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et al., 2004; Hensch, 2005; Marino et al., 2005). Mice lacking the 
GABA‑synthesizing enzyme glutamic acid decarboxylase (GAD65) 
have reduced inhibitory transmission and are insensitive to monocu‑
lar deprivation induced shifts in ocular dominance (Hensch et al., 
1998). This plasticity, however, can be rescued at any age in GAD65 
knockout mice by tipping the E/I balance toward inhibition with infu‑
sion of diazepam into the visual cortex (Fagiolini and Hensch, 2000; 
Iwai et al., 2003; Fagiolini et al., 2004). In addition, the start of the 
critical period in GAD65 knockout mice can be initiated prematurely 
by enhancing inhibition in the visual cortex with benzodiazepines 
(Fagiolini and Hensch, 2000; Iwai et al., 2003). The experience‑de‑
pendent changes that occur just before, versus during the critical 
period, reflect different mechanisms (Smith and Trachtenberg, 2007), 
especially in layer 4 where pre‑critical period deprivation increases 
excitability, while deprivation during the critical period strengthens 
inhibition which reduces excitability in layer 4 (Maffei et al., 2006, 
2010; Maffei and Turrigiano, 2008a). Excitatory mechanisms also 
affect the E/I balance. This includes changes in GAD65 knockout 
mice where ocular dominance plasticity is regulated by expression 
of the NR2A subunit of the NMDA receptor (Kanold et al., 2009). 
Finally, direct manipulation of excitation by selective deletion of the 
NR2A subunit prolongs NMDA currents, shifting the balance toward 
excitation and effectively weakens experience‑dependent plasticity 
in visual cortex (Fagiolini et al., 2003).

IntroductIon
Disrupting visual input to one eye during the critical period of 
visual development leads to a dramatic reduction in the acuity of 
the deprived eye, a condition commonly known as lazy‑eye (ambly‑
opia). In kittens, the peak of this plasticity is at 4–6 weeks of age 
(Olson and Freeman, 1980) and reflects an experience‑dependent 
competitive loss of inputs (Wiesel and Hubel, 1965; Hubel and 
Wiesel, 1970; Antonini and Stryker, 1993) and a depression of syn‑
aptic responses to the deprived eye in visual cortex (Rittenhouse 
et al., 1999). These changes depend on the activation of N‑methyl‑
d‑aspartate (NMDA), alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxa‑
zole (AMPA), and gamma‑aminobutyric‑acid (GABA

A
) receptors 

as well as the roles that these receptors play in mediating long‑term 
potentiation (LTP), long‑term depression (LTD), synaptic scaling, 
and setting the excitatory–inhibitory (E/I) balance in visual cortex 
(Kirkwood and Bear, 1994; Hensch et al., 1998; Heynen et al., 2003; 
Fagiolini et al., 2004; Turrigiano and Nelson, 2004).

The excitatory–inhibitory balance has become an important 
focus for studies exploring the role of experience‑dependent plas‑
ticity (Hensch, 2005) and synaptic scaling (Turrigiano and Nelson, 
2004; Maffei and Turrigiano, 2008b) in development of visual corti‑
cal function. Initiation of the critical period for ocular dominance 
plasticity and maturation of receptive field properties in visual cor‑
tical neurons depend on the E/I balance in visual cortex (Fagiolini 
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The delicate balance between excitatory and inhibitory 
 neurotransmission and many aspects of experience-dependent 
plasticity in the visual cortex are mediated by activation of excita-
tory (NMDA and AMPA) and inhibitory (GABA

A
) receptors. AMPA 

and NMDA are the two major types of glutamate receptors in the 
cortex with AMPA mediating the fast component (2 ms) (Kleppe and 
Robinson, 1999) and NMDA mediating the slow component (190–
380 ms) (Monyer et al., 1992) of excitatory post-synaptic currents.

The subunits of these receptors affect experience-dependent 
plasticity. Insertion of the GluR2 subunit into AMPA receptor 
influences maturation and synaptic plasticity by regulating Ca2+ 
permeability and facilitating synaptic transmission (Jonas et al., 
1994). Furthermore, GluR2 expression increases during develop-
ment (Herrmann, 1996), and is affected by brief monocular dep-
rivation during the critical period, leading to synaptic depression 
in the deprived cortex (Heynen et al., 2003).

Activation of NMDA receptors is also a key component in synap-
tic maturation and plasticity (Monyer et al., 1994; Flint et al., 1997; 
Roberts and Ramoa, 1999). NMDA receptors form a heteromeric 
ion channel composed of one obligatory subunit (NR1) combined 
with one or more NR2(A-D) or NR3 subunits (Monyer et al., 1992). 
The different NR2 subunits affect the functional and pharmacologi-
cal properties of the receptor (Kutsuwada et al., 1992). For example, 
decay of the EPSC speeds up 2–3 fold when NR2A is inserted into 
the receptor (Flint et al., 1997). In addition, a number of stud-
ies have shown that a blockade of the NMDA receptor reduces 
ocular dominance plasticity (Kleinschmidt et al., 1987; Bear et al., 
1990; Roberts et al., 1998) and stunts the maturation of orienta-
tion selectivity (Ramoa et al., 2001). During development there is 
a shift in the composition of the NMDA receptor from NR2B to 
NR2A subunits (Carmignoto and Vicini, 1992; Stocca and Vicini, 
1998). That maturational shift occurs during the critical period for 
ocular dominance plasticity (Roberts and Ramoa, 1999; Chen et al., 
2000; Erisir and Harris, 2003; Fagiolini et al., 2003) and decreases 
the susceptibility to changes in synaptic strength (Quinlan et al., 
1999a; Philpot et al., 2001). The NR2B subunit also affects plastic-
ity by limiting AMPA receptor expression at developing synapses 
(Hall et al., 2007). Experience drives a number of changes in AMPA 
receptors including increasing GluR2 expression after monocu-
lar TTX (Gainey et al., 2009) and changing the phosphorylation 
state of GluR1 and GluR2 subunits causing reduced visual evoked 
potentials (Heynen et al., 2003).

On the inhibitory side, GABA
A
 receptors are the dominant iono-

tropic inhibitory receptors in visual cortex, conducting Cl− ions 
leading to hyperpolarization of the neuronal membrane. GABA

A
 

is a heteromeric receptor comprised of subunits from at least eight 
distinct families; α(1–6), β(1–3), γ(1–3), δ, ε, π, Θ, σ (Bonnert et al., 
1999; Whiting et al., 1999). Although the composition of GABA

A
 

receptors varies, the majority of GABA
A
 receptors are composed of 

2 α, 2 β, and 1 γ subunits (Araujo et al., 1996; Sieghart et al., 1999). 
GABA

A
 receptor composition changes during development from 

more GABA
A 

α2 and GABA
A 

α3 to more GABA
A 

α1, speeding up 
the kinetics of the receptor (Laurie et al., 1992) and increasing the 
binding affinity for benzodiazepines (Sieghart, 1992). It is becoming 
clear that GABA

A 
α1 plays a special role in experience-dependent 

development since α1-containing receptors specifically drive ocular 
dominance plasticity in the visual cortex (Fagiolini et al., 2004). 

Taken together, these studies highlight the central role that  excitatory 
and inhibitory receptor subunits play in mediating experience-
 dependent development and plasticity in the visual cortex.

Although several studies have shown that an appropriate E/I 
balance is crucial for experience-dependent changes in visual cor-
tex, few have addressed how early experience affects expression 
of both excitatory and inhibitory receptors (Heynen et al., 2003; 
Kanold et al., 2009) and whether changes vary across the repre-
sentation of the central, peripheral, and monocular visual fields 
in the cortex (Murphy et al., 2004). These are important ques-
tions because experience-dependent changes in NMDA, AMPA, 
and GABA

A
 receptors will affect synaptic plasticity, and the visual 

and neural deficits in human amblyopes are greatest for the central 
visual field (Hess and Pointer, 1985; Li et al., 2007). We addressed 
these questions by quantifying developmental changes for a set 
of excitatory (NMDA, AMPA) and inhibitory (GABA

A
) receptor 

subunits in cat visual cortex after normal vision or monocular 
deprivation. Monocular deprivation promoted a complex pattern 
of changes in expression of the receptor subunits. The changes were 
dependent on age and were most severe in the part of visual cortex 
representing the central visual field. We applied a neuroinformatics 
approach using principal components analysis (PCA) to character-
ize the multidimensional pattern of experience-dependent change 
in the receptor subunits. Monocular deprivation caused a dramatic 
change in the developmental trajectory of excitatory and inhibitory 
receptor subunit expression: bypassing a large portion of the nor-
mal developmental path, shifting the E/I balance, and accelerating 
the maturation of receptor composition.

Materials and Methods
aniMals
We studied changes in expression of a set of excitatory and inhibitory 
receptor subunits in the visual cortex of 17 kittens (age 2–32 weeks), 
reared with either normal visual experience (n = 9) or monocular 
deprivation (n = 8) initiated at the time of natural eye opening 
until either before (4, 5, or 6 weeks of age) or after (9 or 32 weeks of 
age) the peak of the critical period (Table 1) (Olson and Freeman, 
1980). The eyelids were sutured closed with 5-0 vicryl using aseptic 
surgical techniques, gaseous anesthetic [isoflurane (1.5–5%) in oxy-
gen] for induction and maintenance of anesthesia, and following 
procedures that have been described in detail previously (Murphy 
and Mitchell, 1987). All experimental procedures were approved by 
the McMaster University Animal Research Ethics Board.

Animals were euthanized (sodium pentobarbital, 165 mg/kg), and 
transcardially perfused with cold 0.1 M phosphate buffered saline 
(PBS) (4°C; 80–100 ml/min) until circulating fluid was clear. The 
brain was quickly removed from the skull and immersed in cold PBS. 
We collected 12 small (2 mm × 2 mm) tissue samples from each visual 
cortex (Figure 1) so that we would be able to quantify differences 
between the regions of visual cortex where the central, peripheral, and 
monocular visual fields are represented (Tusa et al., 1978). Each corti-
cal tissue sample was rapidly frozen on dry ice and stored at −80°C.

synaptoneurosoMe preparation
Tissue samples were put in 1 ml of cold homogenization buffer 
(10 mM HEPES, 1 mM EDTA, 2 mM EGTA, 0.5 mM DTT, 10 mg/l 
leupeptin, 50 mg/l soybean trypsin inhibitor, 100 nM microcystin, 



Frontiers in Synaptic Neuroscience www.frontiersin.org September 2010 | Volume 2 | Article 138 | 3

Beston et al. Experience-dependent E/I changes in V1

was obtained by passing the homogenate through a 5‑μm pore 
hydrophobic mesh filter (Millipore, Billerica, MA, USA) and cen‑
trifuging for 10 min at ×1000g to obtain the synaptic fraction of 
the membrane. The resulting pellet was resuspended in boiling 1% 
SDS and stored at −80°C. Protein concentrations were determined 
using the bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, 
USA). The synaptoneurosome samples were compared with the 
supernatant and whole homogenate to verify that there was a 2–3‑
fold enrichment for synaptic proteins.

IMMunoblottIng
We used Western blotting to quantify protein expression. Equal 
quantities of synaptoneurosome samples (20 μg) were resolved 
on 4–20% SDS‑PAGE gels (Pierce, Rockford, IL, USA) and trans‑
ferred to polyvinylidine fluoride (PVDF) membranes (Millipore, 
Billerica, MA, USA). Membranes were blocked in PBS containing 
0.05% Triton X‑100 (Sigma, St Louis, MO, USA) (PBS‑T) and 5% 
skim milk (wt/vol) for 1 h, then incubated in primary antibody 
overnight at 4°C using the following concentrations: NR1 1:2000 
(BD Biosciences Pharmingen, San Diego, CA, USA); NR2A 1:2000, 
NR2B 1:2000 (Chemicon International, Temecula, CA, USA), GluR2 
1:1000, Synapsin I 1:4000 (Zymed laboratories, San Francisco, CA, 
USA); GABA

A
α1 1:500 (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA); GABA
A
α3 1:2000 (Chemicon International, Temecula, 

CA, USA). The membranes were incubated in the appropriate 
secondary antibody conjugated to horseradish peroxidase (HRP) 
for 1 h (1:2000; Cedarlane Laboratories, Burlington, ON, USA). 
Immunoreactivity was visualized using enhanced chemilumines‑
cence (ECL) (Amersham, Pharmacia Biotech, Piscataway, NJ, USA) 
and exposed to autoradiographic film (X‑Omat, Kodak, Rochester, 
NY, USA). Membranes were stripped using the Blot Restore 
Membrane Rejuvenation kit (Chemicon International, Temecula, 
CA, USA) and then re‑probed with additional antibodies.

analysIs
The Western blot bands were quantified using densitometry. The 
films were scanned (16 bit, AGFA ArcusII, Agfa, Germany) along 
with an optical density wedge (Oriel Corporation, Baltimore, MD, 
USA), and the intensities of the bands were converted to optical 
densities. The background optical density was subtracted from 
each band, and the band density was quantified using Matlab (The 
MathWorks, Inc., Natick, MA, USA). All samples were quantified 
relative to a control sample that was run on each gel. We plotted 
scattergrams for each antibody and each region of visual cortex 
(central, peripheral, monocular visual field representation). The 
plots included the average expression and standard error of the 
mean (s.e.m.) for each animal and were normalized to the expres‑
sion of the normal adult central visual field samples. To help 
describe the developmental pattern of changes in expression, a 
weighted average curve was fit to each scatter plot using the locally 
weighted least squares method at 50%.

Changes in NMDA and GABA
A
 receptor subu‑

nit composition were quantified by calculating four indi‑
ces: NR2A:NR2B = [(NR2A − NR2B)/(NR2A + NR2B)]; 
NR1:GluR2 = [(NR1 − GluR2)/(NR1 + GluR2)]; 
GluR2:NR2B = [(GluR2 − NR2B)/(GluR2 + NR2B)]; and GABA

A
α1: 

GABA
A
α3 = [(GABA

A
α1 − GABA

A
α3)/(GABA

A
α1 + GABA

A
α3)]. 

0.1 mM PMSF) and homogenized in a glass–glass Dounce tissue 
homogenizer (Kontes, Vineland, NJ, USA). A subcellular fractiona‑
tion procedure (synaptoneurosomes) (Hollingsworth et al., 1985; 
Quinlan et al., 1999a) was performed to obtain protein samples 
that were enriched for synaptic proteins. The synaptoneurosome 

Table 1 | Animal rearing conditions.

Age sacrificed Condition 

(in weeks)

 Normal Monocularly deprived 

  (from eye opening)

2 * 

3 * 

4 * 

5 * 

6 * 

8 * 

12 * 

16 * 

32 * 

4  *

5  *

5  *

6  *

6  *

9  *

9  *

32  *

FiGure 1 | Tissue sample collection across visual cortex and 
corresponding visual field representation. The expression of synaptic 
proteins was quantified from tissue samples collected in the central (c), 
peripheral (p), and monocular (m) visual field representations of primary visual 
cortex (Ai-Aii). The location of visual field representation in primary visual 
cortex was assessed using anatomical markers previously identified by Tusa 
et al. (1978) (B).
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of the global pattern of changes that characterizes the normal 
developmental trajectory and differences caused by monocular 
deprivation.

excItatory receptor subunIt expressIon
Normal development
In normal kittens, there were substantial developmental changes in 
the expression of NR1, NR2A, NR2B, and GluR2 (Figure 2) (open 
symbols). These subunits were expressed at low levels shortly after 
eye opening (2 weeks of age), increased 3–8‑fold to reach maximum 
expression levels by 8 weeks, and then decreased substantially to 
near adult levels by 16 weeks. Adult levels of expression were simi‑
lar to those found in young animals (<6 weeks of age) and very 
similar across each of the three regions in visual cortex. There were 
regional differences in expression of NR1 and NR2A in the normal 
animals. For NR1 and NR2A, expression in the central visual field 
representation remained high until 12 weeks of age before dropping 
to adult levels. The most striking regional difference was found for 
NR2A expression in the monocular region where normal animals 
did not show an increase in NR2A expression after 5 weeks of age 
(Figure 2F). Between 6 and 12 weeks of age, NR2A expression in 
the monocular region was significantly lower than in the other two 
regions (p < 0.01).

Monocular deprivation
In monocularly deprived kittens, the developmental profile of 
NR1, NR2A, NR2B, and GluR2 expression in visual cortex was 
significantly different from normal. There were both age‑related 
and regional changes in the expression levels of NMDA and AMPA 
receptor subunits in monocularly deprived animals (Figure 2, filled 
symbols). Furthermore, there were clear difference in the expres‑
sion between shorter (<6 weeks of age) and prolonged (>6 weeks 
of age) deprivation.

Deprivation to 4, 5, or 6 weeks of age led to changes in expression 
of the glutamate receptors subunits, however, not all regions were 
affected equally (Figure 3). In the central visual field region (red 
bars), there was significantly less NR1 (p < 0.01), NR2A (p < 0.01), 
NR2B (p < 0.05) and GluR2 (p < 0.05) than found in normal ani‑
mals (Figures 3A–D). In the peripheral visual field region (green 
bars), there was less NR2A (p < 0.05) but no change in NR1, NR2B, 
or GluR2. In the monocular region (black bars), there was a signifi‑
cant increase in NR1 (p < 0.05) expression, but no change in NR2A, 
NR2B, or GluR2. The regional pattern of NR1 changes is in good 
agreement with our previous study using NR1 immunohistochem‑
istry on unfolded and flattened cortical sections that found less NR1 
expression in the central region and an increase in the monocular 
region (Murphy et al., 2005). The regional changes found here for 
NR1, NR2A, NR2B, and GluR2 expression show that the effects of 
abnormal visual experience are not uniform across visual cortex 
and that during the peak of the critical period (4–6 weeks of age) 
the central visual field region is more vulnerable to experience‑
dependent changes.

Extending monocular deprivation beyond 6 weeks of age led 
to substantial changes in expression of the glutamate receptors 
subunits (Figure 2). Longer deprivation either prevented the nor‑
mal increase or led to significantly less expression than normal 
animals. The animals deprived to 9 weeks of age had 2–5 times 

Statistical comparisons of difference in expression levels between 
age‑matched normal and monocularly deprived animals were 
performed using Kruskal–Wallis non‑parametric analysis of vari‑
ance and post hoc comparisons were made using Wilcoxon tests. 
Significant differences reported in the Results section represent 
comparisons with normal animals.

prIncIpal coMponent analysIs
A multivariate analysis of the expression pattern for all synaptic 
proteins was done using principal component analysis (PCA). The 
synaptic protein expression was compiled in an mxn matrix. The 
m rows represent synaptic proteins (NR1, NR2A, NR2B, GluR2, 
GABA

A
α1, GABA

A
α3, Synapsin) for a total of m = 7, and the n 

columns represent protein expression levels for each of the 17 
animals (9 normal, 8 monocularly deprived) and the 3 regions 
(central, peripheral, monocular) for a total of n = 51. The data 
were centered by subtracting the mean column vector, and then 
a singular value decomposition (SVD) (Matlab, The Mathworks, 
Inc., Natick, MA, USA) was applied to calculate the principal com‑
ponents. SVD represents the expression level of all proteins from 
one kitten as a vector in high dimensional space. The principle 
component analysis identifies the direction in “protein expression 
space” that represents the variance in the data across all condi‑
tions. When plotted as a 3‑dimensional representation of this space, 
clusters of data near each other, or that are ordered along the same 
dimension, have similar attributes or classification (Marder and 
Goaillard, 2006; Taylor et al., 2006). This method provides a use‑
ful representation of higher dimensional patterns and similarities 
among a set of genes or proteins, allowing quantification of global 
pattern in large data sets.

In this study, the first three components of the PCA analysis 
accounted for 85% of the variance. To determine potential biologi‑
cal links for the three principal components, we calculated cor‑
relations between the each principal component and the synaptic 
protein expression levels and indices. The significance level for 
identifying potential biological correlates was adjusted to p < 0.007 
using the Bonferroni correction for multiple comparisons. The PCA 
results were visualized in 3‑dimensions using custom software and 
a ray‑tracing program (Radiance; Ward, 1994).

results
We evaluated the experience‑dependent expression of NR1, 
NR2A, NR2B, GluR2, GABA

A
α1, GABA

A
α3, and Synapsin in 

normally reared (n = 9) and monocularly deprived cats (n = 8) 
using multiple samples from across primary visual cortex. First, 
we examined whether there were any differences in total synaptic 
expression between age‑matched normal and deprived animals by 
comparing expression of the pre‑synaptic marker Synapsin. We 
found no differences in the level of Synapsin expression between 
normal and age matched monocularly deprived animals up to 
9 weeks of age or adult (p > 0.05), indicating that deprivation did 
not cause a generalized loss of pre‑synaptic expression. The next 
section presents analyses of the changes in expression for each 
of the receptor subunits from samples representing the central, 
peripheral, and monocular visual fields in visual cortex. The fol‑
lowing sections present analyses of the relative balance between 
excitatory and inhibitory receptor expression and an analysis 
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 development, while another process affects later  development 
 leading to a large deviation from the normal trajectory and sub‑
stantially less glutamatergic subunit expression.

relatIve expressIon of nMda and aMpa subunIts Is  
altered by deprIvatIon
Key functional properties of the glutamate receptor are determined 
by the relative expression of NMDA and AMPA receptor subunits. 
Specifically, an increase of NR2A relative to NR2B is part of the  normal 

less expression than normal animals (Figure 2) (p < 0.01). There 
was one notable exception to this pattern, NR2A expression in the 
monocular region was similar between normal and deprived ani‑
mals (Figure 2F). The relatively large difference of these receptor 
subunits after prolonged (>6 weeks of age) versus shorter (<6 weeks 
of age) deprivation suggests that multiple processes underlie the 
effects of monocular deprivation on expression of these excitatory 
synaptic components. One process may affect early development by 
shifting expression so that it is different from but parallels  normal 

FiGure 2 | experience-dependent changes in NMDA and AMPA 
receptor subunit expression. Comparison of excitatory receptor subunits 
NR1 (A–C), NR2A (D–F), NR2B (G–i) and GluR2 (J–L) in normal 
(open symbols, dashed lines) and monocularly deprived (filled symbols, solid 
lines) kittens from the central (red circles), peripheral (green squares) and 

monocular (black diamonds) visual field representations during postnatal 
development. For each subunit, the plots were normalized relative to the 
average normal adult expression in the central visual field. Error bars 
indicate the s.e.m. Representative Western blot bands are shown above 
each plot.
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was initially 3–5 fold higher than adult levels and remained high 
until after 8 weeks of age when there was a steady decline to reach 
adult levels by 16 weeks of age (Figures 5A–C). The changes in 
GABA

A
α3 were similar for the three regions of visual cortex. 

Expression of GABA
A
α1 followed a different developmental pat‑

tern and there were regional differences. GABA
A
α1 was initially 

low (2 weeks of age) and increased during the first 4 weeks for 
peripheral and monocular regions and during the first 8 weeks for 
the central region, after which expression declined to reach adult 
levels by 16 weeks of age (Figures 5E,F). The largest developmental 
increase in GABA

A
α1 expression was found in the central visual 

field region where expression increased almost 3‑fold between 2 and 
8 weeks of age (Figure 5D). This increase in GABA

A
α1 expression in 

the central region of normal visual cortex (Figure 5D) was similar 
to patterns found for NMDA and AMPA subunits (Figure 2).

Monocular deprivation
There were substantial changes in GABA

A
α3 and GABA

A
α1 expres‑

sion following monocular deprivation (Figure 5) (filled symbols). 
In monocularly deprived kittens, GABA

A
α3 expression was reduced 

to about half the normal level of expression (p < 0.01) and that 
level was similar in the central, peripheral, and monocular visual 
field regions. Quite a different pattern of change was found for 
GABA

A
α1 expression. Shorter monocular deprivation (<6 weeks 

maturation that shifts the NMDA receptor to faster kinetics, and has 
been linked with various aspects of the critical period for ocular domi‑
nance plasticity. Furthermore, increases in the relative expression of 
GluR2 are associated with the maturation of synapses. We quantified 
developmental changes in the relative expression of the excitatory 
receptor subunits. An index of NR2A:NR2B expression was calculated 
for each of the three regions of visual cortex in normal (open symbols) 
and monocularly deprived kittens (filled symbols) (Figure 4A–C). 
There was initially more NR2B, followed by a progressive shift in favor 
of more NR2A in all regions of visual cortex. The shift from NR2B 
to NR2A also occurred in deprived cases, however, it was delayed by 
about 2 weeks relative to normal animals (Figures 4A,B, p < 0.05). 
In contrast with that delayed switch, monocular deprivation either 
accelerated (Figures 4D, G–I) or did not affect (Figures 4E,F) the 
shift from more NR1 or NR2B to more GluR2. The accelerated shift 
was particularly large for the relative expression of NR2B and GluR2 
where monocular deprivation up to 6 weeks of age led to a substantial 
shift toward more GluR2 in visual cortex (Figures 4G–I).

InhIbItory receptor subunIt expressIon
Normal development
We quantified changes in the expression of two developmentally 
regulated GABA

A
 subunits, GABA

A
α1 and GABA

A
α3 (Figure 5). 

During normal development (open symbols), GABA
A
α3  expression 

FiGure 3 | regional changes in the expression of excitatory receptor 
subunits (A) NR1, (B) NR2A, (C) NR2B, and (D) GluR2 in kittens 
monocularly deprived up to 6 weeks of age. The expression in the central 
(red), peripheral (green), and monocular (black) visual field representation 

was measured as a percent of age matched normal kittens for each region 
of visual cortex. Dashed lines represent the relative expression in 
normally reared kittens. Significant differences are indicated (*p < 0.05; 
**p < 0.01).
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FiGure 4 | Monocular deprivation shifts the maturation of receptor 
subunit composition. Experience-dependent maturation of the (A–C) 
NR2A:NR2B, (D–F) NR1:GluR2, and (G–i) NR2B:GluR2 indices was quantified 

for normal (open symbols, dashed lines) and monocularly deprived (filled 
symbols, solid lines) kittens. Monocular deprivation affected each of the indices. 
It delayed the shift to NR2A, but accelerated the shift to GluR2.

of age) led to a significant increase in GABA
A
α1 expression in 

central and peripheral regions (Figures 5D,E, p < 0.05), while 
prolonging deprivation to 9 weeks of age led to less GABA

A
α1 

expression (Figure 5F, p < 0.05). In contrast with the NR1 and 
NR2A that we greatest in the central visual field region, the GABA

A
 

subunit changes were similar across the visual cortex (Figure 5). 
The difference in GABA

A
α1 expression between shorter (<6 weeks) 

and prolonged (>6 weeks) monocular deprivation provides addi‑
tional support for the idea that multiple developmental processes 
underlie the experience‑dependent changes in receptor expression 
in visual cortex.

Monocular deprIvatIon accelerates the swItch to gabaaα1
We quantified changes in the relative expression of the GABA

A
 

receptor subunits in visual cortex of normal and monocularly 
deprived kittens because GABA

A
 receptor function is affected by 

the composition of the receptor and GABA
A
α1 plays a specific 

role in ocular dominance plasticity (Figures 6A–C). In normal 
kittens (open symbols), the shift from GABA

A
α3 to GABA

A
α1 in 

visual cortex was similar across the three regions, changing from 
more GABA

A
α3, to roughly balanced expression between 4 and 

12 weeks expression, and finally substantially more GABA
A
α1 

expression by 16 weeks of age. Monocular deprivation led to a 
very different developmental profile for the relative expression of 
GABA

A
α1 and GABA

A
α3 (Figure 6, filled symbols). There was 

significantly more GABA
A
α1 relative to GABA

A
α3 during devel‑

opment in deprived animals (p < 0.01). Monocular deprivation 
promoted a premature switch to relatively more GABA

A
α1 in 

visual cortex (Figure 6).

Monocular deprIvatIon dIsrupts the excItatory-InhIbItory 
balance
To quantify the E/I balance, we analyzed the relative expression of 
the excitatory and inhibitory receptor subunits by comparing the 
expression of the three indices. First, we examined the relation‑
ship between the NR2A:NR2B and GABA

A
α1:GABA

A
α3 indices 

for both normal and monocularly deprived animals (Figure 7). 
For normal animals (Figures 7A–D), there were strong correla‑
tions between these indices for all three regions (central r = 0.96, 
p < 0.01; peripheral r = 0.88, p < 0.01; monocular r = 0.79, p < 0.01) 
as well as for all of visual cortex (r = 0.78, p < 0.01). These results 
show a tight relationship in the expression of these excitatory and 
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In  normal animals there was a strong relationship between the 
 expression of these receptor subunits (central r = 0.75 p < 0.025, 
peripheral r = 0.65 p < 0.05, monocular r = 0.77 p < 0.01, over‑
all r = 0.62 p < 0.01). That relationship was lost in monocularly 
deprived animals where there were no correlations between the 
NR2B:GluR2 and GABA

A
α1:GABA

A
α3 indices. Together, these 

results show that normally there is an exquisite balance in the 
expression of these excitatory and inhibitory subunits but that 
balance is lost after monocular deprivation.

in hibitory receptor subunits in normal animals: when there was 
more NR2B there was also more GABA

A
α3 expression, and when 

there was more NR2A there was more GABA
A
α1. A very different 

picture emerged in monocularly deprived animals (Figures 7E–H). 
There were no significant correlations between the NR2 and GABA

A
 

indices. Monocular deprivation caused a profound changed in the 
balance between the NR2 and GABA

A
 receptor subunits. The same 

pattern was found when we analyzed the relationship between 
the NR2B:GluR2 and GABA

A
α1:GABA

A
α3 indices (Figure 8). 

FiGure 5 | experience-dependent changes in GABAA receptor subunit 
expression. Comparison of GABAAα3 (A–C) and GABAAα1 (D–F) subunit 
expression in normal (open symbols, dashed lines) and monocularly deprived 
(filled symbols, solid lines) kittens from the central (red circles), peripheral (green 

squares) and monocular (black diamonds) visual field representations during 
postnatal development. For each subunit, the plots were normalized relative to 
the average normal adult expression in the central visual field. Error bars indicate 
the s.e.m.. Representative Western blot bands are shown above each plot.

FiGure 6 | Monocular deprivation accelerates the switch to GABAAα1. 
Experience-dependent maturation of the GABAAα1:GABAAα3 index was 
quantified in normal (open symbols, dashed lines) and monocularly deprived 

(filled symbols, solid lines) kittens in the (A) central (red circles), (B) peripheral 
(green squares), and (C) monocular (black diamonds) visual field 
representations.
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drives a complex pattern of up‑ and down‑regulation of genes 
in visual cortex (Van den Bergh et al., 2006). Together, this work 
underscores the importance of studying multiple mechanisms 
to gain new insights into factors that influence cortical develop‑
ment. The complex nature of these changes, however, presents a 
challenge for quantifying and understanding global patterns of 

prIncIpal coMponents analysIs
It is clear from the present findings that there is a complex pattern 
of change in the expression of these excitatory and inhibitory 
receptor subunits in the developing visual cortex. This is simi‑
lar to gene expression (Majdan and Shatz, 2006; Tropea et al., 
2006) and proteomic studies showing that visual  experience 
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FiGure 7 | Monocular deprivation disrupts the balance between 
Nr2A:Nr2B and GABAAα1:GABAAα3. The relationship between these indices 
was plotted for (A–D) normal and (e–H) monocularly deprived animals. Significant 

correlations were found for normal animals (A) central (r = 0.96, p < 0.01), 
(B) peripheral (r = 0.88, p < 0.01) (C) monocular (r = 0.79, p < 0.01), and (D) overall 
(r = 0.78, p < 0.01), but no significant correlations were found for deprived animals.
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(Figure 9A). The second principal component explained 19% 
and the third component describes 9% of the variance. Beyond 
the third component (components 4–7), gradually less of the 
variance was explained (6–2% respectively). Since the first three 
principal components accounted for 85% of the variance these 
were determined to be the significant components of the SVD 
(Everitt and Dunn, 1991).

 experience‑dependent development. We addressed the  complex 
nature of the experience‑dependent changes in subunit expres‑
sion using a data‑driven approach and analyzed the pattern of 
synaptic protein expression in kitten visual cortex using sin‑
gular value decomposition (SVD) to quantify the principal 
components. The SVD showed that the first principal compo‑
nent explained the greatest proportion of the variance (57%) 
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FiGure 8 | Monocular deprivation disrupts the balance between 
Nr2B:Glur2 and GABAAα1:GABAAα3. The relationship between these indices 
was plotted for (A–D) normal and (e–H) monocularly deprived animals. Significant 

correlations were found for normal animals (A) central (r = 0.75 p < 0.025), 
(B) peripheral (r = 0.65 p < 0.05) (C) monocular (r = 0.77 p < 0.01), and (D) overall 
(r = 0.62 p < 0.01), but no significant correlations were found for deprived animals.
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direction and magnitude of the contributions of excitatory and 
inhibitory receptor subunits with the largest difference between 
the relative amplitude of NR2A and GABA

A
α1. The third princi‑

pal component (Figure 9D, PCA 3) showed opposite directions 
for biologically relevant pairs of receptor subunits: NR2A‑NR2B, 
GABA

A
α1‑GABA

A
α3, GluR2‑NR1, and GluR2‑NR2B.

Simply calculating the principal components, however, does not 
directly address the biological factors that influence each of the prin‑
cipal components. To begin to relate the principal components to 
potential biological mechanisms, we generated a set of correlations 
based on combinations of factors suggested by the basis vectors in 
Figures 9B–D. Some combinations were examined separately in the 
previous sections (NR2A:NR2B, GABA

A
α1:GABA

A
α3, GluR2:NR1, 

GluR2:NR2B), while the others were new (total protein expression, 
excitatory expression, inhibitory expression). Figure 9E shows the 

Each component of the SVD represents a linear combination of the 
expression levels of the excitatory and inhibitory receptor subunits. 
The influence that each subunit had on each of the principal com‑
ponents was reflected by the relative amplitude in the basis vectors. 
Evaluating the basis vectors is an important step in the analysis that 
we added to link the principle components with potential biological 
mechanisms. This two step process, computing the principle com‑
ponents and correlating the basis vectors with receptor expression, 
provides novel insights into the pattern of receptor expression.

Figures 9B–D shows the basis vectors for the three principal 
components, illustrating the direction and magnitude for each 
of the seven synaptic proteins. The first principal component 
(Figure 9B, PCA 1), showed positive contributions from all mecha‑
nisms, with the greatest from the excitatory receptors. The second 
component (Figure 9C, PCA 2), showed clear differences in the 

FiGure 9 | Principal component analysis. (A) The percent of variance captured 
by each component from SVD analysis of receptor subunit expression in visual 
cortex of normal and monocularly deprived kittens. The first three principal 
components represent the significant portion (85%) of the SVD. (B–D) The 
influence of each subunit on the three principal components was reflected by the 

relative amplitudes in the basis vectors. (e) Significant correlations (colored cells) 
between the three principal components and the combinations of receptor subunit 
expression derived from the basis vectors (see Results). The color indicates the 
magnitude (represented by color intensity) and direction (green indicates positive, 
red indicates negative) of significant correlations (Bonferroni corrected, p < 0.007).
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PCA results for normal (gold spheres) and monocular deprived 
kitten (red cubes), and the connecting lines link the points by age. 
These plots showed distinct developmental trajectories for normal 
and monocularly deprived animals (supplemental videos of devel‑
opmental trajectories available on‑line). The shadows projected 
on each of the three walls help to visualize the differences between 
normal (circles) and deprived (squares) kittens.

Normal development
The normally reared kittens (Figure 10A, gold spheres and 
lines) showed a developmental trajectory that was an elongated, 
U‑shaped function, extending along PCA 1 (total expression) from 
2 to 8 weeks of age, and then turning back to reach the adult 

significant correlations (green and red squares; p < 0.007) between 
these factors and the three principal components. The pattern of cor‑
relations provided information to describe the biological significance 
of the principal components. The first principal component was char‑
acterized by a significant increase in the total expression of receptor 
subunits, and a shift from NMDA to AMPA expression. The second 
principal component captured the developmental balance between 
excitatory and inhibitory receptor subunit expression. Finally, the third 
principal component captured the maturation of subunit expression 
in visual cortex shifting to more GABA

A
α1, NR2A, and GluR2.

To visualize the three significant principal components, the data 
were plotted in 3‑dimensional space using custom software and a 
ray‑tracing program (Radiance; Ward, 1994). Figure 10 shows the 

FiGure 10 | Monocularly deprived animals show a distinct developmental 
trajectory for receptor subunit expression. The PCA results are plotted in 
3-dimensions to visualize the significant components for normal (yellow spheres) 
and monocularly deprived (red cubes) kittens in the (A) central, (B) peripheral, 
and (C) monocular visual field representation of visual cortex. The shadows 
projected on each of the three walls help to visualize the differences between 
normal (circles) and deprived (squares) kittens for each of the three components. 
Age (in weeks) is displayed beside each symbol and the connecting lines link the 
points by age. PCA 1 captures experience-dependent changes in total receptor 
subunit expression, PCA 2 captures changes in the E/I balance and PCA 3 

captures the maturation of receptor composition. The developmental trajectory 
for normal animals (yellow sphere, circle shadows) can be described as a slowly 
descending curved staircase that traversed a long direction of increasing 
expression (PCA 1) and slow maturation of receptor subunits (PCA 3) between 2 
and 8 weeks of age followed by turning a corner to a new E/I balance (PCA 2) at 
12 weeks and pruning back the total receptor expression by 16 weeks. The 
trajectory for deprived kittens (red cubes, square shadows) was shifted on all 
three dimensions and truncated from the normal pattern. The difference between 
normal and deprived kittens was greatest for the (A) central visual field and less 
for the (B) peripheral and (C) monocular regions.



Frontiers in Synaptic Neuroscience www.frontiersin.org September 2010 | Volume 2 | Article 138 | 13

Beston et al. Experience-dependent E/I changes in V1

 location. It is important to note that the age of the animals was not 
part of the analysis and yet there was an orderly, age‑dependent, 
developmental trajectory through this space. The component of 
PCA 2 (E/I balance), seen best in the shadow projected on the wall, 
remains fixed between 2 and 8 weeks of age, then jumped across at 
12 weeks of age to a new point that was maintained in adulthood. 
This suggest that in normal kittens, the balance between excitation 
and inhibition changes rapidly between 8 and 12 weeks of age. 
Finally, there was a gradual change in PCA 3 (receptor subunit 
maturation) between 2 and 8 weeks of age in the direction of 
more mature receptor subunit expression. Overall, the develop‑
mental trajectory for normal animals can be described as a slowly 
descending curved staircase that initially traversed a long direction 
of increasing expression and slow maturation of receptor subunits 
followed by turning a corner to a new E/I balance and pruning 
back the total receptor expression.

Monocular deprivation
A very different developmental trajectory was found when the prin‑
cipal components were plotted for the monocularly deprived ani‑
mals (red cubes and lines). Initially, monocularly deprived animals 
followed a trajectory parallel to normals but shifted on PCA 2 and 
PCA 3 (p < 0.01). The E/I balance, represented by PCA 2, was shifted 
from normal and the maturation of receptor subunits, represented 
by PCA 3, was accelerated in deprived animals. Both of these can 
be seen in the shadows for PCA 2 and PCA 3. When deprivation 
was extended beyond 6 weeks of age there was a dramatic change in 
the developmental trajectory. With longer deprivation (>6 weeks) 
kittens bypassed a large portion of PCA 1 that represents a stage 
of exuberant expression of the excitatory and inhibitory receptor 
subunits. There was also a premature jump to the adult PCA 2 level 
indicating an abrupt change in the E/I balance. The developmental 
trajectory for deprived animals was shifted on all 3‑dimensions and 
truncated from the normal pattern. Furthermore, the difference 
between normal and deprived animals was greatest for the central 
visual field representation (Figure 10A), and less for the peripheral 
(Figure 10B) and monocular representations (Figure 10C). The 
PCA analysis showed that the complex pattern of changes found for 
individual receptor subunits can be understood as reflecting three 
underlying processes: reduced total expression of receptor subunits, 
shifted E/I balance, and accelerated subunit maturation.

dIscussIon
Our results show that monocular deprivation triggers a complex 
pattern of changes in the NMDA, AMPA, and GABA

A
 receptor subu‑

nits that mediate experience‑dependent plasticity in visual cortex. A 
major finding of this study is that the overall pattern of experience‑
dependent changes reflects three underlying components with clear 
biological interpretations. Using a neuroinformatics approach to 
analyze subunit expression we find that monocular deprivation: 
(i) changes overall receptor expression so that a large portion of the 
normal receptor development is bypassed; (ii) shifts the E/I balance 
in favor of inhibition by decreasing NR1, NR2A, and NR2B but 
increasing GABA

A
α1; (iii) and accelerates the maturation of subu‑

nits to relatively more GluR2 and GABA
A
α1. All of these changes 

are greatest in the central visual field representation of kitten visual 
cortex. Taken together, these results show that monocularly deprived 

animals lack the synaptic machinery needed for normal maturation 
of cortical circuits and developmental plasticity. Furthermore, the 
changes are more extensive than just disrupting the E/I balance.

receptor subunIt changes May affect specIfIc  
cortIcal cIrcuIts
Each of the excitatory and inhibitory receptor subunits that we stud‑
ied were changed by monocular deprivation. These results extend 
the work of a recent study (Kanold et al., 2009) aimed at unifying 
ideas about excitatory and inhibitory contributions to experience‑
dependent plasticity in the visual cortex. Although many prior 
experiments have measured changes in receptor expression after 
early monocular deprivation, few have examined both excitatory 
and inhibitory subunits (e.g., Heynen et al., 2003; Kanold et al., 
2009) or compared the changes across the visual cortex (Murphy 
et al., 2004). We combine these approaches using Western blotting 
and then applied PCA to uncover the major components affecting 
experience‑dependent development of receptor subunit expression 
in visual cortex. Furthermore, the subunits we examined are linked 
with the functional properties of NMDA and GABA

A
 receptors (Flint 

et al., 1997; Bosman et al., 2002) and the susceptibility to various 
forms of synaptic plasticity (Quinlan et al., 1999a; Fagiolini et al., 
2003; Heinen et al., 2004). The Western blot approach, however, did 
not allow us to address laminar or circuit changes in visual cortex 
which would be best characterized by anatomical or physiological 
approaches that can resolve finer details of cortical organization. For 
example, GABA

A
α1 subunits are preferentially localized at synapses 

on the soma of pyramidal neurons receiving input from fast spiking 
inhibitory inter‑neurons (Mohler, 1992; Nusser et al., 1996; Fritschy 
and Brunig, 2003). This circuit is affected by monocular deprivation 
during the critical period, strengthening an inhibitory feedback loop 
in layer 4 and thus reducing excitability (Maffei et al., 2006, 2010). 
Since GABAergic inhibition directly onto the soma can regulate 
the timing and synchrony of action potentials (Miles et al., 1996; 
Klausberger et al., 2003; Chattopadhyaya et al., 2004), a change to 
this circuit will have a profound impact on cortical development and 
function that depends on the precise timing between excitatory and 
inhibitory neurotransmission. The increase in GABA

A
α1 expression 

that we found after monocular deprivation is suggestive of changes 
in the circuit that includes fast spiking interneurons and pyramidal 
neurons. But this cannot be the only circuit in kitten visual cortex 
affected by monocular deprivation. The changes in NMDA and 
AMPA subunits that we found may contribute to laminar specific 
changes in LTD, similar to those reported for rodent visual cortex 
(Cozier et al., 2007; Cho et al., 2009). Importantly, the reduced NR2A 
expression in deprived kittens may shift the LTD/LTP threshold in 
layer 4 in favor of potentiation and lead to precocious strengthen‑
ing of the open eye’s inputs (Cho et al., 2009). The current results 
provide a good foundation to direct future studies aimed at map‑
ping laminar and cellular changes in visual cortical circuits that are 
affected by early visual deprivation.

effects of Monocular deprIvatIon are greatest In the central 
vIsual fIeld representatIon
Although the visual and neural deficits in human amblyopia are 
greatest in the central visual field (Hess and Pointer, 1985; Li 
et al., 2007), few studies have examined regional changes in the 
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with specific developmental changes. There have been, however, a 
number of behavioral studies of visual development that overlap 
with the period of receptor subunit exuberance and those studies 
have shown that visual functions, such as grating acuity, vernier 
acuity, and binocular functions are maturing at that time (Timney, 
1981; Mitchell, 1989; Murphy and Mitchell, 1991). Furthermore, 
visual recovery is substantially less when monocular deprivation 
extends beyond 6 weeks of age (Giffin and Mitchell, 1978; Mitchell, 
1988). The abrupt change in the developmental trajectory of subunit 
expression for deprived animals coincides with the age when physi‑
ological studies of ocular dominance plasticity in kittens have shown 
that there is a shift to less functional recovery after early monocular 
deprivation (Blakemore and Van Sluyters, 1974; Movshon, 1976). 
It seems likely that the differences in expression of the NMDA, 
AMPA, and GABA

A
 subunits found when monocular deprivation 

ends before versus after the peak of the critical period will have dif‑
ferent effects on synaptic plasticity, and thereby contribute to the 
different capacities for visual and ocular dominance recovery. The 
nature of orientation plasticity is also distinct before versus after the 
peak of the critical period (Tanaka et al., 2009). Exposure to a single 
orientation before the peak of the critical period causes an expan‑
sion of that orientation in the cortical map, however, exposure after 
the peak causes a shift away from that orientation. Taken together, 
the behavioral and physiological results point to different plasticity 
mechanisms before versus after the peak of the critical period and 
the lack of exuberant receptor expression may be a fundamental 
component underlying poor recovery after longer deprivation.

Monocular deprIvatIon changes the e/I balance
Normally, excitatory and inhibitory circuits interact to stabilize the 
E/I balance (Le Roux et al., 2006). This exquisite control of synaptic 
integration is widely accepted as a major factor regulating experience‑
dependent plasticity in the visual cortex (Fagiolini et al., 2003; Heinen 
et al., 2004; Turrigiano and Nelson, 2004; Hensch and Fagiolini, 
2005; Maffei and Turrigiano, 2008a; Kanold et al., 2009). Even small 
changes to either excitation or inhibition disrupt responses and alter 
plasticity in the developing visual cortex (Kirkwood and Bear, 1994; 
Hensch et al., 1998; Fagiolini et al., 2003; Heynen et al., 2003; Maffei 
et al., 2010). The current results show that the balance between exci‑
tatory and inhibitory receptor subunits is dramatically changed by 
monocular deprivation. Deprivation up to the peak of the critical 
period caused less expression of NMDA receptor subunits but an 
increase in GABA

A
α1. Together, these shift the E/I balance in favor 

of inhibition. Prolonging deprivation past the peak caused a prema‑
ture jump to the adult E/I balance. Clearly, monocular deprivation 
does not simply co‑regulate expression of these receptor subunits 
to maintain a set E/I balance. Instead, deprivation drives the system 
to a new E/I balance, one that must alter the timing of visual corti‑
cal circuits and normal spike time‑dependent plasticity (Caporale 
and Dan, 2008). These changes in receptor subunit expression show 
that experience drives dynamic interactions between excitatory and 
inhibitory circuits and these changes undoubtedly contribute to the 
abnormal development of visual cortical circuits.

A recent study by Kanold et al. (2009) has begun to provide a 
unified view of the excitatory and inhibitory contributions to expe‑
rience‑dependent development of the visual cortex. They found 
that application of benzodiazepines to rescue ocular  dominance 

 mechanisms that underlie these functional losses. Physiological 
studies of amblyopic macaque monkeys have shown that the great‑
est receptive field changes occur for neurons in the central visual 
field representation in the visual cortex (Kiorpes et al., 1998). In 
a previous study, we showed that monocular deprivation reduces 
NR1 expression in the part of visual cortex where the central visual 
field is represented (Murphy et al., 2004). Here, we found that in 
addition to less NR1, the changes in NR2A, NR2B, GluR2, and 
GABA

A
α1 are also greatest in the central visual field. Furthermore, 

the PCA analysis showed that the greatest difference between nor‑
mal and deprived animals was in the central region, with less and 
less difference in peripheral and monocular regions.

These regional changes may reflect differences in the relative 
contributions of binocular competition (Hebbian plasticity) and 
monocular compensation (synaptic scaling) toward regulating 
experience‑dependent plasticity. This raises the possibility that the 
changes in receptor expression are driven by binocular competition in 
the central visual field, binocular competition and synaptic scaling in 
the peripheral visual field, and only synaptic scaling in the monocular 
visual field. This is similar to previous studies in developing mouse vis‑
ual cortex showing that monocular deprivation reduces the deprived 
eye responses in binocular neurons but increases responses for neu‑
rons that receive input from only the deprived eye (Mrsic‑Flogel 
et al., 2007). These bidirectional plasticity results provide evidence 
that functional demands can engage different types of experience‑
dependent plasticity. The current findings provide a potential synaptic 
basis for the greater central versus peripheral visual field losses found 
in amblyopes. They also highlight that animal models with a well 
developed central visual field provide an important contribution to 
understanding the neural basis of amblyopia.

Monocular deprIvatIon bypasses a large portIon of norMal 
receptor developMent
A striking consequence of monocular deprivation was that a large 
portion of the normal developmental trajectory was bypassed. In 
normal animals, we found a transient stage of exuberant receptor 
expression between 6 and 16 weeks of age which is after the peak of 
ocular dominance plasticity in kittens (Olson and Freeman, 1980). 
When monocular deprivation extended past 6 weeks of age, we 
found that the stage of exuberant receptor subunit expression was 
bypassed. Our finding of a normal stage of exuberant expression is 
similar to previous reports for NMDA (Chen et al., 2000) and GABA

A
 

subunits (Chen et al., 2001) showing that the maximum expres‑
sion level in kitten visual cortex is reached after the peak of ocular 
dominance plasticity. The notion of early exuberance in synapse 
development followed by a plateau in synaptic density (Bourgeois 
and Rakic, 1993; Bourgeois et al., 1994) or gradual elimination are 
a common views about cortical development (Huttenlocher et al., 
1982; O’Kusky and Colonnier, 1982). In the cat, however, early stud‑
ies of synaptogenesis using electron microscopy to quantify synaptic 
density did not examine animals between 6 and 16 weeks of age 
(Cragg, 1975), and thus missed the time window when receptor 
subunit expression peaks in cat visual cortex. In addition, there have 
been few physiological studies of synaptic or receptive field matura‑
tion in visual cortex of kittens between 6 and 16 weeks of age. The 
lack of information between 6 and 16 weeks of age makes it challeng‑
ing to link the normally exuberant expression of receptor subunits 
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 plasticity in GAD65 knockout mice also increases NR2A  expression. 
Thus, manipulating one side of the E/I balance also affects mecha-
nisms on the other side. Ultimately, these interactive E/I changes 
regulate activity in the visual cortex and affect experience-depend-
ent plasticity. Perhaps restoring the normal E/I balance by promot-
ing expression of NMDA, AMPA, and GABA

A
 receptor subunits 

to the levels found during early development may be an essential 
component for good recovery after monocular deprivation. In 
addition, future studies will need to address presynaptic changes, 
such as neurotransmitter levels and vesicular transporters that are 
known to affect synaptic plasticity.

Restoring the E/I balance as a way of improving recovery is 
not a new idea; recent studies have shown that pharmacological 
manipulation of the E/I balance in adult visual cortex can rein-
state ocular dominance plasticity (Maya Vetencourt et al., 2008; 
Harauzov et al., 2010). Although our results and other studies point 
toward both excitatory and inhibitory changes with deprivation 
during the critical period (Kameyama et al., 2010), it is still an 
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A
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