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Long-term synaptic plasticity is fundamental to learning and network function. It has
been studied under various induction protocols and depends on firing rates, membrane
voltage, and precise timing of action potentials. These protocols show different facets of
a common underlying mechanism but they are mostly modeled as distinct phenomena.
Here, we show that all of these different dependencies can be explained from a
single computational principle. The objective is a sparse distribution of excitatory
synaptic strength, which may help to reduce metabolic costs associated with synaptic
transmission. Based on this objective we derive a stochastic gradient ascent learning
rule which is of differential-Hebbian type. It is formulated in biophysical quantities and
can be related to current mechanistic theories of synaptic plasticity. The learning rule
accounts for experimental findings from all major induction protocols and explains a
classic phenomenon of metaplasticity. Furthermore, our model predicts the existence of
metaplasticity for spike-timing-dependent plasticity Thus, we provide a theory of long-term
synaptic plasticity that unifies different induction protocols and provides a connection
between functional and mechanistic levels of description.
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INTRODUCTION
Synaptic long-term plasticity, the bidirectional modification of
synaptic strength, has a complex dependence on various fac-
tors. Among them are direct factors such as correlated pre- and
postsynaptic firing rates (Bliss and Lømo, 1973), postsynaptic
membrane potential (Artola et al., 1990; Artola and Singer, 1993;
Ngezahayo et al., 2000), precise timing of pre- and postsynaptic
spikes (Gerstner et al., 1996; Markram, 1997), repetition fre-
quency of such timing (Sjöström et al., 2001), synaptic location
(Froemke et al., 2005; Sjöström and Häusser, 2006), as well as
indirect (or meta-) factors such as previous postsynaptic activ-
ity (Bienenstock et al., 1982; Wang and Wagner, 1999) and initial
synaptic strength (Ngezahayo et al., 2000).

Theories and models for many of these factors (especially
the timing-dependence) have been studied on different levels
of abstractions including biophysical (Lisman, 1989; Artola and
Singer, 1993; Shouval et al., 2002), phenomenological (Pfister
and Gerstner, 2006; Clopath and Gerstner, 2010; El Boustani
et al., 2012), and functional (Toyoizumi et al., 2005; Sprekeler
et al., 2007; Pool and Mato, 2011). Nevertheless, synaptic long-
term plasticity is induced by a complex molecular machinery.
Depending on the experimental protocol we are only probing dif-
ferent facets of this process. But so far, most theories only address
a specific induction protocol and none of the existing theories
bridges the gap between the biophysical and the functional level.

Here, we present a unifying theory that describes long-term
synaptic plasticity from a single objective function based on
sparseness. We propose that the primary goal of synaptic long-
term plasticity is a sparse distribution of synaptic strength and
that synaptic changes induced by STDP and other induction

protocols can be understood as a consequence of this objec-
tive. The synaptic learning rule resulting from this functional
goal is formulated in biophysical quantities and relies only on
local quantities. It reproduces results from spike-timing-, rate-,
and voltage-dependent induction protocols and even metaplas-
ticity, thus providing a unifying account of synaptic long-term
plasticity.

While it has been known for years that the distribution of
excitatory synaptic strengths is highly skewed (Song et al., 2005;
Loewenstein et al., 2011) and that models of STDP can produce
such distributions (van Rossum et al., 2000; Leen and Friel, 2012;
Zheng et al., 2013), here we postulate sparseness as the objective
of long-term plasticity. We argue that this is beneficial because
it reduces metabolic costs and increases coding efficiency. Our
approach suggests that sparseness may play an even more impor-
tant role for neural coding than previously thought (Olshausen
and Field, 1996; Hromádka et al., 2008).

MODEL
This work rests on the hypothesis that synaptic long-term plas-
ticity is actively maximizing the sparseness of the distribution of
synaptic efficacies. While this goal appears rather simple, achiev-
ing it is not trivial because a single synapse is severely constrained
by its computational abilities and what signals are locally avail-
able. The aim is a local, computationally simple, and biologically
plausible learning rule which explains the experimental data
and is consistent with current mechanistic accounts of synaptic
plasticity. To derive such a plasticity rule, constraints and approx-
imations have to be considered which the synapse might be using.
In the following, the assumptions and the main idea for the
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derivation is sketched, while more details can be found in the
Methods section and the Appendix.

PROXY AND SPARSENESS MEASURE
The goal is a plasticity rule which, when applied locally at every
synapse, increases the sparseness of the overall distribution of
synaptic efficacies. This requires every single synapse to have
a way of estimating this sparseness without having knowledge
about the full distribution itself. It needs a proxy to gather infor-
mation about the strengths of other synapses. The derivations in
this work will be built on a simple, but reasonable candidate: the
membrane potential u. The idea is that the membrane poten-
tial can provide the required information throughout the whole
dendritic tree. Furthermore, sparseness measures like skewness
and excess kurtosis for the distribution of synaptic efficacies can
be assumed to be approximately linear in these measures for the
membrane potential as argued in the next section.

We assume that the limited computational capacity provided
by the biophysical mechanisms in the neuron is not sufficient
to directly compute the complex dependence of the membrane
potential distribution on the synaptic inputs. A simple approxi-
mation in terms of a first order expansion of the voltage dynamics
makes the dependence explicit. The time course of the membrane
potential is assumed to be linear with additive Gaussian channel
noise (Steinmetz et al., 2000) over a short time period δ. Thus, we
assume a Wiener process Xδ with a drift term u̇(t0) and the noise
strength σ:

u(t0 + δ) ≈ u(t0) + u̇(t0)δ + σXδ. (1)

The conditional probability density over this time interval is
found to be Gaussian as

pδ(u|t0 + t) = N (
u; μ(t), σ2t

)
, (2)

with μ(t) = u(t0) + tu̇(t0). Apart from voltage-gated ion chan-
nels and passive conductances, the velocity of the membrane
potential u̇ depends linearly on the total synaptic current and
thereby on the distribution of synaptic weights.

Next, the measure for the sparseness needs to be specified.
Straightforward choices are the statistical measures of skewness S
or kurtosis K, which are frequently used in learning algorithms
such as independent component analysis (Hyvärinen and Oja,
2000). They have also been used to derive a BCM-type of learn-
ing rule (Blais et al., 1998). In our approach, both measures lead
to a very similar learning rule. We will focus on skewness in
the following. To calculate these measures the probability density
function, or at least its moments, need to be estimated.

SKEWNESS RELATION BETWEEN MEMBRANE POTENTIAL AND
SYNAPTIC EFFICACIES
Given the proxy variable u, we will argue that, in a rough approx-
imation, the skewness of the membrane potential is proportional
to the skewness of the synaptic efficacies. The objective, thus,
reduces to maximizing the skewness of the membrane potential.

Comparing the short duration of the EPSC of about 20–100 ms
to the low average firing rate of cortical neurons, we could neglect

the finite values of the EPSCs and just describe the synapses as
active or inactive. Thus, at every instant in time a small number n
of all synapses is “active” meaning a presynaptic spike has arrived.
The total synaptic current can be compared to the sum of synaptic
efficacies as Itot ∼ ∑

k ∈ active wk.
By neglecting correlations between different inputs, the total

synaptic current becomes equivalent to the sum of iid samples wk

drawn from the distribution of synaptic efficacies W .
For a given state in phase space (u, u̇), the distribution of

the membrane potential depends only on the weights wk of the
“active” inputs due to the first-order expansion in (1). It follows
from basic statistics that the skewness of the membrane poten-
tial is linear in the skewness of W , since the strengths wk can be
regarded as iid samples from W . In the long-term average, the
skewness values are related as Su ∝ SW√

n
. Here, n is the average

number of simultaneously active inputs.
Thus, in order to maximize the sparseness of synaptic strength,

the aim of the learning rule at each synapse is to maximize the
skewness of the membrane potential which is taken as a proxy.
It is defined as the third normalized moment of the mean-free
membrane potential û = u − ū:

Su =
〈
û3

〉
〈
û2

〉3/2
. (3)

STOCHASTIC GRADIENT ASCENT AND MOMENTS
The objective function in form of the skewness is maximized via
gradient ascent. That means, the derivative of the objective with
respect to the synaptic efficacy is used in the learning rule:

ẇ ∝ ∂Su

∂w
(4)

The weight follows this gradient and evolves such that the skew-
ness increases.

Using the full expression of the skewness has two implausi-
ble requirements: first, the synapse needs to store information
about the membrane potential distribution across time and sec-
ond, it must perform the derivative on this complex expression.
A stochastic gradient ascent avoids both problems. Here, the
synapse does not estimate the distribution and expectation val-
ues of u over an extended period of time. Rather, the expectation
values are calculated for a very short time interval δ during which
we can linearize the dynamics [see Equation (1)].

The weight follows the gradient of a stochastic instantaneous
“sample” of the skewness:

S∗
u =

〈
û3

〉
δ〈

û2
〉3/2
δ

. (5)

On a short time scale, the weight will fluctuate seemingly at ran-
dom while it performs an optimization very local in time. The
synapse approximates the complex and unkown skewness land-
scape and follows the gradient of this approximation. On a longer
time scale these flucuations average to an overall change which
optimizes the full skewness expression. However, this greedy opti-
mization can potentially get stuck in local optima. Thus, with
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the introduction of a proxy and the optimization via a stochastic
gradient ascent, the original problem of skewness maximization
for the weight distribution has been converted from being global
in time and space to a learning rule being local in time and
space.

The skewness is measured relative to the mean membrane
potential ū which defines the reference point for the distribu-
tion and its moments. The requirement for the stochastic gradient
ascent to converge is that ū is not averaged within each “sample”
bin. It needs to be estimated over a longer period of time:

ū = 〈u〉τū 
 δ . (6)

This long-term averaging of ū is important. We will take ū to be a
low-pass filtered version of the voltage dynamics and compute it
via an exponentially weighted average:

∂ ū

∂t
= u − ū

τū
. (7)

To summarize the introduced approximations: the sparseness of
the distribution of synaptic efficacies, measured with the normal-
ized higher-order moment of skewness, is estimated using the
membrane potential as a proxy. For biological plausibility, the
sparseness of the membrane potential is maximized in a compu-
tationally simple way by applying a stochastic gradient ascent. The
stochastic “samples” are averaged over a very small time interval
during which the dynamics of the voltage can be approximated by
a first-order expansion. The mean membrane potential, however,
is averaged over an extended time period.

Calculating the “sample” skewness from (5) amounts to evalu-
ating the moments of the proxy variable over δ. The moments of
the mean-free membrane potential û = u − ū can be done ana-
lytically due to the Wiener approximation from (2). The n-th
moment is found as:

〈
ûn〉

δ
=

∫
du

1

δ

∫ δ

0
dt p(u|t + t0) (u − ū)n

= 1

δ

∫ δ

0
dt

∫
du p(u|t + t0) (u − ū)n

= 1

δ

∫ δ

0
dt

∫
du N (

u; μ(t) − ū, σ2t
)

un

︸ ︷︷ ︸
=Mn

, (8)

where Mn is just the n-th raw moment of a Gaussian, since the
order of integration can be interchanged according to Fubini’s
theorem. The moments

〈
ûn

〉
δ

follow as

〈
û2〉

δ
= û2 + 1

2

(
σ2 + 2ûu̇

)
δ + 1

3
u̇2δ2 (9)

〈
û3〉

δ
= û3 + 3

2

(
ûσ2 + û2u̇

)
δ + (

u̇σ2 + ûu̇2) δ2 + O (
δ3) (10)

〈
û4〉

δ
= û4 + (

3û2σ2 + 2û3u̇
)
δ + (

σ4 + 4ûu̇σ2 + 2û2u̇2) δ2

+ O (
δ3) . (11)

LEARNING RULE
The synaptic efficacy (or weight) w is a single number character-
izing the strength of the synapse. It is the result of a combina-
tion of different factors, e.g., released neurotransmitter, number
of receptors, and single channel conductance of the receptors.
Thus, the weight is a function of different factors xi: w =
w(x1, . . . , xm). These are the final variables inducing plasticity
which, in order to maximize the skewness, follow the differential
equation

ẋi := ηi
∂S∗

u

∂xi
(12)

= ηi
∂w

∂xi

∂ u̇

∂w

∂S∗
u

∂ u̇
, (13)

with learning rates ηi. The gradient decomposes into three terms
since the skewness only depends on u̇ which depends on w which
in turn depends on xi.

The first term
∂w
∂xi

depends on how the weight and its regulating mecha-
nisms/variables are modeled. We will restrict ourselves to the
common postsynaptic factors of number and single channel con-
ductance of the receptors. For a glutamatergic synapse, there are
two main types R of receptors (NMDA and AMPA) each having
an average maximal single channel conductance gR and a total
number NR. The synaptic current of a given receptor type R is
given by

IR(t) = NR gR︸ ︷︷ ︸
wR

g R
0 (t) (ER − u)︸ ︷︷ ︸

I(0)
R (t)

, (14)

with the resulting weight wR, the normalized current of a single

receptor I(0)
R (t) and the reversal potential ER.

Each quantity will be optimized simultaneously with individ-
ual learning rates:

ṄR := ηN
∂wR

∂NR

∂ u̇

∂wR

∂S∗
u

∂ u̇
= ηN gR � (15)

ġR := ηg
∂wR

∂gR

∂ u̇

∂wR

∂S∗
u

∂ u̇
= ηgNR � (16)

The common expression � = ∂ u̇
∂w

∂S∗
u

∂ u̇ does not depend on N and
g. The coupling of the differential equations depends on the learn-
ing rates ηg and ηN . They determine the behavior of the weight
change

ẇR = gRṄR + NRġR. (17)

Here, the learning rates in all simulations were set such that the
weight change was multiplicative:

ẇR = 2
√

ηgηN wR�. (18)

An additive learning rule can be obtained with a different set-
ting of the learning rates but leads to qualitatively similar results.
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The derivations for the dependence of wR on the learning rates
is described in the Methods: Derivation of the learning rule in
Appendix.

The second term
∂ u̇
∂w is simply linear in the input current for a standard
conductance-based neuron model. The derivative of the mem-
brane potential depends linearly on the synaptic current

Isyn(t) = ∑
R wRI(0)

R (t) and thus

∂ u̇

∂wR
= I(0)

R (t)

C
, (19)

where I(0)
R (t) is the single channel current through a receptor of

type R and C is the membrane capacitance. While the current

through a single channel I(0)
R is a quantity that can not be deter-

mined by a synapse, the overall plasticity rule depends on the total
synaptic current for the multiplicative case from (18).

The third term
Establishes the connection to the sparseness measure and is there-
fore the one which is fundamental to the approach. Using the
identities from (9) to (11), we take the derivative of S∗

u with
respect to u̇ and expand in orders of the small time interval δ:

∂S∗
u

∂ u̇
∝

( 1
4 u̇û − 1

2σ2
) ∣∣û3

∣∣ + O (δ)

û6 + O (δ)
δ2. (20)

All terms in S∗
u which are of order δ0 do not depend on u̇ and

the terms of order δ1 cancel out exactly. Thus, we are left only
with terms of order δ2 or higher. The overall factor δ2 can be
absorbed into the learning rate and will be neglected. For û → 0
the higher-order terms in δ can not be neglected. Instead of using
the full gradient expression, we introduced a simple regulariza-
tion parameter γ. It is a constant phenomenological parameter
which represents the higher-order terms and thereby prevents the
expression from diverging:

∂S∗
u

∂ u̇
≈ 1

4

(
u̇û − 2σ2

) ∣∣û3
∣∣

û6 + γ6
δ2 (21)

û 
 γ−→ 1

4

u̇û − 2σ2∣∣û3
∣∣ δ2. (22)

DIFFERENTIAL HEBBIAN LEARNING
The final plasticity rule with all three terms combined, for skew-
ness as the objective function, is

ẇR := η
1

4

IR(t)

C

(
u̇û − 2σ2

) ∣∣û3
∣∣

û6 + γ6
. (23)

Using kurtosis as the sparseness measure results in the similar
expression

ẇR := η
2

3

IR(t)

C

(
u̇û − 1.5σ2

)
û5

û8 + γ8
. (24)

Here, all remaining constant factors and parameters were com-
bined into one parameter: the learning rate η = 2

√
ηgηN δ2 now

has the dimension of seconds.
The differential equations exhibit a strongly non-linear depen-

dence on the mean-free membrane potential û. In both cases the
functional form of this dependence is similar. If û is very small, the
noise parameter σ dominates the numerator and the expression
is negative. For a positive u̇, the numerator will be zero for some
intermediate value of û and become positive for larger values. The
whole expression, dominated by the denominator, approaches
zero again for sufficiently large depolarizations. This dependence
of the plasticity on the membrane potential resembles the exper-
imental findings on voltage-dependent plasticity as we will show
in the next section.

The other important functional dependence is on the corre-
lation between the time derivative of the membrane potential
u̇ and the synaptic input current IR. Neglecting the small noise
parameter σ, the plasticity rule is proportional to their product as

ẇR ∝ u̇IR. (25)

Thus, it belongs to the class of so-called differential Hebbian rules
where the weight change depends on the correlation between
presynaptic activity and the derivative of postsynaptic activity
(Kosko, 1986).

RESULTS
WEIGHT DISTRIBUTION AND SKEWNESS
The learning rule was derived from the goal of maximizing skew-
ness. Therefore, we assessed the effect of the learning rule on the
distribution of synaptic weights and its skewness. 100 synapses
located at 200 μm from the soma received independent presy-
naptic Poisson spike trains at 3 Hz. The weight distribution was
estimated over the population of 100 synapses for several trials. In
each trial every synaptic efficacy was initially set to w0 = 0.16 mV
and new random spike trains were sampled over the given dura-
tion (see Figure 1). Since we did not employ any saturation effects
or hard bounds, some synapses grew strong enough to trigger
a postsynaptic spike. This spike strongly biased the measured
strength of these synapses (see Methods). We, therefore, excluded
all synapses with a strength larger than 10 mV from our skewness
analysis to remove these non-linear effects.

The simulations were done with our standard multiplica-
tive weight change and also for the additive weight change (see
Methods and Appendix). The reason for this was that any mul-
tiplicative weight change following some distribution ultimately
leads to a lognormal distribution according to the central limit
theorem and Gibrat’s law. And such a lognormal distribution will
always exhibit a positive skewness. Thus, the effect of the learning
rule might not be distinguishable from random weight changes.
On the other hand, for an additive random weight change fol-
lowing some distribution the synaptic efficacies would become
Gaussian due to the central limit theorem. A lognormal distri-
bution even for additive changes shows that the objective of an
increased skewness is actually achieved by the learning rule.

Figure 1 shows the cumulative density function of synaptic
weights for two different simulation durations (T = 30 s, 300 s)
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FIGURE 1 | Cumulative density function of synaptic weights for

additive and multiplicative learning rule. The weights for the 100
synapses are initialized at w0 = 0.16 mV and shown for two different
simulation durations (upper and lower panel). The cumulative densities for
multiplicative and additive weight changes are fitted with a lognormal
(straight and dashed line). Additionally, a Gaussian (dotted line) is fitted to
the additive weight changes.

in log-scale. The cumulative density function, rather than the
probability density function, was chosen to eliminate statistical
problems with the choice of the histogram bin sizes. The weights
from the multiplicative learning rule are well fitted by a lognormal
distribution for both durations as expected. But also the additive
learning rule leads to a cumulative density function which fol-
lows a lognormal distribution. For the short simulation of 30 s
(upper panel) the Gaussian fit is only slightly worse in terms of
the root mean square of the residuals (RMSR) (RMSRlognormal =
0.0209, RMSRGaussian = 0.0238), but it becomes worse as the
weight change progresses. The weights at 300 s show a slight
deviation from the lognormal cumulative density function at
low values while the Gaussian does not fit the data very well
(RMSRlognormal = 0.0227, RMSRGaussian = 0.0814).

Figure 2 shows the skewness of the weight distribution as a
function of simulation duration. Both types of learning rules
show an increase of skewness from the initial delta peak, which
is not skewed, to values of around 4 after 5 min of simulation.
These values are comparable to the value of 5.2 extracted from a
lognormal fit to experimental data (Song et al., 2005).

STDP: SPIKE PAIRINGS
We tested if our approach can explain the basic phenomenon
of STDP. The main protocol for studying STDP is by pairing
pre- and postsynaptic action potentials at different time delays
� at low repetition frequency. For a negative delay the postsy-
naptic spike precedes the presynaptic spike (post-pre) and for

FIGURE 2 | Skewness of the synaptic weight distribution over

simulation duration. The horizontal dashed lines correspond to the value
calculated from a lognormal fit to experimental data (Song et al., 2005).
Results shown are calculated for one population of 100 synapses with the
mean and variance of skewness averaged over several trials.

FIGURE 3 | Relative change of the synaptic strength in an STDP pairing

protocol. The experimental data (Bi and Poo, 1998; Zhang et al., 1998)
(triangles) show LTD for post-pre pairs and LTP for pre-post pairs with
delays up to 30–40 ms. The results of our model are shown for two different
synaptic locations on the apical dendrite: 200 μm (solid line) and 400 μm
(dashed line) from the soma. The timescale of the LTD window increases
with distance while the LTP window shows no dependence on the location.

a positive delay the order is reversed (pre-post). We simulated
7 spike pairings at 1 Hz for two different synapses at 200 μm
(wAMPA = 200 pS) and 400 μm (wAMPA = 250 pS) distance from
the soma. The results were in good agreement with the experi-
mental data (Bi and Poo, 1998; Zhang et al., 1998) apart from the
LTP at very short delays, which is predicted too strong (Figure 3).

It should be noted that the 7 spike pairings we have used are
not comparable to the more than 50 pairings which are usually
required in experiments to achieve these amounts of plasticity.
One possible explanation is the learning rate which we kept con-
stant for all simulations in this manuscript in order to make
consistent comparisons. But one could consider different learning
rates for different cell types which would lead to different num-
ber of spike pairings required. However, the question how many
pairings are required is not unimportant. On the one hand, using
more spike pairings would lead to much more plasticity in our
simulations, which would be problematic especially for very short
delays. On the other hand, it is also questionable that plasticity
can be generated with such few pairings applied. For these cases
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to be handled realistically we would need more detailed mecha-
nisms for the expression and maintenance of plasticity which we
did not include so far.

Interestingly, the STDP window depended on the synaptic
location. This is related to the broadening of the backpropagat-
ing action potential (bAP) along the dendritic tree. The change
in the timescale of the bAP decay affects the interaction of
post-pre pairs. The width of the LTD window in our model is
therefore increasing with distance from the soma, while the LTP
window is relatively independent of the synaptic location. We
show this by way of example for two synapses at 200 μm and
400 μm (Figure 3). This feature of our model was also found
experimentally (Froemke et al., 2005).

STDP: FREQUENCY DEPENDENCE
The standard STDP protocol consists of spike pairings repeated
at low frequencies. Increasing this repetition frequency leads to
interactions between spikes of different pairs. The LTP and LTD of
these pairings do not add linearly as shown by experimental find-
ings (Sjöström et al., 2001). Figure 4 shows our simulation results
for 100 pairings at positive (+10ms) and negative (−10ms) delays
as a function of the repetition frequency compared to the exper-
imental data. The modeled synapse was located proximally at
150 μm and only contained NMDA receptors (wAMPA = 0 pS).
This is comparable to the experimental conditions where the
measured excitatory postsynaptic potential only showed one slow
component with decay times of about 50 ms (Sjöström et al.,
2001). At low frequencies below 5 Hz, the model predicted LTD
for negative pairings but hardly any LTP for positive pairings.

The vanishing LTP at low pairing frequencies might seem to
be in conflict to the results of Figure 3, but we retrieved the miss-
ing LTP with more distal synapses containing AMPA receptors.
Interestingly, this is in line with results from Pawlak and Kerr
(2008) showing a non-zero LTP for very low pairing frequen-
cies (< 0.1 Hz). Their results were based on synapses containing

FIGURE 4 | Increasing the repetition frequency of the STDP pairing

leads to non-linear effects. Delays were fixed at +10 ms (squares and
solid line) or −10 ms (triangles and dashed line). The experimental data
(Sjöström et al., 2001) show LTP for pre-post at low frequencies up to 20 Hz
which increases with frequency, while post-pre pairing leads to LTD with
roughly constant amplitude. At frequencies above 30 Hz LTP for pre-post
starts to saturate, but post-pre pairings exhibit a crossover from LTD to LTP.
At 50 Hz both result in strong LTP, since pre-post and post-pre protocols
become equivalent for � = ±10 ms.

mainly AMPA receptors as demonstrated by the AMPA/kainate
blocker CNQX, as compared to the setup by Sjöström et al. (2001)
with a dominant NMDA contribution to the EPSC.

LTP for positive pairings increased with frequency and the LTD
for negative pairings was converted to LTP for frequencies above
30 Hz. At 50 Hz, where both protocols became equivalent, robust
LTP was predicted by the model matching the experimental data
(Sjöström et al., 2001) (Figure 4). Thus, our model can account
for the non-linear integration of LTP and LTD when looking
beyond isolated spike pairs.

Like for the standard STDP protocol, we observed a depen-
dence on the synaptic location for this frequency-dependent
STDP protocol. The robust potentiation at 50 Hz for ±10 ms pair-
ings was only measured at proximal synapses. It converted to
a slight depression for very distal locations more than 700 μm
from the soma. We observed this LTP-LTD switch for NMDA-
only synapses as well as for synapses with a distance-dependent
increase in AMPA receptors (Figure 5). These results of our
model are qualitatively similar to experimental findings (Sjöström
and Häusser, 2006).

RATE-DEPENDENT PLASTICITY AND METAPLASTICITY
Depression and potentiation can also be induced without a con-
trolled timing of pre- and postsynaptic spikes. We simulated
this rate-dependent plasticity by independent pre- and postsy-
naptic Poisson spike trains lasting 30 s. The simulated synapse
was the same as in the STDP pairing protocol (200 μm dis-
tance from the soma with wAMPA = 200 pS). The presynaptic
frequency was fixed at 10 Hz and we probed the induced plas-
ticity as a function of the postsynaptic conditioning frequency.
Our model predicted LTD at low conditioning frequencies and
LTP above a given frequency threshold (Figure 6). Furthermore,
increasing the presynaptic frequency increased the amplitude of
the observed change in synaptic strength (not shown). These

FIGURE 5 | STDP pairings with a delay of +10 ms at 50 Hz for different

synaptic locations. Proximal synapses (<200 μm) show strong LTP. In the
case of no AMPA receptors (dashed line), the potentiation decreases with
distance starting at 200 μm and eventually converts to LTD above 700 μm.
Increasing the number of AMPA receptors with distance (solid line)
abolishes the potentiation and converts it to LTD. Proximal synapses with a
distance to the soma smaller than 200 μm were assumed to be dominated
by NMDA receptors and did not contain any AMPA receptors (see
Methods). The experimental data (triangles) show a similar switch from LTP
to LTD as a function of distance (Sjöström and Häusser, 2006).
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FIGURE 6 | Activity-dependent metaplasticity in accordance with the

BCM theory. The experimental data (Wang and Wagner, 1999) in the
control conditions (filled squares) reveal slight LTD at low conditioning
frequency (<5 Hz) and strong LTP above. After priming the postsynaptic cell
with a 100 Hz stimulus (empty squares) the LTD window becomes larger
(up to 30 Hz) and stronger (amplitude doubles). In the model the control
case (filled circles) corresponds to an average postsynaptic activity history
of 10 Hz, while in the priming case (empty circles) the neuron was
stimulated with 100 Hz for 3 s before the conditioning. Upon priming the
model displays the same leftward shift of LTD/LTP crossover point and an
increase in LTD amplitude.

results agree with the predictions of the BCM theory (Bienenstock
et al., 1982) and also fit the data of its experimental verification
(Wang and Wagner, 1999).

Another prediction of the BCM theory is the so-called meta-
plasticity, where the history of postsynaptic activity influences the
observed plasticity. To simulate an increased postsynaptic activ-
ity the cell is primed with a 100 Hz stimulus (Wang and Wagner,
1999) which we applied for 3 s prior to the conditioning. The high
postsynaptic activity increased the average membrane potential ū
at the synapse due to the bAP. This led to a larger amount of LTD
(Figure 6) as found experimentally (Wang and Wagner, 1999).
This homeostatic effect is of heterosynaptic nature, since the bAP
influences ū at all synapses.

So far, metaplasticity has only been studied for the above men-
tioned rate-dependent protocol. The level of abstraction used in
our model does not allow us to make novel predictions in a quan-
titative way. But combining STDP with a priming protocol for
metaplasticity results in a clear qualitative prediction. Our model
predicts that the width of the LTD window in an STDP proto-
col will be smaller if it is preceded by strong priming (Figure 7).
This prediction is a fundamental consequence of our learning
rule given the influence of the priming, namely raising the mean
membrane potential ū. It is also not depending on the choice
of skewness as the sparseness measure, but will be valid also for
kurtosis or any other higher moment.

VOLTAGE-DEPENDENT PLASTICITY
Finally, we tested if our model can also explain results from an
induction protocol based on clamping postsynaptic membrane
voltage. To this end, we paired a presynaptic stimulation with
postsynaptic depolarization. We clamped the soma of the post-
synaptic cell at different voltages. A distal synapse (700 μm) with
only NMDA receptors was stimulated 100 times at a frequency
of 2 Hz following the protocol from Ngezahayo et al. (2000).

FIGURE 7 | Shape of the STDP pairing window depends on history

of activity. Priming the postsynaptic cell with a 100 Hz stimulus
(dashed line) alters the amplitude of LTD and LTP slightly. Most
notably, the priming decreases the width of the LTD window by a
factor of two: LTD is not induced for post-pre pairs with delays greater
than ∼10 ms compared ∼20 ms under control conditions (solid line).

FIGURE 8 | Plasticity depends on postsynaptic depolarization.

Simulation of a distal synapse (700 μm from soma) with only NMDA
receptors. Pairing presynaptic spikes with postsynaptic voltage clamping at
the soma leads to no change for slight depolarization, LTD for intermediate
and LTP for strong depolarization (solid line). We scaled the parameter σ

linearly with the initial synaptic strength for the depressed and potentiated
synapses (see Text). Depressed synapses (dashed line) have a smaller LTD
window and potentiated synapses (dotted line) a larger one.

No change was induced when clamping the membrane voltage
around the resting potential, while low depolarization led to LTD
and higher depolarization resulted in LTP (Figure 8).

The general trend of our results is in line with experimental
findings (Artola et al., 1990; Feldman, 2000; Ngezahayo et al.,
2000). But the amount of plasticity was very sensitive to the
synaptic location. In the current formulation of our model, plas-
ticity can only be generated for synapses which are either far from
the clamping position and/or have a spine with a small isolating
neck. There, the influence of the voltage clamp is weaker and u̇
is not absolutely zero but can slightly fluctuate. Also the effect of
AMPA receptors in the synapse was quite pronounced. Increasing
the number of AMPA receptors led to more LTP (not shown).

In these voltage clamp simulations we also looked at the influ-
ence of the phenomenological parameter σ which we had taken
as fixed so far. σ was introduced to account for the influence
of noise of the voltage dynamics on its sparseness. This noise is
partially originating from the stochasticity of ion channels and
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synaptic receptors. We therefore scaled σ linearly with the synap-
tic strength. Interestingly, this homosynaptic scaling of σ had a
homeostatic effect. The LTD window of the depressed synapse
was decreased, while it increased for the potentiated synapse
(Figure 8). A similar shift in the voltage-dependent plasticity was
observed experimentally and also shown to be of homosynaptic
nature (Ngezahayo et al., 2000).

DISCUSSION
The phenomenon of synaptic long-term plasticity is driven by
a complex mechanism and the diverse experimental induction
protocols are only probing different aspects of this process.
We showed that induction of spike-timing-, rate-, and voltage-
dependent plasticity as well as metaplasticity all follow from
the single computational idea of a sparse distribution of synap-
tic strengths. Our approach has an intrinsic dependence on the
synaptic location which agrees with the experimental findings. We
therefore propose the maximization of sparseness as a central goal
of synaptic plasticity. Our model also leads to a novel prediction
of metaplasticity for STDP.

We provide a two-fold unification compared to existing mod-
els of synaptic plasticity. Detailed models (Lisman, 1989; Artola
and Singer, 1993; Shouval et al., 2002) addressing the biophysi-
cal mechanisms can not make conclusions regarding functional
goals or consequences. Previous functional models (Toyoizumi
et al., 2005; Sprekeler et al., 2007; Pool and Mato, 2011), how-
ever, can not be connected to the biophysical mechanisms, since
their learning rule is formulated in abstract ways. Also they have
only addressed one specific induction protocol, namely STDP for
spike pairs. In contrast, our functional model explains the find-
ings from different induction protocols as emerging from one
learning rule and it provides a connection to the underlying bio-
physics by proposing a concrete, biologically plausible learning
rule. Our approach bears some similiarity to the independently
developed model by Yger and Harris (2013) which also follows
the objective of increasing skewness of the membrane potential,
however, without reference to the skewness of the weight dis-
tribution. While their focus is more on unsupervised learning
in a neural network, our focus lies with a biologically tractable
learning rule and its effects in a fully morphological neuron.
In contrast to the additionally required firing rate constraint by
Yger and Harris (2013), our learning rule intrinsically contains a
homeostatic metaplasticity to regulate the activity.

WEIGHT DISTRIBUTION AND DENDRITIC PROPERTIES
We have shown that the learning rule is capable of increasing
skewness and can even reach values which are comparable to
experiments (Figure 1). However, it is not directly clear where
the skewness would saturate. On the one hand, we would require
saturation mechanisms for the synaptic weight to prevent some
weights from becoming too strong as already explained in the
results section. On the other hand, we have used a very sim-
plified setting, with only 100 synapses at equal distance from
the soma, just to verify the increase in skewness. In order to
actually assess the distribution in a realistic scenario, one would
need to have many more synapses distributed along the dendritic
tree with random initial strength. Also the input would need to

be structured instead of random and could be provided within
a network simulation. Ultimately, the setup would depend on
the neuron type and brain region one would like to simulate.
Assessing such scenarios is beyond the scope of this paper and
it is not clear what the actual distribution of synaptic strength
would look like. However, we suspect that the skewness would be
increased by our learning rule irrespective of the exact scenario.

If the increase in skewness would be a global one or if the
optimization would be carried out locally in each branch of the
dendritic tree, is an interesting question. This would depend on
the geometry and the type of the dendrite, i.e., active or passive.
For instance, considering active dendrites (London and Häusser,
2005) would affect the distance-dependent differences in synap-
tic weight: it improves the transmission of the bAP and can also
boost the input of distal synapses. Furthermore, with the genera-
tion of local or even global dendritic spikes the plasticity is far less
dependent on somatic activity and the activity in one branch of
the dendrite can influence the plasticity in connected branches.

PLASTICITY PROTOCOLS
A direct consequence of our differential-Hebbian learning rule
is the asymmetric shape of the STDP window. Under condi-
tions of an STDP protocol the time derivative of the membrane
potential u̇ will mainly depend on the bAP from the soma. Thus,
plasticity is driven by an interaction of bAP and excitatory post-
synaptic current (Markram, 1997). The location dependence of
the STDP window in our model is due to the broadening of the
bAP along the dendritic tree. For a pre-post pairing the synap-
tic current mainly coincides with the rise of the bAP where u̇ is
positive, while in the post-pre case it only overlaps with the decay
where u̇ is negative. Such differential-Hebbian learning rules for
STDP have already been proposed by Saudargiene et al. (2004).
Their model was motivated by reinforcement learning algorithms
(Kolodziejski et al., 2009), but they did not reproduce other
plasticity phenomena than STDP pairing. A purely phenomeno-
logical model by Albers et al. (2013), also based on a differential-
hebbian learning rule, is able to fit a range of experimental results
like triplets and bursting. Our approach provides a functional jus-
tification for the use of differential Hebbian rules in STDP and
reinforcement learning, since this type of learning arises naturally
from the computational goal of sparse synaptic strength.

An interesting point to speculate about are the observed anti-
Hebbian STDP windows (Fino et al., 2005; Letzkus et al., 2006)
where LTP is induced with post-pre spikes and LTD with pre-post
spikes. An obvious idea would be to propose a minimization of
the sparseness, instead of the maximization, which would intro-
duce a minus sign in the overall learning and, thereby, identically
reverse the induced plasticity. This would raise the question why
some neurons would try to optimize the opposite objective func-
tion. However, minimizing the sparseness might not be so strange
as it first seems. It would lead to a distribution where most of
the synapses are stronger and only a few would be weak. These
weak connections can be neglected leaving many synapses with a
very similar strength. Together with the homeostatic metaplastic-
ity regulating the average strength, the cell would be driven by the
equally weighted inputs of many synapses. In contrast, a cell max-
imizing the sparseness is driven by only a few very strong inputs.
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Previous models have proposed a specific triplet interaction
for STDP (Pfister and Gerstner, 2006) to explain the results for the
different repetition frequencies (Figure 4). We do not need any
additional mechanism in our model to account for these findings.
The robust LTP at high frequencies is due to different timescales of
LTP and LTD in our model. Induction of LTP is short but strong
due to the rising phase of the bAP, while induction of LTD is
weaker but develops over a longer time. Thus, LTD needs more
time to build up but its induction is cut off at high frequencies by
the bAP of the next pairing repetition. So the contributions for
potentiation will dominate the depression and effectively result
in LTP. The vanishing of LTP at low frequencies arises due to
the kinetics of the NMDA receptors. For a pre-post pairing the
synapse is near the resting potential on the arrival of the presy-
naptic spike. Then the NMDA channels are not fully relieved
from their Mg2+-block at the bAP arrival and the synaptic cur-
rent is low. At increasing frequencies the bAP from the previous
pairing will provide increasing depolarization. This will gradually
relieve the Mg2+-block and lead to stronger synaptic currents. For
a post-pre pairing on the other hand, the cell is still depolarized
from the bAP. Then the NMDA channel is already unblocked at
low frequencies.

The concept of metaplasticity from the BCM theory
(Bienenstock et al., 1982) has a direct analog in our model and
does not have to be put in explicitly. For BCM, the firing rate
threshold regulating the LTD-LTP crossover is a function of the
recent postsynaptic activation in order to maintain a homeostatic
balance. In our learning rule, the average membrane potential ū
naturally accounts for this regulation.

The induction of potentiation and depression fits qualitatively
with the results from voltage clamp experiments. But the plastic-
ity in our learning rule is linear in u̇ which is zero at the location
of the clamp. Only synapses which are sufficiently far, where the
clamp effect is weaker, can experience a visible amount of plas-
ticity. We hope that this shortcoming of our model in the current
formulation can be resolved by extending it with the calcium con-
centration as a proxy for the distribution of synaptic strength (see
Future work).

SPARSENESS OBJECTIVE
We have postulated that the goal of synaptic plasticity is the
maximization of sparseness of the synaptic weights. There exist
many different ideas regarding the advantages of sparseness and
sparse coding [see Olshausen and Field (2004) for a review].
Maybe the most appealing interpretation is in terms of energy
efficiency. The brain needs to perform its computations with a
limited energy budget. On the level of a single neuron it tries
to maximize the information transmission for some average fir-
ing rate (Attwell and Laughlin, 2001). Thus, sparse coding can
be interpreted as a mechanism for energy-efficient coding given
that the generation of action potentials is metabolically costly.
But the postsynaptic effects of a presynaptic action potential also
induce metabolic costs (Attwell and Laughlin, 2001). An exci-
tatory postsynaptic current raises the postsynaptic membrane
potential which subsequently has to be brought back to the resting
state by restoring ionic concentrations. Given a sparse distribu-
tion of synaptic strength, most synapses induce an excitatory

postsynaptic potential (EPSP) with low amplitude and low energy
consumption, while few synapses induce an EPSP with a high
amplitude and high energy consumption. The energy for synap-
tic transmission will be mainly spent in the few strong synapses,
but these have a high probability of inducing a postsynaptic
action potential. Thus, the objective of a sparse synaptic strength
leads to an energy-efficient synaptic signaling which may be an
evolutionary relevant factor.

A second relevant view on the benefits of a sparse synaptic
strength is the need for tuning and input specificity. For a neuron
to transmit relevant information, it should be tuned to specific
inputs and avoid an unspecific Gaussian distributed input. But,
according to the central limit theorem, a sum of n independent
random variables always approaches a Gaussian regardless of their
distribution as n becomes large. Interestingly, a lognormal weight
distribution slows down the convergence toward the Gaussian due
to its large skewness (see Note: Effect of sparseness on the central
limit theorem in Appendix).

There are many different possible mechanisms that could
achieve our computational goal of sparseness. Our model is a
result of the optimization via a stochastic gradient ascent, the
specific choice of the sparseness measure, and the use of the mem-
brane potential as a proxy for the synaptic weight distribution.
The stochastic gradient ascent is necessary to keep the prob-
lem computationally simple. For the sparseness measure we have
chosen skewness as a higher-order statistical moment. Similarly,
one could apply kurtosis or any higher standardized cumulant
which would result in largely similar learning rule. An interest-
ing difference between the cumulants is the dependence on the
mean-free potential û. A learning rule based on skewness (or any
odd cumulant) will be negative if û is negative, while for kurto-
sis (or any even cumulant) it does not depend on the sign of û.
Thus, in the context of metaplasticity, a learning rule based on
kurtosis does not lead to stronger depression after a 100 Hz prim-
ing. These higher-order moments are usually considered unstable
since they can be very sensitive to outliers. We believe, however,
that this is not a problem in our approach since the neuron
is a bounded dynamical system. The voltage ‘samples’ driving
the synaptic changes are continuously distributed and have no
outliers.

BIOLOGICAL REALIZATION AND FUTURE WORK
We have discussed the computational and algorithmic level of our
approach. But our learning rule can also be related to mecha-
nistic theories of synaptic plasticity. Its non-linear dependence
on the membrane potential fits with the Artola-Bröcher-Singer
(ABS) theory (Artola and Singer, 1993) and is quite comparable to
the common U-shaped � function characterizing the dependence
of synaptic changes on the intracellular calcium concentration
[Ca2+]i (Shouval et al., 2002). There, the voltage dependence of
synaptic plasticity has consistently been connected to the surge
of [Ca2+]i. In this so-called calcium control hypothesis (Lisman,
1989) it is suggested that different levels of intracellular calcium
have opposing influence on the Ca2+/calmodulin-dependent pro-
tein kinase II (CaMKII). This affects synaptic strength, since
CaMKII regulates the phosphorylation level of AMPA receptors
which determines channel conductance.
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Relating the membrane potential in our learning rule with
the calcium concentration also fits with the question how the
synapse should estimate u̇. It was hypothesized that the calcium-
binding protein calmodulin, due to its kinetics, could serve as
differentiator of the intracellular calcium concentration (Rao and
Sejnowski, 2001). However, an implementation of our learning
rule might not necessarily employ a continuous time derivative
at every moment in time. A simple estimate of the correlations
between the synaptic current and the time derivative of the volt-
age (or calcium concentration) could be sufficient. In this respect,
it was shown that the amplitude of synaptic change in an STDP
protocol is strongly correlated with the initial rate of increase
of the intracellular calcium concentration over the stimulation
period (Aihara et al., 2007).

The strong dependence of our learning rule on the membrane
potential is due to the choice of u as a proxy to estimate the synap-
tic weight distribution. It was chosen since its dependence on the
presynaptic input and the synaptic efficacies are easy to formu-
late. Given the important role of calcium in mechanistic models,
an important extension to our approach would be to take the
intracellular calcium concentration as a proxy. Formulating the
objective in this quantity would allow for a very direct connec-
tion to the established mechanistic theory of the calcium control
hypothesis. The derivation of a learning rule in this case would
involve the dependencies of the calcium concentration on presy-
naptic input, membrane potential, and release from intracellular
stores.

With the introduction of a calcium proxy, we expect new
effects to be introduced in the results since the non-homogenity
of the cytoplasmic calcium could affect the learning rule. For
example, considering calcium nanodomains we would expect that
the calcium signal would provide information about a much
smaller neighborhood of synapses instead. The skewness would
then potentially be optimizied for different regions individually
instead of for the whole dendrite. However, the main term of the
learning rule would depend on the change of the calcium con-
centration (currently change of the membrane potential), so the
effects would not depend so much on the calcium distribution
itself but rather on the spatial transmission of changes in this
distribution.

With this extension, also the dependence on NMDA and
AMPA receptor strength could be formulated more realistically.
So far we assumed that the weight change of each receptor type
only depends on its own synaptic current. But synaptic plasticity
is calcium-dependent and thus mainly mediated by NMDA recep-
tors. Normal AMPA receptors only indirectly affect the calcium
concentration due to voltage-dependent calcium channels and
the voltage-dependent magnesium block of NMDA receptors. But
also the role of calcium-permeable AMPA receptors is just emerg-
ing (Man, 2011). All of these dependencies can be incorporated
into our approach by extending it with a calcium concentration
proxy.

A second important step toward a biologically realistic model
is to take into account the actual mechanisms which contribute
to the weight change. Our approach is mainly focused on the
induction of plasticity and for its expression we have used
the simplifying assumption that the number and single-channel

conductances of the NMDA- and AMPA-type glutamate receptors
are independently adapted as continuous variables. Incorporating
realisitic expression, saturation, and maintenance of plasticity
into our approach could be done with an explicit model of the dis-
crete conductance/phosphorylation states, their transitions and
a model of receptor insertion and removal. These mechansims
could potentially account for the discrepancies in our simulations
of the STDP pairing protocol. There, the plasticity for short delays
grew too strong (requiring saturation) and the number of applied
pairings is usually not sufficient to produce long-term plasticity
in experiments (requiring some kind of threshold for expression
or maintenance).

Also spine neck geometry can influence the results of our
learning rule. A strengthened synapse would not only have a large
EPSP amplitude at the soma, but also locally in the spine head.
This leads to a stronger potentiation since the synaptic current
correlates more strongly with the local EPSP. Such a positive feed-
back could be avoided by regulating the spine neck resistance to
achieve a “standardized” EPSP in the spine head (Gulledge et al.,
2012).

Finally, it has been shown recently that the metaplasticity
threshold is actually independent of postsynaptic action poten-
tials but rather depends on calcium (Hulme et al., 2012). Since
our model in the current formulation intrinsically accounts for
BCM-like metaplasticity as a function of the mean membrane
potential, we expect that this influence of calcium be accounted
for when using the calcium proxy extension.

CONCLUSIONS
In the light of our findings, we propose that synaptic plastic-
ity is arising from the computational goal of sparse signaling.
David Marr proposed to distinguish three levels of theoreti-
cal analysis: computational goal, algorithm, and implementa-
tion (Marr, 2010). Our proposal of a sparse synaptic strength
(computational goal) leads to a differential-Hebbian learning
rule (algorithm) which can be mapped onto the biological
mechanisms (implementation), thereby, covering all three lev-
els of analysis. The principle of sparseness would then be even
more fundamental to neuronal computation than previously
assumed. Given the interpretation in terms of energy efficiency
it can be considered a fundamental factor that has shaped
the mechanisms of neuronal plasticity during nervous system
evolution.

METHODS
We used full morphological simulations in NEURON (Carnevale
and Hines, 2006). All simulations were done with a layer 5 pyra-
midal neuron (Mainen et al., 1995) provided on ModelDB (Hines
et al., 2004) (accession number 8210).

The plasticity rule depends on several parameters falling into
two categories: The phenomenological model parameters, like the
learning rate, were fixed for all experiments. The values are listed
in Table 1.

The physiological parameters comprise the morphology of the
dendritic tree, the synaptic location on this tree, the spine geom-
etry, the initial strength of the synapse, and the contributions of
the different receptors types (AMPA and NMDA) as well as their
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Table 1 | The phenomenological model parameters.

Description Symbol Value

Learning rate η 1.5 s

Regularization for ū γ 10 mV

Noise level σ2 0.036 mV2ms−1

Time constant for ū τū 30 s

Table 2 | The parameters for the conductance time course ĝ(t) of

AMPA and NMDA.

Parameter AMPA NMDA

(Spruston et al., 1995) (Kinney et al., 1994)

τr 0.55 ms 4.05 ms

τd1 2.0 ms 27.6 ms

τd1 8.0 ms 147.4 ms

λ 0.8 0.5

N 2.00 1.36

ĝ(t) = N
(
λ exp

[−t/τd1

] + (1 − λ) exp
[−t/τd2

] − exp [−t/τr ]
)

gating kinetics. Those parameters are also relevant in the exper-
imental preparations and can vary between different cell types,
brain area, etc.

The dependence of the resulting plasticity on the exact mor-
phology of the tree is beyond the scope of this work. And although
the spine geometry is found to depend on the dendritic location
(Jones and Powell, 1969; Berard et al., 1981) and influence plas-
ticity (Yuste and Bonhoeffer, 2001; Gulledge et al., 2012), it was
also taken to be fixed. The spine consisted of a neck (1 μm long,
0.1 μm thick) and the head (0.6 μm long, 0.3 μm thick) as used
by Koch and Poggio (1983).

The time course of the synaptic conductance of a single
AMPA/NMDA receptor was modeled by the sum of three expo-
nentials ĝ(t) with a normalized maximum: one exponential for
the rising phase (time constant τr), two for the decaying phase
(time constants τd1 , τd2 ), and their relative strength λ. The
parameter values are listed in Table 2.

g AMPA
0 (t) = ĝAMPA(t) (26)

g NMDA
0 (t, u) = ĝNMDA(t)

(
1 + [Mg2+]o

β
exp [−αu]

)−1

(27)

The additional term accounts for the voltage-dependent magne-
sium block of the NMDA receptor (Gabbiani et al., 1994). The
postsynaptic action potentials were elicited by current injection
of 2 mA for 3 ms at the soma.

WEIGHT AND WEIGHT CHANGE
The total synaptic conductance of a synapse was a weighted sum
of both receptor types:

gtotal(t) = wAMPAg AMPA
0 (t) + wNMDAg NMDA

0 (t) (28)

Both weights wR independently followed the differential
Equation (23) and were changed continuously. The strength of
a synapse was measured as the EPSP peak amplitude at the soma.
The increase/decrease of synaptic strength was calculated as the
relative change of this peak amplitude.

The initial value of the NMDA weight was taken to be inde-
pendent of the distance to soma with wNMDA = 500 pS. The
influence of the AMPA current on the plasticity is usually small,
since it is mainly calcium dependent. But due to the currently
simpler version of our model (membrane potential is used as a
proxy quantity instead of calcium concentration), the effect of the
AMPA current was too strong and wAMPA was adjusted to fit the
experimental data. Simulated synapses with a distance to soma
smaller than 200 μm did not contain any AMPA receptors. For all
other synapses, wAMPA was increased with the distance to soma
(Andrasfalvy and Magee, 2001) and the resulting total synaptic
strength was on the order of 0.1 − 0.2 mV (Magee and Cook,
2000). The actual weights are mentioned in the results section.
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APPENDIX
METHODS: DERIVATION OF THE LEARNING RULE
Probability distribution
Sparseness is a function of the moments of a probability distri-
bution. To calculate these moments (or expectation values) over
a time interval [t0, t0 + T] of duration T, we need the probabil-
ity pT(u = u0) that the membrane potential u takes a particular
value u0. This is just the time integral over the conditional
probability p(u|t) times the “prior” probability p(t) (which is
uniform):

pT(u) =
∫ t0 + T

t0

dt p(u|t)p(t)

= 1

T

∫ t0 + T

t0

dt p(u|t)

= 1

T

∫ T

0
dt p(u|t + t0) (A1)

In the deterministic case, we can predict u(t) given initial condi-
tions. Therefore, p(u|t + t0) = δ (u − u(t + t0)).

In a real neuron, we can not predict u(t) for all times,
but only for a very short time period. Therefore, we use a
stochastic gradient approach. In a stochastic scheme with dis-
crete time one substitutes the required expectation value by a
sample. For the continuous time dynamical system of a neu-
ron we take a sample by calculating the probability distribu-
tion in a future infinitesimal time interval [t0, t0 + δ]. Thereby,
the membrane potential can be approximated with first-order
dynamics. Assuming an additional iid Gaussian noise (which
accounts for synaptic input and the noise of ion channels) leads
us to a Wiener process including drift: u(t + t0) ≈ μ(t) + σXt

with μ(t) = u(t0) + tu̇(t0). Thus, the conditional probability
will be

pδ(u|t + t0) = N (
u; μ(t), σ2t

)
. (A2)

In the noiseless limit of σ → 0 we recover the delta distribution.

Sparseness measures
We can consider different measures for sparseness. We investi-
gate skewness S and kurtosis excess K as sparseness measure to
be maximized:

S = μ3

σ3
=

〈
û3

〉
〈
û2

〉1.5
(A3)

K = μ4

σ4
− 3 =

〈
û4

〉
〈
û2

〉2 − 3 (A4)

To compute these measures (and their derivatives) we calculate
the expectation values of the mean-free membrane potential û =
u − ū with our stochastic approximation:

〈
ûn〉

δ
=

∫
du (u − ū)n 1

δ

∫ δ

0
dt p(u|t + t0)

= 1

δ

∫ δ

0
dt

∫
du (u − ū)np(u|t + t0)

= 1

δ

∫ δ

0
dt

∫
du N (

u; μ(t) − ū, σ2t
)

un

︸ ︷︷ ︸
=Mn

(A5)

where Mn is just the n-th raw moment of a Gaussian

M2 = μ̄2 + σ2t (A6)

M3 = μ̄3 + 3μ̄σ2t (A7)

M4 = μ̄4 + 6μ̄2σ2t + 3σ4t2 (A8)

with μ̄ = μ(t) − ū. The integral can now be calculated analyti-
cally and we are able to compute the derivatives as:

∂S

∂ u̇
∝

( 1
4 u̇û − 1

2σ2
) ∣∣û3

∣∣ + O (δ)

û6 + O (δ)
≈

1
4 u̇û − 1

2σ2∣∣û3
∣∣ (A9)

∂K

∂ u̇
∝

( 2
3 u̇û − σ2

)
û5 + O (δ)

û8 + O (δ)
≈

2
3 u̇û − σ2

û3
(A10)

Mean membrane potential
For û → 0 one cannot neglect the higher-order terms in δ. Instead
of using the full gradient expression for our learning rule, we
introduce a simple regularization parameter. γ is a constant
phenomenological parameter which represents the higher-order
terms and thereby prevents the expression from diverging:

∂S

∂ u̇
≈

( 1
4 u̇û − 1

2σ2
) ∣∣û3

∣∣
û6 + γ6

(A11)

∂K

∂ u̇
≈

( 2
3 u̇û − σ2

)
û5

û8 + γ8
(A12)

Sparseness is measured with respect to the mean of the probabil-
ity distribution. In our case, it depends on the average membrane
potential ū. Due to the use of the stochastic gradient approach
the maximization of the sparseness is achieved as a long-term
average. Thus, the mean potential ū should be basically a low-
pass filtered version of the voltage dynamics. It will be vary-
ing much more slowly than the instantaneous potential and its
derivative. We compute it as an exponentially weighted average:
∂ ū
∂t = u − ū

τū
.

Weight dependence
We use standard neuronal dynamics

Cu̇ =
∑
ion

gion
(
Eion − u

) +
∑

R

IR(t).

Frontiers in Synaptic Neuroscience www.frontiersin.org March 2014 | Volume 6 | Article 3 | 14

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Krieg and Triesch Synaptic plasticity from sparse strength

The synaptic current of a given receptor type R is given by

IR(t) = NRgR︸ ︷︷ ︸
wR

g R
0 (t)

(
ER

syn − u
)

︸ ︷︷ ︸
=I(0)

R (t)

with the normalized current of a single receptor I(0)
R (t), its maxi-

mal conductance gR, and the total number of receptors NR.
We optimized both N and g simultaneously with individual

learning rates:

Ṅ = ηN
∂w

∂N

∂ u̇

∂w

∂S

∂ u̇
= ηN g� (A13)

ġ = ηg
∂w

∂g

∂ u̇

∂w

∂S

∂ u̇
= ηgN� (A14)

Here, � = ∂ u̇
∂w

∂S
∂ u̇ does not depend on N and g. Thus, we have two

coupled differential equations. One can decouple them as

Ẋ1,2 = λ1,2X1,2� (A15)

by introducing X1,2 = g√
ηg

± N√
ηN

and λ1,2 = ±√
ηgηN .

Observing that ∂(X1·X2)
∂t ≡ 0 it follows that N and g are

constrained on a hyperbola:

r2 := g2

ηg
− N2

ηN
≡ const.

With this constraint we can decouple the initial differential
equations as

Ṅ = λ�
√

N2 + ηN r2 (A16)

ġ = λ�

√
g2 − ηgr2 (A17)

with λ = λ1 = √
ηgηN . The overall synaptic strength w evolves

as

ẇ = gṄ + Nġ = λ

(√
w2 + ηN g2r2 +

√
w2 − ηgN2r2

)
�.

(A18)
The simulation results in this paper were obtained with r2 =
0. For this case the hyperbola degenerates to a linear relation-
ship between N and g and the learning rule will be purely
multiplicative

ẇ = 2λw�.

In the other extreme cases of r2 → ±∞ we only change one
variable and keep the other fixed. This leads to a purelyadditive

learning rule. For example keeping g fixed (ηg = 0) and only
updating N will lead to

ẇ = ηN g2�.

For finite values of r2 the learning rule will be multiplicative for
large w and gradually become additive for smaller w.

NOTE: EFFECT OF SPARSENESS ON THE CENTRAL LIMIT THEOREM
The central limit theorem states that the distribution of the sam-
ple mean of n i.i.d. random variables converges to a normal
distribution as n goes to infinity:

√
n

((
1

n

n∑
i = 1

Xi

)
− μ

)
d−→ N (0, σ2)

with E (X) = μ and E
[
(X − μ)2

] = Var (X) = σ2.
The Barry-Esseen theorem attempts to quantify the rate of

convergence in the central limit theorem. It provides an upper
bound on the absolute difference between � (the cdf of the stan-
dard normal distribution) and Fn (the cdf of the normalized
sample mean of the i.i.d random variables). It states that for all
x and n there exists a positive constant C such that

|Fn(x) − �(x)| ≤ Cρ

σ3
√

n

with the third absolute moment E
[|X − μ|3] = ρ < ∞.

Let us interpret the inverse of the upper bound as a conver-
gence rate

k := σ3 √
n

Cρ
.

Given a fixed number of variables, the rate can be minimized

by maximizing the ratio
ρ

σ3
or a lower bound of it. Since ρ is

the third absolute moment, a trivial lower bound for this ratio is
always the skewness S which is the third central moment divided

by σ3, i.e., S <
ρ

σ3
. But interestingly, for the log-normal dis-

tribution [which synaptic strength is observed to follow (Song

et al., 2005; Loewenstein et al., 2011)] one also finds that
ρ

σ3
<

S(1 + α) where α ∝ 1

σ3
for σ → ∞. That means, S <

ρ

σ3
<

S(1 + α) and the lower bound will become tight for sufficiently
large σ. Specifically, for a log-normal fit to experimental data
(Song et al., 2005) (X ∼ lnN (−0.702, 0.93552

)
) the bound is

already very close with α < 0.05. Thus, maximizing the skew-
ness of synaptic strength will minimize the convergence rate k.
The total synaptic current will only slowly converge to a Gaussian
distribution and remain sparse even for a large number of
inputs.
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