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of fusion-competent vesicles. Here we review the main literature 
on vesicle sharing and consider the possible implications of this 
phenomenon for the operation of synapses.

LateraL mobiLity of synaptic vesicLes
A clear understanding of the organization and function of 
individual presynaptic terminals in hippocampal neurons has 
been achieved in the last two decades thanks in large part to 
the development of sophisticated imaging technologies and 
synapse-specific optical probes (Ryan, 2001). These approaches 
permit targeted labeling of functional vesicles in synapses and, in 
combination with high-resolution imaging methods, have pro-
vided a detailed characterization of vesicle fusion and recycling 
kinetics during transmission at individual terminals (Ryan et al., 
1996; Schweizer and Ryan, 2006). Using the same imaging tools, 
researchers have also studied the mobility of SVs. Elegant work 
by a number of groups has specifically examined the dynamics 
of vesicle movement within synapses during rest and activity 
(Kraszewski et al., 1996; Jordan et al., 2005; Lemke and Klingauf, 
2005; Shtrahman et al., 2005). Experiments have also revealed 
that vesicle movement can extend beyond the conventional 
boundaries of the synapse. For example, trafficking vesicles in 
developing axons have suggested a potential role for extrasyn-
aptic vesicle mobility in nascent synapse formation (Matteoli 
et al., 1992; Ahmari et al., 2000; Hopf et al., 2002; Sabo et al., 
2006). Moreover, experimental evidence has also emerged to 
show that nominally mature neurons exhibit vesicle movement 
along axons between synapses (Krueger et al., 2003; Darcy et al., 
2006a), raising the possibility that this process may also be func-

background
Ultrastructural work has revealed the key anatomical characteristics 
of presynaptic terminals. Perhaps the most striking feature of indi-
vidual boutons observed in electron micrographs is the cluster of 
synaptic vesicles (SVs), first described by De Robertis and Bennett 
(1954, 1955) and Palay (1956), lying close to a specialized area of the 
membrane called the active zone and apposed to the postsynaptic 
structures. Although they are morphologically indistinct, SVs at a 
presynaptic terminal are organized into sub-categories or “pools” 
with functionally-defined roles (Sudhof, 2004; Rizzoli and Betz, 
2005, see other articles in this special topic). In the conventional 
view of synaptic organization these pools are synapse-specific in 
that they are operationally “coupled” to a given synaptic terminal, 
achieved by efficient and well-characterized recycling mechanisms 
which allow reuse of the same vesicle at the same synapse (Ceccarelli 
et al., 1973; Heuser and Reese, 1973; reviewed in Fernandez-Alfonso 
and Ryan, 2006). Nonetheless, recent studies, particularly in hip-
pocampal neurons, have started to challenge this view of compart-
mentalized synaptic function by revealing a more labile feature of 
synapses – the capability for some populations of SVs to traffic 
along axons between different presynaptic terminals (Krueger et al., 
2003; Chen et al., 2008; Darcy et al., 2006a; Fernandez-Alfonso 
and Ryan, 2008; Westphal et al., 2008; Staras et al., 2010). This 
trafficking occurs at a relatively high rate, providing a substantial 
turnover of vesicles at individual synapses. Moreover, many of these 
vesicles appear to be functional and, once mobilized, can contribute 
to vesicle fusion at new and spatially remote synaptic hosts. This 
lateral mobility offers a new view of presynaptic organization in 
which synapses can be functionally coupled via shared populations 
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tionally relevant for mature neuronal signaling. In hippocampal 
axons,  presynaptic terminals typically form en passant boutons 
(Westrum and Blackstad, 1962; Sorra and Harris, 1993) that 
are separated from synaptic neighbors by only short (∼3–7 μm, 
Ishizuka et al., 1990; Sorra and Harris, 1993; Staras et al., 2010) 
lengths of axon (Figure 1A) suggesting that such lateral mobility 
of vesicles could be important for interactions between presyn-
aptic terminals. Subsequent studies, some employing state-of-
the-art methodological approaches such as diffraction-unlimited 
microscopy (Westphal et al., 2008), fluorescent nanoparticles 
(Zhang et al., 2009) and novel photoswitchable SV markers 
(Staras et al., 2010) have extended the characterization of these 
laterally mobile, providing further understanding of their origins 
and fates. Evidence suggests that trafficking vesicles can arise 
from stable terminals (Krueger et al., 2003; Darcy et al., 2006a; 
Chen et al., 2008; Westphal et al., 2008; Staras et al., 2010) and 
also move to and become incorporated into new synaptic hosts 
(Darcy et al., 2006a; Staras et al., 2010) with a turnover rate of 
>4% of the total vesicle pool at a synapse (Staras et al., 2010) or 
higher (Westphal et al., 2008). Experiments that have tracked the 
fate of vesicles that initially reside at one presynaptic  terminal 

suggest that vesicle traffic is not only  limited to exchanges with 
immediate synaptic neighbors, but that individual vesicles can 
also be shared across multiple terminals (Staras et al., 2010) 
(Figure 1B). The implications of this are considered later.

characteristics of moving vesicLes
Experimental evidence, much of it based on the use of FM-dyes – 
fluorescent markers of recycling vesicles (Betz and Bewick, 1992; 
Ryan et al., 1993) – has provided important insights into functional 
and organizational characteristics of mobile vesicles. Trafficking 
vesicles are readily observed in time-lapse sequences of FM-dye 
labeled neurons (Krueger et al., 2003; Darcy et al., 2006a; Chen 
et al., 2008; Staras et al., 2010), implying that they must have recently 
participated in exo-endocytosis. Nonetheless, the relationship 
between shared vesicles and the endocytic pathways from which 
they arise remains unknown. In hippocampal neurons, experimen-
tal evidence points to multiple modes of vesicle recycling, from fast 
kiss-and-run fusion (Aravanis et al., 2003; Gandhi and Stevens, 
2003) to slower clathrin-mediated endocytosis (Granseth et al., 
2006) or endocytosis via intermediate endosomes (Takei et al., 
1996). The prevalence of these different pathways is still a subject 

Figure 1 | Sharing of vesicles across multiple synapses. (A) The 
organization of synapses in hippocampal neurons. Presynaptic terminals are 
typically formed en passant and each one contains approximately equal 
numbers of recycling and non-recycling vesicles. Mobile vesicles move both 
retrogradely and anterogradely between terminals along shared lengths of 
axons. (B) Vesicle sharing monitored using a photoswitchable vesicle marker, 
synaptophysinI-Dendra2 (SypI-Dendra2). Top panel, red/green overlay showing a 
synapse along an axon being selectively photoswitched (white rectangle) from a 
green-emitting to a red-emitting form. Middle panel, the spread of red vesicles 
to neighboring green synapses is monitored over time for up to 40 min. Bottom 
panel, same image showing red fluorescence only, detailing the contribution of 
vesicles made from a target synapse to neighbors (yellow arrowheads). 

(C) Ultrastructural reconstruction of a hippocampal axon from serial sections, 
illustrating the lateral trafficking of recycling vesicles from a source synapse to 
synaptic neighbors. Top, in this experiment samples were photoconverted so 
that FM-dye-labeled recycling vesicles appear dark. Synapses 1, 2 and 3 were 
photobleached immediately after labeling to prevent photoconverted product 
formation, so that all dark vesicles originate from the non-bleached source 
synapse. The sample was left for 5 min before fixing so that the distribution of 
photoconverted vesicles reflects lateral sharing from the source synapse. The 
number of photoconverted vesicles present accumulating at a synapse is related 
to the distance of that synapse from the source terminal. Bottom, expanded 
images showing detail from top panel. (B) and (C) are adapted from Staras et al. 
(2010) with permission from Elsevier.
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analogous to ultrastructural findings in culture (Staras et al., 2010), 
which could be indicative of mobility of vesicles between synapses 
in adult brain.

a shared vesicLe “superpooL”
The existence of functional SVs that are not limited to the boundaries 
of a presynaptic terminal provides a novel perspective on synaptic 
organization. The fact that vesicles arising from one synapse are 
shared with many terminals, taken together with the assumption 
that multiple and perhaps all terminals contribute vesicles, is con-
sistent with the notion of a synapse-spanning “superpool”, a term 
first coined by (Westphal et al., 2008) and supported by recent work 
(Staras et al., 2010). How is this new pool defined, and what is its 
relationship with the classic functionally-defined populations of 
vesicles (e.g., the recycling pool, readily-releasable pool (RRP) and 
non-recycling or resting pools) that reside at presynaptic terminals? 
We view the superpool as an entity which includes all vesicles that 
appear to be readily available for sharing. In hippocampal terminals, 
the fraction of recycling vesicles within the total vesicle cluster is 
highly variable (Harata et al., 2001; Fernandez-Alfonso and Ryan, 
2008; Branco et al., 2010), but averages around 45% (Branco et al., 
2010). Of these only a subset – less than half (Staras et al., 2010) – 
appear to be readily mobile and therefore members of the shared 
pool. It is unclear whether this mobile recycling vesicle component 
also includes vesicles originating from the RRP. Evidence suggests that 
non-recycling or resting vesicles are also readily shared (Darcy et al., 
2006a; Fernandez-Alfonso and Ryan, 2008). Notably, vesicle composi-
tion analysis suggests an approximate correspondence between recy-
cling: non-recycling fractions in extrasynaptic vesicle packets versus 
those at presynaptic terminals, perhaps indicative of a non-selective 
recruitment of vesicles into mobile packets (Darcy et al., 2006a). 
This would be broadly consistent with a simple stochastic model in 
which selection of vesicles for movement into axons depends on vari-
ables such as the number of available “slots” in transport machinery 
and the proximity of vesicles to this machinery. Thus, the superpool 
appears to intersect the vesicle population of other pools, existing in 
a dynamic state where vesicles are constantly interchanged.

A vesicle pool that spans multiple synapses could have conse-
quences for various aspects of synaptic performance, especially 
given that vesicles appear to have or readily achieve fusion com-
petence upon activity (Krueger et al., 2003; Darcy et al., 2006b; 
Staras et al., 2010). One possibility is that mobile functional vesicles 
could act as an additional vesicle reservoir for synaptic release. 
Time-lapse imaging reveals that fluorescent vesicles can move into 
presynaptic terminals during the course of sustained stimulation 
and destain as part of the native vesicle pool (Darcy et al., 2006b; 
Staras et al., 2010). This implies that mobile vesicles can be avail-
able to synapses as an additional functional reserve, extending the 
conventional boundaries of the synapse vesicle pool and providing 
another potential variable for dynamic regulation of presynaptic 
properties. However, whether this is an active and regulated proc-
ess or simply a consequence of non-regulated vesicle flux whereby 
vesicles ultimately reach an active synapse during sustained trans-
mission, remains unclear. Another unanswered issue relates to the 
eventual fate of these vesicles once the synapse returns to a resting 
state. For example, are they preferentially mobilized or alternatively 
do they become stable elements of the host vesicle cluster?

of some debate (e.g., Murthy and Stevens, 1998; Granseth et al., 
2006; Zhang et al., 2009) but in principle, vesicles that are later-
ally mobile might be a product of all or just one of these recycling 
modes. Current evidence does not provide definitive information 
on this but remains an important issue for future experiments to 
address. Once they have undergone endocytosis and mobilization, 
an interesting property of trafficking vesicles is that their fusion 
competence is retained or at least rapidly acquired after moving 
into a new synaptic host, indicated by stimulus-evoked FM-dye-
loss of newly incorporated fluorescent signal (Darcy et al., 2006a; 
Staras et al., 2010). Importantly, this functional integration into 
host presynaptic terminals is also accompanied by spatial inte-
gration, with correlative ultrastructural experiments showing that 
newly incorporated mobile vesicles become readily mixed within 
the native vesicle cluster (Darcy et al., 2006a) (see Figure 1C).

In what form and by what mechanisms are vesicles conveyed 
along axons? Ultrastructural analysis (Figure 1C) shows that 
although some mobile vesicles travel as large clusters, others move 
in less defined groups or even as single vesicles (Darcy et al., 2006a; 
Staras et al., 2010) and are functionally heterogeneous with both 
recycling and non-recycling vesicles present in traveling vesicle 
packets (Darcy et al., 2006a). Intriguingly, evidence suggests that 
mobile vesicle clusters can often be fusion-competent during 
transit (Krueger et al., 2003; Staras et al., 2010) implying that 
the basic requirements for vesicle fusion can seemingly be met at 
non-specialized sites along axons. This raises interesting questions 
about the minimal molecular machinery required to achieve vesi-
cle fusion and the possible functional consequences of extrasynap-
tic release (see Krueger et al., 2003 for further discussion). Studies 
using pharmacological blockers implicate microtubules in vesicle 
movement (Westphal et al., 2008) and reported mobility speeds 
(Krueger et al., 2003; Darcy et al., 2006a; Westphal et al., 2008) are 
consistent with transport on microtubule based motors (Brown, 
2003). Actin is also implicated in this process, with actin-stabilizing 
and disrupting agents inhibiting movement of SVs (Darcy et al., 
2006a; Westphal et al., 2008) and slowing the accumulation of 
traveling vesicles at stable synapses (Darcy et al., 2006a). Although 
these findings are consistent with active transport of vesicles, dif-
fusive movement may also contribute to overall vesicle mobility 
(Westphal et al., 2008).

Could vesicle sharing in nominally mature neurons simply be a 
remnant of the vesicle mobility which is associated with develop-
mental processes (Matteoli et al., 1992; Ahmari et al., 2000; Hopf 
et al., 2002; Sabo et al., 2006)? Several lines of evidence suggest that 
this is probably not the case. Experiments based on activity-evoked 
FM-dye loss kinetics indicate that vesicle fusion at extrasynaptic 
sites in mature neurons has pharmacological sensitivity consist-
ent with mature molecular machinery rather than developmen-
tal SV recycling (Krueger et al., 2003). Also, recent evidence from 
two-photon FM-dye imaging experiments in acute hippocampal 
rat slices reveals vesicle trafficking events that are broadly analo-
gous to SV movement in cultured neurons (Staras et al., 2010). 
Indirect evidence in support of extrasynaptic vesicle mobility in 
mature systems also comes from serial ultrastructural reconstruc-
tions of CA3 axons from acute adult hippocampal slice (Shepherd 
and Harris, 1998). These reveal the presence of synaptic vesicle 
clusters at intersynaptic sites distinct from presynaptic terminals, 
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synapses, allowing new vesicles to be recruited for release. This pro-
vides an important illustration of how local capture machinery can 
permit a presynaptic terminal to utilize extrasynaptic vesicles to meet 
synaptic demand. In hippocampal neurons, one possible candidate 
for the regulation of vesicle clustering is brain-derived neurotrophic 
factor (BDNF), operating via cadherin-catenin adhesion complexes 
through activation of TrkB receptors. Global BDNF application can 
lead to transient liberation of vesicles from synapses (Bamji et al., 
2006) and with focal application, this vesicle declustering can occur at 
a local level (Staras et al., 2010), providing a possible synapse-specific 
control mechanism for presynaptic vesicle organization. Notably, 
BDNF has been implicated in presynaptic expression of long-term 
potentiation (Zakharenko et al., 2003; Tyler et al., 2006), suggesting 
it could be a pivotal element in regulating presynaptic remodeling 
associated with forms of long-term plasticity.

synaptic components and LateraL mobiLity: a 
consensus theme
The finding that SVs are readily shared across multiple terminals is 
consistent with a growing literature on the mobility of other non-
vesicular synaptic components. Transient, localized redistribution, 
which is typically linked to SV recycling processes, has been reported 
for a variety of elements including clathrin (Mueller et al., 2004; 
Granseth et al., 2006), Rab3 (Star et al., 2005), synaptobrevin (Li and 
Murthy, 2001; Granseth et al., 2006) and N-cadherin (Tanaka et al., 
2000). But longer-range constitutive exchange of synaptic com-
ponents, sharing dynamic features with the movement of vesicles, 
has also been established. Synapsin, for example, is highly mobile, 
redistributing continuously among synapses with a timescale of 
minutes to hours (Tsuriel et al., 2006). Similar trafficking dynamics 
have also been identified for Munc13-1, an important active zone 
protein (Kalla et al., 2006). These findings on dynamic movement 
of presynaptic components are more than matched by studies 
establishing lateral trafficking of postsynaptic elements (Jaskolski 
and Henley, 2009). These include key components of the postsyn-
aptic density such as Ca2+/calmodulin-dependent protein kinase II 
(CaMKII) (Okamoto et al., 2004; Sharma et al., 2006), NMDA NR1 
(Sharma et al., 2006), AMPA GluR1 (Sharma et al., 2006; Bats et al., 
2007), PSD-95 (Okabe et al., 2001; Gray et al., 2006; Sharma et al., 
2006) and ProSAP2 (Tsuriel et al., 2006). Indeed, strong evidence 
points to a link between forms of synaptic plasticity and regulated 
capture/release of important postsynaptic elements (Sharma et al., 
2006; Petrini et al., 2009). Taken together, these findings point to an 
emerging consensus about the dynamic nature of synapse-related 
traffic. New studies are now required to simultaneously monitor 
the dynamics of pre and postsynaptic elements and establish their 
relationship during trafficking processes.

At first glance the notion of highly dynamic synaptic compo-
nents seems somewhat incompatible with the idea that synapses 
endure over time (De Paola et al., 2006; Stettler et al., 2006). How do 
synapses maintain an organizational and functional identity in the 
face of large-scale sharing of synaptic components – an important 
demand to ensure transmission of the correct message to the right 
target. For SVs, a partial answer to this question might relate to the 
fact that vesicle sharing appears to be limited to only a subset (∼40%) 
of functional vesicles that reside at a synapse (Staras et al., 2010). 
In this way, significant numbers of vesicles could contribute to a 

Vesicle sharing could also influence synaptic properties by other 
means. For example, the observation that vesicle populations at 
synapses can have different release modes (Goda and Stevens, 1994; 
Sara et al., 2005; Sun et al., 2007; Fredj and Burrone, 2009) might 
be indicative of functional heterogeneity among individual vesicles 
(Voglmaier and Edwards, 2007). In this case, the performance of 
a synapse receiving mobile vesicles might be altered not only by 
the number of vesicles being shared but also by the individual and 
particular molecular properties of each vesicle as bestowed by their 
synapse of origin. Such a capability for individual vesicles to retain 
and carry specific functional signatures to new synaptic hosts would 
presumably depend on the predominant mode of recycling used to 
retrieve vesicles that were destined to be mobile. For example, while 
kiss-and-run and clathrin-mediated endocytosis could be com-
patible with the preservation of individual and specific molecular 
identities, pathways involving recycling endosomes such as in bulk 
endocytosis, might serve to “reset” vesicle identity. This interesting 
issue remains to be addressed.

A further potential consequence of pools of extrasynaptic vesicles 
is that they could contribute to the regulation of synaptic strength 
through remodeling of vesicle pools at synapses. It is well-estab-
lished that release probability, a determinant of synaptic strength 
(Branco and Staras, 2009), is correlated with recycling vesicle pool 
size (Murthy et al., 1997). This implies that changes in the mecha-
nisms controlling vesicle release/capture and leading to increases or 
decreases in functional pool sizes could impact on synaptic efficacy 
(Staras, 2007). Indeed, if vesicles were drawn locally from a large and 
readily accessible extrasynaptic pool which is continuously replen-
ished, consistent with the properties of the superpool, the resizing 
of the vesicle pool at one presynaptic terminal might be achieved 
relatively quickly. Importantly, this could happen without significant 
effects on synaptic neighbors, allowing independent regulation of 
individual synapses. This type of mechanism for adjusting synaptic 
weights could thus contribute to a variety of different forms of plas-
ticity, from the synapse-specific homeostatic changes in recycling 
pool sizes and release probability (Murthy et al., 2001; Thiagarajan 
et al., 2005; Branco et al., 2008; Branco and Staras, 2009) to the 
resizing of synaptic pools associated with forms of potentiation 
(Ninan et al., 2006; Tyler et al., 2006). It could also contribute to 
the established synapse-synapse variability in release probability 
(Branco et al., 2010) providing a means for rapid redistribution of 
presynaptic weights. Directed recruitment from, or release of vesicles 
to, the superpool could also support forms of synaptogenesis or 
synapse elimination, known to occur over time in vivo (De Paola 
et al., 2006; Stettler et al., 2006) and also likely to accompany some 
activity-dependent forms of plasticity (Antonova et al., 2001; Colicos 
et al., 2001; Nikonenko et al., 2003).

At present, the regulatory mechanisms that might control the 
release/capture of vesicles at individual terminals to support mod-
ulation of synaptic performance are not known. Clues to possi-
ble functional mechanisms might be offered by other systems. In 
Drosophila neuromuscular junction, elegant work has revealed that 
sustained peptidergic transmission relies on continuous trafficking of 
large-dense core vesicles through synaptic junctions from the soma 
(Shakiryanova et al., 2006). To permit targeted refilling, vesicle cap-
ture mechanisms involving a presynaptic ryanodine receptor-Cam-
KII signaling pathway (Wong et al., 2009) are engaged at  activated 
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concLusions
In hippocampal neurons, populations of SVs are highly dynamic, 
crossing the conventional boundaries of a presynaptic terminal and 
being shared readily across multiple synaptic boutons. This finding 
represents a novel view of presynaptic organization in which shared 
vesicles can impact on synaptic function and where the regulation 
of vesicle traffic could be relevant to the control and modulation of 
synaptic properties. It is also consistent with a burgeoning literature 
establishing the importance of regulated movement of other non-ve-
sicular synaptic components, both pre- and postsynaptically, and the 
consequences of this for synaptic function. Experiments detailing 
the pathways that control sharing of SVs and the conditions under 
which vesicle flows are adjusted, both in hippocampal neurons and 
other systems, will be key issues for future work to address.
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