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In networks with small-world topology, which are characterized by a high clustering
coefficient and a short characteristic path length, information can be transmitted efficiently
and at relatively low costs. The brain is composed of small-world networks, and evolution
may have optimized brain connectivity for efficient information processing. Despite many
studies on the impact of topology on information processing in neuronal networks,
little is known about the development of network topology and the emergence of
efficient small-world networks. We investigated how a simple growth process that favors
short-range connections over long-range connections in combination with a synapse
formation rule that generates homeostasis in post-synaptic firing rates shapes neuronal
network topology. Interestingly, we found that small-world networks benefited from
homeostasis by an increase in efficiency, defined as the averaged inverse of the shortest
paths through the network. Efficiency particularly increased as small-world networks
approached the desired level of electrical activity. Ultimately, homeostatic small-world
networks became almost as efficient as random networks. The increase in efficiency
was caused by the emergent property of the homeostatic growth process that neurons
started forming more long-range connections, albeit at a low rate, when their electrical
activity was close to the homeostatic set-point. Although global network topology
continued to change when neuronal activities were around the homeostatic equilibrium,
the small-world property of the network was maintained over the entire course of
development. Our results may help understand how complex systems such as the brain
could set up an efficient network topology in a self-organizing manner. Insights from our
work may also lead to novel techniques for constructing large-scale neuronal networks by
self-organization.
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1. INTRODUCTION
The synaptic wiring of cortical networks is key to the function-
ality of the brain and a precondition for all cognitive behavior
(Park and Friston, 2013). How are synaptic connections set up
between the brain’s billions of neurons so that cost efficiency
(Latora and Marchiori, 2001), for example in terms of wiring
length or energy consumption associated with information trans-
mission, is maximized? Due to the presence of long-range con-
nectivity, the brain can be regarded as a highly efficient graph,
in the sense that information has to pass only a few intermedi-
ate neurons (“nodes”) to travel across the whole brain (Kaiser
and Hilgetag, 2006). At the same time, brain connectivity is
local and clustered (Hilgetag and Kaiser, 2004), making net-
works less vulnerable because of the many alternative routes
that exist between two nodes. Network topology that combines
these two properties, long-range connectivity and high cluster-
ing, is called small-world (Watts and Strogatz, 1998). Small-world
networks have the advantages of local connectivity combined
with a high efficiency brought about by a small number of

long-range connections (Watts and Strogatz, 1998). The brain
seems to be optimized for maximizing cost efficiency of par-
allel information processing (Achard and Bullmore, 2007) by
widely adopting small-world topology (Sporns and Zwi, 2004;
Bassett and Bullmore, 2006). Already in the infant brain, con-
nectivity has small-world characteristics (Fransson et al., 2011).
A recent fMRI study reported an increase in small-worldness of
brain networks in the first 2 years of life that goes along with a
growing number of long-distance connections and therefore an
increase in global efficiency (Gao et al., 2011). So far, analysis of
topology has focused on neuronal networks with static connec-
tivity, in which plasticity arises from changes in the strength of
existing synapses rather than from the rewiring of connectivity.
However, particularly during development but also in adult-
hood, connectivity is not fixed (Butz et al., 2009b), and synapse
formation goes along with massive synapse deletion and reorga-
nization of connectivity (Missler et al., 1993; Siegel and Lohmann,
2013). This observation triggered the question of this study: how
does network topology develop during ontogeny when synapse
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formation and pruning cause a constant rewiring of network
connectivity?

Various explanations have been proposed to account for the
development of synaptic connectivity. For example, axon guid-
ance molecules may form the basis of a genetically-encoded
developmental scheme (Yamamoto et al., 2002; Borisyuk et al.,
2008). Target neurons may secret signaling molecules that can
attract or repel axons. Axons can then follow or move away from
the concentration gradient. This form of chemotaxis is usually
discussed in the context of the formation of global connectiv-
ity. However, for the formation of local connectivity chemical
cues are less suitable, since they fail to establish stable gradients
over very short distances, below 0.7 mm (Kaiser et al., 2009).
Synaptic adhesion molecules (e.g., neuroligins) were proposed as
molecular cues for local synapse formation (Scheiffele et al., 2000;
Stan et al., 2010). In addition, mechanical forces in the tissue
could influence neurite outgrowth (Franze, 2013). Alternatively,
the formation of local connectivity may basically be random
(Braitenberg and Schüz, 1998), just depending on the acciden-
tal overlap of axons and dendrites (Binzegger et al., 2004; van
Pelt and van Ooyen, 2013; McAssey et al., 2014; van Ooyen et al.,
2014). With random synapse formation, the chance of forming
connections decreases with increasing distance between neurons
(Kaiser et al., 2009).

Although random overlap of axons and dendrites may explain
emerging connectivity, it does not account for the actual driv-
ing forces underlying neurite outgrowth. There is ample evidence
that electrical activity shapes neuronal morphology (Dalva et al.,
1994; Wong and Ghosh, 2002; Uesaka et al., 2005; Butz et al.,
2009b) and network formation (Ko et al., 2013). Electrical activ-
ity influences neurite outgrowth and retraction (McKinney et al.,
1999a; Konur and Ghosh, 2005; Lohmann and Wong, 2005; Tailby
et al., 2005; Hutchins and Kalil, 2008), as well as the formation
and deletion of axonal boutons and dendritic spines (McKinney
et al., 1999b; Groc et al., 2002; Jourdain et al., 2003; Kirov et al.,
2004; Hofer et al., 2009). Experimental findings further suggest
that neuronal morphogenesis is driven by the need of neurons to
establish and maintain a homeostatic equilibrium of their aver-
age electrical activity (Kirov et al., 2004; Keck et al., 2008, 2013).
Restoration of neuronal firing rate after a change in neuronal
input has been found experimentally after, for example, focal reti-
nal lesions (Hengen et al., 2013). Based on these experimental
findings, we postulated that whenever during development (van
Ooyen and van Pelt, 1994; Van Ooyen et al., 1995; Tetzlaff et al.,
2010) or in the mature brain (Butz et al., 2008; Butz and van
Ooyen, 2013) a neuron senses a deviation of its electrical activ-
ity from a homeostatic set-point, it will initiate changes in its
morphology that increase the chance of synapse formation or
break existing connections so that its firing rate may be restored.
Here we investigate what the impact is of neurons regulating their
electrical activities homeostatically on network formation and
emerging network topologies.

In order to study the impact of electrical activity on emerg-
ing network topology, we used our recent Model of Structural
Plasticity (MSP) (Butz and van Ooyen, 2013). There are impor-
tant earlier models of homeostatic structural plasticity, such as
the compensation model by Dammasch et al. (Dammasch et al.,

1986, 1988; Cromme and Dammasch, 1989; Butz and Teuchert-
Noodt, 2006; Butz et al., 2006) and the activity-dependent neurite
outgrowth model by van Ooyen (van Ooyen and van Pelt, 1994;
Van Ooyen et al., 1995). The latter model, which studied the
reciprocal interactions between neuronal activity and network
formation, successfully accounted for experimental data on devel-
oping cell cultures (van Ooyen and van Pelt, 1994; van Oss and
van Ooyen, 1997; Abbott and Rohrkemper, 2007; Tetzlaff et al.,
2010). However, both models are not suited for studying topol-
ogy development. The compensation model lacks topology at
all, whereas the representation of neuritic fields by circles in the
model by van Ooyen imposes too strong constraints on net-
work topology. In van Ooyen’s model, neurons always connect to
their direct neighbors before connecting to more distant neurons.
Therefore, we developed our MSP (Butz and van Ooyen, 2013),
in which we replaced the circle representation by discrete synaptic
elements whose numbers change in an activity-dependent man-
ner. Synapses are formed in a random and distance-dependent
way by combining synaptic elements from different neurons.

In MSP, the local activity-dependent growth process in com-
bination with a simple kernel function favoring the formation
of short-range connections over long-range connections shapes
the development of small-world networks. Our simulation results
revealed an interesting property of homeostatic growth: as soon
as most neurons approached homeostasis in electrical activity,
they started forming more long-range connections than expected
from the kernel function. Although the clustering coefficient
decreased as a result of the formation of long-range connections,
the network maintained its small-world property. Furthermore,
connectivity became more diverse, as indicated by a decreasing
betweenness centrality, and attained a higher global efficiency
(defined as the averaged inverse of the shortest paths between
all neurons in the network) than small-world networks with-
out homeostasis. Our findings may account for experimental
data on the topology of developing dissociated cell cultures
(Downes et al., 2012). Interesting similarities were also found
between the model and early human brain development (Gao
et al., 2011) with respect to an increasing number of long-
range connections and an increasing global efficiency during
development.

2. MATERIALS AND METHODS
2.1. NEURON MODEL
The model network consisted of n = 400 neurons, of which 80%
were excitatory and 20% inhibitory. Excitatory neurons were
placed with some jitter on a 20× 16 grid with a spatial dis-
tance between two grid points of 150 μm. Inhibitory neurons
were placed evenly between the excitatory neurons. The same net-
work layout was used as in Butz and van Ooyen (2013). We used
Izhikevich’s model (Izhikevich, 2003) to simulate neuronal elec-
trical activity. This model has two differential equations, one for
the membrane potential v (in mV) and one for a recovery variable
u (in mVms−1), enabling re-polarization after an action potential:

dv
dt = k1v2 + k2v + k3 − u+ I

du
dt = a(bv − u)

(1)
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where k1 = 0.04 mV−1ms−1, k2 = 5 ms−1, k3 = 140 mVms−1,
and t is in ms. Every time a neuron fires (v ≥ 30 mV), v and u
are reset:

if v ≥ 30 mV, then

{
v← c
u← u+ d

(2)

As in Izhikevich (2003), the following parameter values were used:
a = 0.1 ms−1, b = 0.2 ms−1, c = −65 mV, d = 2 mVms−1. We
used the same dynamics for excitatory and inhibitory neurons.
Each neuron receives input I = Isyn + Iext , consisting of synap-
tic input Isyn from within the network and external input Iext .
Neurons interchange electrical signals on a millisecond timescale
without synaptic delay. Synaptic input consists of the incoming
action potentials from the presynaptic neurons low-pass filtered

by an exponential filter function h(t) = exp
(
− t

μ

)
with decay

constant μ = 5 ms. Network connectivity Wi,j is defined as the
number of synapses from neuron j to i. If a synapse exists, it
has a fixed strength of 1 mVms−1. Neurons are either excitatory
or inhibitory. Indices refer to excitatory neurons if i or j ∈ {Ex}
and to inhibitory neurons if i or j ∈ {In}. As in Izhikevich (2003)
and Butz and van Ooyen (2013), Iext is delivered as white noise
with mean 5 mVms−1 and standard deviation 1 mVms−1. In
some cases lower input values were required and specified where
relevant.

The intracellular calcium concentration of a neuron is used as
a low-passed filtered average of its firing frequency (Butz and van
Ooyen, 2013). Every time a neuron fires, the calcium concentra-
tion is increased by a fixed amount; otherwise the concentration
decreases exponentially to zero:

d
[
Ca2+]

i

dt
=

⎧⎪⎨
⎪⎩
− [Ca2+]i

τCa
+ β if v ≥ 30 mV

− [Ca2+]i
τCa

otherwise

(3)

where β = 0.001 ms−1 and τCa = 10,000 ms. We defined a set-
point ε = 0.7 in calcium concentration, corresponding to an
intermediate level of average electrical activity. Every time the
neuron’s calcium concentration deviates from ε, it will induce
structural changes in connectivity to restore the desired average
level of activity, as described below.

2.2. SYNAPSE MODEL FOR STRUCTURAL PLASTICITY
During development, neurons show a pronounced formation
and pruning of synapses. To simulate reorganization of synaptic
connectivity, standard models of synaptic plasticity, in which con-
nectivity is considered fixed with plasticity merely arising from
changes in the strength of existing synapses (modeled as weight
factors), are not suitable. For this study on the development of
neuronal networks, we therefore used our Model of Structural
Plasticity (MSP) (Butz and van Ooyen, 2013). The characteristic
feature of this model is that it represents synapses as consisting of
two recombinable synaptic elements, namely an axonal element
and a dendritic element. Axonal elements represent countable
presynaptic specializations for transmitter release such as axonal
terminals or boutons, while dendritic elements represent the

postsynaptic counterparts, i.e., postsynaptic receptor plates on
dendritic spines or the dendritic shaft. Axonal and dendritic ele-
ments are either excitatory or inhibitory. Any neuron i can form
Ai axonal elements, which are excitatory if the neuron is excita-
tory, or inhibitory if the neuron is inhibitory. At the same time,
a neuron, irrespective of its type, can express Dex

i excitatory and

Din
i inhibitory dendritic elements. Complementary elements can

merge to form a synapse (excitatory axonal with excitatory den-
dritic elements, and inhibitory axonal with inhibitory dendritic
elements). Synaptic elements form and delete independently from
a synaptic contact partner. In case a neuron deletes a synaptic
element that is bound in a synapse, the complementary synap-
tic element on the other neuron remains and becomes vacant and
available again for synapse formation with a new target. Therefore
MSP allows for synaptic rewiring.

2.3. HOMEOSTATIC GROWTH RULES
It is well documented that neurons change their morphology in
an activity-dependent fashion during development (Butz et al.,
2009b; van Ooyen, 2011). The way in which neurons change their
morphology suggests that they try to maintain homeostasis of
electrical activity (van Ooyen and van Pelt, 1994; Van Ooyen
et al., 1995; Butz et al., 2009a; van Ooyen, 2011; Butz and van
Ooyen, 2013). That is, neurons in which the average activity is
too low start forming new neuritic structures, whereas neurite
growth is halted or neurites are pruned when activity is higher
than a desired level (homeostatic set-point). In our MSP, we
abstracted away from describing detailed neuronal morphology
and assumed that changes in morphology effectively result in
changing numbers of axonal and dendritic elements—the con-
tact sites for synaptic connections. Homeostatic adaptation of the
number of axonal and dendritic elements was modeled by the fol-
lowing growth rule (Figure 1), in which dz represents the change
in the number of synaptic elements, with z being A, Dex or Din:

dz

dt
= ν

(
2

1+ e([Ca2+]−ε)/0.1
− 1

)
(4)

where ε is the set-point of the intracellular calcium concentra-
tion, corresponding to a desired average firing rate of the neuron,
and ν is the growth rate of synaptic elements. We chose ν =
10−4 ms−1, which is slow enough that electrical dynamics and
structural dynamics do not interfere, yet fast enough not to slow
down the simulations unnecessarily. For reasons of simplicity and
because of a lack of detailed experimental data, we applied iden-
tical sigmoid growth rules to all types of synaptic elements. In
a random and distance-dependent recombination process, newly
formed synaptic elements were distributed to matching synaptic
elements, thereby forming synapses and creating the pattern of
connectivity in the network.

2.4. KERNEL FUNCTION FOR SYNAPSE FORMATION
As in our previous work on MSP (Butz and van Ooyen, 2013),
we assumed that synapse formation is more likely between adja-
cent neurons than between distant ones. We applied a two-
dimensional Gaussian-shaped kernel function centered at the
x, y-coordinates of neuron i, with Ki,j the distance-dependent
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FIGURE 1 | Identical sigmoidal growth rules were used for all types of

synaptic elements to determine the change dz/dt in the number of

synaptic elements in dependence on the intracellular calcium

concentration
[
Ca2+

]
. z needs to be replaced by the respective type of

element A, Dex or Din. The homeostatic set-point ε is the value of the
calcium concentration where dz/dt = 0.

likelihood for synapse formation between neuron j and i:

Ki,j, i �= j = e
−

(
posxj − posxi

)2 + (
posyj − posyi

)2

σ 2 (5)

where posxi is the x-coordinate and posyi is the y-coordinate of
postsynaptic neuron i, and posxj and posyj are the coordinates
of presynaptic neuron j. The probability for autapse connections
(i.e., a neuron connecting to itself) was set to zero (Ki,j = 0 for
i = j). For these simulations we chose σ = 1× 150 μm where
150 μm is the distance between two grid points.

In order to investigate the impact of this distance-dependency
on emerging network topologies, we additionally grew networks
with a flat kernel, i.e., with Ki,j, i �= j = 1 and Ki,j = 0 for i = j.

2.5. SYNAPSE FORMATION AND DELETION
The MSP algorithm (Butz and van Ooyen, 2013) proceeded
in three steps to update network connectivity in an activity-
dependent fashion. First, electrical activity of all neurons was
computed continuously over time. Secondly, depending on the
average electrical activity and according to the homeostatic
growth rule (Equation 4), the number of elements changed con-
tinuously, too. Thirdly, at discrete time points, network connec-
tivity W was updated by synapse formation and deletion. Because
of the low growth rate ν = 10−4 ms−1, changes in connectivity
are very slow compared to changes in activity, so it was not nec-
essary to update connectivity at every time step but only at every
100 ms. The timescale of network formation in the model corre-
sponds in principle to a timescale of days or weeks. However, as
described above under homeostatic growth rules, the timescale of
structural changes was chosen so that the simulations were not
unnecessarily slowed down, which means that the total duration

of the simulation in milliseconds is not required to sum up to
weeks.

2.5.1. Synapse deletion
Since network connectivity is updated at discrete time steps but
synaptic elements change continuously over time due to the
activity-dependent growth rules, it can happen that a neuron has
more outgoing synapses than axonal elements or more incoming
synapses than dendritic elements at the time of the next update
in network connectivity. In this case, the neuron has to delete the
surplus of synapses and to update connectivity.

To update connectivity, the algorithm needs to select which
synapses are to be removed. All synapses have an equal chance of
being deleted. Note, however, that multiple synapses can co-exist
from neuron j to i and that the more synapses there are, the higher
the chance that a synapse between neuron j and i will be deleted.
The probability Pdel

i,j for synapse deletion between neuron j and i
is computed by the following master equation that captures four
different cases:

Pdel
i,j =

Wi,j∑
Wk,l

(6)

For deletion of incoming synapses, we need to distinguish
between excitatory and inhibitory synapses in Equation (6). For
deleting incoming excitatory synapses of neuron i ∈ {In ∪ Ex}, we
sum up Wk,l over all l ∈ {Ex}. For deleting incoming inhibitory
synapses of neuron i ∈ {In ∪ Ex}, we sum up Wk,l over all l ∈ {In}.
For deletion of outgoing excitatory synapses of excitatory presy-
naptic neuron j with j ∈ {Ex}, in Equation (6) all synapses are
considered to any postsynaptic neuron k with k ∈ {In ∪ Ex}.
Thus, we sum up Wk,l over all k ∈ {In ∪ Ex}. The same holds true
for outgoing inhibitory synapses with j ∈ {In}.

Sequentially, outgoing and incoming excitatory and inhibitory
synapses were selected for deletion. For every type of synapse, the
accumulated sum of Pdel

i,j [see description of Equation (6) for the
range of i and j] gave a probability distribution from which we
drew the required number of synapses to be deleted. The selected
synapse was deleted by reducing the respective entry Wi,j in the
connectivity matrix by one. It can happen that more then one
synapse is selected for deletion from the same connection j to i. In
this case, the implementation of the algorithm makes sure that the
number of synapses to be deleted did not exceed Wi,j. Whenever a
neuron deletes a synaptic element that is bound in a synapse, the
complementary synaptic element on the other neuron remains
and becomes vacant again.

2.5.2. Synapse formation
For synapse formation, the algorithm checked whether a neuron
gained vacant synaptic elements, i.e., whether the total number of
synaptic elements exceeded the number of bound synaptic ele-
ments of this type. Matching vacant synaptic elements (vacant
excitatory axonal elements Aex,vac

j with vacant excitatory dendritic

elements Dex,vac
i , and inhibitory axonal with inhibitory dendritic

elements Din,vac) were randomly distributed among each other

with probability density function Pform. The probability P
form
i,j

for forming new synapses between neuron j and i depended on
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the number of vacant synaptic elements they offered and on the
Euclidean distance between neuron j and i:

P
form
i,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j ∈ {Ex} : Avac
j Dex,vac

i∑
ι∈{Ex} Avac

ι

∑
κ∈{Ex∪In} Dex,vac

κ
Kij

j ∈ {In} : Avac
j Din,vac

i∑
ι∈{In} Avac

ι

∑
κ∈{Ex∪In} Din,vac

κ

Kij

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

with i ∈ {Ex ∪ In}.

(7)

The minor number of vacant excitatory and inhibitory axonal
or dendritic elements determined how many new excitatory
and inhibitory synapses, respectively, could at most be formed
(so-called potential synapses) in every update of connectivity.
Thus, the number of excitatory and inhibitory potential synapses
equaled

MPotSyn,ex = min
(∑

ι∈{Ex} Avac
ι ,

∑
κ∈{Ex∪In} Dex,vac

κ

)

MPotSyn,in = min
(∑

ι∈{In}, Avac
ι ,

∑
κ∈{Ex∪In} Din,vac

κ

) (8)

for every update in connectivity.
From this distribution, the algorithm chose at maximum

MPotSyn,ex excitatory and MPotSyn,in inhibitory connections at
which new synapses were created. The respective entries Wi,j in
the connectivity matrix were then increased by one. A connection
was chosen by drawing a random number from a uniform dis-

tribution and comparing it to the accumulated probabilities P
form
i,j

for all excitatory connections and all inhibitory connections of the
entire network. That connection was chosen that had the high-
est accumulated probability that the random number just did not
exceed. If, for this try, the random number exceeded all accumu-
lated probabilities, no synapse was formed. Hence, not necessarily
all of the potential synapses were formed.

Additionally, synapse formation needed to fulfil the condition
that the number W+i,j of newly-formed synapses from neuron j
to i did not exceed the number of vacant synaptic elements that
neuron j and i offered:

W+i,j ≤

⎧⎪⎨
⎪⎩

j ∈ {Ex} : min(Avac
j , Dex,vac

i )

j ∈ {In} : min(Avac
j , Din,vac

i )

⎫⎪⎬
⎪⎭ with i ∈ {Ex ∪ In}.

(9)
In every update, this condition was checked and synapse for-
mation infringing this condition was rejected. Alternatively, the
update of connectivity can also be implemented in a purely local
fashion (Butz and van Ooyen, 2013). For small networks, the
current implementation is more efficient than the original MSP
algorithm (Butz and van Ooyen, 2013) because run time is not
dependent on the growing numbers of vacant synaptic elements
but proportional to the square of the number of neurons in
the network. However, for large networks with n >> 1000, n2

will quickly out-range the number of vacant synaptic elements,
in which case looping over the number of synaptic elements
would be faster. Particularly in Matlab, the current description of
MSP allows for an elegant vectorized implementation providing
additional speed up.

2.6. DEVELOPMENT OF NON-HOMEOSTATIC NETWORKS
To investigate the impact of homeostasis in electrical activity
on developing network topology, we created for every home-
ostatic network a corresponding non-homeostatic network. At
every update in connectivity, we took the number of synapses
from the homeostatic network and distributed them in the non-
homeostatic network with the same kernel function as used in the
homeostatic network. Hence, the placement of synapses in the
non-homeostatic network was purely dependent on the kernel
function but did not meet the homeostasis criterion. The algo-
rithmic implementation for placing synapses was the same for

homeostatic and non-homeostatic networks, with P
form
i,j = Ki,j.

Instead of distributing MPotSyn synapses (Equation 8), we simply
distributed the total number of synapses from the homeostatic
network. Since synapse formation was not limited by numbers of
vacant elements, Equation (9) was not applicable.

2.7. TOPOLOGY MEASUREMENTS
A neuronal network can be seen as a graph with the neu-
rons being the nodes and the synapses being the edges or links
between two nodes. Since the presynaptic neuron always activates
the postsynaptic neuron (and never the other way around), we
regard the graph as directed. At every update in connectivity, we
assessed those graph theoretical measures that are indicative of
small-worldness and network efficiency. In addition, betweenness
centrality was measured to determine the importance of nodes
in the network. To reduce the complexity of the assessment, we
considered only the topology of excitatory synaptic connections
Wex,ex between the nex excitatory neurons. For the graph theo-
retical assessments, the brain connectivity toolbox by Olaf Sporns
et al. (Rubinov and Sporns, 2010) was used.

2.7.1. Weighted characteristic path length
The characteristic path length L is the average shortest path from
one node to any other node in the network. Path length is defined
as the number of links that need to be traveled to go from one
node (possibly via intermediate nodes) to any other node. On top
of this definition, a direct link between two nodes in a weighted
network is considered “shorter” the stronger the weight of the
link is. For our network, we take the number of synapses Wex,ex

i,j
between two directly linked neurons j and i, with i, j ∈ {Ex}, as the
weight of the connection and the inverse 1/Wex,ex

i,j as the length li,j
of the connection. The shortest path di,j is then the smallest sum
of connection lengths that lead from neuron j to i via any interme-
diate neurons. Our calculation of the weighted characteristic path
length was based on an implementation of Dijkstra’s algorithm
for computing the shortest path in weighted directed networks by
Rubinov and Sporns (2010).

2.7.2. Weighted clustering coefficient
The clustering coefficient is an indication of how strongly nodes
in a network are interconnected. It can be measured by the num-
ber of triangles, t̃D

i , one node forms with any other two nodes
in the network divided by the total number of possible triangles,
TD

i . For weighted and directed graphs, one needs to realize that
the adjacency matrix (in our case, the connectivity matrix Wex,ex

of the excitatory neurons) is not symmetric and that the entries
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of the adjacency matrix are not one but can have any weight.
According to Fagiolo (2007), the clustering coefficient of a single
node in a weighted directed network C̃D

i is computed as

C̃D
i

(
Wex,ex) = t̃D

i

TD
i

=

[
(Wex,ex)[1/3] +

(
(Wex,ex)T

)[1/3]
]3

i,i

2
[
dtot

i

(
dtot

i − 1
)− 2d↔i

]
(10)

where (Wex,ex)[1/k] = w1/k
i,j , the kth root of the entries of the

matrix for i, j ∈ {Ex}, and (Wex,ex)T is the transposed Wex,ex

matrix. The variable dtot
i denotes the total degree of node i

(the degree counts the number of either incoming or outgo-
ing edges per node, and the total degree is the sum over both
the incoming and outgoing edges), and d↔i stands for the num-
ber of bilateral edges of node i (the number of nodes node i
projects to and receives edges from, excluding self-interactions of
node i).

The overall clustering coefficient of the network is thus C̃D =
(nex)−1 ∑N

i= 1 C̃D
i . Note that for this assessment we only con-

sidered nex excitatory nodes and excitatory connections Wex,ex.
For a more detailed description of Equation (10), see Fagiolo
(2007). We computed the clustering coefficient of the develop-
ing neuronal networks at every update in connectivity by using
the implementation by Mika Rubinov from the brain connectivity
toolbox (Rubinov and Sporns, 2010).

2.7.3. Small-world parameter
To estimate small-worldness of the developing networks, we
applied the formalism by Humphries and Gurney (2008):

s = C/Crand

L/Lrand
(11)

We replaced the clustering coefficient C and the characteristic
path length L by the corresponding versions for weighted directed
graphs as described above. Crand and Lrand were taken from an
Erdős-Rényi random graph generated with the same number
of synapses as in the developing networks at every update in
connectivity.

2.7.4. Betweenness centrality
The local betweenness centrality is a measure for the impor-
tance of a node in a network. A high betweenness central-
ity of a node i means that many shortest paths between
any two nodes k and l pass through node i. Thus, the local
betweenness centrality counts the number of times, σkl(i), that
node i is on a shortest path between two nodes k and l.
The local betweenness centrality is normalized by the num-
ber σkl of alternative shortest paths between k and l that do
not pass through node i. Global betweenness centrality is the
sum of all local betweenness centrality values of the individual
nodes:

BCglobal =
nex∑

i

∑
k �= i �= l

σkl(i)

σkl
(12)

Consequently, betweenness centrality provides a measure for
how well networks are interconnected. A high local or global
betweenness centrality means that individual nodes or the entire
network, respectively, is badly interconnected, because all infor-
mation has to travel through the same nodes in the absence
of alternative routes or by-passes. Clinical data shows that
after brain lesions, betweenness centrality of directly and indi-
rectly affected brain areas changes (Wang et al., 2010). Note
that as for the measurements above, the shortest paths are
based on weighted excitatory connections Wex,ex

i,j . Therefore,
global betweenness centrality was computed by the formalism
for weighted directed networks by Brandes (2001) as imple-
mented in the brain connectivity toolbox (Rubinov and Sporns,
2010).

2.7.5. Efficiency
Global efficiency is related to the inverse characteristic path length
with the advantage over characteristic path length that it can be
meaningfully computed also of disconnected graphs (Latora and
Marchiori, 2001; Achard and Bullmore, 2007). While path lengths
between disconnected cells are infinite, efficiency becomes zero
and, thus, adds neutrally to global efficiency.

Eglobal = 1

nex (nex − 1)

∑
i �= j

1

di,j
(13)

where nex is the number of excitatory neurons.

2.7.6. Euclidean distance
Although not a topology measure in a strict graph theoretical
sense, the average Euclidean distance between nodes that are con-
nected by synapses was measured in order to help interpret the
development of characteristic path length and clustering coeffi-
cient. To obtain the average Euclidean distance ED, we multiplied
the Euclidean distances between all pairs of excitatory neurons in
the network with the number of synapses between these neurons.
We then summed up all of the so-weighted distances and divided
the sum by the number of excitatoy synapses:

ED =
⎛
⎝ nex∑

i,j

√(
posxj − posxi

)2 + (
posyj − posyi

)2
Wex,ex

i,j

⎞
⎠ /

nex∑
i,j

Wex,ex
i,j

(14)

with i, j ∈ {Ex}

3. RESULTS
We started each network simulation with zero connectivity and
zero synaptic elements. Due to the homeostatic formation of
axonal and dendritic elements, model neurons are able to form
synapses and to adapt the number of synapses so as to reach
a homeostatic equilibrium in electrical activity (Figure 2). For
a wide range of set-points ε, model neurons adapt their aver-
age firing rate so that, at the end of each simulation (here
after 15,000 updates in connectivity), their calcium concentra-
tion [Ca2+] has converged to ε, with a corresponding firing
rate y (in Hz) that follows the linear relation y = 100× [Ca2+]
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(Figure 3). We investigated how the topology of these self-
organizing networks developed over time when neurons favor
short-range connections over long-range connections, or, alter-
natively, when all connections are equally likely. In the first case,
as we will show in detail later on, networks developed a distinct
small-world property, with small-world parameter s markedly
greater than 1, whereas in the second case, s reaches 1. Therefore,
we will call networks that resulted from distance-dependent
synapse formation small-world networks and those that resulted
from synapse formation without distance-dependency random
networks.

In networks that favor long-range over short-range connec-
tions (small-world networks) (Figure 4A), s constantly increased

FIGURE 2 | Development of intracellular calcium concentration
[
Ca2+

]

over time. (A) Development of calcium concentration in small-world
networks arising from synapse formation that favors short-range over
long-range connections. Mean calcium concentrations averaged over five
simulations reach the set-point ε = 0.7 when the number of synaptic
elements is regulated homeostatically (yellow), whereas calcium
concentrations remain much lower when there is no homeostatic
regulation (gray). (B) Development of calcium concentration in random
networks without any distance-dependency in synapse formation. The
random network with homeostatic regulation of synaptic elements (blue)
also reaches the homeostatic set-point ε, whereas the network without
homeostasis (gray) and the same number of synapses as the homeostatic
network has much lower values in calcium. Shadow around the curves
(hardly visible since so small) indicates the standard deviation.

FIGURE 3 | Neurons develop their connectivity in order to reach a

homeostatic set-point ε of intracellular calcium. The figure shows the
firing rates attained for different set-point values of calcium. For each
calcium concentration, the firing rates of all neurons were pooled from four
different simulations recorded over the last 20,000 ms. The central mark of
each box is the median firing rate; boxes represent the 25th and 75th
percentiles; the whiskers extend to the most extreme data points not
considered “outliers”; and “outliers” are plotted individually (which show up
here as thick bold lines). An “outlier” is a value that is more than 1.5 times
the interquartile range away from the top or bottom of the box. The firing
rate is proportional to ε by a factor of 100. For this set of simulations lower
external inputs Iext with mean 2 mVms−1 were used.

and reached a maximum markedly greater than 10 at around 7000
updates in connectivity. Small-world networks that were set-up
by an additional rule for homeostasis in electrical activity reached
a plateau of about s = 10 very early but began to decrease again
around the time that neuronal activities reached the homeo-
static set-point ε. Nevertheless, small-world networks with home-
ostasis maintained their small-world property throughout the
whole course of the simulation (s > 5 at T = 15,000). In net-
works without distance-dependency in synapse formation (ran-
dom networks) (Figure 4B), s equaled 1 from the very beginning
of network development. Random networks with and with-
out homeostasis did not differ in the course of s (Figure 4B).
Hence, homeostasis did not seem to have an impact on the
development of topology in random networks. Knowing that
homeostasis influenced the development of small-worldness, we
further analyzed how homeostasis exerted its influence during
network formation. For some simulations, s could not be com-
puted for the first few updates in connectivity because of division
by zero.

3.1. HOMEOSTASIS INFLUENCES THE CLUSTERING COEFFICIENT AND
CHARACTERISTIC PATH LENGTH OF DEVELOPING SMALL-WORLD
NETWORKS

The mean or characteristic path length in small-world net-
works without homeostasis showed, after an initial sharp rise,
a steady decrease and converged toward values of around 3
(Figure 5A). Homeostatic small-world networks also started
with a sharp rise and a subsequent decrease in characteris-
tic path length. The decrease was even steeper than in the
non-homeostatic case, and the characteristic path length con-
verged toward slightly lower values than in non-homeostatic
networks. In addition, networks with homeostasis showed a
second but minor decrease in characteristic path length when
activities reached the homeostatic set-point ε. The final values
of the characteristic path length after 15,000 updates in con-
nectivity were stable in both homeostatic and non-homeostatic
small-world networks. The initial sharp increase is caused by
the limited number of synapses in the network at the begin-
ning of the simulation. Characteristic path lengths in developing
random networks showed an identical course with and without
homeostasis (Figure 5B). The final values in random networks

FIGURE 4 | Small-worldness of developing networks. (A) Small-world
networks with (orange) and without (gray) homeostasis in electrical activity.
(B) Random networks with (blue) and without (gray) homeostasis in
electrical activity. Means over five simulations per scenario. Shadings of the
curves indicate standard deviations.
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were marginally lower than those in homeostatic small-world
networks.

The clustering coefficient in developing homeostatic small-
world networks took a considerably different course from
the coefficient in small-world networks without homeostasis
(Figure 6A). Whereas the clustering coefficient in networks with-
out homeostasis converged, with a small overshoot, toward high
levels of over 1.6, networks with homeostasis generated a con-
siderable overshoot and ended up at much lower values as com-
pared with non-homeostatic networks. After a ramp-up phase,
homeostatic networks reached a maximum clustering coeffi-
cient of about one; thereafter, the clustering coefficient decreased
again with a decreasing negative slope. The maximum cluster-
ing coefficient was reached when the average electrical activities
approached the homeostatic set-point ε. By contrast, we did not
see an overshoot in clustering coefficient in homeostatic and
non-homeostatic random networks (Figure 6B). Therefore, the
homeostasis in electrical activity had no effect on clustering in
random networks.

3.2. HOMEOSTASIS FAVORS LONG-RANGE CONNECTIONS IN
SMALL-WORLD NETWORKS

Particularly the development of the clustering coefficient, with its
pronounced overshoot, determines the emerging small-worldness

FIGURE 5 | Characteristic path length in developing networks. (A)

Small-world networks with (orange) and without (gray) homeostasis in
electrical activity. The inset in (A) is a close-up of the time interval from
5000 to 10,000 updates in connectivity that clearly shows the decay in
characteristic path length in homeostatic networks compared to
non-homeostatic networks. (B) Random networks with (blue) and without
(gray) homeostasis in electrical activity. Means over five simulations per
scenario. Shadings of the curves indicate standard deviations.

FIGURE 6 | Clustering coefficient in developing networks. (A)

Small-world networks with (orange) and without (gray) homeostasis in
electrical activity. (B) Random networks with (blue) and without (gray)
homeostasis in electrical activity. Means over five simulations per scenario.
Shadings of the curves indicate standard deviations.

in networks favoring short-range connections over long-range
connections. We therefore further studied how homeostasis influ-
enced clustering in small-world networks. We tested the hypothe-
sis that homeostasis produced more long-range connections than
expected from the kernel function K (Equation 5). Computing
the average Euclidean distance between the pre- and postsy-
naptic neuron for every synapse indeed revealed longer average
Euclidean distances in homeostatic than in non-homeostatic
networks (Figure 7A). In non-homeostatic networks, the aver-
age Euclidean distance was constant, because it is directly
derived from the kernel function (in Equation 5: σ = 150 μm).
In homeostatic networks, however, we observed two different
phases. First, during initial network development ([Ca2+] << ε),
the average Euclidean distance converged quickly toward a stable
value of around 2, which was only slightly higher than in non-
homeostatic networks. Secondly, when calcium concentrations
approached the homeostatic set-point ε, the average Euclidean
distances ramped up and reached values greater than 4. The con-
siderable increase in the average Euclidean distance of synaptic
connections coincided with a drop in clustering coefficient. As
the initial high clustering of the network is due to the kernel
function for synapse formation favoring short- over long-range
connections, we may conclude that increasing Euclidean lengths
of synaptic connections give rise to the decrease in clustering
right at the time neurons approach the homeostatic set-point in
electrical activity. The effect was also noticeable in the course of
the characteristic path length but much less pronounced. We did
not observe a comparable effect of homeostasis on Euclidean dis-
tances of synaptic connections in random networks (Figure 7B).

Are the increasing average Euclidean distances of synaptic con-
nections caused by the fact that average neuronal activities are
reaching a homeostatic equilibrium, or is this just some net-
work effect that merely coincides with neurons equilibrating their
activities? To answer this question, we assessed the number of
all types of vacant elements (i.e., excitatory or inhibitory axonal
elements, excitatory or inhibitory dendritic elements) and the
spatial position of their hosting neurons at every time step of
the simulation. We first checked whether there was any bias in
the spatial position of synaptic elements that could generate more

FIGURE 7 | Average Euclidean distance between pre- and postsynaptic

neurons for every synapse during network development. (A)

Small-world networks with (orange) and without (gray) homeostasis in
electrical activity. (B) Random networks with (blue) and without (gray)
homeostasis in electrical activity. Means over five simulations per scenario.
Shadings of the curves indicate standard deviations. Inset in (A) depicts the
change in Euclidean distances for homeostatic random (blue) and
homeostatic small-world networks (orange) with torus boundary conditions.
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distant connections, e.g., a placement of synaptic elements at the
boundaries of the network. We accumulated the number of vacant
axonal (Figure 8A) and dendritic elements (Figure 8B) for each
neuron for the first 5000 updates in connectivity with [Ca2+] <
ε as well as for the next 5000 time steps with [Ca2+] ≈ ε. In
the beginning of the simulation, we indeed found a little more
vacant synaptic elements at the network boundaries, which can be
explained by the fact that neurons at boundaries have less neigh-
bors than neurons in the center and compensate for this by getting
a higher number of vacant dendritic elements. However, by the
time that the homeostatic equilibrium is reached, vacant synaptic
elements were equally distributed over the network, and therefore
the placement of vacant synaptic elements cannot account for the
increasing distances of synaptic connections once the network has
reached the homeostatic set-point. We found a comparable course
of Euclidean distances in homeostatic small-world networks with
torus boundary conditions (see inset of Figure 7A).

Since we could exclude a spatial bias in the distribution of
vacant synaptic elements, we tested whether the increasing dis-
tances of synaptic connections were a direct consequence of the
activity-dependent growth rules. On the basis of the number of
vacant elements per neuron and the Euclidean distance between
the host neurons, we determined the most likely synaptic connec-
tion every time a new synapses was formed, which is equivalent

to the maximum of P
form
i,j (Equation 7). Since the change in the

FIGURE 8 | Spatial position of vacant synaptic elements in small-world

networks. The purpose of this figure is to rule out that the position of
vacant synaptic elements alone gave rise to longer-ranged synaptic
connections. The left column shows vacant synaptic elements accumulated
over the first 5000 updates in connectivity, whereas the right column
shows the accumulation of vacant synaptic elements over the following
5000 updates. Although some tendency of vacant synaptic elements being
located at the borders of the network is visible, this effect is gone after
5000 updates in connectivity. So there is no bias in the distribution of
vacant synaptic elements when activity reaches the homeostatic set-point,
and therefore the position of vacant synaptic elements alone cannot
account for the formation of longer-ranged synaptic connections for
T > 5000. (A) Vacant axonal elements. (B) Vacant dendritic elements. Color
scale indicates number of vacant synaptic elements per neuron.

number of synaptic elements and therefore also the distribu-
tion of vacant synaptic elements are activity-dependent, the most
likely synaptic connection to be formed is a direct consequence of
the neurons’ electrical activities. It turned out that in the begin-
ning of development, when all neurons offer vacant synaptic
elements, the most likely synaptic connections are those between
adjacent neurons (Figures 9A,B). In other words, when neuronal
activities were much lower than the homeostatic set-point ε, the
kernel function had a large impact on the Euclidean length of
synaptic connections. Therefore, at this stage of development,
homeostatic and non-homeostatic networks did not differ much
in connection lengths. However, when the activity of all individ-
ual neurons approached the set-point ε, vacant synaptic elements
became rare and matching synaptic elements were available, if at
all, only between more distant neurons. Expected distances for
most likely synaptic connections therefore became much larger.
Moreover, the distribution of expected Euclidean lengths of new
synaptic connections did not follow the Gaussian-shaped kernel
any longer but became much wider and flatter. At the same time,
it took much longer for a synapse to form because, although
longer-range synaptic connections were the most likely ones,
their probability was still very low due to the kernel function.
Due to a lack of shorter-range alternatives, these longer-range
synaptic connections were nonetheless formed at some point in
time, because the kernel function is non-zero for all distances.
Taken together, the Euclidean length of synaptic connections in
small-world networks is influenced by the homeostatic forma-
tion of synaptic elements. As expected from the topology data,
no activity-dependent effect on the Euclidean distance of synaptic
connections was observed in random networks.

Additionally, synapse deletion could in principle also influ-
ence the Euclidean length of synaptic connections if, for example,
with increasing neuronal activities preferentially short connec-
tions would be deleted. Therefore, we further tested whether the
expected Euclidean length of synaptic connections that were most
likely to be deleted correlated with the current average activity in
the network. However, an activity-dependent effect on synapse
deletion was not observed (Figures 9C,D).

3.3. HOMEOSTASIS DECREASES THE BETWEENNESS CENTRALITY IN
SMALL-WORLD NETWORKS

Betweenness centrality (or inbetweenness) is a measure for the
importance of nodes in a network. Compared with random net-
works, small-world networks without homeostatic synapse for-
mation had a relatively high betweenness centrality (Figure 10A).
Small-world networks with homeostasis, by contrast, revealed
a pronounced decrease in betweenness centrality over develop-
mental time. Values peaked in the beginning of development
when neurons first connected to their nearest neighbors only.
However, right after the peak, homeostatic synapse formation
generated topologies with values for betweenness centrality that
were lower than in non-homeostatic networks. Betweenness
centrality is high in non-homeostatic small-world networks
because synapse formation is only determined by the kernel func-
tion (Equation 5), which often caused that the same cell pairs
were connected repeatedly. The consequence is a limited num-
ber of shortest paths between any pairs of nodes in the network.
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FIGURE 9 | The spatial distribution of newly formed synapses change in

dependence on the calcium concentration. In (A,B), each dot represents the
Euclidean distances between those neurons that are most likely to form a
synaptic connection with each other at this update in connectivity. For this, we
took at every update in connectivity in which vacant synaptic elements were
available the Euclidean distance of the connection from neuron j to i for which
Pform

i,j (Equation 7) was maximal. In (C,D), each dot represents the length of that
connection (again in terms of the Euclidean distance between the connected
neurons) for which synapse deletion was most likely, i.e., Pdel

i,j (Equation 6) was
maximal for every update in connectivity in which synapses had to be deleted.
In (A,C), we plotted the Euclidean distances for synapse formation and deletion

over time. The black curve (right y-axis) indicates the course of the calcium
concentration

[
Ca2+]

. In (B,D), we plotted synapse formation and deletion in
dependence on

[
Ca2+]

. The color code in all panels indicates the density of the
dots in the diagrams, with blue and red representing low and high densities of
dots, respectively. The figure essentially shows that before calcium reaches the
homeostatic set-point ε, the distribution for synapse formation is rather
Gaussian, following the Kernel function K (Equation 5). The distribution
becomes random and scattered, with increased Euclidean distances, when
calcium is at the set-point. The stripes in the distribution arise from the fact that
not all Euclidean distances are possible due to the grid layout of the network.
There is no change in the distribution for synapse deletion.

FIGURE 10 | Changing betweenness centrality over time. (A) Small-world
networks with (orange) and without (gray) homeostasis in electrical activity.
(B) Random networks with (blue) and without (gray) homeostasis in electrical
activity. Means over five simulations per scenario. Shadings of the curves
indicate standard deviations.

By contrast, in homeostatic networks, synapse formation depends
on the availability of synaptic elements, which can force synapses
to be formed that are less likely according to the kernel. This
may increase the number of alternative paths between two neu-
rons and therefore also increase the number of multiple shortest
paths through the network. Hence, betweenness centrality quickly
decreased over time.

Because the variety of shortest paths in non-homeostatic net-
works is limited, betweenness centrality reached a stable plateau
in these networks. Interestingly, the betweenness centrality in
homeostatic networks initially also converged toward a quasi-
stable level. However, as soon as activities approached the home-
ostatic set-point ε, betweenness centrality strongly decreased.
Over time, the rate of decrease slowed down. The decrease in
betweenness centrality precisely coincided with the increase in
Euclidean lengths of synaptic connections. Because the kernel
function favors short- over long-range connections and therefore
initially creates networks with high betweenness centrality, we
may conclude that the formation of longer-range connections (in
an Euclidean sense) lead to a decreasing betweenness centrality.
Any new long-range connection not present in the network before
creates new shortest paths, which in turn decreases betweenness
centrality. By contrast, homeostasis did not affect the course of
betweenness centrality in random networks (Figure 10B).

3.4. SMALL-WORLD NETWORKS BECOME MORE EFFICIENT BY
HOMEOSTASIS

Efficient information transmission is probably the most-desired
property in computational networks. Small-world networks are
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very efficient because they combine a high clustering coefficient
with a short characteristic path length. Nevertheless, their effi-
ciency is still markedly lower than that of random networks.
Homeostatic small-world networks, however, generated efficiency
levels that during the whole course of development exceeded the
levels in non-homeostatic small-world networks (Figure 11A).
Remarkably, at the time when average activities reached the
homeostatic set-point ε, efficiency levels of homeostatic net-
works further increased and almost reached the levels in random
networks (Figure 11B). Consequently, favoring more distant con-
nections in combination with homeostasis in electrical activity
led to a more efficient network topology than achieved without
homeostasis.

4. DISCUSSION
We have shown that network formation favoring short-range over
long-range connections produced networks with a pronounced
small-world structure. Networks with homeostasis in electrical
activity developed a weaker small-world structure in favor of
more efficient wiring of connections. Global efficiency particu-
larly increased when network activity reached the homeostatic
set-point. Increased global efficiency was caused by the fact that
homeostasis favored longer-ranged connections, which affected
clustering as well as characteristic path length. Thus, network
topology continued to change even after the network had reached
a homeostatic equilibrium in electrical activity.

Adding more long-range connections to a small-world net-
work makes the network more efficient but also more ran-
dom. This is apparent in our simulations, too, by a decreas-
ing clustering coefficient and a decreasing characteristic path
length. Nevertheless, the small-world property of the net-
works was preserved throughout the whole course of devel-
opment, and the decrease in clustering coefficient was slow-
ing down over time. However, networks would most likely
turn into random networks if rewiring continued indefinitely.
Consequently, there seems to be a trade-off in network devel-
opment between high clustering and strong small-worldness on
the one hand and more randomness and higher efficiency on
the other hand. The latter particularly arises when networks con-
tinue to rewire their circuitry when they are in a homeostatic
equilibrium.

FIGURE 11 | Global efficiency changes over time due to network

development. (A) Small-world networks with (orange) and without (gray)
homeostasis in electrical activity. (B) Random networks with (blue) and
without (gray) homeostasis in electrical activity. Means over five simulations
per scenario. Shadings of the curves indicate standard deviations.

With additional long-range connections betweenness central-
ity decreases. Networks with low betweenness centrality are more
robust against lesions because all nodes are equally important.
By contrast, networks with high betweenness centrality are very
vulnerable to lesions. If neurons that are part of many short-
est paths are lost, the characteristic path length will immediately
increase, with a significant impact on information transmission.
It is remarkable that a self-organizing process that forms net-
works by striving toward homeostasis in electrical activity as a side
effect produces topologies with lower betweenness centrality that
contribute to a higher robustness against lesions.

Key to the homeostasis-driven change in topology is the
increasing Euclidean length of connections. Since we did not
observe an increase in connection length in networks with-
out homeostasis, we concluded that the increase in connection
lengths was caused by homeostasis in electrical activity. To create
networks without homeostasis, we took the number of synapses
from the homeostatic network at every update in connectiv-
ity and distributed them randomly under the same kernel in
the non-homeostatic network. There are, in fact, other ways to
create networks without homeostasis. We additionally built non-
homeostatic networks by initially giving all model neurons a fixed
number of vacant synaptic elements and then running updates
in connectivity until no more synapses could be formed. Also in
this scenario we did not see an increase in connection length. In
a third scenario, we added a few vacant synaptic elements to all
neurons before every update in connectivity. No matter how few
vacant elements we added and how long we ran the network, we
did not obtain more long-range connections than expected from
the kernel. We only observed more long-range connections when
we slowly added vacant elements at a few randomly selected neu-
rons at a time (i.e., spatial sparseness in the formation of synaptic
elements). From these observations we concluded that the contri-
bution of homeostasis is not only to limit the number of available
vacant synaptic elements but also to generate a certain sparseness
in the formation of vacant elements. In fact, as long as the neurons
were far away from the homeostatic set-point, synaptic element
formation was not sparse at all as all neurons added elements
roughly at the same time at equal rates. Only when the neurons
approached the homeostatic set-point did sparseness in synap-
tic element formation arise. Homeostasis creates this sparseness
because balancing the activity of one neuron immediately affects
the activity in other neurons, which in turn may be driven fur-
ther away from the homeostatic set-point and then start forming
new vacant elements. The presence of inhibitory neurons would
further reinforce this process.

Homeostasis in electrical activity is one way by which a local
process can give rise to a change in global topology. Another com-
parable mechanisms was provided by Kaiser et al. (2009). In their
model study, they showed that a simple axonal growth process
can generate the experimentally observed exponential decrease
in number of connections with increasing connection length. As
a result of the growth process, most connections become short-
range, although long-range connections also arise, but in lower
numbers. The idea of their model is that axons grow out until
they hit a postsynaptic target. The capacity of model neurons to
receive connections is limited, and if nearby target neurons are
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completely occupied by incoming connections, axons continue to
grow out until they hit a vacant target. Hence, Euclidean connec-
tion length increases over developmental time. In this model, the
spatial growth process in combination with a hard boundary on
the number of incoming synapses per model neuron generates the
increase in connection lengths.

There are striking similarities between the topology of our
model networks and that of developing dissociated cell cultures.
It is well known that cultured neuronal networks can form small-
world topology (Bettencourt et al., 2007; Yu et al., 2008; Gerhard
et al., 2011). Downes et al. (2012) reported an increase in clus-
tering coefficient of dissociated cell cultures between 14 days in
vitro (DIV) and 28 DIV and a subsequent drop until 35 DIV, a
course of development that is comparable to the course of devel-
opment in our model networks with homeostasis. Between 14
and 35 DIV, the mean shortest path length did not change signif-
icantly, only showing a slight drop around 28 DIV. Consequently,
small-worldness reached its maximum around 28 DIV. Moreover,
the experimental data indicated the presence of longer synaptic
connections from 28 DIV onwards that had not been not present
at 21 DIV. From our previous studies we know that dissociated
cell cultures reach homeostasis around this time (Tetzlaff et al.,
2010). Therefore, we may hypothesize that the increase in con-
nection length in dissociated cell cultures may be due to neurons
reaching a homeostatic equilibrium in electrical activity. Other
synaptic plasticity mechanisms not currently incorporated in our
model may of course also have contributed to network formation
in developing cell cultures.

On a macroscopic scale, functional imaging data reveal a devel-
opment of small-world topology that also has interesting similar-
ities with the self-organizing network formation in our model.
The infant human brain has small-world properties already at the
third post-natal week (Fransson et al., 2011). During the follow-
ing 2 years, network topology undergoes a significant refinement:
brain networks increase their small-worldness, global efficiency
and number of long-distance connections (Gao et al., 2011).
Although our network model shows only an initial transient
increase in small-worldness, it may offer a simple explanation for
the sudden increase in number of long-range connections and
the associated increase in global efficiency. Could it be that even
in the human brain, neurons establishing a homeostatic equilib-
rium in electrical activity produce—as an emergent property of
the homeostatic growth process—more long-range connections?
Remarkably, the increase in number of long-range connections
occurs not during a genetically-encoded formation of an initial
embryonic layout of projections but during the post-natal critical
period (Gao et al., 2011), during which neurons are highly sensi-
tive to afferent input. In general, the importance of critical periods
is to balance excitatory and inhibitory circuits and to establish
homeostasis in neuronal electrical activity (Hensch, 2005; Butz
et al., 2009b). Considering that long-range connections arise in
local as well as global networks, our study raises the interesting
hypothesis that homeostasis in electrical activity may be the driv-
ing force for the formation of long-range connections on both a
microscopic and a macroscopic scale.

Homeostasis in electrical activity is a ubiquitous principle in
the nervous system (Wolff and Wagner, 1983; Ramakers et al.,

1991; Abbott and Nelson, 2000) and a variety of plasticity mech-
anisms can act homeostatically. Scaling of synaptic strengths
(Turrigiano, 1999), for example, has been reported as a mech-
anism acting at existing synapses to stabilize postsynaptic firing
in cortical, hippocampal and spinal cord networks (Lissin et al.,
1998; O’Brien et al., 1998; Turrigiano and Nelson, 1998). Even
in the mature brain, not only the strength of synapses but also
the formation of new synapses can contribute to the stabilization
of neuronal activity, for example after focal retinal lesions (Butz
and van Ooyen, 2013). In developing dissociated cell cultures, we
showed that homeostasis in electrical activity may be a precon-
dition for the emergence of self-organized criticality in neuronal
firing (Tetzlaff et al., 2010). In another study, we showed that
homeostasis in electrical activity can regulate the synaptic embed-
ding of newly formed neurons in the mature hippocampal dentate
gyrus (adult neurogenesis) and can account for the experimen-
tally observed counter-intuitive inverse relationship between cell
proliferation rate and synaptogenesis (Butz et al., 2008).

In summary, we conclude that homeostatic regulation of elec-
trical activity together with simple distance-dependent forma-
tion of connections is capable of creating, in a self-organizing
manner, neuronal networks that are more robust and more
efficient than networks grown without homeostatic regulation.
Strikingly, the growth process revealed features of developing
topologies that are also observed in dissociated cell cultures and
infant human brains. The formation of network topology by a
self-organizing, local growth process may also be relevant for
automatically generating the connectivity structure of large-scale
neuronal networks (Potjans and Diesmann, 2014) that are cur-
rently studied in enterprizes such as the Human Brain Project
(www.humanbrainproject.eu).
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