels in soil
(Wijesooriya et al., 2023). Aged MP, such as that exiting a digester,
may have additional surface heterogeneity that enhances pollutant
adsorption (Lan, 2022) and may exhibit increased release of pigments
and additives into the soil, posing a threat to soil organisms and
waterways through runoff (Luo et al., 2020). Once MP contaminates
agricultural soils, particles may accumulate in edible plant parts (Lian
etal, 2020; Lietal, 2021), impact plant health, and ultimately lead to
food safety and human health risks (Wang et al., 2021).

There is clearly a need to better understand the potential for MP
releases from food waste management systems. However, little data
currently exists to characterize MP size, polymer type, or other
physical and chemical parameters that would influence plastic
transport and fate in digester and agricultural systems. Further,
isolating MP from organic matrices, such as digestate or manure,
presents significant analytical challenges (Thornton Hampton et al,
2023). Digestate is a heterogeneous mixture of organic matter and
microbial biomass, which hinders effective separation, identification
and quantification of MP, particularly because organic particles and
MP often have similar sizes and densities (Hurley et al, 2018).
Digestate itself may vary across facilities, depending on feedstocks and
digester type, further confounding filtration and extraction methods.
To date, standardized methods for measuring MP in food waste or
digestate have yet to be developed.

Existing studies for highly organic samples use extraction
methods that include digestion of organic material, density separation,
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and centrifugation or sieving (Yan et al., 2020; Maw et al., 2022;
Motiejauskaite and Barcauskaite, 2025). For example, in a method
developed for fecal matter from various species, Yan et al. (2020) uses
Fenton’s reagent [consisting of hydrogen peroxide and iron (II) sulfate]
to degrade solids for 5 h below 40°C, followed by filtration onto a
mixed cellulose ester membrane filter, treatment with nitric acid to
further remove non-plastic organic material, and sonication in
absolute ethyl alcohol to remove residue from the surface of the
MP. While this method successfully removes recalcitrant materials,
we note a number of potential issues associated with applying this
method to digestate and manure samples. The iron in Fenton’s reagent
may stain MP, preventing accurate assessment of particle color that in
turn may preclude the ability to track potential sources. While nitric
acid was successful in removing residual material, more recent studies
raise concerns about nitric acid degradation of some plastics,
including polyamide (PA6), polyurethane (PU), and polyethylene
terephthalate (PET) films (Schrank et al., 2022). After digestion, MP
are typically identified visually using fluorescence microscopy
infrared (FTIR) and Raman
spectroscopy (Porterfield et al, 2023a). When analyzing MP

followed by fourier transform

abundance, most studies report on a count per weight basis
(Weithmann et al., 2018; Schwinghammer et al., 2020; Ruggero et al.,
2021); few studies use a weight/weight (Miiller et al., 2020; Braun
et al,, 2021) or mass/volume (Xu et al., 2023; Zuri et al., 2025) basis.
Count/weight methods (e.g., MP kg™') are increasingly preferred
because they normalize particle abundance to the actual mass of the
sample, which reduces variability caused by differences in water
content, density, or sample size. Methodological variability poses
challenges for inter-comparison because there is no way to easily
convert between measurements (Leusch and Ziajahromi, 2021) and
underscores the need for improved methods and greater
standardization to fully understand challenges of MP contamination
from AD systems (Munno et al., 2023; Porterfield et al., 2023a).

Therefore, this study aimed to (1) develop and validate methods
for the isolation and characterization of MP from AD systems and (2)
to perform the first systematic assessment of MP abundance in an
anaerobic food waste and cow manure co-digestion system over a
one-year period. Quantification and characterization of MP present
in digestate and manure streams will help establish risks of
downstream releases to agricultural soils and aquatic ecosystems.
These contributions to method development and data generation will
be valuable for the proactive evaluation of MP risks in food waste
management systems and to broader study of MP releases in
complex matrices.

2 Methods
2.1 Facility description

Digestate and manure were obtained from an anaerobic
co-digestion facility in New York State co-located with a 2,000 head
dairy farm. The digester, a continuously stirred tank reactor, operates
in the mesophilic temperature range (35 °C-39 °C). According to
supplied facility records, in 2023, feedstock was approximately 48%
manure and 52% food waste sourced from dairy and process waste,
fats, oils and grease (FOG), and other materials. No post-consumer or
household waste was accepted. There was substantial variability in the
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proportion of food waste (5-67%) over the study period associated
with management decisions aimed at maintaining digester stability
(Supplementary Table S1). There were no pre-processing steps for the
food waste, but manure was separated via screw press prior to
digestion, with the solid fraction removed for on-farm use and the
liquid fraction stored in a manure pit onsite. The combined daily
loading rate of food waste and manure was approximately 0.24 million
L with an average retention time of 29 + 7 days, resulting in roughly
7.57 million L digestate mo™'. Digestate is diverted to uncovered
lagoons where it is mixed with excess raw manure from the manure
pit and stored until application onto agricultural fields. Retention time
in the pond is highly variable depending on seasonality and
field capacity.

2.2 Sample collection

Three types of samples were collected in triplicate every other
month from January to November 2023: (1) digestate from the exit of
the digester (“Digester”), (2) mixtures of digestate and excess fresh
manure held in a storage lagoon prior to field application (“Lagoon”),
and (3) fresh manure from the storage pit (“Manure”). All sampling
materials and storage containers were triple rinsed with MP-free water
before use. At each sample point, roughly 8 L of material was collected
using a 9L metal bucket. A metal ladle was used to transfer
approximately 250 mL into each of 3 glass mason jars. Each month,
one control blank was also collected by leaving a mason jar open near
the sampling site, mimicking the sampling process over the jar, and
then sealing it on-site and returning it to the lab for processing using
the same procedure as the samples. Samples and blanks were kept at
4°C until analysis.

2.3 Microplastic extraction

Samples were shaken for 30s to homogenize and a 30 mL
subsample was added to a clean, MP-free water rinsed Erlenmeyer
flask. We followed the method of Yang et al. (2022), with some notable
exceptions. To fully oxidize the samples without the problematic
staining of particles by Fenton’s reagent, we used only 30% hydrogen
peroxide (J. T. Baker, Electronics industry grade), but extended the
reaction time in order to more fully remove recalcitrant material.
100 mL 30% hydrogen peroxide was added to the flask and this
mixture was placed in an ice bath to avoid potential foam over during
the initial reaction (1-2 h). The flask was then moved to a 40°C water
bath and the digestion took place over the next 5-7 d with additional
aliquots of hydrogen peroxide added to the flask daily. At the end of
the 5-7 d period, the reaction was complete if there was no visible
bubbling when the flask was swirled. The contents of the flask were
then filtered through a 25 pm stainless-steel mesh sieve using MP-free
DI water.

We assessed the impact of nitric acid on MP in boiling nitric acid
for 2 h prior to analysis. We repeated this analysis of Schrank et al.
(2022) on pristine PET fragments and fibers, but lowered the
incubation temperature from boiling to 40 °C. After 2 h, we had 100%
recovery of both PET morphologies, but the blue color was lost from
the fragments. After 24 h, the recovery rate was 94%, but both
fragments and fibers lost all color, and when prodded with tweezers
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PET fragments began to break apart. After 48 h, the recovery rate was
56% and both fragments and fibers broke apart easily when prodded.
Because of these potential losses of color and degradation,
we eliminated the nitric acid step altogether.

However, elimination of the nitric acid step resulted in the
formation of an abundant white powder on the filter following the wet
peroxide oxidation, preventing accurate detection of MP
(Supplementary Figure S1A). This residual material was identified by
Energy Dispersive X-ray Fluorescence (ED-XRF) to be 97% calcium
by weight, and Fourier transform infrared spectroscopy (FTIR)
confirmed a match closest to calcium stearate. Calcium stearate is a
common anti-caking agent added to animal feeds. Calcium stearate is
most soluble at high pH in the presence of a chelating agent and
amphoteric surfactant (Soontravanich et al., 2010). Following peroxide
oxidation, solids retained on the sieve were transferred to a clean
beaker with 100 mL of 0.1 M EDTA (Sigma Aldrich, ACS reagent
grade)/Triton X-100 (Sigma Aldrich, analysis grade) adjusted to a pH
of approximately 9 using sodium hydroxide (Sigma Aldrich, reagent
grade). The beaker was stirred well and left to sit in the hot water bath
overnight which successfully removed the leftover calcium material
(Supplementary Figure S1B). Finally, the solution was vacuum filtered
onto a 8 pm gridded mixed cellulose ester (MCE) filter (Tisch
Scientific) which was subsequently transferred to a triple-rinsed petri
dish, taped down using double-sided tape, and left to dry covered
(Supplementary Figure S2).

2.4 Microplastic characterization

To identify and characterize potential MP from digestate samples,
filters were examined under an AmScope stereo microscope with
ZM-4 optics and a 20 MP CMOS back-illuminated camera
(MU2003-BI) and images of potential MP are captured using Motic
Images software. Each potential MP was recorded with location on the
filter, morphology (spheres, films, foams, fragments, and fibers), and
color. The filter was also examined under black light to better observe
clear plastic as they tend to either fluoresce or reflect blue light when
exposed (Supplementary Figure 52).

Once optical analysis was complete, a 20% subset of each particle
grouping from each sample (ex. black fibers) was randomly selected
for polymer identification by FTIR microscopy (Shimadzu AIM-9000
IR microscope; Brandt et al., 2021). Any unique particles were also
selected for analysis. The selected particles were then transferred
one-by-one to an aluminum tape coated glass microscope slide with
a layer of Skin-tac adhesive to fix the particles to the slide and denoted
using marker (Supplementary Figure S3). Slides were placed into a
petri dish to dry.

The polymer type of suspected particles was confirmed with a
Shimadzu AIM-9000 infrared microscope. The optical mode of the
microscope is set to reflection and measures absorbance with a scan
number of 32 in the range of 4,000 to 700 cm™". To confirm polymer
type from the sample scans, we created a spectral library of over 30
standards including plastic (PET, PP, PE, PU, polyvinyl chloride
[PVC], etc.) and naturally occurring nonplastic materials (cotton,
grass, cow hair, sand, etc.). The spectra of these standards were
collected both with and without Skin-tac adhesive to account for any
interference from the adhesive. We considered match scores over 700
as a positive ID and then corroborated by overlaying the sample and
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standard spectra for visual inspection. For each type of particle, a
correction factor was applied based on the proportion of particles in
that group confirmed as plastic. This value was then converted to
particles kg™ wet weight using the bulk density of liquid digestate,
1,430 kg m? (Shrestha, 2020).

2.5 Quality control, recovery, and blanks

We followed a number of standard quality control measures to
prevent or account for contamination, as detailed in (Gilbert et al.,
2024). All equipment used, including sieves, beakers, graduated
cylinders and reaction flasks were first washed with soapy water then
triple rinsed with MP-free water. MP-free water was prepared by
filtering in-house reverse osmosis water through a MCE filter with
a pore size of 8 pm. When not in use, all equipment was covered
with aluminum foil to prevent contamination. Dyed pink cotton lab
coats were worn when working with samples to cover personal
clothing and be able to easily identify pink fibers under the
microscope. Each control blank collected in the field was run
through the extraction protocol alongside the respective samples by
adding MP-free water to the jar, and then running it through all
subsequent extraction and analysis steps. This served as a combined
field and laboratory blank. Potential plastic particles in the blanks
were evaluated in the same manner as digestate samples. Blank
results are summarized in Supplementary Table S2. The mean
abundance of MP was 0.2 + 0.4 HDPE fragments, 0.2 + 0.4 PET
fragments, and 0.5 + 0.5 PET fibers per blank. Because of these low
numbers of MP found in blanks, no blank correction was applied to
the samples.

We evaluated the recovery rate for this final method by spiking a
30 mL digestate samples with 25 pristine PET, polypropylene (PP),
and polystyrene (PS) fragments and 25 PET fibers. These spiked
samples were run through the full digestion process and counted on
the final filter. Recovery was 100% for PET fibers, PET fragments, and
PS fragments, and 96% for PP fragments. The color of the particles
remained unchanged. FTIR analysis confirmed this process was not
degradative to the particles by examining the carbonyl region of the
spectra, 1,800-1,670 cm ', to look for signs of oxidation. As the filters
EDTA/Triton X-100
(Supplementary Figures S1, S2), the need to sonicate in ethanol was

were extremely clean following the

eliminated, making the MP easily identifiable in fewer steps.

2.6 Statistical analysis

Statistical data analysis was completed using JMP 15.0 Pro
software. Prior to analysis all data were assessed for normality and
heterogeneity of variance to meet assumptions for analysis of variance
(ANOVA). To examine differences in MP abundance among sources
over time, we ran a two-way ANOVA with month, sample source, and
their interaction term as fixed factors. When significant effects
(p < 0.05) were found, Tukey’s HSD post-hoc analysis was used to
identify significant differences. A Non-Metric Multidimensional
Scaling (NMDS) analysis was used to assess variability in polymer
morphology and composition over the six-month period. The NMDS
was based on Bray-Curtis dissimilarities to quantify differences
between samples. The results of the NMDS were visualized in

Frontiers in Sustainable Food Systems

10.3389/fsufs.2025.1666814

two-dimensional ordination plots, where each point represents the
polymer or morphology profile of a sample.

3 Results

3.1 Microplastic abundance and
characteristics

MP were identified in all but one manure replicate and
concentrations varied substantially among sources and months
(Figure 1). The effects of Month (Fs 3 = 10.6; p < 0.0001), Location
(Fy36 =47.2; p<0.0001), and their interaction (Fo:=6.3;
p <0.0001) were all highly significant, with complex patterns in
significance based on pairwise comparisons (Tukeys HSD;
Supplementary Table §3). Throughout the year, MP concentration
in manure was relatively consistent, with an average of 120 + 39
particles kg™" wet weight. However, this mean does not include an
extreme found in January of 1,587 + 66 particles kg™'. The number
of particles in the digester averaged 723 + 84 particles kg™', ranging
from 255 + 37 particles kg™ in March to 985 + 46 particles kg™' in
January. Lagoon MP values were most variable, with higher values
in January (1,542 + 102 particles kg™') and March (3,376 + 354
particles kg™'), and a low in May (474 + 166 kg™'). The relative
patterns across locations varied significantly over time. In January,
Manure and Lagoon concentrations were similar and higher than
the Digester. In March, an anomalously high Lagoon value dwarfed
both Manure and Digester. In May, all locations were statistically
similar; thereafter Digester and Lagoon concentrations were
similar, and always greater than Manure. The significant interaction
term was driven by the apparently anomalous values in January
and March, with  shifts in
digester management.

which  were coincident

Fibers were the dominant morphology (Figure 2) in all samples,
predominantly PET (Figure 2). PET accounted for >60% of
polymers in all samples. This was followed by PE and PU films, then
fragments of various polymers including PE, PET, PP, and PVC. A
smaller number of PP and acrylic fibers, PS foams, and PE spheres

4000 -
3500 -
W Manure A Digester ® Lagoon
3000 -
B
& 2500
K
L
£ 2000 -
&
1500 { ¥
1000 - A i
'
500 - ? ©
0 $ ] u ] u
JAN MAR MAY JuL SEP NoV
FIGURE 1
MP abundance in particles per kg wet weight sampled bimonthly
from three sampling locations at a co-digestion facility in NYS. Error
bars represent the standard error of the mean; n = 3 per time point.
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FIGURE 2

polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET).
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Morphological composition (top row) and relative abundance of plastic polymers (bottom row) of confirmed MP particles from (A,D) Manure, (B,E)
Digester, and (C,F) Lagoon samples. Polymers identified included: polystyrene (PS), polyurethane (PU), polyvinylchloride (PVC), nylon, acrylic,
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FIGURE 3

NMDS plot based on Bray-Curtis dissimilarities of (A) plastic morphology (stress = 0.624) and (B) polymer variation (stress = 0.158) across Manure,
Lagoon, and Digester sites over the 6 months of samples. Ellipses represent 95% confidence intervals for each site.

-1 0 1
NMDS1

were found. The NMDS illustrates the morphological similarities
between Digester and Lagoon samples, as indicated by their close
clustering and the significant overlap of ellipses relative to Manure,
which is more variable (Figure 3A). In the polymer NMDS, strong
clustering and overlap of the ellipses showcase polymeric similarity
across all sites, likely driven by the consistent dominance of PET in
all samples (Figure 3B).
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4 Discussion

4.1 Development of appropriate methods
for AD analysis

Consistent methods for assessing MP in complex aqueous
systems, like organic waste effluents, are critical for proactively
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evaluating and mitigating risks of MP release and ecological
impacts (Porterfield et al., 2023a). To accurately characterize MP
particles in organic materials associated with anaerobic digestion,
we developed a novel method to efficiently and reliably isolate MP
from the sample matrix. We adapted previous methods (Yan et al.,
2020), eliminated the need for nitric acid (Schrank et al., 2022) and
Fenton’s reagent, and were able to successfully remove residual
calcium stearate using a high pH chelating agent and surfactant
(EDTA/Triton X-100). This streamlined method achieves intact
MP extraction with fewer steps, leading to recoveries >96% with
little to no laboratory-based contamination. Future studies to
clearly delineate the limit of quantification for this procedure in
digestate and other highly organic matrices are warranted.
We believe these methods will be easily adaptable to other highly
organic agricultural materials, especially those derived from
co-digestion, as cow manure can be particularly high in calcium
(Zhang et al., 2021).

4.2 Variability in MP content of digestate
and manure

Reported values for MP in food waste derived digestates range
from 75 to 3,298 particles kg™' (Weithmann et al., 2018; O’Brien,
2019; Schwinghammer et al., 2020; Yang et al., 2022; Porterfield
et al., 2023b). However, direct comparisons are complicated by
differences in AD feedstock, operational variables, and a lack of
standardized methods to report MP values. Previous studies also
focus on bigger size fractions (>1 mm). MP abundance in cow
manure was previously reported at 74 + 129 particles kg™, which
is similar to our average monthly value of 120 + 39 particles kg™
(Sheriff et al., 2023). To our knowledge, this is the first contribution
to establish MP abundance at other environmentally-relevant
stages in the AD process, especially storage lagoons, limiting our
ability to compare results to literature, but underscoring the
importance of these data, as lagoons are the last stage prior to field
spreading and potential emission of MP to the environment. When
digestate is applied to agricultural fields, potential MP releases may
be significant, on the order of 20 million MP particles ha™'. This
very rough estimate accounts for the mean MP content of digestate
(726 particles kg™ wet weight) multiplied by a typical digestate
application rate to fields of 20 m® ha™' (Korba et al., 2024). The
ultimate fate of MP following application includes incorporation
deeper into soil (Khalid et al., 2020), uptake by plants (Lian et al.,
2020; Li et al., 2021), or transport by wind and water to adjacent
ecosystems (Rillig, 2012; Rillig et al., 2017; Li et al., 2020) While
actual application rates vary, and the fate and impact requires
additional study, this first-order approximation highlights the need
for better understanding of sources and impacts of MP associated
with wasted food valorization.

The variability in food waste feedstocks appears to have a
major influence on MP content of digestate, and similarly,
alterations in digester management may lead to shifts in
contamination levels. For example, in mid-February 2023, the
digester experienced a foam overflow event coincident with low pH
that was attributed to a change in the type of food waste entering
the digester. In response, facility managers increased the manure
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fraction of the feedstock from 33% in January to roughly 78 and
95% in February and March, respectively (Supplementary Table S1).
As a result, the MP concentration in the Digester output for March
more closely reflected that of Manure inputs. Following resumption
of more typical feedstock ratios (roughly 39% manure), the
Digestate MP content returned to a higher and more consistent
level. This unexpected ‘experiment’ suggests that most MP can
be attributed to food waste, rather than manure. Other anomalously
high values were observed in the Manure and Lagoon sites in
January, and in the Lagoon in March. We suspect that perhaps
seasonality may play a role, with colder temperatures in January
changing the density of the stored material and causing MP to float
to the surface. In March, the sample obtained from the Lagoon
contained a great deal of foam released from the digester during a
period of instability. Further work to evaluate the vertical variation
of MP in storage, along with more detailed temporal assessment
associated with feedstock composition is required to draw
conclusions about how management decisions may impact
MP abundance.

4.3 Potential sources of MP

The MP found in this study likely originate from a wide array of
sources, including primary MP associated with the feedstock (US
EPA, 2021a; Thompson et al., 2024), packaging of bulk materials
delivered to the facility, on farm sources (Lwanga et al., 2023), and
airborne sources (Penalver et al., 2021; Chen et al., 2024), and as
secondary MP formed during digestion (Whitney, 2024). For example,
MP have been found in many food products (e.g., Rochman et al.,
2015; Oleksiuk et al., 2022; Mamun et al., 2023; Thompson et al., 2024)
that could enter an AD system. Other contamination may occur
during preprocessing; materials that arrive in large plastic tarps, bins,
or other containers that may be cut open and introduced into the
digester. While this facility does not utilize a mechanical depackager,
use of such a system has been shown to increase MP contamination
(Porterfield et al, 2023a). Additionally, the facility’s agricultural
practices may contribute to MP observed in manure. For example,
we observed PET fibers in all samples, albeit at a much lower level in
raw manure, suggesting that on-farm sources contribute to overall MP
load. However, much of the plastics associated with a dairy operation
are anticipated to be HDPE films used for silage storage and PP woven
fabrics used for grain and feed shipment and storage (Malarkey and
Babbitt, 2025), neither of which were observed at significant levels in
our samples.

While the high abundance of PET likely originates from a
number of sources, the food waste fraction of the feedstock is a
plausible source. While exact products are difficult to trace as
plastics degrade and fragment, PET is one of the most commonly
used plastics in the packaging industry (Nistico, 2020; Soong et al.,
2022). The packaging industry is the largest user of plastic, with 36%
of the global plastic production going toward packaging (Soong
etal., 2022; Soni et al., 2024). With PET being a major material used
in this industry, it is likely that PET may enter the food waste stream
from a number of places, and enter the digester. Additionally, PET
has been identified in a number of digesters and co-digesters using
food waste (Schwinghammer et al., 2020; Gui et al., 2021; Yang et al.,
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2022; Harley-Nyang et al., 2023; Surendran et al., 2023; Lessa Belone
et al., 2025) as a feedstock source.

4.4 Limitations and conclusions

The uncertainties and limitations in definitively tracing MP found
in our samples to specific sources stems from the inherent challenges
of conducting research at a private facility with limited access to
detailed operational information about feedstock sources, intake and
processing procedures, and on-farm operations. To resolve this
uncertainty and determine the greatest sources of primary MP, a
detailed analysis across the wasted food and anaerobic digestion life
cycle is required. Because there is substantial variability in how food
waste is handled, processed, and treated at different facilities (US EPA,
2024), additional sample collection and analysis is needed across AD
sites operating in different regions, over longer time periods, with
variable feedstocks, and operating under different digester and
digestate storage conditions. As new data and MP characterization
methods emerge, we will be able to develop a generalizable framework
for understanding the source, behavior, and fate of plastics in AD and
other food waste management systems.

Anaerobic digestion with beneficial use of digestate is touted as a
preferred solution for unavoidable food waste (US EPA, 2023b), but
in practice, the sustainability outcomes depend on our ability to
minimize and manage MP release. For example, the anaerobic
co-digestion system functions as an indirect feedback loop, where
introduction of food waste feedstock drives the need for additional
manure as a co-digestion substrate, which in turn, increases the
overall volume of liquid entering the digester, leading to greater
production of digestate. While this process is effective in managing
large quantities of organic waste, it inadvertently contributes to the
accumulation of contaminants in the digestate product. Reducing risk
from end-of-pipe MP releases will require effective contamination
minimization strategies at the AD site and systemic solutions deployed
upstream in the food supply chain, including reducing the amount of
food discarded (Hamilton et al., 2015; Marimuthu et al., 2024; Urugo
et al., 2024) and reducing plastic entering the waste stream via
improved source separation techniques, worker training, and use of
plastic alternatives for food packaging and transport (US EPA, 2021a).
While AD offers a sustainable solution for waste management and
energy production, sources and pathways of plastic contamination
must be adequately addressed and controlled through comprehensive
strategies at all stages of the food system.
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