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Adult neurogenesis, restricted to specific regions in the mammalian brain, represents
one of the most interesting forms of plasticity in the mature nervous system. Adult-born
hippocampal neurons play important roles in certain forms of learning and memory, and
altered hippocampal neurogenesis has been associated with a number of neuropsychiatric
diseases such as major depression and epilepsy. Newborn neurons go through distinct
developmental steps, from a dividing neurogenic precursor to a synaptically integrated
mature neuron. Previous studies have uncovered several molecular signaling pathways
involved in distinct steps of this maturational process. In this context, the small Rho
GTPases, Cdc42, Rac1, and RhoA have recently been shown to regulate the morphological
and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream
regulators, including growth factors that modulate maturation and integration of newborn
neurons have been shown to also recruit the small Rho GTPases. Here we review
recent findings and highlight the possibility that small Rho GTPases may act as
central assimilators, downstream of critical input onto adult-born hippocampal neurons
contributing to their maturation and integration into the existing dentate gyrus (DG)
circuitry.
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INTRODUCTION
Throughout lifespan new neurons are continuously born in the
mammalian hippocampus. It is now widely accepted that the
process of adult neurogenesis is not merely a remnant of embry-
onic development, but a highly responsive and regulated process
that appears to be critically involved in hippocampus-dependent
behavior in health and disease (Sahay and Hen, 2007; Zhao
et al., 2008; Danzer, 2012). The number of newborn neurons
in the adult hippocampus is not static but strongly influenced
by many positive and negative stimuli that influence the neuro-
genic process at distinct developmental stages. Positive extrinsic
regulators include physical exercise, environmental enrichment,
antidepressants, and learning, whereas stress and aging nega-
tively regulate the number of newly generated neurons (Ma et al.,
2009). These stimuli are thought to impact adult neurogenesis
via a number of regulatory pathways including growth factors,
neurotransmitters, developmental signaling molecules, and hor-
mones. Inspired by previous studies in the context of embryonic
neurogenesis, a number of cellular and molecular mechanisms,
involved in the control of neural stem/progenitor cells (NSPC)
activity and subsequent integration of newborn granule cells
within the adult hippocampus, have been identified (Ming and
Song, 2011). Even though it has been demonstrated that the
neurogenic process in the adult hippocampus shares many prop-
erties with embryonic neurogenesis, it principally differs from
embryonic neurogenesis in that, NSPCs and maturing neurons
are present in an entirely different (adult) environment and must
integrate into a preexisting circuit, presumably in the absence

of large amounts of developmental guidance cues (Conover and
Notti, 2008). Thus, understanding the molecular underpinnings
of how adult-born neurons integrate into the dentate gyrus
(DG) circuitry requires experiments that analyze the cellular
mechanisms and signaling pathways in their endogenous adult
niche.

Recently, a few reports demonstrate stage-specific roles for
small Rho GTPases, Cdc42, Rac1, and RhoA in adult hippocam-
pal neurogenesis in vivo. These studies suggest an important
and potentially central role for the small Rho GTPases in the
maturation and integration of newborn neurons in the adult
hippocampus. In this mini-review, we discuss the main find-
ings of recent in vivo studies and then focus on discussing how
known upstream intrinsic regulators (neurotrophins, neurotrans-
mitters, developmental signaling molecules, and intermediate
signaling molecules) maybe recruiting Rho GTPases for mediat-
ing their effects on neuronal maturation in adulthood. We begin
by describing the maturation process of adult born hippocam-
pal neurons and give a broad overview of neuronal Rho GTPase
signaling, followed by a discussion of evidence showing how
important regulators of neuronal maturation may be modulat-
ing small Rho GTPases as downstream effectors. We conclude
with hypotheses on mechanisms for signal convergence and a
brief discussion of how Rho GTPases may act to assimilate multi-
ple upstream signals to decisively influence cell cytoskeleton and
neuronal cytoarchitecture. For a more detailed discussion on Rho
GTPase signaling in neurons, please refer to other reviews (Auer
et al., 2011; Govek et al., 2011; Chen et al., 2012).

Frontiers in Synaptic Neuroscience www.frontiersin.org August 2013 | Volume 5 | Article 4 | 1

SYNAPTIC NEUROSCIENCE

Brain Research Institute, University of Zurich, Zurich, Switzerland

Sebastian Jessberger, Brain
Research Institute, University of
Zurich, Winterthurerstrasse 190,
8057 Zurich, Switzerland
e-mail: jessberger@hifo.uzh.ch
†Present address:

Krishna C. Vadodaria, Laboratory of
Genetics, Salk Institute for Biological
Studies, La Jolla, CA, USA

http://www.frontiersin.org/Synaptic_Neuroscience/editorialboard
http://www.frontiersin.org/Synaptic_Neuroscience/editorialboard
http://www.frontiersin.org/Synaptic_Neuroscience/editorialboard
http://www.frontiersin.org/Synaptic_Neuroscience/about
http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org/Synaptic_Neuroscience/10.3389/fnsyn.2013.00004/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KrishnaVadodaria&UID=94503
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SebastianJessberger&UID=6520
mailto:jessberger@hifo.uzh.ch
http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Vadodaria and Jessberger Small Rho GTPases and adult neurogenesis

MATURATION OF ADULT-BORN HIPPOCAMPAL NEURONS
Adult hippocampal NSPCs go through distinct stages of matu-
ration on their way to becoming fully mature newborn granule
cells (Figure 1). It is currently assumed that radial glia-like NSPCs
(type 1 cells) give rise to non-radial glia-like transit amplifying
precursors (type 2 cells) that divide and generate immature neu-
rons. These immature neurons grow an apical dendrite towards
the molecular layer and send axonal processes to their target
area, the CA3, several days after they are born (Zhao et al.,
2006) (Figure 1A). During this period of maturation, newborn
cells display distinct electrical properties, including gamma-
aminobutyric acid (GABA)-induced depolarization, contributing
to their survival and functional integration into the adult hip-
pocampal circuitry (Ge et al., 2006) (Figures 1B,C). As these
neurons further mature, they start receiving excitatory synaptic
input, develop dendritic spines, and display extensive dendritic
arborization. Adult-generated young granule cells display hyper-
excitability as compared to granule cells generated during devel-
opment (Wang et al., 2000; Schmidt-Hieber et al., 2004; Marin-
Burgin et al., 2012). This property conceivably enables cohorts
of newborn neurons to encode time (temporal context) within
memory and allows the separation of patterns that are closely
related, spatially or temporally (Aimone et al., 2010; Deng et al.,
2013). In the rodent DG, it takes ∼8 weeks for adult-born granule
cells to become nearly indistinguishable from developmentally-
generated granule cells (Laplagne et al., 2006). Notably, each
successive developmental stage is sensitive to a number of extrin-
sic and intrinsic regulators (Zhao et al., 2008; Ming and Song,
2011).

Molecular regulators of maturation and integration of adult-
born neurons include neurotrophins such as brain derived
neurotrophic factor (BDNF), neurotransmitters such as GABA
and glutamate, and signaling molecules like Disrupted-in-
Schizophrenia 1 (DISC1) (Figure 1C). These regulators recruit
diverse downstream pathways to finally influence distinct aspects
of neuronal maturation such as migration, dendritic arboriza-
tion, spine maturation and synaptic integration of newborn
hippocampal neurons (Jagasia et al., 2006; Hagg, 2007). Thus,
one may speculate that these molecules and their downstream
effectors may partially impinge on some common signaling path-
ways to influence neuronal maturation. Several lines of evidence
indicate that the small Rho GTPases are important and cen-
tral regulators of cell cytoarchitecture in different cell types and
play important roles in modulating cell migration, neurite out-
growth, survival, as well as synapse formation in neurons (Govek
et al., 2005; Newey et al., 2005; Watabe-Uchida et al., 2006;
Svitkina et al., 2010). Hereon, we focus on how the aforemen-
tioned regulators interact with and influence small Rho GTPase
signaling to possibly modulate neuronal integration in the adult
hippocampus.

SMALL RHO GTPase SIGNALING
Rho GTPases are part of the larger Ras superfamily of monomeric
GTPases. These small GTPases are thought to act as binary
molecular switches, transducing upstream signals to downstream
effectors by alternating between the “active” GTP-bound and the
“inactive” GDP-bound state (Schmitz et al., 2000) (Figure 2).

FIGURE 1 | Neurogenesis in the adult rodent hippocampus (A)

Schematic of a coronal section of the hippocampus: cornu ammonis

(CA) regions and the dentate gyrus (DG). Depicted are neural
stem/progenitor cells (NSPCs) (green cells) residing in the subgranular zone
(SGZ, red line) at the border of the granule cell layer (GCL) and molecular
layer (ML). (Gray box) NSPCs divide, mature and go through the different
stages of development and send out dendrites into the molecular layer and
axons to the CA3 region via the mossy fiber pathway. (B) A closer look at
neurogenesis reveals that adult NSPCs go through distinct stages of
maturation where Type-1, radial glia-like stem cells give rise to Type2 transit
amplifying cells, which divide to generate immature neurons that start
developing characteristic DG granule cell morphology and finally mature and
integrate into the DG circuitry as mature granule cells. (C) Listed are some
notable regulators of later stages (B, gray box) of newborn neuron
maturation and integration: brain derived neurotrophic factor (BDNF),
gamma-Aminobutyric acid (GABA), Disrupted-in-Schizophrenia 1 (DISC1),
cyclin-dependent kinase 5 (Cdk5).

Conversion from one state to the other is tightly regulated by
guanine nucleotide exchange factors (GEFs), the GTPases acti-
vating proteins (GAPs) and the guanine nucleotide dissociation
inhibitors (GDIs). Small Rho GTPase activity states are regu-
lated by the activating GEFs, which promote exchange of GDP
for GTP; the inactivating GAPs (GTPases activating proteins),
which enhance the intrinsic capacity of the small GTPases for
hydrolyzing GTP to GDP; and the inactivating GDIs that pre-
vent dissociation of GDP from the GTPases (as there are usu-
ally higher levels of intracellular GTP than GDP) (Jaffe and
Hall, 2005). GDIs further inhibit GTPase activity by sequester-
ing them in the cytoplasm, as opposed to the cell membrane
where they functionally localize due to posttranslational lipid
modifications such as prenylation and palmitoylation (Kang et al.,
2008; Samuel and Hynds, 2010; Navarro-Lerida et al., 2012).
GEFs, GAPs, and GDIs are specific to different Rho GTPases, and
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FIGURE 2 | Small Rho GTPase signaling in neurite and spine

maturation (Top panel, red). Upstream signaling such as BDNF-TrkB,
Glutamate-NMDAR, GABA-induced depolarization, Notch, DISC1 and Cdk5
modulate small Rho GTPase activity. (Middle panel, orange) Upstream
signals modulate GEFs and GAPs thereby regulating the activity of small
Rho GTPases Rac1, Cdc42, and RhoA. GEFs promote activation (GTP-bound
conformation) and GAPs promote inactivation (GDP-bound conformation).
(Bottom panel, green) In the active state, small Rho GTPases bind to
several downstream effectors exerting influence on local actin and
microtubule networks, thereby influencing neurite and spine growth.

their expression and subcellular localization is crucial to the spa-
tial and temporal regulation of Rho GTPase activity. Activated
GTPases (GTP-bound) bind to several downstream effectors that
directly modify the actin and microtubule cytoskeletal network,
thereby influencing a variety of processes such as cell growth, sur-
vival, proliferation, membrane trafficking, transcriptional activa-
tion, adhesion, mechanosensation, and migration (Van Aelst and
D’Souza-Schorey, 1997; Schmitz et al., 2000; Govek et al., 2005;
Watabe-Uchida et al., 2006; Govek et al., 2011; Keung et al., 2011)
(Figure 2).

Cdc42 (cell division cycle 42), Rac1 (ras-related C3 botulinum
toxin substrate 1) and RhoA (ras homolog family member A)
are the best-studied members of the small Rho GTPase fam-
ily, especially in the neuronal context. Despite early indications
of important roles of the Rho GTPases in neuronal matura-
tion in vitro, there are far fewer reports examining their role
in the mammalian CNS in vivo (Heasman and Ridley, 2008).
This is due to the fact that straight knockouts of Cdc42 and
Rac1 are lethal during embryogenesis, with death occurring by
E9.5 (Sugihara et al., 1998; Chen et al., 2000). Newer studies,
using region-specific conditional deletion of the small GTPases
during development, demonstrate diverse roles for Cdc42, Rac1

and RhoA in embryonic neurogenesis and neuronal maturation
(Luo et al., 1996; Cappello et al., 2006, 2012; Chen et al., 2007;
De Curtis, 2008; Fuchs et al., 2009; Haditsch et al., 2009; Leone
et al., 2010; Vaghi et al., 2012). Only very recently have studies
begun investigating the role of the small GTPases in the adult
CNS in vivo. These studies show roles for Rho GTPase signaling
in SVZ/OB (Ding et al., 2010; Leong et al., 2011) and hip-
pocampal neurogenesis (Keung et al., 2011; Christie et al., 2013;
Vadodaria et al., 2013). Here, we focus on recent findings demon-
strating specific roles for Rho GTPases in adult hippocampal
neurogenesis.

In their study, using retrovirus mediated overexpression of
constitutively active (CA, GTP-bound) and dominant negative
(DN, GDP-bound) forms of RhoA in adult hippocampal neu-
rons in vivo, Keung et al. found an inverse relationship between
RhoA activity and the percentage of cells differentiating into neu-
rons (Keung et al., 2011). However, it is possible that this effect on
neuronal differentiation was due to an effect on survival of new-
borns and not differentiation per se, as shown recently by Christie
et al. Here, the authors blocked RhoA signaling pharmacologi-
cally in vivo and observed enhanced spatial memory in the Y-maze
along with an increase in newborn neuron survival, and no dif-
ferences in NSPC proliferation or differentiation (Christie et al.,
2013). These findings suggest that RhoA may have a “negative”
role in neuronal survival and maturation. However, due to off-
target effects of DN/CA forms and pharmacological inhibitors,
additional studies genetically knocking down RhoA in vivo, would
help clarify its precise role in adult hippocampal neurogenesis.
In our study, using both genetic deletion in vivo and DN-form
overexpression, we found stage-specific roles for Cdc42 and Rac1
in adult hippocampal neurogenesis. Cdc42 activity was found to
be important for normal levels of proliferation, as well as den-
dritic and spine maturation. In contrast, Rac1 was found to be
specifically important for later stages of dendritic and spine matu-
ration (Vadodaria et al., 2013). Collectively, results from the above
mentioned studies suggest that Cdc42 and Rac1 are involved in
proliferation, and dendritic and spine maturation, whereas RhoA
may inhibit survival and growth of newborn neurons. In addition
to playing a role in adult hippocampal neurogenesis, Rac1 and
its epigenetic regulation was found to regulate synaptic plasticity
and spine remodeling in the adult nucleus accumbens, where it is
functionally involved in addiction (Dietz et al., 2012).

Taken together, these findings hint at stage-specific roles of the
Rho GTPases in adult hippocampal neurogenesis. This may be
due to differential recruitment of the Rho GTPases by upstream
factors during different stages of neuronal maturation. We next
discuss how upstream signaling molecules may recruit Cdc42,
Rac1, and RhoA, for mediating their effects on maturation and
integration of newborn neurons in the adult hippocampus.

REGULATORS OF NEURONAL MATURATION: TIES WITH
SMALL RHO GTPase SIGNALING
NEUROTROPHIN SIGNALING: BDNF
BDNF is among the most well studied neurotrophins and has
been shown to have a specific role in maturation and integration
of newborn neurons in the adult hippocampus (Schmidt and
Duman, 2007). Conditional mutants lacking BDNF exhibit a
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specific defect in newborn neuron maturation, but not in pro-
liferation, cell fate specification, or survival. In particular, loss
of BDNF leads to an accumulation of immature neurons with
significantly shorter dendrites (Chan et al., 2008). Although
BDNF binds multiple Trk receptors as well as the non-specific
p75 neurotrophin receptor (NTR), it appears that the effects
of BDNF deletion on neuronal morphology are likely medi-
ated by its main receptor, TrkB (tropomyosin receptor kinase B).
Conditional deletion of TrkB in adult NSPCs leads to a specific
reduction in dendritic arborization and spine density (Bergami
et al., 2008). Further, stimuli such as stress, exercise, and antide-
pressants that are known to regulate adult neurogenesis (and
hippocampus-dependent behavior) act via regulation of BDNF
signaling (Duman and Monteggia, 2006). These studies suggest
an indispensible role for BDNF-TrkB signaling in the maturation
and integration of newborn neurons in the adult hippocampus.

The above-mentioned in vivo studies shed light on BDNF’s role
in hippocampal neuron maturation, and the molecular mecha-
nisms downstream of BDNF-TrkB signaling have been explored
mainly using primary cultures in vitro. Several studies have
established Rho GTPases to be downstream of TrkB activation.
BDNF-TrkB signaling has been shown to specifically modulate
cell morphology of hippocampal neurons in vitro, via activation
of GEF Tiam1 and Rac1, and through Cdk5 dependent activa-
tion of Cdc42 (Miyamoto et al., 2006; Cheung et al., 2007). In
addition to directly targeting Cdc42 and Rac1, TrkB also regulates
dendritic morphogenesis by activating geranylgeranyltransferase-
I, which performs lipid modifications (prenylation) of the Rho
GTPases, enabling their localization at the cell membrane (Zhou
et al., 2008). This may be particularly relevant as recruitment
of Rac1 to lipid rafts in hippocampal neurons is crucial to the
biological activity of neurotrophins like, nerve growth factor
(Fujitani et al., 2005). These results suggest that BDNF-TrkB sig-
naling recruits and activates the positive regulators of neurite
outgrowth Cdc42 and Rac1. BDNF and its protein precursor
proBDNF bind to the non-specific neurotrophin receptor p75
(p75NTR), which has been shown to negatively impact cell sur-
vival and neurite outgrowth (Nykjaer et al., 2005; Blochl and
Blochl, 2007). Interestingly, proBDNF-p75NTR signaling pro-
motes growth cone collapse via downstream activation of RhoA
(Sun et al., 2012). This fits in well with the notion that RhoA gen-
erally promotes growth cone collapse, whereas Cdc42 and Rac1
promote neurite growth and stabilization (Huang and Reichardt,
2003). Taken together, these studies indicate a strong link between
BDNF-TrkB signaling and the regulation of small Rho GTPases
for modulation of neurite growth dynamics. Given this, it is pos-
sible to hypothesize that Cdc42, Rac1 and RhoA may be recruited
in a similar fashion downstream of BDNF for maturation of
adult-born hippocampal neurons in vivo.

NEUROTRANSMITTER SIGNALING: GLUTAMATE AND GABA
Neuronal activity is central to the development of neurons,
and neurotransmitters have been shown to regulate distinct
stages of maturation of adult-born neurons (Vaidya et al., 2007).
Glutamate and GABA primarily regulate excitation and inhibi-
tion in the adult nervous system, respectively, and have been
shown to play important roles in the maturation of adult-born

hippocampal neurons. Previous studies using pharmacological
tools have demonstrated the importance of activity in neuronal
maturation, and a key role for N-Methyl-D-aspartic acid recep-
tor (NMDAR)-driven excitation in neuronal maturation has since
long been proposed (Brewer and Cotman, 1989; McKinney et al.,
1999; Richards et al., 2005; Nacher and McEwen, 2006). More
recent studies have capitalized on the development of finer molec-
ular biology tools to examine the stage-specific roles of glutamate
and GABA in distinct stages of neuron maturation. Tashiro et al.
showed that NMDAR-driven excitation is critical for survival
and integration of newborn neurons using retrovirus-mediated
single-cell knockout of NMDAR in adult-born hippocampal neu-
rons, (Tashiro et al., 2006). Not only is glutamatergic excitation
important but also GABA-induced depolarization is crucial dur-
ing early stages of newborn neuron maturation. Early excitatory
GABAergic input critically regulates the survival and matura-
tion of adult-born hippocampal neurons (Ge et al., 2006, 2008).
The effects of early GABAergic input on newborn neurons are
likely mediated via cAMP response element-binding protein
(CREB) signaling (Jagasia et al., 2009). Furthermore, recent stud-
ies have revealed which GABA receptors and subunits are involved
in mediating the effects of GABA on the newborn progeni-
tors. Adult-born hippocampal neurons of mutant mice lacking
the α4-subunit-containing GABAARs and α2-subunit-containing
GABAARs show defects in dendritic arborization, and cell migra-
tion in a temporally distinct manner (Duveau et al., 2011). This
differs from the role of γ2-subunit-containing GABAARs, which
regulate early stages of stem cell division, as NSPCs lacking the
γ2-subunit exit quiescence and exhibit increased symmetrical
divisions (Song et al., 2012). Collectively, these results indicate
that glutamatergic and GABAergic input play important roles in
the maturation of newborn hippocampal neurons in vivo.

The small Rho GTPases appear to be regulated by both glu-
tamatergic and GABAergic neurotransmission via specific GEFs.
Although glutamate initially and transiently activates RhoA (Jeon
et al., 2002), longer activation of NMDAR leads to robust acti-
vation of the Rac1 GEF, Tiam1, specifically in dendrites and
spines of hippocampal neurons in vitro (Tolias et al., 2005). This
suggests that glutamate may transiently upregulate RhoA activ-
ity via AMPA receptors initially, whereas, longer or coincident
excitation via NMDARs likely recruits Rac1 for mediating its pos-
itive influence on neurite growth and spine motility (Tashiro
and Yuste, 2008). This is significant given that localized activa-
tion of the Rho GTPases has been directly linked to plasticity
at single dendritic spines (Murakoshi et al., 2011; Yasuda and
Murakoshi, 2011). GABAergic signaling has also been linked to
the Rho GTPases Cdc42 and Rac1. Meyer et al. show that Rac1
activity is required for optimal GABAA receptor activity, as a
loss of Rac1 activity reduced GABAA receptor activity, possibly
through loss of receptor clustering and recycling (Meyer et al.,
2000). The effects of GABA on neural progenitors appear to be
highly specific to the subunit composition of GABA receptors,
and it remains to be elucidated how distinct subunit-containing
receptors recruit different Rho GTPases. Interestingly, not only
does GABAergic signaling recruit the Rho GTPases, it appears
that Rho GTPases can also regulate components of the GABAergic
postsynapse. The Cdc42-specific GEF Collybistin has been shown
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to regulate GABAergic neurotransmission as well as clustering
of the main inhibitory postsynaptic scaffolding protein Gephyrin
(Tyagarajan et al., 2011; Korber et al., 2012). This raises the inter-
esting possibility that the small GTPases may also be playing a
role in feedback or homeostatic mechanisms, influencing plas-
ticity at the inhibitory postsynapse (Papadopoulos and Soykan,
2011). Collectively these results suggest that glutamatergic and
GABAergic neurotransmission may be influencing newborn neu-
ron maturation and spine development, at least in part by
modulating small Rho GTPase activity.

DEVELOPMENTAL SIGNALING MOLECULES: NOTCH
Notch signaling involves the activation of transmembrane het-
erodimer receptors, activated by Delta-like or Jagged, which are
membrane-bound ligands present on neighboring cells. Ligand
binding results in cleavage of the transmembrane domain of the
notch receptor, releasing the notch intracellular domain (NICD),
which translocates to the nucleus where it interacts with RBP-J to
activate transcription of several genes. Notch signaling has been
extensively explored during development and shown to be criti-
cal for neuronal cell-fate choice and neurite development during
embryonic neurogenesis (Sestan et al., 1999; Redmond et al.,
2000). Recently, studies have found Notch to also play impor-
tant roles at different stages during adult neurogenesis (Ehm et al.,
2010; Ables et al., 2011). In their study, using a conditional knock-
out of Notch1 in adult neural stem/progenitor cells, Breunig et al.
show that in addition to playing a role in proliferation and dif-
ferentiation, Notch1 is also important for dendritic arborization
of newborn neurons (Breunig et al., 2007). Recent evidence indi-
cates that non-canonical Notch signaling recruits the Trio-Rac1
(GEF-GTPase) complex for axon guidance in drosophila motor
neurons, indicating that non-canonical Notch signaling may be
specifically involved in neurite development via modulation of
small Rho GTPase activity as compared to canonical Notch signal-
ing (Song and Giniger, 2011). Although it has been hypothesized
that Rho GTPase signaling likely mediates the effects of canonical
Notch signaling on neurite growth, this remains to be confirmed
(Redmond and Ghosh, 2001).

INTERMEDIATE SIGNAL REGULATORS
Recently, other intermediate signaling molecules such as
Disrupted in schizophrenia 1 (DISC1) and Cyclin-dependent
kinase 5 (Cdk5) were found to regulate the maturation of adult
born neurons (Wu et al., 2013). In a hallmark study, Duan et al.
found that cell-autonomous downregulation of DISC1 accel-
erated morphological maturation and aberrant integration of
newborn neurons in the adult hippocampus. Their study revealed
DISC1 to be a key regulator in maintaining the pace of mat-
uration and integration of adult-born neurons (Duan et al.,
2007). Following this study, several other groups found DISC1
to also play important roles in other aspects of neuronal mat-
uration, such as axonal targeting, cell-cell/cell-matrix adhesion,
and neurite outgrowth (Hattori et al., 2010; Kvajo et al., 2011).
Interestingly, DISC1 has also recently been shown to be down-
stream of regulators previously shown to regulate neuronal mat-
uration, for example, NMDARs (Namba et al., 2011; Wu et al.,
2013). Despite the relatively recent discovery of DISC1’s role in

newborn neuron maturation, some studies have reported Rac1 to
be specifically downstream of DISC1 in regulating neuronal mat-
uration. A study in primary neurons in vitro found that DISC1
anchors the Rac1-GEF Kalirin-7 to the postsynaptic density, and
regulates local Rac1 activity and spine morphology downstream
of NMDAR activation (Hayashi-Takagi et al., 2010). Another
study, using a heterologous DISC1 transgenic system in C. elegans
motor neurons, found DISC1-mutant neurons to have abnormal
axonal morphology, phenocopying Rac1-mutant defects. Further,
it was found that DISC1 directly interacts with the Rac1 GEF,
Trio, promoting Rac1 recruitment, suggesting that the observed
axonal defects are likely due to impaired downstream Rac1 signal-
ing (Chen et al., 2011). Additional studies are required to precisely
characterize the role of small GTPases downstream of DISC1
in regulating neuronal maturation of adult-born hippocampal
neurons.

Cdk5 has been shown to phosphorylate a number of neu-
ronal proteins specifically involved in neuronal migration and
synaptic plasticity (Jessberger et al., 2009; Lopes and Agostinho,
2011). A number of GEFs and small Rho GTPase effectors such
as Ephexin1 (Fu et al., 2007), Ras Guanine nucleotide release
factors 1 and 2 (Kesavapany et al., 2004, 2006), and Wave1
(Kim et al., 2006; Cheung and Ip, 2007) have been shown to be
phosphorylated by Cdk5. In the context of adult hippocampal
neurogenesis, Cdk5 appears to regulate adult neurogenesis, both
in a cell-autonomous and non-cell-autonomous way. Retrovirus
mediated overexpression of dominant negative Cdk5 leads to
aberrant dendritic targeting and impaired spine maturation in
a significant fraction of targeted adult-born hippocampal neu-
rons, suggesting an intrinsic role for Cdk5 in neuronal matura-
tion (Jessberger et al., 2008; Tobias et al., 2009). On the other
hand, conditional deletion of Cdk5 in the NSPC population
affected survival of immature neurons, an effect phenocopied in
mice lacking the activating cofactor p35 (Lagace et al., 2008).
This is particularly interesting because the p35/Cdk5 complex
has been shown to be present at the growth cone, where it
directly associates with Rac1, hyperphosphorylating its effec-
tor Pak1 kinase, resulting in an attenuation of Rac1 signaling
(Nikolic et al., 1998). Interestingly, a recent study has placed
Cdk5 downstream of BDNF in dendritic spines, in vitro, by show-
ing that TrkB phosphorylation at specific serine residues (S478)
is Cdk5 dependent. This phosphorylation of TrkB at S478 reg-
ulates its interaction with Rac1-GEF TIAM1, and downstream
Rac1 activation (Lai et al., 2012). These results suggest that small
Rho GTPases are downstream of Cdk5 signaling, and that Cdk5
may have distinct roles in adult neurogenesis via the differen-
tial recruitment of specific GEFs and GAPs. Taken together, data
from these studies indicate strong links between DISC1, Cdk5,
and Rac1 signaling in modulating neurite outgrowth dynam-
ics in vitro, allowing us to speculate about such interactions
in vivo.

MECHANISMS FOR SIGNAL CONVERGENCE IN ADULT-BORN
HIPPOCAMPAL NEURONS
Research over the last two decades has given us a large amount
of information regarding the molecular mediators downstream
of diverse cellular inputs. We now understand how an upstream
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activator may have diverse effects on cellular behavior by
recruiting multiple signaling cascades. In the context of matu-
ration and integration of adult-born neurons, cellular behaviors
such as neurite and spine growth are readouts, used as indica-
tors of the state in which the cell is, as well as key endpoints with
functional relevance. Neurite outgrowth and spine morphogene-
sis, at their core, are regulated by subcellular events leading to the
stabilization, extension, or collapse of local cytoskeletal elements.
Therefore, despite simultaneous activation of multiple signaling
pathways, decisions of actual neurite growth or retraction are
consequences of single subcellular events via modulation of local
microtubules or actin filaments. In vivo, newborn neurons receive
diverse input, each of which may simultaneously activate different
pathways that can “instruct” neurite growth or neurite retrac-
tion. However, given the limited number of potential outcomes
in neurite dynamics (i.e., either growth, stability, or collapse),
we hypothesize that there must be mechanisms that allow for
the convergence of multiple pathways leading to a single decision
resulting in either neurite extension, stabilization, or collapse at a
given time.

Studies exploring different signaling pathways have revealed
how the bifurcation or divergence of signals via diverse signal-
ing cascades enables different cellular responses to the same input,
but it remains unclear how convergence of pathways might be tak-
ing place. One possible mechanism for signal convergence could
be that following the peak of signal divergence some signaling
cascades “funnel-in” by having fewer and fewer downstream tar-
gets until they directly influence cell neurite growth. For example,
pathways such as mitogen-activated protein (MAP) kinase and
CREB are common targets of many upstream regulators and have
been hypothesized to act as signal integrators for certain cellular
processes (Wagner and Nebreda, 2009; Merz et al., 2011). Given
that an upstream input can recruit different signaling entities and
the fact that there are limited context-specific cellular responses
that can occur, there exists a dichotomy between high signal
divergence initially followed by signal convergence, resulting in
a single cellular event. Spatial and temporal segregation of sig-
naling cascades obviously enables such divergence to take place.
On the same note, spatial and temporal segregation can also facil-
itate convergence by promoting interaction of pathways within
designated spatial and temporal contexts, for example at the
post-synaptic density (Sheng and Kim, 2011). Similar concepts
of signal convergence for pathways involving insulin, DAG/PKC,
TGF-beta/BMP, G-proteins Gz/Gi have been previously discussed
(Ho and Wong, 2001; Yang and Kazanietz, 2003; Taniguchi et al.,
2006).

Central decision-making moieties are another mechanism
through which signal convergence may occur. Among others,

small Rho GTPases, due to their switch-like nature may serve
to function as decision-making entities, for modulating neurite
growth or collapse. As they are known to be downstream of a
variety of activators, we further speculate that multiple upstream
signals impinge upon the small Rho GTPases leading to decisive
events shaping neurite and spine architecture. A way by which
Rho GTPases may be assimilating upstream signal is by setting an
activation (GTP-bound GTPase) threshold for upstream signal-
ing. Further, regulating the concentration and regional availabil-
ity of Rho GTPases may additionally enable localized assimilation
of upstream signal. Sufficient input regulating the Rho GTPases’
activity may come from multiple upstream pathways, where the
Rho GTPases may be facilitating detection of coincident upstream
input. Whether or not this is actually the case in maturation of
newborn neurons remains to be resolved.

Clearly, the small Rho GTPases Cdc42, Rac1, and RhoA have
functional ties with intrinsic regulators of neuronal maturation.
Given their switch-like nature and a large repertoire of GEFs and
GAPs regulating their state, it is likely that they are among the
“decision-making” moieties via which diverse upstream regula-
tors maybe decisively influencing neuronal architecture in the
adult brain. So far, a majority of studies exploring the role of
signaling molecules on neuronal function have utilized knock-
down or overexpression models, in vitro and in vivo. While
these approaches have generated valuable information about the
basic roles of the Rho GTPases, their dispensability (knockout
or dominant-negative constructs), and/or maximum functional
capacity (overexpression or constitutively active constructs), we
may have missed the nuanced roles of these signaling pathways
of these signaling pathways under physiological conditions in
neurons. Understanding whether such convergence indeed plays
a role in signal transduction leading to decisive cellular events
would minimally require experiments investigating activation of
endogenous small GTPases, in real time, in vivo. This would pro-
vide us with significant insights into the physiological roles of
these molecules and the decisive influence of regulatory path-
ways in mediating specific cellular behavior in the context of adult
hippocampal neurogenesis.
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