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to translate Hopfield models into spiking 
networks where the intrinsic neuronal time 
scale would be clearly defined (Gerstner, 
1991; Gerstner and van Hemmen, 1992). 
After my return to Munich, I wondered 
whether my spiking networks would be able 
to learn spatio-temporal spike patterns. In 
analogy to earlier work on sequence learning 
(Herz et al., 1991), I realized that this would 
only be possible if I used a Hebbian learn-
ing rule which reflects the causality principle 
implicit in Hebb’s formulation: the timing 
must be such that synapses that contrib-
ute to firing the postsynaptic neuron are 
maximally strengthened. Hence long-term 
potentiation (LTP) must be maximal if the 
spike arrives at the synapse 1 or 2 ms before 
the postsynaptic spike so as to compensate 
for the rise time of the excitatory postsyn-
aptic potential (Gerstner et al., 1993). The 
timing conditions were summarized in 
a figure, reprinted here as Figure 1. I also 
realized that I needed to postulate a back 
propagating action potential, so as to inform 
the synapse about the timing of postsynaptic 
spikes. For the sake of a little anecdote: one 
referee did not like such a naive postulate 
and asked me to mention explicitly that such 
a back propagating spike had never been 
found – so that’s what I wrote in the 1993 
paper (Gerstner et al., 1993). Interestingly, 
20 years earlier Leon Cooper had also seen 
the need to transmit information to the site 
of the synapse, but formulated his idea in a 
rate-coding picture (Cooper, 1973).

In the 1993 paper, I assumed some 
unspecified chemical process that would 
set the “window of coincidences” for the 
causal pre-before-post situation. I pos-
tulated a coincidence window for asym-
metric Hebbian learning with millisecond 
resolution, in order for the network to learn 
on this time scale. In the summer of 1994, 
Hermann Wagner, a barn owl expert, joined 
the Technical University of Munich for a 
sabbatical. He told us about the astonish-
ing capacity of the owl’s auditory system to 
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For my master thesis in physics, I spent my 
days in an experimental lab working with 
electronics, liquid nitrogen, vacuum pumps, 
and tiny semiconductor lasers. It seemed 
every day another component of the set-up 
would fail–I felt utterly misplaced. But then 
a friend told me about an a fascinating new 
field in physics that linked statistical physics 
to brain science. It was an exciting period: 
the papers by Hopfield (Hopfield, 1982) 
and their mathematical analysis (Amit 
et al., 1985) were all new, and the Kohonen 
self-organizing map (Kohonen, 1984) was 
analyzed by physicists next door (Ritter 
and Schulten, 1988). In 1988, I decided to 
change field and apply my theoretical mod-
eling skills to neuroscience.

I learned the tricks of mathematical 
analysis of Hopfield networks during an 
internship with Leo van Hemmen at the 
university of Munich early in 1989, which 
filled the time before I started a one-year 
stay as a visiting scholar at Berkeley in the 
lab of Bill Bialek. The hot topic in Munich 
(Herz et al., 1989) as well as in some other 
labs (Kleinfeld, 1986; Sompolinsky and 
Kanter, 1986) was an extension of the 
Hopfield model so as to store memories 
not in the form of stationary attractors, 
but as sequences of activity patterns (Herz 
et al., 1989). The networks were constructed 
with binary neurons that are either “on” or 
“off” and evolved in discrete time. Andreas 
Herz, who was then a student of Leo van 
Hemmen’s, discovered that, when signal 
transmission delays are correctly taken into 
account, both static and dynamic memories 
can be stored by the same Hebb rule (Herz 
et al., 1989). But what puzzled me at that 
time was the assumption of discrete time: Is 
it 1 ms per memory pattern or 2 ms, why not 
20 or 0.5 ms? What sets this time scale?

When I moved to Berkeley in the summer 
of 1989, I was strongly impressed by the ideas 
of spike-based coding (Bialek et al., 1991), 
a topic of intense discussions in the Bialek 
lab at that time. My personal goal became 

resolve time on the sub-millisecond scale, 
which is necessary to locate prey in complete 
darkness. Different neurons in the auditory 
nucleus in charge of detecting coincidences 
between spikes arriving from the left and 
right ears have different receptive fields in 
the temporal domain – for the theoreti-
cians in the group of Leo van Hemmen a 
 wonderful challenge.

Von der Malsburg, Kohonen, Bienenstock 
and colleagues as well as many others (von 
der Malsburg, 1973; Willshaw and von der 
Malsburg, 1976; Bienenstock et al., 1982; 
Kohonen, 1984) had shown in the 1970s 
and 1980s that the development of spatial 
receptive fields can be described by models 
based on Hebbian learning, but how could 
learning be possible for spiking neurons 
that have to learn features in the temporal 
domain? That was the topic of many discus-
sions in the lab, in particular with Richard 
Kempter, a bright PhD student. From my 
previous experience with referees, it was 
clear that I could not simply postulate a 
Hebbian coincidence window of learning 
with a resolution of 10 μs to solve the task 
of learning temporal structures at that time 
scale – time constants in the auditory nuclei 
are faster than in visual cortex, but probably 
do not go below 1 ms.

After several nights of intense thinking, 
I suggested one morning to Richard that 
we should somehow exploit competition 
between good and bad timings, similar 
to spatial competition in networks with 
center excitation and surround inhibition, 
but translated to the problem of learning 
in the temporal domain. We therefore pos-
tulated what we called a Hebbian learning 
window with two regimes: good timings 
(i.e., presynaptic spikes arriving just before 
a postsynaptic firing event) should lead 
to a potentiation of the synapses, while 
bad timings (presynaptic spikes arriv-
ing after a postsynaptic spike) should 
lead to depression. Richard implemented 
the idea in a simulation and it worked 



Gerstner Postulating STDP

Frontiers in Synaptic Neuroscience www.frontiersin.org December 2010 | Volume 2 | Article 151 | 2

Figure 1 | A copy of Figure 3 in gerstner et al. (1993) with caption: Hebbian learning at the synapse. 
The presynaptic neuron j fires at time t j

f  and the postsynaptic neuron i at ti
f . It takes a time D ax and Ddent, 

respectively, before the signal arrives at the synapse. At the presynaptic terminal neurotransmitter is 
released (shaded) and evokes an EPSP (dashed) at the postsynaptic neuron. In (A) the dendritic spike 
arrives slightly after the neurotransmitter release and matches the time window defined by some chemical 
processes, so the synaptic efficacy is enhanced. In (B) the postsynaptic neuron fired too early and no 
strengthening of the synapse occurs.

Figure 2 | A copy of Figure 2d in gerstner et al. 
(1996), with caption: “The postsynaptic firing 
occurs at time s = 0 (vertical dashed line). Learning 
is most efficient if presynaptic spikes arrive shortly 
before the postsynaptic neuron starts firing as in 
synapse A. Another synapse B which fires after the 
postsynaptic spike is weakened.”

beautifully. The graph of our hypotheti-
cal Spike-Timing-Dependent Plasticity 
(STDP) function as published in 1996 is 
included here as Figure 2.

We submitted our results in May 1995 
to the 8th Neural Information Processing 
Conference (NIPS8) where we presented 
them in December that year (Kempter 
et al., 1996). The writing of the full paper 
started in the summer of 1995, before 
I left for a short postdoctoral period at 
Brandeis, where I stayed from September 
to December 1995. By the time we finally 
submitted the paper in February 1996, 
an abstract of Henry Markram and Bert 
Sakmann had been published in the Society 
of Neuroscience meeting from November 

1995, which we cited in the final version of 
our manuscript, together with the paper of 
Debanne et al. (1994) for synaptic depres-
sion, so as to convince the referees that 
our assumptions were not entirely outra-
geous. For some reason, we missed to cite 
the paper of Levy and Stewart (Levy and 
Stewart, 1983).

While at Brandeis, I also learned that 
Larry Abbott and Kenny Blum had been 
working on ideas of asymmetric Hebbian 
learning in the context of hippocampal 
circuits involved in a navigation problem 
(Abbott and Blum, 1996). The Abbott-
Blum paper from 1996 is formulated in a 
rate-coding picture and implements asym-
metric Hebbian learning with a time win-

dow for LTP for pre-before-post (and the 
possibility of LTD for reverse timing) in the 
range of a few hundred milliseconds or a 
few seconds, but the formalism can easily 
be reinterpreted as STDP. When I joined 
Brandeis in 1995, the paper was already 
submitted and Kenny Blum had left, but 
Larry Abbott and myself continued this 
line of work together (Gerstner and Abbott, 
1997).
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