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Introduction: As consumers continue to demand healthy diets and plant-based 
foods, the acceptance of bean foods, especially non-soy legumes, is gradually 
increasing. Since the industrial processing of non-soy legumes has just started, 
it has borrowed many processing strategies from soybeans. However, since the 
basic ingredients, processing characteristics, and nutritional properties of non-
soy legumes are different from those of soybeans, their processing strategies 
should also be different.
Methods: This paper systematically reviews and compares the similarities and 
differences between processing strategies for soybeans and non-soy legumes.
Results: Several suggestions are proposed in this paper, which provide a 
theoretical basis and strategic recommendations for the industrial processing of 
non-soy legumes.
Discussion: Several issues have been raised simultaneously, and their proper 
resolution will contribute to the high-quality development of non-soy legumes 
processing industry.
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1 Introduction

As consumers pay more and more attention to healthy eating and plant-based foods, 
bean foods, also known as legume foods, are gradually increasing their market share (Hayat 
et al., 2014). Soybeans, in particular, have become an important source of plant protein and 
plant oil for modern humans (Qin et al., 2022; Zhao et al., 2022). At the same time, with the 
rapid changes in the international situation, soybeans have gradually become an important 
resource that various countries are competing for Kong et al. (2024) and De Maria et al. 
(2020). The soybean industry is directly affecting the food industry (Chen et al., 2012), the 
feed industry, and animal husbandry (Gaffield et al., 2024), and is profoundly affecting 
everyone’s life. As a result, some non-soy legumes have gradually come into the eyes of 
consumers and processors, replacing part of the use of soybeans. Meanwhile, non-soy 
legumes can be developed into healthy foods (Mansouri et al., 2024; Zahradka et al., 2013), 
such as mung bean (Vigna radiata), pea (Pisum sativum), adzuki bean (Vigna angularis), 
kidney bean (Phaseolus vulgaris), chickpea (Cicer arietinum), and more (Li et al., 2017; Wang 
et al., 2022; Kan et al., 2017). At the same time, with the rise of plant-based foods, the 
excellent processing characteristics and nutritional properties of bean foods make them an 
excellent raw material for most plant-based foods (Ashraf et al., 2024; McClements and 
Grossmann, 2021). Bean food processing has gradually become an important part of the 
modern food industry.
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However, looking at the entire bean processing industry, there is 
a big gap between non-soy and soybean processing. Compared with 
the fully developed and modernized soybean processing industry, the 
non-soy legume industry mainly focuses on the application of raw 
grains, such as daily diet (Zahradka et al., 2013), whole seed processing 
(Ong et al., 2024) or simple separation of ingredients (Li et al., 2011), 
which lacks deep and high-value processing. Therefore, when 
producers consider non-soy legume processing, they will give priority 
to soybean processing strategies. After all, it is typical and worthy of 
reference, such as whether it can be used to process oils and fats, 
whether it can be used to separate proteins, whether the amino acid 
composition is reasonable, etc. Although this approach is not wrong, 
it lacks specificity. Chickpeas (Cicer arietinum), often used as a 
soybean substitute, are a typical example (de Camargo et al., 2019; 
Niño-Medina et al., 2017).

Non-soy legumes have their particularities in terms of raw 
material composition, processing characteristics, nutritional 
characteristics, etc. For example, adzuki beans (Vigna angularis) are 
ingredients of Medicine Food Homology (MFH) in traditional 
Chinese medicine (Sun et al., 2021), mung beans (Vigna radiata) 
have a high starch content (Li et al., 2011), faba beans (Vicia faba) 
have a high content of non-nutritional compounds (NNC) (Corzo-
Ríos et  al., 2022), and chickpea (Cicer arietinum) protein is less 
allergenic than soybean protein (Verma et al., 2013). Although they 
cannot be part of the daily diet like soybeans (due to insufficient 
protein and fat content, unbalanced amino acid composition, lack of 
key nutrients, etc.), the differences between the beans make them 
worthy of processing. Using a unified processing strategy will cause 
the disappearance of product characteristics and even the waste of 
functional ingredient resources, which is unreasonable. For example, 
in the process of soybean processing, organic solvents are often used 
to extract oils (Gasparetto et al., 2022), and acids and alkalis are used 
to prepare soy protein isolate (SPI) (Jiang et al., 2009). This process 
will be  fatal to the retention of functional ingredients in 
non-soy legumes.

This review briefly describes the processing strategies of soybean 
foods, summarizes some guidelines applicable to the processing of 
non-soy legumes, and gives some differentiation suggestions on 
processing strategies applicable to different non-soy legumes by 
systematically summarizing the basic characteristics and processing 
variability of non-soy legumes, and briefly describes the pros and 
cons of each processing strategy. To provide some suggestions for 
processors, meanwhile, give some references and directions 
for researchers.

2 Search strategy

To identify eligible studies, we screened published articles related 
to non-soy and soybean processing. A preliminary search was 
conducted across 5 databases (Science Citation Index [SCI], Science 
Citation Index Expanded [SCIE], The Engineering Index [EI], Web 
of Science [WOS], and Science Direct databases) using keywords 
relevant to this article, such as Soybean; Non-soy Legume; Processing; 
Health; Nutrition; Ingredient, and so on. Based on the preliminary 
search, the researchers conducted the PRISMA selection flowchart 
(Figure 1). After removing duplicates and excluding studies with low 
relevance, this review included 110 literatures.

3 Overview of soybean processing 
strategies and the guidance

3.1 Soybean processing

The soybean processing industry has become a representative 
full-chain industry. A simplified chain of soybean processing is 
shown in Figure 2 (Lyu et al., 2023). If we regard oil processing as the 
main chain, in addition to edible oil, many “by-products” will 
be produced, such as soybean hull, soy meal, whey, etc. (Lyu et al., 
2023). But in fact, the value of these “by-products” may far exceed 
that of edible oil. Among them, soybean hull becomes the main raw 
material for preparing polysaccharides and dietary fiber (Liu et al., 
2016), soybean meal is processed into soybean protein and feed 
(Wang et al., 2004; Mukherjee et al., 2016), soybean dregs are the raw 
material for producing insoluble dietary fiber (Lyu et al., 2021), and 
soybean whey can be used to separate functional substances such as 
isoflavones and whey protein (Chua and Liu, 2019; Hu et al., 2024). 
Therefore, in recent years, it has been customary to divide the 
soybean processing strategies chain into three parts, namely, oil 
processing, traditional soy product processing, and new product 

FIGURE 1

PRISMA literature selection flowchart.
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processing (including soy protein), to better describe and position the 
soybean processing strategy.

3.2 Soybean processing strategy

3.2.1 Stepwise processing
A notable feature of the soybean processing strategies is stepwise 

processing. Although there is no official definition of this concept, this 
feature or strategy is indeed being implemented throughout the entire 
industrial chain.

Taking food processing as an example (different from feed 
processing), soybeans need to be peeled before oil extraction, and 
soybean meal is produced after deoiling, and neither of them is 
discarded; soybean hull is generally used to produce soybean 
dietary fiber (Li L. et al., 2022), soybean polysaccharides (Han et al., 
2021), and cellulose (Tummino et al., 2023), which almost uses up 
all the available resources in the hull; soybean meal directly enters 
the next level of the protein processing chain. After acid–base 
extraction or alcohol extraction, soybean meals can be  used to 
obtain soy protein isolate (SPI) or soy protein concentrate (SPC), 
which become important raw materials for food processing (van 
den Berg et  al., 2022). This process produces two main 
“by-products,” soybean whey and okara (also named soybean 
dregs). Soybean whey is mainly used to produce whey protein (Hu 
et al., 2024), extract trypsin heterojunctions and β-amylase (Zhang 
et al., 2022; Yao et al., 2024), while dregs are mainly used to separate 
small molecule peptides and dietary fiber (Fang et al., 2021; Wang 
et al., 2021). The above-mentioned end products can all be used as 
food raw materials or even developed into healthy food raw 
materials with potential physiological functions.

The processing and refining process of oils (the main chain of 
soybean processing) will also produce certain “by-products,” such as 
crude oil, oil sediment, oil deodorized distillates, etc., which are also 

used as industrial raw materials. For example, crude oil is processed 
into fuel oil and lubricating oil (Topare and Patil, 2021), oil sediment 
is used to separate phospholipids for use as food raw materials 
(Allegretti et al., 2021), and oil deodorized distillates are processed 
into biodiesel, vitamin E, phytosterols and fatty acids (Bezerra et al., 
2022; Lv et  al., 2021; Vernier et  al., 2022). The above stepwise 
processing realizes the transformation and upgrading of soybeans 
from food raw materials to industrial raw materials.

3.2.2 High-value utilization
Another major feature of the soybean processing strategies is 

high-value processing. Due to its food properties, nearly half of 
soybeans are consumed directly as daily food, such as soy milk, which 
results in low economic benefits. However, due to the special value of 
soybeans in the international market, processors often hope to create 
higher economic value through high-value processing. The high-value 
processing of soybeans is reflected in the following three aspects:

The first is the specialization of soybean varieties. Many studies 
have shown that the composition of soybean raw materials has a huge 
impact on the processing characteristics, nutritional properties, and 
quality of the product. For example, the protein composition of the 
raw materials affects the gelation properties of SPI (Fu et al., 2023), 
and β-conglycinin has the potential to regulate lipid metabolism (Fu 
et al., 2022). A similar situation exists in the field of edible oils. For 
example, compared with triglycerides, the intake of diglycerides has 
less impact on the health of the body (Lai et al., 2022). In traditional 
processing, it is common to use different processing techniques to 
change the quality characteristics and nutritional properties of the 
product. However, this process has great uncertainty and may reduce 
the activity of the product due to the introduction of severe processing 
conditions, which has made people gradually realize the importance 
of precise use of raw materials to improve product quality. At present, 
soybeans with high β-conglycinin content and odor-free (lipoxygenase 
deficient) have been launched, and their value has been proven (Liu 

FIGURE 2

The chain of soybean processing (Lyu et al., 2023).
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S. et al., 2022; Wang et al., 2020). The use of these special raw materials 
will improve the processing and nutritional properties of the products 
and create higher economic value.

The second is the comprehensive utilization of processing 
by-products. The by-product is a common key issue in the soybean 
processing industry and also in the food processing field. By-products 
represented by soybean dregs and soybean whey (also known as yellow 
pulp water in traditional soy products) cause serious environmental 
pollution and waste of resources. In traditional processing mode, 
soybean dregs are often directly used as animal feed and have almost 
no economic value. However, with the application of new food 
processing technologies, such as enzyme engineering (Lyu et al., 2021), 
bean dregs can be processed into food raw materials such as dietary 
fiber, which can be used as functional food material (Wang et al., 2023), 
and pet products such as cat litter (Vaughn et al., 2023), which greatly 
increases the added value. The problem of yellow pulp water is even 
more serious because, in the traditional processing industry, it not only 
fails to create value but also requires huge economic costs to be invested 
in treatment to meet emission standards. However, with the application 
of new technologies such as membrane separation, it is possible to 
separate whey protein, isoflavones, and oligosaccharides, creating an 
opportunity to create greater economic value (Chua and Liu, 2019). At 
the same time, with the preparation of harmless yellow pulp water 
(Chen et al., 2024), its processing cost will also be reduced. The high-
value utilization of by-products has become inevitable.

The last is the development of new plant-based foods with 
soybeans as the main raw material. Plant-based food is not a new 
concept. People in China and East Asia have had a long tradition of 
plant-based diets. However, today, producers and consumers have 
given new value to plant-based foods (McClements and Grossmann, 
2024), such as avoiding hormone risks, lowering cholesterol, and 
reducing dependence on livestock farming. Soy protein has become 
the core raw material for plant-based food processing due to its 
excellent processing and nutritional properties (Qin et al., 2022). The 
application scope and potential value of SPI and SPC have been greatly 
improved compared with soybean raw materials, and processing them 
into end products has made them truly high-value processing. 
Meanwhile, the use of technologies such as screw extrusion can 
upgrade by-products into new plant-based food raw materials while 
enhancing their nutritional properties (Shen et al., 2024), which is 
expected to truly turn waste into treasure.

3.2.3 Differentiated competition
The choice of processing materials best reflects the differentiated 

competition in the soybean industry. On the one hand, as mentioned 
earlier, the most suitable raw materials should be selected according to 
the product that makes the best use of different raw materials and 
achieves maximum utilization of resources. On the other hand, from a 
macro perspective, genetically modified (GMO) and non-genetically 
modified (non-GMO) soybeans are also engaging in differentiated 
competition. Although GMO soybeans offer certain advantages, such as 
indirect yield increases and reduced cultivation costs, they also present 
disadvantages due to biosafety concerns, particularly in food processing. 
At present, there are still many countries and regions that do not allow 
the cultivation of GMO soybeans or their use in food processing, such 
as China, Japan, and some EU countries. However, as international food 
trade continues to deepen, the above-mentioned countries and regions 
also need to import GMO soybeans. As a result, GMO soybeans are 

used to process feed and oils, while non-GMO soybeans are used to 
process food, which has become mainstream. This differentiated 
competition also enables the full utilization of global soybean resources.

Product segmentation is also an effective means to achieve 
differentiated competition. Taking traditional soy products as an 
example, there are many processed products using soy milk as raw 
material, such as tofu, dried tofu, bean curd sticks, fermented soy 
milk, various plant beverages, and so on (Golbitz, 1995). Fermented 
soy products are even more so. Various condiments have become an 
indispensable part of consumers’ daily diet, such as soy sauce, douchi, 
natto, and bean paste (do Prado et al., 2022). SPI is also processed into 
products with different processing characteristics, such as gel type, 
emulsification type, etc., to meet the processing needs of different 
products (Zheng et al., 2022; Liu G. et al., 2022).

The advantages of differentiated competition are reflected in three 
aspects. First, it greatly increases consumers’ selectivity in products, 
which helps to continuously increase the market share of soybean 
products. Second, it deeply binds daily diets with soybean products, 
cultivates consumers’ consumption habits, and improves the industry’s 
ability to resist risks. Third, it gives producers the power and autonomy 
to decide on products, effectively avoiding internal competition in the 
industry. This is also an important strategy worth learning in the 
non-soy legume processing industry.

3.2.4 Transformation from tradition to modernity
The soybean processing industry is both traditional and modern. 

On the one hand, soybean cultivation and processing have a long 
history and have become a characteristic industry in some countries and 
regions; on the other hand, with the increase in market demand, the 
soybean industry is also one of the first industries in the food processing 
field to integrate modern processing technology. Traditional processing 
methods include pressing, grinding, etc., which are used to produce soy 
milk and edible oil and are still in use today (Vishwanathan et al., 2011; 
Moses, 2014). Based on classic traditional processing technology, the 
application of modern processing technology has gradually been 
integrated into all links of the soybean processing industry chain. For 
example, sprouting soybeans before processing can enrich the nutrients 
in the product (Hu et al., 2022), synchronous preparation of oil and 
protein using enzyme-assisted aqueous method (Tong et al., 2020; Qian 
et al., 2010), preparation of dietary fiber from soybean dregs using a 
combined-enzyme method (Lyu et al., 2021), use membrane separation 
technology to separate functional components from soybean whey 
(Chua and Liu, 2019), use screw extrusion technology to prepare 
textured protein as a raw material for plant-based foods (Lyu et al., 
2022), etc. Meanwhile, some new microorganisms (Peng et al., 2023), 
enzymes (Huang et al., 2022), and other raw materials (Tong et al., 2022) 
that contribute to product quality are also used in soy product 
processing to improve product quality. In short, the soybean processing 
industry has achieved a transformation from tradition to modernity in 
terms of raw materials, processing technology, and end products.

3.3 The strategies in guiding the processing 
of non-soy legumes

Since both soybeans and non-soy legumes are legumes, their 
processing strategies share many similarities, even though their 
composition can vary greatly. For example, most legumes are 
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high-quality sources of plant protein and can be  used in the 
production of protein-based foods, all contain many potential 
functional ingredients and can be used as potential raw materials for 
functional foods, and the by-products generally contain a large 
amount of dietary fiber, etc. Therefore, in the field of non-soy legume 
processing, many soybean processing strategies can be  used as 
reference, such as high-value utilization and stepwise processing, 
which can significantly improve the traditional processing mode of 
non-soy legumes that are mainly used as raw grains.

However, due to the great differences in the composition of 
non-soy legumes and between non-soy legumes and soybeans, their 
processing strategies should be different. For example, most non-soy 
legumes cannot be  used for oil processing, so new main chains 
should be  found during the stepwise processing. Many non-soy 
legumes have a high starch content, which will put forward new 
requirements for the processing technology during the processing. 
Meanwhile, the functional ingredients of non-soy legumes are 
generally higher than soybeans, so some strong processing 
conditions are not suitable for non-soy legumes. Representative and 
food-processable non-soy legumes include: Mung Bean (Vigna 
radiata), Pea (Pisum sativum), Adzuki Bean (Vigna angularis), 
Kidney Bean (Phaseolus vulgaris), and Chickpea (Cicer arietinum). 
The five non-soy legumes mentioned above exhibit significant 
differences in processing strategies when compared to soybeans.

4 Differences in processing strategies 
for non-soy legumes compared to 
soybeans

The reasons for the differences in processing strategies for 
soybeans and non-soy legumes are multifaceted, including but not 
limited to the following: primary ingredients, processing applications, 
functional components, extent of by-product creation, as well as 
various factors that could potentially influence the differences between 
the soybeans and non-soy legumes, such as yield and production 
regions. The nutritional composition, yield, and main cultivation areas 
of soybeans and representative non-soy legumes are shown in Table 1. 
How to transform the differences between the soybeans and non-soy 
legumes into precise high-value processing pathways is the core 
reason for formulating different processing strategies.

4.1 Differences in processing strategies for 
the main components of non-soy legumes

As mentioned, soybeans are the predominant source of plant-based 
protein and oil supply, but non-soy legumes vary considerably from this. 
While some non-soy legumes can still be used as a source of protein, 
such as peas, very few can be used as a source of fats and oils. In contrast, 
peas, mung beans, and kidney beans are all considered good sources of 
starch (Ratnayake et al., 2002; Abdel-Rahman et al., 2008; Punia et al., 
2020), so starch processing should be recognized as the mainstay of 
non-soy legume processing, rather than protein and oil. The change in 
the main components then brings about a change in the processing 
strategy, a change that has had both beneficial and detrimental effects.

Advantageously, the processing of starch is much softer compared 
to the processing of oils, i.e., it does not involve the use of organic 

solvents, which brings with it a variety of advantages. First, food safety 
risks have improved significantly. Organic solvent residues in edible 
fats and oils have always been a food safety risk factor (Ghouila et al., 
2019), and their removal has become an important part of the 
processing. In contrast, this process is virtually non-existent in the 
processing of non-soy legumes, and the resulting food safety risk 
factors do not exist. Second, mild processing conditions help retain the 
activity of functional ingredients. Functional components in non-soy 
legumes will be discussed later, but one thing is the same, functional 
performance scores are highly sensitive to processing. This makes 
non-soy legumes even more promising for high-value processing, i.e., 
processing into health foods and their ingredients, which may have a 
direct impact on the end use of the ingredient, as well as on consumer 
acceptance of the product. It’s also worth noting that non-soy legumes 
have almost no odor troubles. Soybeans generally have an off-flavor or 
soy-like odor that comes from the oxidation of lipids by lipoxygenase 
(Davies et al., 1987; Tian and Hua, 2021). Non-soy legumes, on the 
other hand, do not inherently possess this property.

Changes in processing due to changes in ingredient composition 
are not always an advantage, which is reflected in two potential aspects. 
On the one hand, there may be obstacles to the efficient separation and 
high-value utilization of by-products. The stepwise processing strategy 
of soybeans is a complex process, but it achieves a high utilization of raw 
materials, and the by-products can be used as feedstock for the next 
stage of processing at a lower cost. But this situation is costly for non-soy 
legume processing. Functional ingredients such as soy dietary fiber, 
whey protein, and isoflavones can usually be prepared using by-products 
of soybean processing (Lyu et al., 2021; Chua and Liu, 2019; Nile et al., 
2021), but functional ingredients in miscellaneous grains, such as 
polyphenols in adzuki bean (Mukai and Sato, 2009), require a separately 
designed process to be used for their preparation. Even the seed coat of 
non-soy legumes is not viewed as a by-product, as consumers are 
accustomed to eating whole legumes. On the other hand, consumption 
and pollution caused by processing may be  higher. While organic 
solvents and strong acids and bases used in soybean processing are 
potential sources of contamination, recycling strategies for various 
processing aids are sufficiently robust. For example, in soybean oil 
processing, the recovery of hexane is considered to be efficient and cost-
effective (Gasparetto et al., 2022). The contaminant in non-soy legume 
processing is almost always contaminated water. Instead, wastewater 
management is one of the most important issues to be addressed in the 
food processing industry (Shrivastava et al., 2022). By the same token, 
the more pollution, the higher the consumption. The reason why the 
contamination issue is not given enough attention is maybe because the 
amount of processing of non-soy legumes is much smaller compared to 
soybeans. However, this does not mean that it is a problem to be ignored 
in industrial scale-up processing.

Therefore, as the non-soy legume processing industry is gradually 
taking shape, it makes sense to develop different refined processing 
strategies based on the differences in major components, which will 
contribute to the efficient green transformation of the industry.

4.2 Differences in whole-seed processing 
and staple food processing

The immediate impact of the compositional differences is the 
difference in processing patterns between soybeans and non-soy 
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TABLE 1  Nutritional composition, yield, and cultivation areas of soybeans and non-soy legumes.

Different 
raw 
materials

Macronutrients Micronutrients Other 
Representative 

Nutrients

Yield 
(10,000-ton)

Cultivation 
areas

Oil (g/100 g) Protein 
(g/100 g)

Carbohydrates 
(g/100 g)

Minerals 
(mg/100 g)

Vitamins Dietary fiber 
(g/100 g)

Soybean 15–20 30–40 30–35
Calcium: 150–250

Potassium: 1400–1800
B complex 15–18

Lecithin

Isoflavones
~360 million

United States, Brazil, 

Argentina, China

Mung Bean 

(Vigna radiata)
0.5–1.5 20–24 55–65

Potassium: 600–1,000

Magnesium: 100–150
E and B complex 5–8

Saponins

Polyphenols
~500

India, China, 

Myanmar

Pea (Pisum 

sativum)
0.2–0.8 6–9 20–25 Potassium: 300–400 C 2.5–4 Lysine (high content) ~2,300 China, Canada, Russia

Adzuki Bean 

(Vigna 

angularis)

0.5–1.0 19–22 60–65

Potassium: 1000–

1,500

Iron: 4–7

B complex 11–14 Polyphenols ~70
China, Japan, South 

Korea

Kidney Bean 

(Phaseolus 

vulgaris)

1.0–2.0 22–25 55–65 Calcium: 50–100 B complex 9–13 Folic acid ~130
China, United States, 

Brazil, India

Chickpea (Cicer 

arietinum)
4–6 25–30 60–65

Calcium: 100–200

Potassium: 800–1,000

Magnesium: 150–250

A and B complex 10–13
Isoflavones

Chromium
~1,500

India, Pakistan, 

Turkey, Australia
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legumes. Although soybeans have also been subjected to some whole-
seed processing, the purpose of processing for both has changed 
markedly compared to that of non-soy legumes.

The core objective of soybean processing is to separate the oils and 
proteins for use in the processing of other complex food systems, even 
if the primary processed products, such as soymilk and tofu, are not 
used as staple foods. So there is little concept of staple food processing 
for soybeans, and whole-seed processing is not intended to improve 
product quality or nutritional properties, but rather as a way to reduce 
by-product emissions (Lusas, 2004; Singh and Krishnaswamy, 2022; 
Karim et al., 2025).

The core objective of processing non-soy legumes is to address 
their difficulty in cooking and to make them a staple food as an 
alternative to refined rice and flour. Almost all non-soy legumes have 
the habit of being consumed directly as a staple food, maximizing the 
nutrients in them and enhancing the functionality of the staple food. 
As a carrier of high-quality carbohydrates, dietary fiber, and 
micronutrients, the consumption of non-soy legumes effectively 
optimizes the dietary structure of consumers (Bazzano et al., 2011). 
Non-soy legumes are also processed in whole-seed mode, for example, 
adzuki bean and mung beans can be directly processed into whole-
bean paste and consumed (Han et al., 2020; Huang et al., 2024), peas 
are directly processed into frozen vegetables (Samoilov et al., 2021), 
kidney beans and chickpeas can be  processed into canned goods 
(Dahl et al., 2014; Parmar et al., 2016), and so on. The implications of 
this model are also twofold. Advantageously, this mode of processing 
greatly reduces processing costs and processing losses and maximizes 
nutrient retention, which is one of the main reasons for the gradual 
increase in consumer acceptance of non-soy legumes. In contrast, 
however, this processing model may not be conducive to the long-
term development and high-quality transformation of the industry. 
Simple processing strategies have prevented the non-soy legume 
industry from escaping the dilemma of primary processing, especially 
for the main production areas of non-soy legumes, which can bring 
limited economic benefits.

Some attempts have been made by the processing industry, such 
as using peas to prepare isolated protein (Lam et al., 2018), using 
adzuki beans to make beverages (Li H. et al., 2022), and using kidney 
beans to prepare α-amylase (Liu et al., 2024), etc. This provides a 
reference case for the high-value utilization of non-soy legumes. 
Whether the processing of non-soy legumes can find a balance 
between traditional food processing and new food processing, may 
be a new challenge.

4.3 Differences in the retention of 
functional ingredients during processing

The macronutrients in soybeans should be considered oils and 
proteins, which are the most critical components of soybeans as a 
major plant-based food ingredient. The typical micronutrients in 
soybeans include soy isoflavones, soy saponins, vitamins, and more. 
Differences in consumption habits and processing strategies lead to a 
completely different conception of macronutrients and micronutrients, 
with consumers consuming processed soy products without much 
regard for their health attributes, but more for the macronutrients’ 
basic function in the body’s metabolism. Even if some consumers are 
aware of the functionality of the micronutrients in soybeans, they are 

more inclined to consume higher-value products, such as health foods 
containing soy isoflavones, rather than simply consuming soybeans. 
Therefore, as mentioned earlier, the processing strategy for soybeans 
does not take into account the retention of functional constituents and 
also results in a large number of functional constituents becoming 
inactive with processing. Therefore, as mentioned, the processing 
strategy for soybeans does not take into account the retention of 
functional constituents and also results in a large number of functional 
constituents becoming inactive with processing. Non-soy legumes 
processing is just the opposite; people consume non-soy legumes 
more for nutritional retention and health needs.

For example, the polyphenols in peas have significant antioxidant, 
anti-inflammatory, and anticancer activities, and saponins have been 
reported to have cholesterol-lowering properties (Dahl et al., 2012; 
Singh et  al., 2017). Combined with the highly digestible and 
hypoallergenic properties of its protein (Guillin et  al., 2022; 
Shanthakumar et al., 2022), and the role of dietary fiber in promoting 
intestinal health (Hashemi et al., 2017), peas are most commonly 
processed by flash-freezing them to become a frozen vegetable, to 
maximize the retention of their functional components. In addition 
to the above ingredients, adzuki beans have additional flavonoids and 
alkaloids, which also have the same antioxidant, anti-inflammatory 
and other benefits, yielding potential applications in the medical field 
(Agarwal and Chauhan, 2019; Liu et al., 2017; Briguglio et al., 2018). 
This has led to adzuki beans being used in more healthcare 
applications, such as in traditional Chinese medicine, in addition to 
being processed into beverages or whole-seed processing. Mung beans 
also exhibit functions and applications similar to those described 
above (Hou et al., 2019). Kidney beans, which occupy a significant 
portion of international trade, also contain functional substances such 
as quercetin and more, which are important reasons why they are a 
favored source of plant-based food ingredients (Zhang et al., 2025; 
Kimothi and Dhaliwal, 2020). Complemented by its protein, starch, 
dietary fiber, excellent processing characteristics, and nutritional 
properties, kidney bean processing in the field of non-soy legumes 
reflects the obvious high value attributes. Meanwhile, there is also a 
trend towards staple foods and the daily consumption of kidney beans.

The presence of the above functional constituents places new 
demands on the processing strategies of non-soy legumes. The first is 
the necessity of non-thermal/low-temperature processing; most of the 
micronutrients mentioned above are thermosensitive, and functional 
macronutrients such as kidney bean proteins may also be thermally 
denatured. How to ensure the efficient retention of functional 
components puts higher requirements on all aspects of processing, 
storage, and logistics of non-soy legume products, compared to 
soybeans. The second is the necessity of non-vigorous processing. 
Soybeans and some staple grains are usually processed very vigorously, 
such as the consumption of sodium hydroxide, hydrochloric acid, 
organic solvents, etc., which is fatal to the retention of functional 
substances in the non-soy legumes. Novel processing technologies that 
are non-vigorous and allow for the preparation of macronutrients and 
retention of micronutrient activity are necessary. The third is that the 
use of biotechnology to achieve the separation of different components 
in the non-soy legumes is necessary. The soybean processing industry 
has begun such as enzyme-assisted aqueous extraction for 
simultaneous production of protein and oil and other prospective 
research (Tong et al., 2020), but limited by the amount of processing 
and enzyme costs, has not been put into production on a large scale. 
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However, non-soy legumes are feasible to utilize biotechnology to 
achieve retention of functional components due to low processing 
requirements (compared to soybeans), strong health attributes, and 
high added value.

4.4 Different pathways for the use of 
non-soy legume by-products

Differences in processing strategies for by-products resulting 
from soybean processing and non-soy legumes processing similarly 
stem from differences in the composition of the by-products. The 
main by-products of soybean processing are whey and soybean 
dregs, whose core components should be regarded as protein and 
fiber (except for water). So the main pathway for the soybean 
by-products processing, i.e., feed. If used in food, it is used as a raw 
material for dietary fiber, functional peptides, and some other 
functional ingredients (Hu et al., 2024; Fang et al., 2021; Wang et al., 
2021). That is, a pattern of closed loops within the processing chain 
is formed.

However, due to the non-soy legume processing strategy, it is 
difficult to define what the main chain of non-soy legume processing 
is, and it is not possible to precisely define what the by-products are. 
For example, soybean meal is a core by-product of soybean oil 
processing, and soybean dregs are a core by-product of protein. But 
in the field of non-soy legumes, there is no such concept. So 
non-soy legume processing by-products are mainly some seed coat 
and residue, with high fiber, high starch, and low protein as the 
main characteristics. There is a lack of systematic processing 
strategies for these by-products, for example, peas and other 
legumes with seed coats, which are often discarded directly or used 
as feed or fertilizer, with low added value. Adzuki beans, a category 
of legumes with color, are processed in wastewater that is barely 
used for processing, even though they contain some natural 
coloring. Only some product residues have the potential to be used 
in secondary processes.

Therefore, there is some uncertainty in the by-product processing 
strategy of non-soy legumes, which focuses more on the 
transformation of basic substances and lacks systematic high-value 
utilization. There is an urgent need to find effective strategies and ways 
to efficiently extract functional ingredients, upgrade to food raw 
materials, environmental protection, and green processing of non-soy 
legume by-products.

4.5 Allergenicity and anti-nutritional 
factors of non-soy legumes

Food safety issues cannot be  ignored in the development of 
processing strategies. The allergenicity and anti-nutritional factors are 
the main endogenous food safety risk factors of soybeans and 
non-soy legumes.

Soybean is one of the top eight allergenic foods published by the 
Food and Agriculture Organization of the United Nations (FAO), and 
its allergenicity is triggered mainly by a variety of heat-stable proteins 
(L'Hocine and Boye, 2007). This may also be one of the reasons why 
some consumers whose diets are dominated by foods of animal origin 
have so far been unable to accept soybean. But in reality, processes 

greatly mitigate the allergenicity of soybean, such as thermal 
processing and fermentation (Pi et al., 2021; Franck et al., 2002). In 
contrast, a certain diversity of allergens exists for non-soy legumes. 
Examples include bran (esp. of cereals), α-amylase, trypsin inhibitors, 
and more (Satoh et al., 2019; Calcinai et al., 2022; Abu Risha et al., 
2024). Meanwhile, although the allergenicity of non-soy legumes is 
relatively low, there is some cross-reactivity, for example, Vicilin and 
Convicilin in peas are structurally similar to peanut allergens 
(Sanchez-Monge et al., 2004), and chickpea allergy is associated with 
lentils, peas, and so on (Bar-El Dadon et al., 2014). Another thing to 
keep in mind is that while the allergenicity of a particular type of 
non-soy legume may be low, it is common to consume multiple types 
of non-soy legumes at the same time due to dietary habits. Whether 
there are interactions or cumulative effects between different allergens 
is also an important food safety issue. The allergic problems 
mentioned above should also be addressed with processing.

Anti-nutritional factors are also an important issue in plant-based 
foods. On the one hand, protein-based anti-nutritional factors are 
potential allergens, and there is a cumulative effect of them, and on 
the other hand, the presence of anti-nutritional factors restricts the 
body’s absorption of nutrients, which reduces the health benefits of 
consuming non-soy legume foods. Anti-nutritional factors in 
soybeans include protease inhibitors, plant lectins, and phytic acid (Di 
et al., 2024), in addition to tannins (e.g., in mung beans) and oxalic 
acid (e.g., in quinoa) in non-soy legumes (Dahiya et al., 2015; Filho 
et al., 2017). It can be said that the risk of anti-nutritional factors is 
higher in non-soy legumes than in soybeans.

It is feasible to address allergenicity and anti-nutritional factors 
using rational processing methods, such as removing or breaking 
down allergens and anti-nutritional factors using physical methods 
such as heat treatment, soaking, rinsing, shelling, etc., and 
transforming or metabolizing both of the above using biological 
methods such as fermentation and sprouting, and studies have 
emerged on the above methods (Verma et  al., 2012; Poms and 
Anklam, 2004; Oyedeji et al., 2018; Ampofo and Abbey, 2023). In 
addition, with the continuous development of breeding techniques, 
the selection of raw materials with hypoallergenic and low anti-
nutritional factors has become possible. This will also help reduce the 
stress and cost of food processing.

It is also important to note that, in addition to the production and 
processing of both soybeans and non-soy legumes, risk management 
for special populations during consumption is necessary, such as 
infants, young children, and allergy-prone individuals. End-products 
aimed at the above groups should be formulated with a processing 
strategy that strictly removes allergens and anti-nutritional factors, or 
at least identifies them on the packaging if there are difficulties.

In summary, the development of scientific processing strategies 
for different raw materials is of great significance to the development 
of the processing industry and the improvement of the health level.

5 Conclusion

This article provides a brief review of the similarities and 
differences in the processing strategies of soybean processing and 
non-soy legume processing, and incorporates some arguments. As 
high-quality plant-based food ingredients, both have made significant 
contributions to stabilizing the human diet and safeguarding human 
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health. However, due to the differences in their processing strategies, 
the development of their industries is also different. It is hoped that 
the issues mentioned above will provide some inspiration and 
suggestions for producers and researchers, with a view to the high-
quality development of the non-soy legume industry in a way that is 
different from the characteristics of soybeans.
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