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Introduction: As consumers continue to demand healthy diets and plant-based
foods, the acceptance of bean foods, especially non-soy legumes, is gradually
increasing. Since the industrial processing of non-soy legumes has just started,
it has borrowed many processing strategies from soybeans. However, since the
basic ingredients, processing characteristics, and nutritional properties of non-
soy legumes are different from those of soybeans, their processing strategies
should also be different.

Methods: This paper systematically reviews and compares the similarities and
differences between processing strategies for soybeans and non-soy legumes.
Results: Several suggestions are proposed in this paper, which provide a
theoretical basis and strategic recommendations for the industrial processing of
non-soy legumes.

Discussion: Several issues have been raised simultaneously, and their proper
resolution will contribute to the high-quality development of non-soy legumes
processing industry.

KEYWORDS

non-soy legumes, processing strategy, processing suitability, grain deep processing,
high-value utilization

1 Introduction

As consumers pay more and more attention to healthy eating and plant-based foods,
bean foods, also known as legume foods, are gradually increasing their market share (Hayat
etal., 2014). Soybeans, in particular, have become an important source of plant protein and
plant oil for modern humans (Qin et al., 2022; Zhao et al., 2022). At the same time, with the
rapid changes in the international situation, soybeans have gradually become an important
resource that various countries are competing for Kong et al. (2024) and De Maria et al.
(2020). The soybean industry is directly affecting the food industry (Chen et al., 2012), the
feed industry, and animal husbandry (Gaffield et al., 2024), and is profoundly affecting
everyone’s life. As a result, some non-soy legumes have gradually come into the eyes of
consumers and processors, replacing part of the use of soybeans. Meanwhile, non-soy
legumes can be developed into healthy foods (Mansouri et al., 2024; Zahradka et al., 2013),
such as mung bean (Vigna radiata), pea (Pisum sativum), adzuki bean (Vigna angularis),
kidney bean (Phaseolus vulgaris), chickpea (Cicer arietinum), and more (Li et al., 2017; Wang
et al., 2022; Kan et al., 2017). At the same time, with the rise of plant-based foods, the
excellent processing characteristics and nutritional properties of bean foods make them an
excellent raw material for most plant-based foods (Ashraf et al., 2024; McClements and
Grossmann, 2021). Bean food processing has gradually become an important part of the
modern food industry.
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However, looking at the entire bean processing industry, there is
a big gap between non-soy and soybean processing. Compared with
the fully developed and modernized soybean processing industry, the
non-soy legume industry mainly focuses on the application of raw
grains, such as daily diet (Zahradka et al., 2013), whole seed processing
(Ongetal,, 2024) or simple separation of ingredients (Li et al., 2011),
which lacks deep and high-value processing. Therefore, when
producers consider non-soy legume processing, they will give priority
to soybean processing strategies. After all, it is typical and worthy of
reference, such as whether it can be used to process oils and fats,
whether it can be used to separate proteins, whether the amino acid
composition is reasonable, etc. Although this approach is not wrong,
it lacks specificity. Chickpeas (Cicer arietinum), often used as a
soybean substitute, are a typical example (de Camargo et al., 2019;
Nifio-Medina et al., 2017).

Non-soy legumes have their particularities in terms of raw
material composition, processing characteristics, nutritional
characteristics, etc. For example, adzuki beans (Vigna angularis) are
ingredients of Medicine Food Homology (MFH) in traditional
Chinese medicine (Sun et al., 2021), mung beans (Vigna radiata)
have a high starch content (Li et al., 2011), faba beans (Vicia faba)
have a high content of non-nutritional compounds (NNC) (Corzo-
Rios et al., 2022), and chickpea (Cicer arietinum) protein is less
allergenic than soybean protein (Verma et al., 2013). Although they
cannot be part of the daily diet like soybeans (due to insufficient
protein and fat content, unbalanced amino acid composition, lack of
key nutrients, etc.), the differences between the beans make them
worthy of processing. Using a unified processing strategy will cause
the disappearance of product characteristics and even the waste of
functional ingredient resources, which is unreasonable. For example,
in the process of soybean processing, organic solvents are often used
to extract oils (Gasparetto et al., 2022), and acids and alkalis are used
to prepare soy protein isolate (SPI) (Jiang et al., 2009). This process
will be fatal to the retention of functional ingredients in
non-soy legumes.

This review briefly describes the processing strategies of soybean
foods, summarizes some guidelines applicable to the processing of
non-soy legumes, and gives some differentiation suggestions on
processing strategies applicable to different non-soy legumes by
systematically summarizing the basic characteristics and processing
variability of non-soy legumes, and briefly describes the pros and
cons of each processing strategy. To provide some suggestions for
processors, meanwhile, give some references and directions
for researchers.

2 Search strategy

To identify eligible studies, we screened published articles related
to non-soy and soybean processing. A preliminary search was
conducted across 5 databases (Science Citation Index [SCI], Science
Citation Index Expanded [SCIE], The Engineering Index [EI], Web
of Science [WOS], and Science Direct databases) using keywords
relevant to this article, such as Soybean; Non-soy Legume; Processing;
Health; Nutrition; Ingredient, and so on. Based on the preliminary
search, the researchers conducted the PRISMA selection flowchart
(Figure 1). After removing duplicates and excluding studies with low
relevance, this review included 110 literatures.
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FIGURE 1
PRISMA literature selection flowchart.

3 Overview of soybean processing
strategies and the guidance

3.1 Soybean processing

The soybean processing industry has become a representative
full-chain industry. A simplified chain of soybean processing is
shown in Figure 2 (Lyu et al., 2023). If we regard oil processing as the
main chain, in addition to edible oil, many “by-products” will
be produced, such as soybean hull, soy meal, whey, etc. (Lyu et al,
2023). But in fact, the value of these “by-products” may far exceed
that of edible oil. Among them, soybean hull becomes the main raw
material for preparing polysaccharides and dietary fiber (Liu et al.,
2016), soybean meal is processed into soybean protein and feed
(Wang et al., 2004; Mukherjee et al., 2016), soybean dregs are the raw
material for producing insoluble dietary fiber (Lyu et al., 2021), and
soybean whey can be used to separate functional substances such as
isoflavones and whey protein (Chua and Liu, 2019; Hu et al., 2024).
Therefore, in recent years, it has been customary to divide the
soybean processing strategies chain into three parts, namely, oil
processing, traditional soy product processing, and new product
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FIGURE 2
The chain of soybean processing (Lyu et al., 2023).

processing (including soy protein), to better describe and position the
soybean processing strategy.

3.2 Soybean processing strategy

3.2.1 Stepwise processing

A notable feature of the soybean processing strategies is stepwise
processing. Although there is no official definition of this concept, this
feature or strategy is indeed being implemented throughout the entire
industrial chain.

Taking food processing as an example (different from feed
processing), soybeans need to be peeled before oil extraction, and
soybean meal is produced after deoiling, and neither of them is
discarded; soybean hull is generally used to produce soybean
dietary fiber (Li L. et al., 2022), soybean polysaccharides (Han et al.,
2021), and cellulose (Tummino et al., 2023), which almost uses up
all the available resources in the hull; soybean meal directly enters
the next level of the protein processing chain. After acid-base
extraction or alcohol extraction, soybean meals can be used to
obtain soy protein isolate (SPI) or soy protein concentrate (SPC),
which become important raw materials for food processing (van
den Berg et al, 2022). This process produces two main
“by-products,” soybean whey and okara (also named soybean
dregs). Soybean whey is mainly used to produce whey protein (Hu
etal., 2024), extract trypsin heterojunctions and f-amylase (Zhang
etal., 2022; Yao et al., 2024), while dregs are mainly used to separate
small molecule peptides and dietary fiber (Fang et al., 2021; Wang
etal, 2021). The above-mentioned end products can all be used as
food raw materials or even developed into healthy food raw
materials with potential physiological functions.

The processing and refining process of oils (the main chain of
soybean processing) will also produce certain “by-products,” such as
crude oil, oil sediment, oil deodorized distillates, etc., which are also
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used as industrial raw materials. For example, crude oil is processed
into fuel oil and lubricating oil (Topare and Patil, 2021), oil sediment
is used to separate phospholipids for use as food raw materials
(Allegretti et al., 2021), and oil deodorized distillates are processed
into biodiesel, vitamin E, phytosterols and fatty acids (Bezerra et al,
20225 Lv et al, 2021; Vernier et al, 2022). The above stepwise
processing realizes the transformation and upgrading of soybeans
from food raw materials to industrial raw materials.

3.2.2 High-value utilization

Another major feature of the soybean processing strategies is
high-value processing. Due to its food properties, nearly half of
soybeans are consumed directly as daily food, such as soy milk, which
results in low economic benefits. However, due to the special value of
soybeans in the international market, processors often hope to create
higher economic value through high-value processing. The high-value
processing of soybeans is reflected in the following three aspects:

The first is the specialization of soybean varieties. Many studies
have shown that the composition of soybean raw materials has a huge
impact on the processing characteristics, nutritional properties, and
quality of the product. For example, the protein composition of the
raw materials affects the gelation properties of SPI (Fu et al., 2023),
and f-conglycinin has the potential to regulate lipid metabolism (Fu
et al, 2022). A similar situation exists in the field of edible oils. For
example, compared with triglycerides, the intake of diglycerides has
less impact on the health of the body (Lai et al., 2022). In traditional
processing, it is common to use different processing techniques to
change the quality characteristics and nutritional properties of the
product. However, this process has great uncertainty and may reduce
the activity of the product due to the introduction of severe processing
conditions, which has made people gradually realize the importance
of precise use of raw materials to improve product quality. At present,
soybeans with high B-conglycinin content and odor-free (lipoxygenase
deficient) have been launched, and their value has been proven (Liu
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S.etal, 2022; Wang et al,, 2020). The use of these special raw materials
will improve the processing and nutritional properties of the products
and create higher economic value.

The second is the comprehensive utilization of processing
by-products. The by-product is a common key issue in the soybean
processing industry and also in the food processing field. By-products
represented by soybean dregs and soybean whey (also known as yellow
pulp water in traditional soy products) cause serious environmental
pollution and waste of resources. In traditional processing mode,
soybean dregs are often directly used as animal feed and have almost
no economic value. However, with the application of new food
processing technologies, such as enzyme engineering (Lyu et al., 2021),
bean dregs can be processed into food raw materials such as dietary
fiber, which can be used as functional food material (Wang et al., 2023),
and pet products such as cat litter (Vaughn et al., 2023), which greatly
increases the added value. The problem of yellow pulp water is even
more serious because, in the traditional processing industry, it not only
fails to create value but also requires huge economic costs to be invested
in treatment to meet emission standards. However, with the application
of new technologies such as membrane separation, it is possible to
separate whey protein, isoflavones, and oligosaccharides, creating an
opportunity to create greater economic value (Chua and Liu, 2019). At
the same time, with the preparation of harmless yellow pulp water
(Chen et al., 2024), its processing cost will also be reduced. The high-
value utilization of by-products has become inevitable.

The last is the development of new plant-based foods with
soybeans as the main raw material. Plant-based food is not a new
concept. People in China and East Asia have had a long tradition of
plant-based diets. However, today, producers and consumers have
given new value to plant-based foods (McClements and Grossmann,
2024), such as avoiding hormone risks, lowering cholesterol, and
reducing dependence on livestock farming. Soy protein has become
the core raw material for plant-based food processing due to its
excellent processing and nutritional properties (Qin et al., 2022). The
application scope and potential value of SPI and SPC have been greatly
improved compared with soybean raw materials, and processing them
into end products has made them truly high-value processing.
Meanwhile, the use of technologies such as screw extrusion can
upgrade by-products into new plant-based food raw materials while
enhancing their nutritional properties (Shen et al., 2024), which is
expected to truly turn waste into treasure.

3.2.3 Differentiated competition

The choice of processing materials best reflects the differentiated
competition in the soybean industry. On the one hand, as mentioned
earlier, the most suitable raw materials should be selected according to
the product that makes the best use of different raw materials and
achieves maximum utilization of resources. On the other hand, from a
macro perspective, genetically modified (GMO) and non-genetically
modified (non-GMO) soybeans are also engaging in differentiated
competition. Although GMO soybeans offer certain advantages, such as
indirect yield increases and reduced cultivation costs, they also present
disadvantages due to biosafety concerns, particularly in food processing.
At present, there are still many countries and regions that do not allow
the cultivation of GMO soybeans or their use in food processing, such
as China, Japan, and some EU countries. However, as international food
trade continues to deepen, the above-mentioned countries and regions
also need to import GMO soybeans. As a result, GMO soybeans are

Frontiers in Sustainable Food Systems

10.3389/fsufs.2025.1674400

used to process feed and oils, while non-GMO soybeans are used to
process food, which has become mainstream. This differentiated
competition also enables the full utilization of global soybean resources.

Product segmentation is also an effective means to achieve
differentiated competition. Taking traditional soy products as an
example, there are many processed products using soy milk as raw
material, such as tofu, dried tofu, bean curd sticks, fermented soy
milk, various plant beverages, and so on (Golbitz, 1995). Fermented
soy products are even more so. Various condiments have become an
indispensable part of consumers’ daily diet, such as soy sauce, douchi,
natto, and bean paste (do Prado et al., 2022). SPI is also processed into
products with different processing characteristics, such as gel type,
emulsification type, etc., to meet the processing needs of different
products (Zheng et al., 2022; Liu G. et al., 2022).

The advantages of differentiated competition are reflected in three
aspects. First, it greatly increases consumers’ selectivity in products,
which helps to continuously increase the market share of soybean
products. Second, it deeply binds daily diets with soybean products,
cultivates consumers” consumption habits, and improves the industry’s
ability to resist risks. Third, it gives producers the power and autonomy
to decide on products, effectively avoiding internal competition in the
industry. This is also an important strategy worth learning in the
non-soy legume processing industry.

3.2.4 Transformation from tradition to modernity
The soybean processing industry is both traditional and modern.
On the one hand, soybean cultivation and processing have a long
history and have become a characteristic industry in some countries and
regions; on the other hand, with the increase in market demand, the
soybean industry is also one of the first industries in the food processing
field to integrate modern processing technology. Traditional processing
methods include pressing, grinding, etc., which are used to produce soy
milk and edible oil and are still in use today (Vishwanathan etal., 2011;
Moses, 2014). Based on classic traditional processing technology, the
application of modern processing technology has gradually been
integrated into all links of the soybean processing industry chain. For
example, sprouting soybeans before processing can enrich the nutrients
in the product (Hu et al., 2022), synchronous preparation of oil and
protein using enzyme-assisted aqueous method (Tong et al., 2020; Qian
et al., 2010), preparation of dietary fiber from soybean dregs using a
combined-enzyme method (Lyu et al., 2021), use membrane separation
technology to separate functional components from soybean whey
(Chua and Liu, 2019), use screw extrusion technology to prepare
textured protein as a raw material for plant-based foods (Lyu et al.,
2022), etc. Meanwhile, some new microorganisms (Peng et al., 2023),
enzymes (Huang et al., 2022), and other raw materials (Tong et al., 2022)
that contribute to product quality are also used in soy product
processing to improve product quality. In short, the soybean processing
industry has achieved a transformation from tradition to modernity in
terms of raw materials, processing technology, and end products.

3.3 The strategies in guiding the processing
of non-soy legumes

Since both soybeans and non-soy legumes are legumes, their

processing strategies share many similarities, even though their
composition can vary greatly. For example, most legumes are
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high-quality sources of plant protein and can be used in the
production of protein-based foods, all contain many potential
functional ingredients and can be used as potential raw materials for
functional foods, and the by-products generally contain a large
amount of dietary fiber, etc. Therefore, in the field of non-soy legume
processing, many soybean processing strategies can be used as
reference, such as high-value utilization and stepwise processing,
which can significantly improve the traditional processing mode of
non-soy legumes that are mainly used as raw grains.

However, due to the great differences in the composition of
non-soy legumes and between non-soy legumes and soybeans, their
processing strategies should be different. For example, most non-soy
legumes cannot be used for oil processing, so new main chains
should be found during the stepwise processing. Many non-soy
legumes have a high starch content, which will put forward new
requirements for the processing technology during the processing.
Meanwhile, the functional ingredients of non-soy legumes are
generally higher than soybeans, so some strong processing
conditions are not suitable for non-soy legumes. Representative and
food-processable non-soy legumes include: Mung Bean (Vigna
radiata), Pea (Pisum sativum), Adzuki Bean (Vigna angularis),
Kidney Bean (Phaseolus vulgaris), and Chickpea (Cicer arietinum).
The five non-soy legumes mentioned above exhibit significant
differences in processing strategies when compared to soybeans.

4 Differences in processing strategies
for non-soy legumes compared to
soybeans

The reasons for the differences in processing strategies for
soybeans and non-soy legumes are multifaceted, including but not
limited to the following: primary ingredients, processing applications,
functional components, extent of by-product creation, as well as
various factors that could potentially influence the differences between
the soybeans and non-soy legumes, such as yield and production
regions. The nutritional composition, yield, and main cultivation areas
of soybeans and representative non-soy legumes are shown in Table 1.
How to transform the differences between the soybeans and non-soy
legumes into precise high-value processing pathways is the core
reason for formulating different processing strategies.

4.1 Differences in processing strategies for
the main components of non-soy legumes

As mentioned, soybeans are the predominant source of plant-based
protein and oil supply, but non-soy legumes vary considerably from this.
While some non-soy legumes can still be used as a source of protein,
such as peas, very few can be used as a source of fats and oils. In contrast,
peas, mung beans, and kidney beans are all considered good sources of
starch (Ratnayake et al., 2002; Abdel-Rahman et al., 2008; Punia et al.,
2020), so starch processing should be recognized as the mainstay of
non-soy legume processing, rather than protein and oil. The change in
the main components then brings about a change in the processing
strategy, a change that has had both beneficial and detrimental effects.

Advantageously, the processing of starch is much softer compared
to the processing of oils, i.e., it does not involve the use of organic
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solvents, which brings with it a variety of advantages. First, food safety
risks have improved significantly. Organic solvent residues in edible
fats and oils have always been a food safety risk factor (Ghouila et al,,
2019), and their removal has become an important part of the
processing. In contrast, this process is virtually non-existent in the
processing of non-soy legumes, and the resulting food safety risk
factors do not exist. Second, mild processing conditions help retain the
activity of functional ingredients. Functional components in non-soy
legumes will be discussed later, but one thing is the same, functional
performance scores are highly sensitive to processing. This makes
non-soy legumes even more promising for high-value processing, i.e.,
processing into health foods and their ingredients, which may have a
direct impact on the end use of the ingredient, as well as on consumer
acceptance of the product. It’s also worth noting that non-soy legumes
have almost no odor troubles. Soybeans generally have an off-flavor or
soy-like odor that comes from the oxidation of lipids by lipoxygenase
(Davies et al., 1987; Tian and Hua, 2021). Non-soy legumes, on the
other hand, do not inherently possess this property.

Changes in processing due to changes in ingredient composition
are not always an advantage, which is reflected in two potential aspects.
On the one hand, there may be obstacles to the efficient separation and
high-value utilization of by-products. The stepwise processing strategy
of soybeans is a complex process, but it achieves a high utilization of raw
materials, and the by-products can be used as feedstock for the next
stage of processing at a lower cost. But this situation is costly for non-soy
legume processing. Functional ingredients such as soy dietary fiber,
whey protein, and isoflavones can usually be prepared using by-products
of soybean processing (Lyu et al., 2021; Chua and Liu, 2019; Nile et al,,
2021), but functional ingredients in miscellaneous grains, such as
polyphenols in adzuki bean (Mukai and Sato, 2009), require a separately
designed process to be used for their preparation. Even the seed coat of
non-soy legumes is not viewed as a by-product, as consumers are
accustomed to eating whole legumes. On the other hand, consumption
and pollution caused by processing may be higher. While organic
solvents and strong acids and bases used in soybean processing are
potential sources of contamination, recycling strategies for various
processing aids are sufficiently robust. For example, in soybean oil
processing, the recovery of hexane is considered to be efficient and cost-
effective (Gasparetto et al., 2022). The contaminant in non-soy legume
processing is almost always contaminated water. Instead, wastewater
management is one of the most important issues to be addressed in the
food processing industry (Shrivastava et al., 2022). By the same token,
the more pollution, the higher the consumption. The reason why the
contamination issue is not given enough attention is maybe because the
amount of processing of non-soy legumes is much smaller compared to
soybeans. However, this does not mean that it is a problem to be ignored
in industrial scale-up processing.

Therefore, as the non-soy legume processing industry is gradually
taking shape, it makes sense to develop different refined processing
strategies based on the differences in major components, which will
contribute to the efficient green transformation of the industry.

4.2 Differences in whole-seed processing
and staple food processing

The immediate impact of the compositional differences is the
difference in processing patterns between soybeans and non-soy
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TABLE 1 Nutritional composition, yield, and cultivation areas of soybeans and non-soy legumes.

Different Macronutrients Micronutrients Other Yield Cultivation
raw . . . . . . . Representative (10,000-ton) areas
FrEETElS Oil (g/100 g) Protein Carbohydrates Minerals Vitamins Dietary fiber [i)\lutrients
(/100 g) (9/100 g) (mg/100 g) (9/100 g)
Calcium: 150-250 Lecithin United States, Brazil,
Soybean 15-20 30-40 30-35 B complex 15-18 ~360 million
Potassium: 1400-1800 Isoflavones Argentina, China
Mung Bean Potassium: 600-1,000 Saponins India, China,
0.5-1.5 20-24 55-65 E and B complex 5-8 ~500
(Vigna radiata) Magnesium: 100-150 Polyphenols Myanmar
Pea (Pisum
0.2-0.8 6-9 20-25 Potassium: 300-400 C 2.5-4 Lysine (high content) ~2,300 China, Canada, Russia
sativum)
Adzuki Bean Potassium: 1000—
China, Japan, South
(Vigna 0.5-1.0 19-22 60-65 1,500 B complex 11-14 Polyphenols ~70 X
orea
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legumes. Although soybeans have also been subjected to some whole-
seed processing, the purpose of processing for both has changed
markedly compared to that of non-soy legumes.

The core objective of soybean processing is to separate the oils and
proteins for use in the processing of other complex food systems, even
if the primary processed products, such as soymilk and tofu, are not
used as staple foods. So there is little concept of staple food processing
for soybeans, and whole-seed processing is not intended to improve
product quality or nutritional properties, but rather as a way to reduce
by-product emissions (Lusas, 2004; Singh and Krishnaswamy, 2022;
Karim et al., 2025).

The core objective of processing non-soy legumes is to address
their difficulty in cooking and to make them a staple food as an
alternative to refined rice and flour. Almost all non-soy legumes have
the habit of being consumed directly as a staple food, maximizing the
nutrients in them and enhancing the functionality of the staple food.
As a carrier of high-quality carbohydrates, dietary fiber, and
micronutrients, the consumption of non-soy legumes effectively
optimizes the dietary structure of consumers (Bazzano et al., 2011).
Non-soy legumes are also processed in whole-seed mode, for example,
adzuki bean and mung beans can be directly processed into whole-
bean paste and consumed (Han et al., 2020; Huang et al., 2024), peas
are directly processed into frozen vegetables (Samoilov et al., 2021),
kidney beans and chickpeas can be processed into canned goods
(Dahletal., 20145 Parmar et al., 2016), and so on. The implications of
this model are also twofold. Advantageously, this mode of processing
greatly reduces processing costs and processing losses and maximizes
nutrient retention, which is one of the main reasons for the gradual
increase in consumer acceptance of non-soy legumes. In contrast,
however, this processing model may not be conducive to the long-
term development and high-quality transformation of the industry.
Simple processing strategies have prevented the non-soy legume
industry from escaping the dilemma of primary processing, especially
for the main production areas of non-soy legumes, which can bring
limited economic benefits.

Some attempts have been made by the processing industry, such
as using peas to prepare isolated protein (Lam et al., 2018), using
adzuki beans to make beverages (Li H. et al., 2022), and using kidney
beans to prepare a-amylase (Liu et al., 2024), etc. This provides a
reference case for the high-value utilization of non-soy legumes.
Whether the processing of non-soy legumes can find a balance
between traditional food processing and new food processing, may
be a new challenge.

4.3 Differences in the retention of
functional ingredients during processing

The macronutrients in soybeans should be considered oils and
proteins, which are the most critical components of soybeans as a
major plant-based food ingredient. The typical micronutrients in
soybeans include soy isoflavones, soy saponins, vitamins, and more.
Differences in consumption habits and processing strategies lead to a
completely different conception of macronutrients and micronutrients,
with consumers consuming processed soy products without much
regard for their health attributes, but more for the macronutrients’
basic function in the body’s metabolism. Even if some consumers are
aware of the functionality of the micronutrients in soybeans, they are
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more inclined to consume higher-value products, such as health foods
containing soy isoflavones, rather than simply consuming soybeans.
Therefore, as mentioned earlier, the processing strategy for soybeans
does not take into account the retention of functional constituents and
also results in a large number of functional constituents becoming
inactive with processing. Therefore, as mentioned, the processing
strategy for soybeans does not take into account the retention of
functional constituents and also results in a large number of functional
constituents becoming inactive with processing. Non-soy legumes
processing is just the opposite; people consume non-soy legumes
more for nutritional retention and health needs.

For example, the polyphenols in peas have significant antioxidant,
anti-inflammatory, and anticancer activities, and saponins have been
reported to have cholesterol-lowering properties (Dahl et al., 2012;
Singh et al, 2017). Combined with the highly digestible and
hypoallergenic properties of its protein (Guillin et al, 2022
Shanthakumar et al., 2022), and the role of dietary fiber in promoting
intestinal health (Hashemi et al., 2017), peas are most commonly
processed by flash-freezing them to become a frozen vegetable, to
maximize the retention of their functional components. In addition
to the above ingredients, adzuki beans have additional flavonoids and
alkaloids, which also have the same antioxidant, anti-inflammatory
and other benefits, yielding potential applications in the medical field
(Agarwal and Chauhan, 2019; Liu et al., 2017; Briguglio et al., 2018).
This has led to adzuki beans being used in more healthcare
applications, such as in traditional Chinese medicine, in addition to
being processed into beverages or whole-seed processing. Mung beans
also exhibit functions and applications similar to those described
above (Hou et al,, 2019). Kidney beans, which occupy a significant
portion of international trade, also contain functional substances such
as quercetin and more, which are important reasons why they are a
favored source of plant-based food ingredients (Zhang et al., 2025;
Kimothi and Dhaliwal, 2020). Complemented by its protein, starch,
dietary fiber, excellent processing characteristics, and nutritional
properties, kidney bean processing in the field of non-soy legumes
reflects the obvious high value attributes. Meanwhile, there is also a
trend towards staple foods and the daily consumption of kidney beans.

The presence of the above functional constituents places new
demands on the processing strategies of non-soy legumes. The first is
the necessity of non-thermal/low-temperature processing; most of the
micronutrients mentioned above are thermosensitive, and functional
macronutrients such as kidney bean proteins may also be thermally
denatured. How to ensure the efficient retention of functional
components puts higher requirements on all aspects of processing,
storage, and logistics of non-soy legume products, compared to
soybeans. The second is the necessity of non-vigorous processing.
Soybeans and some staple grains are usually processed very vigorously,
such as the consumption of sodium hydroxide, hydrochloric acid,
organic solvents, etc., which is fatal to the retention of functional
substances in the non-soy legumes. Novel processing technologies that
are non-vigorous and allow for the preparation of macronutrients and
retention of micronutrient activity are necessary. The third is that the
use of biotechnology to achieve the separation of different components
in the non-soy legumes is necessary. The soybean processing industry
has begun such as enzyme-assisted aqueous extraction for
simultaneous production of protein and oil and other prospective
research (Tong et al., 2020), but limited by the amount of processing
and enzyme costs, has not been put into production on a large scale.
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However, non-soy legumes are feasible to utilize biotechnology to
achieve retention of functional components due to low processing
requirements (compared to soybeans), strong health attributes, and
high added value.

4 .4 Different pathways for the use of
non-soy legume by-products

Differences in processing strategies for by-products resulting
from soybean processing and non-soy legumes processing similarly
stem from differences in the composition of the by-products. The
main by-products of soybean processing are whey and soybean
dregs, whose core components should be regarded as protein and
fiber (except for water). So the main pathway for the soybean
by-products processing, i.e., feed. If used in food, it is used as a raw
material for dietary fiber, functional peptides, and some other
functional ingredients (Hu et al., 2024; Fang et al., 2021; Wang et al.,
2021). That is, a pattern of closed loops within the processing chain
is formed.

However, due to the non-soy legume processing strategy, it is
difficult to define what the main chain of non-soy legume processing
is, and it is not possible to precisely define what the by-products are.
For example, soybean meal is a core by-product of soybean oil
processing, and soybean dregs are a core by-product of protein. But
in the field of non-soy legumes, there is no such concept. So
non-soy legume processing by-products are mainly some seed coat
and residue, with high fiber, high starch, and low protein as the
main characteristics. There is a lack of systematic processing
strategies for these by-products, for example, peas and other
legumes with seed coats, which are often discarded directly or used
as feed or fertilizer, with low added value. Adzuki beans, a category
of legumes with color, are processed in wastewater that is barely
used for processing, even though they contain some natural
coloring. Only some product residues have the potential to be used
in secondary processes.

Therefore, there is some uncertainty in the by-product processing
strategy of non-soy legumes, which focuses more on the
transformation of basic substances and lacks systematic high-value
utilization. There is an urgent need to find effective strategies and ways
to efficiently extract functional ingredients, upgrade to food raw
materials, environmental protection, and green processing of non-soy
legume by-products.

4.5 Allergenicity and anti-nutritional
factors of non-soy legumes

Food safety issues cannot be ignored in the development of
processing strategies. The allergenicity and anti-nutritional factors are
the main endogenous food safety risk factors of soybeans and
non-soy legumes.

Soybean is one of the top eight allergenic foods published by the
Food and Agriculture Organization of the United Nations (FAO), and
its allergenicity is triggered mainly by a variety of heat-stable proteins
(L'Hocine and Boye, 2007). This may also be one of the reasons why
some consumers whose diets are dominated by foods of animal origin
have so far been unable to accept soybean. But in reality, processes
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greatly mitigate the allergenicity of soybean, such as thermal
processing and fermentation (Pi et al., 2021; Franck et al., 2002). In
contrast, a certain diversity of allergens exists for non-soy legumes.
Examples include bran (esp. of cereals), a-amylase, trypsin inhibitors,
and more (Satoh et al., 2019; Calcinai et al., 2022; Abu Risha et al.,
2024). Meanwhile, although the allergenicity of non-soy legumes is
relatively low, there is some cross-reactivity, for example, Vicilin and
Convicilin in peas are structurally similar to peanut allergens
(Sanchez-Monge et al., 2004), and chickpea allergy is associated with
lentils, peas, and so on (Bar-El Dadon et al., 2014). Another thing to
keep in mind is that while the allergenicity of a particular type of
non-soy legume may be low, it is common to consume multiple types
of non-soy legumes at the same time due to dietary habits. Whether
there are interactions or cumulative effects between different allergens
is also an important food safety issue. The allergic problems
mentioned above should also be addressed with processing.

Anti-nutritional factors are also an important issue in plant-based
foods. On the one hand, protein-based anti-nutritional factors are
potential allergens, and there is a cumulative effect of them, and on
the other hand, the presence of anti-nutritional factors restricts the
body’s absorption of nutrients, which reduces the health benefits of
consuming non-soy legume foods. Anti-nutritional factors in
soybeans include protease inhibitors, plant lectins, and phytic acid (D1
et al.,, 2024), in addition to tannins (e.g., in mung beans) and oxalic
acid (e.g., in quinoa) in non-soy legumes (Dahiya et al., 2015; Filho
et al, 2017). It can be said that the risk of anti-nutritional factors is
higher in non-soy legumes than in soybeans.

It is feasible to address allergenicity and anti-nutritional factors
using rational processing methods, such as removing or breaking
down allergens and anti-nutritional factors using physical methods
such as heat treatment, soaking, rinsing, shelling, etc., and
transforming or metabolizing both of the above using biological
methods such as fermentation and sprouting, and studies have
emerged on the above methods (Verma et al., 2012; Poms and
Anklam, 2004; Oyedeji et al., 2018; Ampofo and Abbey, 2023). In
addition, with the continuous development of breeding techniques,
the selection of raw materials with hypoallergenic and low anti-
nutritional factors has become possible. This will also help reduce the
stress and cost of food processing.

It is also important to note that, in addition to the production and
processing of both soybeans and non-soy legumes, risk management
for special populations during consumption is necessary, such as
infants, young children, and allergy-prone individuals. End-products
aimed at the above groups should be formulated with a processing
strategy that strictly removes allergens and anti-nutritional factors, or
at least identifies them on the packaging if there are difficulties.

In summary, the development of scientific processing strategies
for different raw materials is of great significance to the development
of the processing industry and the improvement of the health level.

5 Conclusion

This article provides a brief review of the similarities and
differences in the processing strategies of soybean processing and
non-soy legume processing, and incorporates some arguments. As
high-quality plant-based food ingredients, both have made significant
contributions to stabilizing the human diet and safeguarding human
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health. However, due to the differences in their processing strategies,
the development of their industries is also different. It is hoped that
the issues mentioned above will provide some inspiration and
suggestions for producers and researchers, with a view to the high-
quality development of the non-soy legume industry in a way that is
different from the characteristics of soybeans.
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