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High-shade dryland agrivoltaic
conditions enhanced carbon
uptake and water-use efficiency
in zucchini (Cucurbita pepo)

Nesrine Rouini®?*, Alyssa Salazar'?, Patrick Murphy?,
Kai Lepley!® and Greg A. Barron-Gafford*?

!School of Geography, Development and Environment, Tucson, AZ, United States, 2Biosphere 2,
University of Arizona, Tucson, AZ, United States, *Strategic Energy Analysis Center, National
Renewable Energy Laboratory, Golden, CO, United States

Introduction: The increasing global demand for food and energy is intensifying
land-use competition. Agrivoltaic systems are a multifunctional land-use
approach that vertically integrates the production of agricultural crops and solar
power on the same land area. Most food crops are adapted to full-sun conditions,
and the physiological responses of these crops to the novel microclimate under
solar panels remain poorly understood. We hypothesized that the microclimate
beneath the high-density photovoltaic system would influence carbon uptake,
water use, and yield outcomes of zucchini summer squash.

Methods: We conducted a field experiment in a hot, semi-arid climate on zucchini
(Cucurbita pepo). Plants were grown under an agrivoltaic system with a 75% ground
cover ratio (GCR) and in a full-sun control plot, each with two irrigation regimes (100
and 50%). We measured leaf-level photosynthesis, microclimate variables, and fruit
yield at plant maturity and throughout the growing season.

Results: The agrivoltaic array reduced photosynthetically active radiation (PAR)
by ~79%, resulting in a cooler (-1.1 °C), more humid environment with higher
soil moisture. These microclimatic conditions enhanced midday photosynthesis
and daily cumulative carbon uptake. However, fruit yield was consistently lower
under the panels, indicating a shift in carbon allocation toward vegetative
growth. Photosynthesis was primarily driven by PAR across treatments, while
soil moisture significantly influenced photosynthesis only in the control plots,
suggesting water limitation was alleviated under the panels.

Discussion: These findings highlight a trade-off between improved physiological
performance and reduced yield under high-density agrivoltaics. While the
system buffered heat and drought stress and improved overall plant function,
excessive shade reduced reproductive output. Optimizing panel density or
selecting crops cultivated for non-fruit yields will be essential for balancing food
production and energy generation in dryland agrivoltaic settings.

KEYWORDS

dryland agrivoltaics, midday depression, food—energy—water nexus, crop carbon
uptake, crop ecophysiology, microclimate
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Introduction

Providing food and energy to a growing population is increasingly
challenging under climate change and as suitable land declines (IPCC,
2019). In the Southwest US, projected warming and drying trends pose a
serious threat to food crop production through water deficits and heat
stress. At the same time, consumer demand continues to increase
(University of Arizona, 2023; US Global Change Research Program,
2018). Strategies for agricultural climate adaptation are increasingly
recognized as critical for sustaining productivity under a changing
climate. Within the United States, the USDA Climate Hubs encourage
adoption of agronomic practices including crop diversification, improved
water-use efficiency, and soil health management through cover cropping
and reduced tillage (United States Department of Agriculture (USDA),
2023). However, most of these strategies referred to as climate-smart
agricultural practices, have been shown to lose effectiveness under a
warming climate (IPCC, 2022). Ecosystem approaches such as
agroecology and agroforestry on the other hand are considered some of
the most effective strategies that help ensure long term crop productivity
while acting as carbon sinks, lowering agricultural greenhouse gas
emissions and mitigating temperature extremes (Dittmer et al., 2023;
Schoeneberger et al., 2012; IPCC, 2022).

Agrivoltaics is another climate-smart technology that offers a
solution to adaptation challenges and to land competition between
agriculture and the energy production sector by combining food
production and electric power generation to optimize land-use efficiency
(Dupraz et al,, 2010). Similar to the vertical stratification created by
agroforestry (Dupraz et al,, 2010), these systems have also been shown
to have other environmental and socio-economic benefits related to
water saving (Adeh et al., 2018; TSE Energy, 2025) reducing plant stress
(TSE Energy, 2025; Barron-Gafford et al., 2019), and supporting energy
and food security (Dupraz et al., 2010; Barron-Gafford et al., 2019).

The installation of a photovoltaic array within an agricultural
setting reduces photosynthetically active radiation (PAR) throughout
the day. However, the degree and timing of this reduction varies across
agrivoltaic designs. Even within overhead agrivoltaic systems, which
create an ‘overstory’ of PV panels and an understory of agriculture,
some designs utilize a full-density of panels, and some intentionally
create gaps between the panels to allow for light transmission. Because
of this reduction in direct incoming radiation, agrivoltaics can alter the
microclimate beneath the solar panels relative to the surrounding
environment. Under solar panels in agrivoltaic systems, daytime
temperatures have been found to be over 1 °C cooler on average
(Barron-Gafford et al., 2025; Weselek et al., 2021; Marrou et al., 2013)
or not vary between agrivoltaics and full-sun treatments (Marrou
etal, 2013). While insufficient PAR can limit photosynthesis and yield,
excessive PAR can also damage the photosynthetic machinery of plants
(Chen et al., 2023; Barron-Gafford et al., 2025). Understanding the
ways that different crops respond physiologically to these varying light
levels under solar panels is essential for optimizing agrivoltaic designs,
but these responses remain understudied.

Here we quantify these dynamic shade-plant interactions and the
ways that the agrivoltaic microclimate can affect the growth,
ecophysiology, and water-use of the summer squash zucchini
(Cucurbita pepo) as a major vegetable crop around the world. We test
whether a high-density agrivoltaic system in a dryland environment
improve physiological performance of zucchini while evaluating
associated yield trade-offs. Our results provide important insights for
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enhancing zucchini production within agrivoltaic system in drylands
and informing agrivoltaic design strategies and modeling for this crop.

Materials and methods

To understand the influence of microclimate parameters on leaf-
level photosynthesis of zucchini in a dryland agrivoltaic setting,
we ran an open-air field experiment at the Biosphere 2 Agrivoltaics
Learning Lab in Oracle, Arizona, USA (32.578989°N, 110.851103°W;
elevation 1,381 m above sea level). In the summer of 2022, we planted
zucchini ‘Black Beauty” (Cucurbita pepo) seedlings under a 15 m by
20 m photovoltaic array with a 75% ground cover ratio (GCR), and in
a control full-sun treatment plot located 15 m to the west of the
agrivoltaics system. Plants in the agrivoltaic and control plots received
two irrigation regimes as a secondary treatment: full-water irrigation
(100%) and half-water irrigation (50%). We tested four treatments: (1)
Control + 100% Control + 50%
Agrivoltaic + 100% irrigation, and (4) Agrivoltaic + 50% irrigation.

irrigation, (2) irrigation, (3)

Leaf-level photosynthesis

Once plants reached reproductive maturity, we measured leaf-level
net photosynthesis using LI-6400XT infrared gas analyzers (LI-COR Inc.,
NE, USA). We used the red-blue light source (LI-6400-02b) attached to
the leaf cuvette to provide constant irradiance of ambient light levels for
each measurement area (open-field sun versus the shade under the PV
panels). Following best practices developed in previous work (Barron-
Gafford et al,, 2019; Barron-Gafford et al., 2025), cuvette air temperature
was set to match that of ambient conditions at every measurement time
point, and the reference CO, was held constant at 400 ppm across all
measurements. We took hourly diurnal photosynthesis measurements
throughout the day from 05:00 to 19:00—for a total of 14 measurement
periods to capture a diurnal cycle of carbon uptake. For each of the four
treatments, we measured five plant replicates for a total of 20 individuals.
During each hour of measurement throughout the day we measured five
leaves per plant replicate. Due to a chamber configuration error, the leaf
in the control 50% irrigation treatment was exposed to a
non-representative PAR level during the 7:00 measurement. This value
was excluded from the analysis and figures.

Light-saturation point was derived from morning diurnal
photosynthesis data (07:00-12:00 local time) filtered to treatment-
specific 10th-75th percentiles of air temperature to avoid midday
depression. For each treatment, we fit leaf light-response curves (net
CO; assimilation A, versus PAR) using a non-rectangular hyperbola
(NRH). The fitted light-saturated value was defined as A,, = Py, — Ry
from the NRH parameters (P, gross light-saturated photosynthesis;
Ry: day respiration). We report an apparent light-saturation point
defined as the PAR (pmolm™ s7') at which modeled net
photosynthesis reaches 90% of A, (Niinemets et al., 2015; Hieke et al.,
2002; Stangl et al., 2022; Gomez-Gallego et al., 2025).

Microclimate

The microclimatic instrumentation system used for this study
was described by Barron-Gafford et al. (2019). In the agrivoltaic and
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control plots, ambient air temperature (°C) and relative humidity
(%) were measured with a shaded, aspirated temperature probe
(Vaisala HMP60, Vaisala, Helsinki, Finland), and PAR was
measured using LI-COR quantum flux sensor (PAR; LI-190R,
LI-COR, Lincoln, NE, USA). Both probes were mounted on a post
placed within the center of each installation at 2.5 m above the soil
surface. In addition, on the day of measurements, we used the
LICOR LI-6400XT sensors to spot check air temperature and PAR
at the start of every hour. PAR is reported as photon flux density
(pmol m™2 s7!). We monitored volumetric water content (VWC)
and soil temperature at 5 cm depth (ECH20 5TM, METER Group,
Pullman, WA, USA) at six points across each of the control and
agrivoltaic system sites. Data was averaged across the six points per
treatment to give a single representative value for each time period
for each site. All measurements were recorded at 30-min intervals
throughout a 24-h day (CR1000, Campbell Scientific, Logan,
UT, USA).

Statistical analysis

We used Python to perform our data processing and statistical
analysis. We adopted a mixed statistical analysis approach combining
independent t-tests and multiple linear regression modeling. This
dual approach allowed us to identify micrometeorological variables
that exhibited significant differences between the two primary
treatments (the agrivoltaic system and the full-sun control) and then
to explore the potential relationships between these variables and
photosynthetic activity. The micrometeorological variables
investigated were air temperature (T-air), PAR, soil temperature
(T-soil), soil moisture (VWC), and vapor pressure deficit (VPD). To
achieve a normal distribution our microclimate data was log
transformed prior to analysis.

The independent t-tests were conducted to compare the means
of each micrometeorological variable between the agrivoltaic system
and the full-sun control, allowing us to determine whether the
differences observed were statistically significant. Following this,
multiple linear regression modeling was employed to investigate the
relationships between the elected micrometeorological variables and
photosynthesis. This approach enabled us to quantify the extent to
which variations in T-air, PAR, T-soil, VWC, and VPD could explain
changes in photosynthetic rates, providing deeper insights into the
interplay between microclimate and plant physiology in the context
of agrivoltaic systems.

The t-tests indicated that PAR, soil temperature, and soil moisture
were significantly different between treatments. These three variables
were then used as predictors in multiple linear regression models to
quantify their individual and combined effects on photosynthetic rates
within each treatment. This approach allowed us to determine not
only if the microclimate differed, but the ways that these differences
affected plant physiology.

When constructing multiple linear regression models we encountered
high multicollinearity between T-soil and VWC, as indicated by their
variance inflation factors (VIFs). T-soil consistently demonstrated the
highest VIFs across all models, suggesting it contributed the most to
multicollinearity. To address this issue, we removed T-soil from the
models and retained PAR and VWC as predictors.
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Results and discussion
Microclimate

The dense solar panel array in our experimental dryland
agrivoltaic system effectively attenuated incoming solar radiation,
leading to a significant reduction in PAR of 78.6% under the solar
panels (Figure 1a). Mean daytime air temperature was reduced by
1.1 °C compared to the full-sun control plot, with this temperature
mitigation observed between 6:00 a.m. and 6:00 p.m. (Figure 1b).

Concurrently, the agrivoltaic system exhibited lower VPD by
0.5 kPa, indicating a more humid microclimate compared to the
control throughout the daytime hours (Figure 1c). Notably, soil
temperature in the agrivoltaic plot remained relatively stable between
24 and 25.5 °C, while the control plot soil experienced a pronounced
increase from 25.5 °C to 32.5 °C between 9:00 a.m. and 4:00 p.m.
(Figure 1d). In addition, the reduced temperature and PAR under the
solar panels, coupled with the lower VPD, led to higher average soil
volumetric water content (VWC). VWC averaged 0.30 m*/m® under
agrivoltaics compared to control 0.15 m*/m? in the control (Figure le).
These results underscore pronounced microclimatic modifications in
the agrivoltaic system. The attenuated solar radiation resulted in a
cooler and more humid environment within the crop canopy and soil.
These microclimatic modifications have implications for plant
photosynthesis and productivity, as they are the primary aboveground
parameters that limit plant function.

Across irrigation and shading treatments, PAR was consistently
statistically significant and had a positive relationship with
photosynthesis (p < 0.001; Table 1). This underscores the fundamental
role of light as a primary driver of photosynthetic carbon assimilation
in C; crops, in line with theoretical models (Farquhar et al., 1980) and
empirical evidence (Evans and Poorter, 2001). Zucchini’s positive
response to PAR, even under shaded conditions, highlights the plant’s
heliophilic nature and the importance of optimizing light management
in agrivoltaic systems. Light saturation point estimated from morning

1

diurnal photosynthesis was around 800 pmol m™ s~ under full-

irrigation treatments in both AV and control. It increased to

~?s7" under control half-irrigation and 2,500 pmol m~s™!

1,100 pmol m
under AV half-irrigation. Cs leaves often approach saturation by
around 800-1,200 pmol m™ s~ PAR under non-stress conditions
(Huang et al., 2021; Huber et al.,, 2021; Gavhane et al., 2023). The
increase of light-saturation point under half-irrigation indicates that
photosynthesis is responding less efficiently to light (lower quantum
yield) and only approaches its light-saturated rate at much higher
PAR. Increasing irradiance only yields minimal gains under heat and
water stress. We emphasize that these are apparent, field-condition
light saturation points derived from diurnal fits rather than dedicated
light response curves and should be approached as indicative
thresholds. While PAR is the primary driver of net photosynthesis
across treatments, the treatment-specific light saturation point values
show where gains become insignificant. Increases in PAR will boost
photosynthesis when the canopy operates below the light saturation
point but provide little benefit once light saturation point is elevated
under water and heat stress (Flexas and Medrano, 2002).

The influence of soil moisture on photosynthesis varied markedly
between the two shade treatments. In the full-sun control treatment, soil
moisture was positively associated with photosynthesis in both 50 and
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FIGURE 1
Representative diurnal microclimatic conditions in terms of (a) photosynthetically active radiation PAR, (b) ambient air temperatures, (c) vapor pressure
deficit (VPD) as a measure of atmospheric dryness, and (d) soil temperature and (e) soil moisture content in a dryland agrivoltaic system (blue) vs. full-
sun conditions in the control plot (red) during the 2022 growing season in Oracle, Arizona, USA.

TABLE 1 Performance metrics for photosynthesis prediction regression models across treatments: agrivoltaics half irrigation water, agrivoltaics full
water, control low water, and control full water.

R-squared Adj. F-statistic Prob BIC PAR Coef @ Soil Moisture
R-squared (F-statistic) (0>t VWC Coef
(b > It)
Agrivoltaic 50% 0.836 0.808 30.53 1.96e—05 6533 67.46 2.585 (0.000) 17.865 (0.299)
irrigation
Agrivoltaic 0.865 0.842 38.30 6.18e—06 66.99 69.12 2.616 (0.000) 24.329 (0.187)

100% irrigation

Control 50% 0.939 0.929 92.07 5.24e—08 79.17 81.29 5.979 (0.000) 42.615 (0.057)
irrigation
Control 100% 0.826 0.797 28.42 2.80e—05 73.15 75.27 2.340 (0.000) 94.457 (0.000)
irrigation
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100% irrigation treatments, reaching statistical significance in the latter Photosynth esis
(p=0.057 and p < 0.001, respectively). These results suggest that under
full sun, water availability was a limiting factor for photosynthesis—likely We observed differences in the photosynthetic rates of zucchini
due to stomatal closure under high VPD conditions, which reduces  through time across treatments (Figure 2). In the morning, through
intercellular CO, concentration and suppresses carbon assimilation — measurements at 08:00, rates of zucchini photosynthesis increased through
(Chaves et al., 2003, 2009; Flexas et al., 2004). time as PAR increased in both the agrivoltaic and control treatments at
In the agrivoltaic treatment, no statistically significant relationship ~ similar rates. By 10:00, morning light was no longer directly hitting
between soil moisture and photosynthesis was detected, regardless of  agrivoltaic zucchini crops, and photosynthetic rates stabilized in the
irrigation regime. This might indicate that zucchini plants grown  agrivoltaic treatment around 13.5 £ 0.65 pmol m s~ for the remainder of
under shade were not water limited. The reduction in solar radiation  the day. However, photosynthetic rates continued to increase in the control
and ambient temperature under the panels likely decreased  treatment as light continued to intensify, reaching a peak by 10:00 with a
evaporative demand and transpiration, thereby conserving soil  rateofaround 16.4 + 1.3 pmol m™s™". After 10:00, zucchini photosynthetic
moisture and maintaining plant water status (Marrou et al., 2013;  rates declined within the control treatment despite light levels increasing.
Barron-Gafford et al, 2019). These findings align with previous  After 14:00, zucchini photosynthetic rates increased in the agrivoltaic
studies reporting that agrivoltaic systems reduce evapotranspiration  treatments while in the control treatment photosynthetic rates rapidly
and prolong soil water availability in arid and semi-arid regions (Valle  declined for the reminder of the day below the stable photosynthetic rate of
etal., 2017; Sekiyama and Nagashima, 2019; Warmann et al., 2024).  zucchini in the agrivoltaic treatment in both irrigation treatments.
By stabilizing leaf water potential and supporting continuous stomatal The higher PAR intensity in the control treatment coupled with
conductance (Montanaro et al., 2009), agrivoltaic shading allows for ~ higher air temperature and VPD, representative of many dryland
sustained photosynthetic function even under limited irrigation. An  environments, likely induced photoinhibition and caused these control
important outcome of this finding is illustrating that as dryland  plants’ photosynthetic rates to crash by 12:00 p.m. Photoinhibition is a
regions become warmer and experience increased periods of  light-induced reduction of plant photosynthetic capacity that can cause
atmospheric and hydrologic drought, agrivoltaics can serve as a tool  crop yield losses by reducing plant carbon accumulation (Scheller and
to allow for continued food production despite reduced access to ~ Haldrup, 2005; Barth et al., 2001). This specific form of photoinhibition
water for irrigation. that impacts diurnal patterns of carbon assimilation is referred to as

100% irrigtion

Net Photosynthesis
(umol-m—2:s71)

Net Photosynthesis
(umol-m=2:s71)

T T T T T T T T T T T T
7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Time (hour)

—— Agrivoltaic —-== Control

FIGURE 2
Diurnal photosynthetic rates of zucchini under agrivoltaic and control conditions. (a) 100% irrigation sub-treatments. (b) 50% irrigation sub-treatments.
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midday depression of photosynthesis (Roessler et al., 1985; Barron-
Gafford et al,, 2025) and has been well documented across natural
vegetation and cropping systems. The shading provided by the agrivoltaic
system helped reduce PAR exposure of the crops as well as the rates of
evaporation, preventing excessive light and drought stress while allowing
sufficient light for consistent photosynthesis to occur. This protective
effect is especially prominent in water-limited environments, where
shaded plants experience less heat and drought stress (Kannenberg et al.,
2023), further diminishing the risk of mid-day depression of
photosynthesis (Barron-Gafford et al., 2025). Here, the reduced air
temperature and increased humidity in the agrivoltaic plot enhanced
stomatal conductance, which increased daily CO, uptake of zucchini
plants. Similar empirical observations have been shown related to kiwi
leaves (another C3 plant), where a 50% reduction in incident light on
kiwifruit leaves under drought conditions resulted in enhanced water use
efficiency and higher photosystem II efficiency (Montanaro et al., 2009).

Cumulative carbon uptake and fruit yield

Cumulative carbon uptake was higher in the agrivoltaic system and
highest under the 50% irrigation regime (Figure 3a). However, this
increased carbon uptake did not translate into higher fruit yields in the
agrivoltaic setting. In fact, regardless of water treatment, the control plants
consistently produced higher fruit yields compared to the agrivoltaic system
(Figure 3b). While moderate shade can protect plant function and
intentionally reduce evaporative loss of soil moisture, excessive shade can
negatively impact yields (Warmann et al,, 2024). Determining the balance
between stress reduction and light limitation is species and context
dependent, and creating a tool to best estimate the ground cover ratio
(GCR) of solar energy sharing remains a top priority in agrivoltaics
research. In temperate climates where sunlight is not a limiting factor, field
trials have shown that a lightly shaded crop can yield as well or better than
full-sun grown crops (Weselek et al., 2021). However, as panel coverage
increases, agricultural yields begin to decline: in one wheat experiment,
~23% shade caused only a 7% fruit yield reduction in a shade-tolerant
variety, but ~31% shade led to a 50% fruit yield reduction in a shade
sensitive variety (Li et al., 2010; Dufour et al,, 2013). Ultimately, this leads
to a lower harvest index (the ratio of agricultural yield to total biomass) in
shaded crops, which is what we observed here with zucchini plants.

Shade modifies the morphological and anatomical characteristics of
leaves (Boardman, 1977; Araus et al., 1986; Andersen et al., 1991). Zucchini
plants in these agrivoltaic conditions exhibited shade-acclimation and
shade-avoidance responses in their morphology and leaf anatomy which
influences carbon allocation. The higher cumulative carbon uptake in
shaded zucchini may have been accompanied by increased investment in
leaf and stem biomass, a hallmark of shade avoidance, which can lead to a
lower harvest index and ultimately reduce reproductive allocation (Smith
and Whitelam, 1997). This suggests that even when total photosynthetic
carbon gain increases under shade, reproductive output can suffer if
assimilates are preferentially allocated to vegetative structures rather than
fruits. In shade-grown C3 plants, shade-induced elongation and increased
allocation to stems can carry substantial costs, reducing whole-plant
biomass and photosynthesis when elongation fails to improve light capture
(Weinig, 2000).

Along with size and stature adjustments, shaded foliage tends to
have higher specific leaf area (SLA). Leaves growing in shade conditions
typically contain more chlorophyll per unit area, appearing darker
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FIGURE 3
Cumulative daily carbon uptake (a) and fruit yield (b) of zucchini
under control vs. agrivoltaic conditions with 100 and 50% irrigation.

green, which enhances light absorption in low light (Zhang et al., 2022;
Gotoh et al,, 2018). They are also often characterized by a reduced
palisade mesophyll layer and a greater proportion of spongy mesophyll,
resulting in overall thinner leaf blades (Gotoh et al,, 2018). This anatomy
enhances light interception and internal CO, diffusion efficiency by
increasing the surface area per unit mass, manifested as higher
SLA. Increased SLA in leaves growing in the shade correlates with
higher mesophyll conductance, facilitating improved CO, diffusion to
the chloroplasts and thereby enhancing photosynthetic efficiency under
limited light conditions (Niinemets, 1999; Flexas et al., 2008).
Differences in leaf area between the leaves of zucchini plants
grown in the agrivoltaic plot and the ones in the control plot were
visually noticeable in the field. This aligns with earlier empirical
observations by different authors: lettuce grown under an AV system
compensated for 50% light reduction by producing increased total leaf
area per plant, thereby maintaining radiation interception and yield
(Marrou et al., 2013). Shaded winter wheat had a taller canopy
(+8-20% height) and periodically higher leaf area index reflecting an
elongation and leaf-expansion response to reduced light (Weselek
etal, 2021; McMaster et al., 1987). Such morphological changes are a
well-known shade-avoidance strategy in C3 plants, driven by a lower
red:far-red light ratio, and are thought to reflect an effort to
outcompete neighbors for light (Ballaré and Pierik, 2017).
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The design of our agrivoltaic installation induced excessive
shade, resulting in reduced zucchini fruit yield, despite greater
and more consistent rates of carbon assimilation. Maintaining a
panel density of 75% GCR, as was done here for optimized
energy production, would require any colocation with
agriculture to use crops that are either shade tolerant or have a
high degree of shade acclimation potential. Such a system may
be more economically advantageous to crop types such as leafy
greens and herbs that are cultivated for their leaves. The
increased leaf area resulting from mitigated environmental
stresses and morphological adjustments, could enhance leafy
greens agricultural productivity and economic value while
reducing their water usage. Crops cultivated for their
reproductive organs such as zucchini may be a suitable crop for
agrivoltaic farms in high irradiance, hot semi-arid regions at a
panel density that should not exceed a 25-50% GCR where
microclimate benefits can be maximized without excessively
reducing the sunlight needed for a normal fruit yield. Finally, it
should be noted that these are the results from one growing
season, and agricultural yields are inherently variable from year
to year. Thus, these findings and conclusions might not reflect
long-term crop outcomes in high-shade agrivoltaic environments.

Conclusion

This study investigated the interactions between microclimate,
plant physiology, and yield of zucchini under a 75% GCR dryland
agrivoltaic system. The array reduced PAR and created a cooler,
which
photosynthesis and increased daily cumulative carbon uptake.

more humid microclimate, enhanced midday
However, these gains were largely allocated to leaf growth and
shade-acclimation processes rather than fruit production,
resulting in lower fruit yield under the array. Under high-density
agrivoltaics the microclimate alleviates heat and water constraints
and sustains photosynthesis but shifts carbon allocation
from reproduction.

A 75% GCR configuration is unlikely to be optimal for the agricultural
output of fruiting crops in hot semi-arid regions such as zucchini. System
design should balance panel density and crop selection. Using lower GCR
or greater panel spacing and prioritizing shade-tolerant or leaf vegetables
to leverage the water-saving benefits without excessively limiting light for
fruit set. In water-limited drylands, the buffering of temperature and VPD
under arrays can reduce irrigation requirements; optimizing array density
together with irrigation management should maximize both agricultural
and energy yields.

Future research should explore a wider range of crops, including leafy
greens and other vegetables, under varying agrivoltaic array densities to
determine optimal configurations for maximizing both crop productivity
and renewable energy generation in water-stressed environments.
Specifically, quantifying leaf functional traits and investigating the
physiological mechanisms underlying the observed shift in carbon
allocation from fruit to vegetative growth in zucchini under shade
conditions will be critical for informing optimized agrivoltaic systems.
Intelligent agrivoltaic design will require a nuanced understanding of crop-
specific responses to the modified microclimate to achieve the desired
balance between food production, water conservation, and renewable
energy generation.
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