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neuronal populations are capable of carrying, and by what principles. 
In this way, models and assumptions can be ruled out or reinforced 
in parallel with the collection of new data sets.

Information theory has proved to be a profitable way to evalu-
ate the salient differences between the neural representations of 
sensory events and the potential mechanisms by which neurons 
convey signals about stimuli. In rat whisker cortex, information 
theoretic studies have highlighted the potentially important role 
of spike times in encoding sensory information: the knowledge of 
the timing of spikes with millisecond precision adds large amounts 
of information that cannot be gained by counting the spikes over 
tens or hundreds of millisecond (Panzeri et al., 2001; Petersen et al., 
2001; Arabzadeh et al., 2006). When stimuli are presented to anes-
thetized animals, the experimenter, of course, knows the stimulus 
timing. As a result, most spike timing based codes that have been 
proposed rely on stimulus time knowledge. For example, in rat 
whisker cortex the short latency of neural responses carries almost 
all the information that neurons transmit about stimulus location, 
yet the latency is calculated with respect to a known stimulus onset 
time (Panzeri et al., 2001, 2003b; Petersen et al., 2001, 2002a,b).

Latency codes are the simplest and most prominent case of infor-
mation encoding by spike times measured with an external tempo-
ral reference, and they offer a number of significant computational 

Introduction
Explorations of sensory processing are founded on the model that, 
if two sensory stimuli can be discriminated, their associated neural 
representations must be in some way distinct (for reviews see e.g., 
Petersen et al., 2002a; Quian Quiroga and Panzeri, 2009; Panzeri 
et al., 2010). A fundamental challenge, then, is to discover the essen-
tial differences in the neural representations of two perceptually 
discriminable stimuli.

Behaving rats can perform whisker-mediated texture discrimina-
tions between tactile stimuli in as little as 100 ms between first touch 
and choice action, as shown by Figure 4 in von Heimendahl et al. 
(2007). Thus, the signal supporting their decision must reside in spike 
trains of some tens or at most a few hundred milliseconds (Diamond 
et al., 2008). Well before any recordings are collected during the course 
of active sensory discriminations, it is crucial to delineate candidate 
coding mechanisms under more controlled conditions so that the 
data obtained from the behaving animal can be interpreted profitably. 
Although there are many cases where neural activity collected in the 
absence of any quantitative hypothesis has proven uninterpretable 
(Prigg et al., 2002), the notion somehow survives that the search for 
potential coding mechanisms should not be undertaken except from 
the perspective of documented sensory capacities (Stuttgen, 2010). 
In contrast, our view is that the starting point is to ask what signals 
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The information that we attempt to extract from the spike trains is 
the identity of the deflected whisker. Knowing which whisker has 
contacted an object is thought to be part of the process of object 
localization, in which rats have excellent capacities (Diamond 
et al., 1999, 2008; Harris et al., 1999; Mehta et al., 2007; Knutsen 
and Ahissar, 2009).

The article is organized as follows. After reviewing concepts and 
results from information theory showing the role of spike timing 
in encoding whisker information, we present methods for stimu-
lus decoding in the absence of externally added knowledge of the 
stimulus time course. We apply these methods, as a feasibility test, 
to data from anesthetized rats. We show that stimulus site can be 
decoded from millisecond-precise population spike times without 
absolute stimulus time knowledge.

Information theoretic analysis
The information that a single neuron or a neuronal population 
response conveys about the stimulus can be quantified by Shannon’s 
Mutual Information formula (Cover and Thomas, 1991), abbrevi-
ated hereafter as Information:
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where P(s) is the probability of presentation of stimulus s, P(r | s) is 
the probability of observing response r given presentation of stimu-
lus s, and P(r) is the probability of observing response r across all 
trials to any stimulus. This equation quantifies the maximal reduc-
tion of uncertainty (i.e., the gain in information) about the stimuli 
obtained from a single-trial observation of a neuronal response 
(averaged over all stimuli and responses). Information is measured 
in bits (1 bits corresponds to a reduction of uncertainty by a factor 
of two), and is an upper bound on the amount of knowledge about 
stimuli that can be extracted by any decoding algorithm operat-
ing on neural responses. By evaluating the information carried by 
different ways of defining and quantifying the response r, we can 
evaluate the capacity of different candidate neural codes.

The computation of information requires the estimation of the 
stimulus-conditional response probabilities. These probabilities are 
not known a priori and must be measured experimentally from 
a finite number of trials. The estimated probabilities suffer from 
finite sampling errors, which induce a systematic error (bias) in 
estimates of the information (Panzeri et al., 2007). In this article, 
unless otherwise stated we used the following procedure to correct 
for the bias when computing information from real data. First, to 
facilitate the sampling of its probability, we considered responses r 
which are discrete in nature or which are binned into some discrete 
set of possible responses. Although the discretization facilitates the 
sampling of neural response probabilities, the information meas-
ures still suffer from limited sampling bias. We thus used a quad-
ratic extrapolation procedure (Strong et al., 1998) to estimate and 
subtract the bias of each information quantity.

Information theory has been shown to be a useful tool to vali-
date or exclude potential information-carrying mechanisms, such 
as firing rate, temporal firing patterns of single-neurons, and fir-
ing synergies among multiple neurons (Theunissen and Miller, 
1995; Nirenberg and Latham, 1998; Borst and Theunissen, 1999; 

advantages. First-spike coding is metabolically efficient, and is the 
fastest possible way to encode information (no neural message can 
be faster than a first-spike-time). Van Rullen and Thorpe (2001) 
have argued that first-spike coding is the only way information can 
be encoded compatible with the speed of processing in the visual 
system. Latency coding is also a convenient way to represent analog 
variables in a format ready for further computation (Hopfield, 
1995). However, a potential problem arises if latencies are measured 
with respect to the stimulus onset. Since the brain, unlike the experi-
menter, does not have direct access to the time of stimulus onset, 
it is uncertain whether this timing could be used. Indeed, we have 
investigated the issue of the robustness of spike timing codes during 
naturalistic whisker deflections (Arabzadeh et al., 2006). We found 
that in cortex the information in spike times of single neurons or 
of small populations was largely lost if the decoder had imprecise 
knowledge of the stimulus time (Arabzadeh et al., 2006).

Encoding of information by latency has been reported not only 
in the rat whisker system but also in other different sensory modali-
ties (e.g., Gawne et al., 1996; Furukawa et al., 2000; Muller et al., 
2001; Reich et al., 2001; Foffani et al., 2004, 2008, 2009; Chechik 
et al., 2006). The consistent finding that latency coding is informa-
tive at the cortical level raises the question of whether, and how, 
information in precise spike times of cortical neurons can be read 
out by other brain areas even without independent knowledge of 
the stimulus time.

The problem of decoding the information in precise spike times 
could be solved if the sensory input were generated in response to 
an active motor command, in which case the time of the command 
could constitute an estimate of stimulus time. For example, rats 
sweep their vibrissae toward objects of interest (Kleinfeld et al., 
2006) and they may be able to register incoming spike trains with 
respect to their own whisker protraction with a resolution of some 
tens of milliseconds (Kleinfeld et al., 2006; Diamond et al., 2008). 
However, it seems unlikely that motor “efference copy” possesses 
the necessary temporal resolution to align first-spike times with 
ms precision (von Heimendahl et al., 2007). Still, even if motor 
commands do not constitute a ms-precise clock, they may serve as 
a “window of expectation”, and within such windows the brain may 
use spike timing relative to an internal reference frame to extract 
a representation of the stimulus (Hopfield, 1995; Van Rullen and 
Thorpe, 2001; Brody and Hopfield, 2003; Johansson and Birznieks, 
2004; Kayser et al., 2009; Panzeri et al., 2010). Timing relative to an 
internal reference frame could be defined either from spike times 
within a single neuron’s train, or as relative timing between multiple 
neurons. The feasibility of this “relative timing” population code 
has been demonstrated on simulated networks (Van Rullen and 
Thorpe, 2001) and at the peripheral level (Johansson and Birznieks, 
2004; Gollisch and Meister, 2008; Saal et al., 2009).

In this article, we investigate the feasibility of decoding fine-scale 
relative spike timing information in cortex by considering somato-
sensory cortical recordings in response to instantaneous whisker 
deflections. We are particularly interested in testing whether 
decoders based upon relative spike times can operate robustly 
even in the presence of spontaneous activity (which complicates 
the estimates of response latencies of individual neurons), and 
in understanding whether they can provide information beyond 
what can be extracted by counting spikes over coarser time scales. 
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to the stimulus time, the implicit assumption of this analysis is that 
the downstream system reading information has precise knowledge 
of the stimulus onset time.

Given that typical spike counts for barrel cortical neurons 
are low, in this particular dataset we could compute the mutual 
information reliably using the so-called series expansion method 
(Panzeri and Schultz, 2001), which provides a data-robust informa-
tion evaluation. Using this formalism and the associated sampling 
bias corrections (Panzeri and Schultz, 2001), we addressed whether 
spike timing was important for the coding of the location of the 
stimulated whisker. Further, we asked what were the most impor-
tant components of the code.

The time course of information (averaged over a population of 106 
cells recorded in barrel D2) is shown in Figure 1A. Early in the response 
(0–10 ms post-stimulus onset), the spike count provided almost as 
much information (90% on average) as spike times measured with pre-
cision ∆t = 5 ms. Later, however, there was a significant advantage for 
the timing code: at 40 ms, spike times sampled at precision ∆t = 5 ms 
provided 55% more information than did total spike counts.

What is the temporal resolution of the readout necessary to 
extract the entire quantity of information? To answer this question, 
we varied the width ∆t of the time bins in the range 2.5–20 ms. We 
found that the transmitted information increased steadily with 
decreasing ∆t, with more than 50% additional information trans-
mitted using precision ∆t = 2.5 ms compared to ∆t = 20 ms (Panzeri 
et al., 2001). This suggests spike times carry their information using 
a temporal precision of a few milliseconds.

Further, we asked what were the most important components 
of the code. We used the series expansion formalism (Panzeri and 
Schultz, 2001) to separate the contribution of stimulus modulation 
of the time-dependent firing rates from the contribution of correla-
tions between spike times. At 40 ms post-stimulus onset, firing rate 
modulations conveyed 83% of the total information (Figure 1B). 
The contribution to information of correlations between the spike 
times was smaller (17%) (Panzeri et al., 2001).

To understand whether response latency played a special part in 
the spike timing code, we compared the information transmitted 
using all spikes after whisker deflection on each trial to that using 
only the first spike after whisker deflection. The result (Figure 1B) 
was that 83% of the total information in the spike train for 0–40 ms 
was available in the time of the first spike alone. Moreover, for each 
time step in the 0–40 ms interval, the first spike accounted for essen-
tially all of the information in firing rate modulation (Figure 1B). 
Hence, the only information bearing part of the time-varying firing 
rate modulations was the response onset.

The conclusion is that individual rat somatosensory cortical 
neurons encode stimulus location largely by differences in time-
varying firing rate, and that the response latency measured with 
millisecond resolution is the key symbol in this code. This encour-
aged us to look for a decoding mechanism based upon the relative 
spike latency of different neurons, the goal of the current work.

Information carried by spike timing measured 
without an external reference frame
We address the problem of decoding without stimulus time knowl-
edge by considering the single-whisker deflection data reviewed in 
previous sections. This dataset is particularly interesting for our 

Victor, 2000, 2006; Nirenberg et al., 2001; Panzeri and Schultz, 2001; 
Golledge et al., 2003; Panzeri et al., 2003a; Schneidman et al., 2003; 
Foffani et al., 2004; Schnupp et al., 2006; Nelken and Chechik, 2007; 
Scaglione et al., 2008; Montani et al., 2009; Petersen et al., 2009; 
Quian Quiroga and Panzeri, 2009).

The data set
Before presenting the information analysis, we briefly illustrate 
and describe the dataset of single neuron recordings from the 
somatosensory cortex of rats that we will use for all the analyses 
in this article. These data were originally published in Lebedev et al. 
(2000). In the following, we provide an overview of the experi-
mental conditions.

Adult male Wistar rats weighing approximately 350 g were used. 
Anesthesia was induced by urethane (1.5 g/kg of body weight). The 
subject was placed in a stereotaxic apparatus and left somatosen-
sory cortex was exposed by a craniotomy. Anesthesia was held at 
a depth characterized by a bursting rate and local field potential 
frequency of 0.5–8 Hz (Erchova et al., 2002). An array of six tung-
sten microelectrodes with 300 ± 50 μm separation between adjacent 
electrode tips was advanced into the cortical barrel field. Neurons 
in barrel-column D2 and surrounding D-row barrel-columns were 
sampled. Neuronal activity was amplified and band-pass filtered in 
the range 300–7,500 Hz. Action potentials were digitized at 25 kHz 
and stored on a PC.

All whiskers were trimmed to a 3-mm length. Individual whisk-
ers were deflected by piezoelectric wafer positioned just below the 
whisker shaft, 2 mm from the skin. The stimulus was an up-down 
step function of 80-μm amplitude and 100  ms duration deliv-
ered once per second 50 times for each vibrissa. The stimulated 
vibrissae were C1-3, D1-3, E1-3, gamma, and delta. Single-unit 
action potentials were discriminated using a template-matching 
algorithm written in MATLAB (Mathworks, Inc, Natwick, MA, 
USA). Classified action potentials were time-stamped with 
0.1 ms resolution.

Information carried by spike timing measured 
aligned to an external reference frame
To introduce the concept of extracting information from neural 
responses using knowledge of the stimulus time, we review the 
previously reported results (Panzeri et al., 2001) concerning the 
stimulus location information carried by spike counts and spike 
times of single neurons recorded in barrel D2.

This analysis was based on a post-stimulus time window 0–T, 
where T was varied parametrically in the range 5–40 ms in steps of 
5 ms. To evaluate spike count information, the “response” r on each 
trial was simply the number of spikes occurring in the time window 
0–T. To evaluate spike timing information, the window 0–T was 
broken into bins of size ∆t, where ∆t is the temporal precision at 
which spike times are considered. Different values of ∆t (from 20 to 
2.5 ms) were used. The overall contribution of temporal encoding 
was then quantified as the difference between the spike timing and 
the spike count information. The resulting information calculation 
corresponds to the amount of knowledge available to an observer 
that can read spike times with a resolution of ∆t. Since in both the 
spike count and the spike timing analysis the post-stimulus window 
and the presence and timing of spikes were measured with respect 
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to fire nearly simultaneously (gray area in Figure 2A). By 50 ms 
after stimulus onset, activity had almost returned to baseline level 
(Figure 2A). Responses of these neurons to deflection of a differ-
ent whisker (D1) are shown in panel 2B, where spikes were now 
more distributed in time. Figures 2C,D shows the summed activ-
ity of column D2 units in response to deflection of whiskers D1 
and D2. The response to the topographically matching whisker 
was stronger, had shorter latency and was more uniformly timed 
across the population.

Let us now consider how a downstream observer may decode 
such population activity. As shown in Figure 1, the information 
carried by single neurons was only a fraction of a bit and thus 
was not high enough to support reliable stimulus discrimination; 
therefore, if the whole rat can localize tactile stimuli, decoding 
must be done at the population level. We have previously shown 
that pooling of neurons located within the same column (i.e., 
summing their population activity) does not lead to any loss of 

purpose because the population carried, at both the single neuron 
and the neuronal-pairs level, essentially all information about stim-
ulus location in the timing of the first spike emitted post-stimulus 
deflection (Panzeri et al., 2001; Petersen et al., 2001). Therefore it 
is particularly important to understand if the information content 
of these spike times can be decoded without a precise knowledge 
of the stimulus time.

Columnar population latencies and columnar population 
spike counts in response to single-whisker deflection
Let us start by examining population activity in a single trial. 
Figure  2A shows the responses of 100 non-simultaneously 
recorded neurons in column D2 to one deflection of whisker D2 
at time t = 0. The neurons are treated as if recorded simultaneously 
– the effect of non-simultaneity of recordings will be addressed 
later by simulations. Approximately 10 ms after stimulus onset, 
there was a sharp increase in firing rate which led many neurons 
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Figure 1 | The encoding of stimulus location by single neuron spike times 
with knowledge of external clock. (A) The post-stimulus time course of the 
information about stimulus site available from two different neural codes 
provided the decoder knows stimulus time. Results are plotted as average 
(±SEM) across cells of the mutual information functions. The black line denotes 
the spike timing information obtained when sampling spikes with temporal 
resolution ∆t = 5 ms, and the red line denotes the spike count information. 

(B) The post-stimulus time course of the total information carried by spike times 
(black line) obtained when sampling spikes with temporal resolution ∆t = 5 ms, 
compared to the information carried by the time-varying firing rate (green line) 
and to the information computed using only the timing of the first spike on each 
trial (blue line), both obtained with the same resolution ∆t = 5 ms. Results are 
plotted as average (±SEM) across all recorded cells. Figure modified from results 
presented in Panzeri et al. (2001).
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when to count the spikes. Suppose the decoder is uncertain about 
stimulus time, and therefore erroneously counts spikes compris-
ing non-stimulus-driven activity, for example in the −500 to +50 
peri-stimulus time. In this case, the population spike counts cannot 
be correctly decoded in most trials (Figure 3A, right part). The 
conclusion, perhaps counterintuitive, is that integrating columnar 
spike counts over long windows is not an effective way to make the 
neural code robust to errors in the estimation of the stimulus time. 
In this data set, population spike counts can only be decoded with 
some knowledge of the stimulus time.

An alternative hypothesis is that registering the time course 
of population response with high temporal precision can actu-
ally make the code more robust to the stimulus time errors. 
Figures 2A,B shows that the first spikes emitted by the 100 neurons 
in barrel D2 after stimulation of their principal whisker are much 
more precisely timed than second spikes or than spikes emitted 
in response to a non-principal whisker. This suggests that we can 
indeed use the precisely aligned response latencies of individual 
neurons to define a “columnar synchronous response” (CSR) event 
characterized by the firing of at least a certain fraction f of neurons 
within a short interval of ∆t ms (see illustration in Figure 2C). The 
fraction f of neurons firing and the width of the time window ∆t 
are free parameters. In this article, we use f = 0.17 and ∆t = 5 ms 

information about whisker identity (Panzeri et  al., 2003b); we 
will therefore consider in the following the summed population 
activity within a column.

It is tempting to reason that, without accurate knowledge of 
stimulus time it would be more efficient to count spikes over rela-
tively large time windows, because coarse measures may be more 
robust to stimulus time uncertainty. To evaluate this hypothesis, 
we investigated how decoding accuracy using the summed spike 
count of the columnar population over long response windows 
depends on the knowledge of the stimulus time. A decoder based 
on columnar population spike counts exploits the fact that more 
spikes are emitted in response to the stimulation of the princi-
pal whisker than to any other whisker, both in the anesthetized 
(Petersen et al., 2002a) and awake, behaving brain (von Heimendahl 
et al., 2007). Figure 3A (left part) shows a scatterplot of the summed 
spike counts of 100 cells in barrel D2 on each trial in a 0–50 ms 
post-stimulus window. In this window, high spike counts corre-
spond to stimulation of principal whisker D2 and low spike counts 
correspond to stimulation of the non-principal whisker D1. The 
distribution of counts is well separated and only two trials out of 
96 would be confusable. However, since spike counts are stimu-
lus-modulated only briefly following the stimulation, this excel-
lent discriminability can be achieved only if the decoder knows 
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Figure 2 | Single-trial responses of a barrel column to whisker deflection. 
(A) Raster plots of the spike times emitted in a single example trial by 100 
neurons recorded non-simultaneously in barrel-column D2 around the time of 
deflection of the principal whisker D2. The gray area denotes the time window 
around 10 ms when many neurons synchronously fire their first post-stimulus 
spike. (B) Raster plots of the spike times emitted in a single example trial by 100 
neurons recorded non-simultaneously recorded in barrel-column D2 around the 

time of deflection of the whisker D1. (C) The time course (sampled in 5-ms bins) 
of the summed activity of the whole population of D2 neurons around the time 
of deflection of D2 whisker in the same trial plotted in (A). The dashed horizontal 
line plots the threshold used to detect a “columnar synchronous response” 
(CSR) event. (D) The time course of the summed activity of the whole population 
of D2 neurons around the time of deflection of D1 whisker in the same trial 
plotted in (B).
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deflection of the principal whisker, and never during spontane-
ous activity or after stimulation of a non-principal whisker. This 
result is exemplified in one selected trial in Figures 2C,D but 
(as shown in Figure 3B), it holds for all trials. Thus, detecting 

(as in Figure 2C), because we found empirically that these values 
were optimal. We systematically searched for CSR events by mov-
ing a sliding window of size ∆t = 5 throughout the peri-stimulus 
time. The event occurred only in the window [10–15] ms after 
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Figure 3 | The distribution of single trial D2-columnar spike counts 
and of columnar latencies. (A) Reports the scatter plot of the single-trial 
summed spike count of a population of 100 neurons in barrel D2 over all 
the trials available to deflection of whisker D2 (blue dots) and whisker D1 
(red dots). The left and right part of (A) report respectively the spike counts 
obtained in the 0 to 50 ms and −500 to 50 ms peri-stimulus window 

respectively. (B) Shows the scatter plot of the timing of columnar latency 
(defined as the timing of single-trial synchronous columnar response events) of 
a population of 100 neurons in barrel D2 over all trials to deflection of whisker 
D2 (blue dots) and whisker D1 (red dots). The left and right part of (B) show, 
respectively, the results obtained in the 0 to 50 ms and −500 to 50 ms 
 peri-stimulus window.
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by the columnar latency, we detected CSR events (as explained 
above and illustrated in Figure 2C); we called the time at which the 
first CSR event was detected in a certain barrel in a given trial the 
“columnar latency” and we used it as the variable r in Eq. 1.

We first considered the case in which the stimulus time is known 
precisely (X = 0 ms). The corresponding dependence of informa-
tion on the population size is plotted in Figure 4A. With a single cell 
(n = 1), the columnar latency reduces to the first-spike latency, and 
the columnar population spike count matches the single cell spike 
count. Consequently, the information values for columnar latency 
and columnar count equal those previously reported (Panzeri et al., 
2001) for single neuron first-spike latency and single neuron spike 
count (0.15 bits and 0.10 bits respectively). The information avail-
able in both columnar counts and columnar latencies increased 
steeply with the population size n (Figure 4A). When considering 
n = 100 cells, 1 bit of information (corresponding in this case to 
100% correct discrimination) was available from columnar laten-
cies and 0.89 bits were available from columnar counts. Thus, 
when stimulus time is known precisely the information available 
in columnar latency is higher than that available from counts over a 
large range of population size, but the information gain by colum-
nar latency is moderate.

The situation was different when there was stimulus time uncer-
tainty of 500 ms (i.e. X = −500ms; Figure 4D). For small population 
sizes there was essentially no advantage in columnar latencies over 
counts. For single cells (n = 1), the information available in laten-
cies (0.1 bits) was similar to that available in counts (0.09 bits). 
This is because for small population sizes the columnar latency 
reduces to a single neuron first-spike latency code, and the lat-
ter is difficult to extract without knowledge of the stimulus time. 
However, as the population size increased, the information avail-
able in population latencies increased much more steeply than the 
information available in population counts. This is because the 
population latency, but not the spike count code, became robustly 
separable from the pre-stimulus activity. For n = 100 cells, perfect 
stimulus discriminability (1 bit) was achieved by the population 
latency code, but a much poorer discriminability (0.30 bits) was 
achieved by the spike count.

Intermediate values of stimulus time uncertainty (X  =  −100 
and −200  ms, Figures 4B,C) led to an intermediate increase of 
the information advantage of using population latencies rather 
than counts. For populations larger than 10 neurons, the larger the 
error in stimulus time knowledge, the larger was the information 
advantage of a columnar latency code. An information of 0.6 bits 
could be extracted from the columnar latency code with as few as 
25 cells even in total absence of stimulus time knowledge. Once 
the uncertainty in the stimulus time exceeded 200 ms, extracting 
the same 0.6 bits from the spike count code could not be achieved 
for any population size.

In the above analysis, varying the parameter X affected both 
the amount of uncertainty about the stimulus time and (in the 
case of spike counts) the duration of the integration time window. 
To check that window variation did not confound our estimate 
of the effect of stimulus time ignorance, we repeated the same 
analysis as in Figure 4 but using a different parameterization of 
stimulus time uncertainty. Now we used sliding windows of equal 

spike synchrony at fine temporal precision leads to 100%-correct 
detection of the stimulation of the principal whisker D2. In stark 
contrast to the spike count code, CSR detection was not degraded 
by the inclusion of spontaneous activity periods due to incorrect 
stimulus onset knowledge, because no CSR ever occurred during 
spontaneous activity (Figures 2D and 3B). In addition, since the 
response onset always happened 10–15 ms after deflection of the 
principal whisker (Figure 3B), CSR can specify the stimulus tim-
ing with a few milliseconds of precision, as well as the identity of 
the stimulus. A similar mechanism has been proposed for detec-
tion of the high-speed whisker jumps that occur during texture 
palpation (Jadhav et al., 2009). Of course, the mechanism works 
if a decoder can perform a CSR detection operation such as that 
done by a post-synaptic neuron with an integration time constant 
of a few milliseconds and a fixed threshold for firing (Ayling, 2008; 
Stuttgen and Schwarz, 2010).

Information content of population latencies and counts in a 
single column
The above analysis suggests that detecting the population response 
leads to a more reliable and robust decoding of stimulus identity 
as opposed to simply counting all the spikes in the population over 
long time windows. We studied in more detail how the perform-
ance of the two candidate decoding schemes depends on both the 
size of the columnar population and on the amount of uncertainty 
about the stimulus time.

We considered a population of n sequentially recorded neu-
rons in column D2, and varied n parametrically from 1 to 100. We 
computed how much information the population encoded about 
whether whisker D1 or D2 was stimulated. Perfect discrimination 
corresponds to 1 bit of information. We assumed that the decoder 
has only imprecise knowledge about when whisker deflection will 
occur and, as a consequence, processes both periods of spontane-
ous activity preceding the stimulus as well as the stimulus-evoked 
response. We mimicked this by quantifying the columnar popula-
tion responses from a time X before the stimulus time to a post-
stimulus time T = 50 ms. Larger values of X correspond to higher 
uncertainty about the stimulus application time. The parameter 
X was varied between −500 ms and 0 ms (i.e., exact knowledge of 
stimulus time). There are other ways to model uncertainty about 
stimulus time when the events are presented continuously and the 
purpose is to select between potential stimulus features rather than 
select between evoked and spontaneous activity (e.g., Arabzadeh 
et al., 2006). For detection of the onset of a stimulus, the method 
used here has two advantages. First, spontaneous activity is one of 
the greatest problems for measuring latency, and so its inclusion 
is a stringent and relevant test for the robustness of latency codes. 
Second, it is a simple but reasonable way to model a coarse “win-
dow of stimulus expectation” that may for example accompany the 
motor commands initiating active whisking.

For any choice of X, we considered the information carried by 
two types of neural codes, the columnar spike count and the colum-
nar latency code, as described next. For the columnar spike count we 
quantified the response r (Eq. 1) as the total number of spikes emit-
ted within the window by all neurons in the population (as in the 
example of Figures 2 and 3). To compute the information encoded 
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Decoding the responses of populations of neurons in 
multiple barrels
Next we consider the more complex problem of decoding the activ-
ity of multiple columns to identify stimulus site from among several 
candidate whiskers.

We took the activity of 100 non-simultaneously recorded neu-
rons per column from three different barrel-columns (D1, D2, and 
D3) in response to stimulation of whisker D1, D2, D3 or another 
whisker, E1, non-principal to any of the considered columns. We 
again considered an uncertainty X in the knowledge of the stimulus 
time, and again evaluated different decoding schemes based on 
relative latency and spike counts respectively.

Quantification of information from the populations in three 
columns is much more difficult than a single column: the response r 
of the three-column population is a three dimensional array, and the 

duration (50 ms), but parametrized stimulus time uncertainty by 
varying the time step Y by which this sliding window was shifted 
with respect to the correct stimulus onset. The information was, 
as above, relative to stimulus site D1 or D2. The dependence of 
extracted information on Y is reported in Figure 5. It is clear that 
the information in the columnar latency was more robust to errors 
in the stimulus time than the information in the columnar spike 
counts, even when using such parametrization of the uncertainty 
of stimulus time.

In sum, decoding strategies based on the synchronized colum-
nar population latency have multiple advantages with respect to 
decoding by integrating spike counts over longer windows: colum-
nar latency decoding (1) conveys more information per cell and 
requires fewer cells for reliable discrimination, and (2) is more 
robust to uncertainty about stimulus time.

Figure 4 | The dependence of information obtained by decoding the 
activity of one column on stimulus time uncertainty X. The information 
about whether whisker D1 or D2 was deflected, obtained by the summed 
counts (red line) or the latency of synchronous population activity (black line) of a 
population of neurons located in a single column (barrel D2). The information is 
computed in a time window starting X ms before stimulus onset and extending 

to 50 ms post-stimulus, and is plotted as a function of the size of the population 
of D2 neurons considered. (A–D) Report information values which were 
obtained when using respectively the values 0, −100, −200, and −500 ms for the 
parameter X quantifying the uncertainty about the stimulus time. Results are 
plotted as average (±SD; colored area) across all analyzed subgroups of cells 
with the specified population size.
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where δ is a Kronecker Delta. The decoded information I(S;SP) 
quantifies the total information gained when predicting the stimu-
lus using a specific algorithm, and takes into account both the 

number of trials per stimulus available is not sufficient to sample in 
enough detail the full multivariate stimulus-response probabilities. 
For this reason, we computed the information available in the activ-
ity of the three columns by using an intermediate stimulus recon-
struction step. Stimulus reconstruction can be operationally defined 
as a rule leading to the prediction of which stimulus or behavior 
elicited a neuronal response in a single trial. It can be mathematically 
defined as a function g(r) operating on the population response 
in any given trial and giving a prediction sP(r) of the stimulus that 
elicited the observed neural population response in that trial:

sP(r) = g(r).	 (2)

The information extracted through the stimulus reconstruction 
scheme can be quantified as follows (Quian Quiroga and Panzeri, 
2009):

Figure 5 | The dependence of Information obtained by decoding the 
activity of one column on stimulus time uncertainty Y. The information 
about whether whisker D1 or D2 was deflected, obtained by the summed 
counts (red line) or the latency of synchronous population activity (black line) of a 
population of neurons located in a single column (barrel D2). The information is 
computed in a time window of duration 50 ms starting Y ms before stimulus 

onset, and is plotted as a function of the size of the population of D2 neurons 
considered. (A–C) Report information values which were obtained when using 
respectively the values 0, −20, and −35 ms for the parameter Y quantifying the 
uncertainty about the stimulus time. Results are plotted as average (±SD; 
colored area) across all analyzed subgroups of cells with the specified 
population size.
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The third decoder was the “columnar spike count decoder”, 
which operated on the summed spike count within each column. 
The population response r was a three dimensional array whose 
components correspond to the total spike count in columns D1, 
D2, and D3, respectively, and it was discretized into five equis-
paced classes independently in each column (the number of classes 
was set to five because we found empirically that this parameter 
choice maximized the performance of this decoder). From the 
training data, we computed the empirical posterior probability of 
joint columnar P(s | r) and then decoded the most likely stimu-
lus, i.e., s P sP

s
( ) arg max ( | )r r= . Cross-validation was performed as 

described above.
Results of the three coding schemes are reported in Figure 6 for 

different values of the stimulus time error X (from −500 to 0 ms) 
and for three different population sizes (n = 25, 50, and 100 cells 
per column). It is apparent that the first scheme, the columnar 
latency difference decoder, was the most informative and was also 
most robust to the stimulus time ignorance, for all population 
sizes considered. For example, when considering 100 cells per col-
umn (Figure 6A), the columnar latency difference decoder yielded 
100% accurate stimulus reconstructions (2 bits of information) 
whatever the stimulus time uncertainty X. Rank order decoding 
also performed well when the stimulus time was known precisely 
(X = 0), but was much less robust to the inclusion of periods of 
spontaneous activity. This is because the longer the spontaneous 
activity period, the higher the chance that the rank of individual 
neurons will be random. The columnar pooling operation removes 
this noise in the activation order at the single neuron level (because 
stimulus-evoked peaks are narrower and stronger than spontaneous 
peaks). Consistent with the results of Figures 2 and 3, the spike 
count decoder performed well when the stimulus time was known, 
but it performed poorly when periods of spontaneous activity were 
incorporated.

The criticism can be raised that our calculations do not take 
into account the effects of correlated noise, because they are based 
on a pseudo-simultaneous response arrays constructed by collect-
ing together responses of non-simultaneously recorded neurons. 
Correlated noise may amplify the variability of the time course 
of the population activity (Mazurek and Shadlen, 2002), and by 
canceling such correlations our method may eliminate any strong 
and narrow spontaneous activity peaks in the pooled population 
– in effect, simulated populations may reduce “false positives” com-
pared to real populations that contain correlated noise. To test for 
this, we used the procedure of Mikula and Niebur (2003) to generate 
correlated spike trains that matched exactly the true population-
averaged PSTH of the neurons (sampled with 1-ms bins) and the 
true pair-wise Pearson cross-correlation value of neurons within 
the same column (the latter collected from a dataset of 52 D2–D2 
neuronal pairs simultaneously recorded in the same conditions 
with a small array of electrodes, see Petersen et al., 2001) in each 
1-ms-wide peri-stimulus time bin. When the simulated popula-
tion of 100 cells per column with realistic correlation values was 
tested, performance of the columnar latency difference decoder 
as a function of X was unchanged (P > 0.3, one way ANOVA). To 
further check the robustness of the decoder to increased values 
of correlation, we increased correlations by a factor of four with 
respect to those present in real data. The columnar decoder then 

fraction of correct decoding and the spread of the decoding errors. 
Information theoretic inequalities ensure that I(S;SP) ≤ I(S;R). The 
reason I(S;SP) can sometimes be strictly less than I(S;R) is that 
I(S;SP) refers to a specific algorithm, whereas I(S;R) bounds the per-
formance of all possible algorithms operating on the response r.

We computed the information I(S;SP) gained with three differ-
ent decoding schemes, each corresponding to a different choice of 
coding scheme (i.e., a different quantification of the population 
response r) and of stimulus reconstruction function g in Eq. 2, as 
described next.

The first decoding scheme was the one based on the relative 
population latency of each column (in the following termed “colum-
nar latency difference decoder”). This decoding was implemented 
as follows. In each trial we detected, independently in each column, 
the presence and timing of synchronous columnar response (CSR, as 
described earlier) events, exactly as described in the previous section. 
Then, in each trial, we decoded the stimulus by the following rule: 
if at least one barrel-column exhibited a CSR event, we decoded the 
stimulus site as being principal to the column firing the first event 
(note that this implies that the relative, rather than the absolute 
timing of each column is used for decoding). If no synchronous 
columnar population event was detected in the trial from any of 
the columns, we decoded the stimulus in that trial as whisker E1 
(the only one not principal to any of the considered columns). It is 
important to note that the relative population latency coding scheme 
is a genuine form of population temporal encoding, and cannot 
be reduced to a simple spike count code in a short time window: 
events are defined separately for a population in each column, and 
information is computed from the relative timing of such events. 
In fact, when we considered fewer than n = 100 neurons in each 
barrel, there were several trials in which CSR events occur in more 
than one barrel (6% and 21% of trials on average for n = 50 and 
n = 25 respectively), and in this case the decoded whisker is the one 
principal to the barrel in which the first CSR event was evoked.

The second decoder was recruitment order. This algorithm con-
siders the relative order in which each neuron within the popula-
tion (rather than the pooled columnar activity) fires its first spike 
(Van Rullen and Thorpe, 2001; Johansson and Birznieks, 2004; 
Saal et al., 2009). We tested the performance of the recruitment 
order decoding with a procedure very close to that of (Johansson 
and Birznieks, 2004). In each trial, the first-spike latency of each 
neuron was measured as the time between the beginning of the 
sampling window and the appearance of the first spike. For each 
stimulated whisker, we constructed a template of the recruitment 
order of the neurons in response to the stimulus by sorting the 
neurons according to their mean rank over a set of training trials. 
We then used the remaining set of “test” trials to compute how 
well the recruitment order could predict the stimulus. For each 
test trial, the population response was defined as the rank order 
of first-spike latencies of each neuron. We then denoted the most 
likely whisker SP as that with the highest Spearman rank correlation 
to the population response of the current test trial. Two different 
procedures of cross-validation were employed: random division 
into 10 training and 38 test trials, and the leave-one-out procedure. 
The procedures gave equivalent results. It is important to note that 
the rank order coding scheme is also a genuine form of population 
temporal encoding.
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Figure 6 | Information obtained by decoding the activity of three columns 
(barrels D1, D2, and D3). The amounts of information (Eq. 3) decoded by the 
columnar latency (black line), the rank order (red line) and the columnar count 
(blue line) decoders respectively are plotted as a function of the parameter 

X which quantifies the uncertainty about the stimulus time. (A–C) Plot the 
results obtained when using populations of 100, 50, and 25 cells in each column 
respectively. Results are plotted as average (±SD) across all analyzed subgroups 
of cells with the specified population size.

showed only a very small decrease in the decoding performance 
(less than 0.1 bits for each value of X compared to those reported 
in Figure 6A when using 100 cells per barrel; results not shown, 
but see Ayling, 2008 for more details). For other studies of the 
effect of correlated activity on the robustness of relative-timing 
decoders, we refer the reader to (Chase and Young, 2007; Gollisch 
and Meister, 2008).

Discussion and conclusions
The temporal precision at which neural responses carry informa-
tion has been systematically investigated over the last 20 years in 
several sensory structures. Substantial evidence (recently reviewed 
in Panzeri et al., 2010) shows that the timing of spikes with mil-
lisecond precision carries much more information than that carried 
by spike counts over windows of tens or hundreds of milliseconds. 
However, the observation that information is carried by neural 
codes at a high temporal precision does not guarantee that the nerv-
ous system makes use of such codes. One of the most compelling 
criticisms is that temporally precise signals may not be decodable 
unless the downstream population has access to an equally precise 
external reference frame. The results presented here suggest that 
a precise external reference frame is not always necessary: spike 
timing-based decoders can work well without knowledge of the 
stimulus time in some conditions. Moreover, our results corrobo-
rate previous reports (Soteropoulos and Baker, 2009; Stuttgen and 
Schwarz, 2010) that the time course of neural population activity 

can be used to estimate the timing of stimulus application. We also 
found that, contrarily to simple intuition, relative timing codes are 
less degraded than spike count codes by inaccuracies in stimulus 
time knowledge.

Another caveat regarding spike timing coding is that in large 
populations there may be enough information available in spike 
counts to make the extra spike timing information unneeded; a 
ceiling effect. Our results show that, while this may be the case when 
the stimulus time is known with precision, in the harder task of 
decoding the stimulus without stimulus time knowledge, spike time 
mechanisms outperform those based on spike counts, and espe-
cially so as population size grows. With stimulus time uncertainty, 
even large populations of neurons could not be perfectly decoded 
by spike counts (see Figures 4 and 6), implying that population 
signals never reach a ceiling if decoded inefficiently. This suggests 
that previous small-population reports of encoding information by 
spike timing may actually underestimate (rather than overestimate) 
the importance of spike timing at the population level.

The results in this article were obtained considering only the 
encoding of simple stimuli (single-whiskers deflected in a binary 
manner – on/off) and need to be extended to stimulus time-free 
decoding of dynamic stimulus features of naturalistic complexity. 
There is reason to expect that the information-carrying advantage 
of relative timing codes over spike count codes may be even more 
advantageous for such stimuli. Naturalistic stimuli often consist of 
complex sequences of features – in the whisker system, such features 
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at random during the wave of first spikes at the beginning of the 
learning phase. When this happens, STDP reinforces the connec-
tions with all the afferents that take part in the first wave of spikes, 
thereby increasing the probability of the downstream neurons firing 
again in response to the first wave of spikes.

In general, to determine the extent to which spike time codes 
are used in the nervous system, it is important to establish links 
between the temporal precision of neural codes and behavior. The 
current evidence is vigorously debated (Luna et al., 2005; Engineer 
et al., 2008; Yang et al., 2008; Jacobs et al., 2009; Gerdjikov et al., 
2010). While the data presented here do not speak directly to this 
issue, it is interesting to note that a mechanism similar to our was 
used by Stuttgen and Schwarz (2010), who demonstrated that the 
distribution of occurrence of such events across trials in differ-
ent stimulus discrimination conditions is significantly correlated 
with the animal’s behavioral performance. Whisker kinetic features 
also seem to be encoded by CSR-like firing (Jadhav et al., 2009). 
Future developments of the clock-free method will therefore focus 
on decoding complex stimuli (Maravall et al., 2007; Petersen et al., 
2008) and stimuli experienced by awake, behaving rats, such as 
those reported in von Heimendahl et al. (2007).

In conclusion, our results demonstrate that the precise tim-
ing of spikes emitted shortly after stimulus presentation forms the 
basis for an information-rich code, which is robust to the stimulus 
time problem at the population level. Moreover, the time course of 
population responses can be used by the nervous system to provide 
information not only about the stimulus identity but also about 
the stimulus time itself.
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include position, velocity, absolute speed, acceleration (Arabzadeh 
et al., 2005; Hipp et al., 2006; Lottem and Azouz, 2008). By reverse 
correlation methods, it has been shown that neurons in the sen-
sory pathway act as “filters” for different features: they fire with 
varying probability and latency according to the strength of some 
set of features in some preceding moment (Petersen et al., 2008). 
Because neurons respond to multiple features and because the fea-
tures often occur in close temporal proximity or even in temporal 
superposition, single-neuron decoding will always be ambiguous. 
To decode the sequence of features and their magnitude, a highly 
efficient readout of the population would be based upon the relative 
latencies of neurons with heightened sensitivity to specific features. 
For example, the firing of “high-acceleration neurons” a few mil-
liseconds before “high-speed neurons” would signal a change in 
whisker direction followed by a high-speed jump. Target neurons 
receiving combined inputs could achieve this sort of decoding. 
Timing comparisons would be done not between whole columns 
(the condition for stimulus localization) but between sets of neu-
rons within or across columns with varying feature selectivity.

The stimulus time-free decoding algorithms of response laten-
cies which was presented in this study relies on the concept that 
there are classes of neurons activated with similar latencies by the 
stimulus feature to be decoded. This assumption is conceivable 
when considering primary cortical sensory areas, in which first-
spike latency codes have been consistently reported. It however 
remains to be understood whether such conditions extend to higher 
order cortical systems where neurons can show both increases and 
decreases in response to a sensory stimulus or a behavioral event, 
or even whether constant sensory feedback in the awake behaving 
animal may disrupt the conditions for detection of synchronous 
activation of a neural population.

An important question for theoretical research is how a down-
stream system could learn to be selective to the “first wave” of spikes 
in each column that forms the basis of the stimulus-time free cod-
ing scheme. Recently, Thorpe and colleagues (Masquelier et  al., 
2008, 2009) proposed that spike time-dependent plasticity (STDP) 
(Markram et al., 1997; Bi and Poo, 2001; Jacob et al., 2007) may 
provide the appropriate synaptic mechanism for learning such first 
spike codes: a certain “downstream” post-synaptic neuron will fire 
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