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INTRODUCTION

Learning and memory operations in neural circuits are believed to involve molecular
cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of
dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity,
neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But
it is still unclear how these seemingly redundant mechanisms could jointly orchestrate
learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons
inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic
currents are adapted on-line upon arrival of single spikes, which initiate a cascade of
temporally interacting memory traces that locally estimate probabilities associated with
relative neuronal activation levels. Trace dynamics enable synaptic learning to readily
demonstrate a spike-timing dependence, stably return to a set-point over long time scales,
and remain competitive despite this stability. Beyond unsupervised learning, linking the
traces with an external plasticity-modulating signal enables spike-based reinforcement
learning. At the postsynaptic neuron, the traces are represented by an activity-dependent
ion channel that is shown to regulate the input received by a postsynaptic cell and generate
intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian
learning can be performed in a simulated inference task using integrate-and-fire (IAF)
neurons that are Poisson-firing and background-driven, similar to the preferred regime of
cortical neurons. Our results support the view that neurons can represent information in
the form of probability distributions, and that probabilistic inference could be a functional
by-product of coupled synaptic and nonsynaptic mechanisms operating over several
timescales. The model provides a biophysical realization of Bayesian computation by
reconciling several observed neural phenomena whose functional effects are only partially
understood in concert.

Keywords: Bayes’ rule, synaptic plasticity and memory modeling, intrinsic excitability, naive Bayes classifier,
spiking neural networks, Hebbian learning

Boerlin and Deneve, 2011), specifically within the parietal (Yang

Bayesian inference provides an intuitive framework for how the
nervous system could internalize uncertainty about the exter-
nal environment by optimally combining prior knowledge with
information accumulated during exposure to sensory evidence.
Although probabilistic computation has received broad exper-
imental support across psychophysical models describing the
perceptual and motor behavior of humans (Wolpert and Kording,
2004; Knill, 2005; Tassinari et al., 2006), it is nevertheless an
open theoretical issue at which level of detail within the neu-
ral substrate it should be embedded (Knill and Pouget, 2004).
Furthermore, synthesizing a probabilistic perspective with exper-
imental data is a decidedly non-trivial task (Doya et al., 2007).
Realizations of disparate phenomena occurring within the corti-
cal circuitry have been hypothesized to represent viable coding
schemes for such Bayesian principles, including single neurons
(Deneve, 2008a,b), neural population responses (Ma et al., 2006;

and Shadlen, 2007) and prefrontal (D’Acremont et al., 2013) cor-
tices, activation levels in the visual cortical hierarchy (Carpenter
and Williams, 1995; Rao and Ballard, 1999; Summerfield and
Koechlin, 2008; Berkes et al., 2011), long-term synaptic plastic-
ity (Soltani and Wang, 2009), and short-term synaptic plasticity
(Pfister et al., 2010; Stevenson et al., 2010). However, inductive
frameworks notoriously tend to impose restrictions about when
learning should occur (if at all) and account for a fraction of
the diversity in physiological processes whose given anatomical
granularity is otherwise arbitrary.

We propose a spike-based extension of the Bayesian
Confidence Propagation Neural Network (BCPNN) plastic-
ity rule (Lansner and Ekeberg, 1989; Lansner and Holst, 1996)
to address these issues. In this model, storage and retrieval are
enabled by gathering statistics about neural input and output
activity. Synaptic weights are effectively inferred using Bayes’ rule
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by incrementally (Sandberg et al., 2002) estimating confidence of
feature observations from the input and posterior probabilities of
outcome from the output. Weight modification depends on the
temporal integration of spikes on different time scales using local
synaptic traces, whose time courses are inspired by the cascade
of events involved in the induction and maintenance of Hebbian
plasticity. These traces estimate probabilities that determine
synaptic weights and biases, which enable postsynaptic IAF
neurons to signal through their relative spike rates the posterior
likelihood of activation upon presentation of evidence in the
form of presynaptic spiking.

The model suggests a non-redundant role for the presence of
and interaction between a range of different processes in approxi-
mating probabilistic computation. Spike-based BCPNN can learn
the temporal dimension of the input through modulation of its
synaptic trace kinetics. Different spike timing-dependent plastic-
ity (STDP) (Markram et al., 1997; Bi and Poo, 1998; Froemke
and Dan, 2002) kernels can be predicted that promote learning
forwards or backwards through time. Crucially, a unimodal sta-
tionary distribution of synaptic weights naturally follows from
the learning rule due to an inherent multiplicative decay of the
weights over long time scales, generating convergence behavior
that is functionally reminiscent of synaptic scaling (Turrigiano
etal., 1998). A global neuromodulatory signal is shown to provide
information about rewards or expected rewards (Florian, 2007).
The bias term, which represents prior confidence pending input
evidence, is recast here as a Ca™ sensitive, activity-dependent K+
current whose functional outcome resembles long-term potenti-
ation of intrinsic excitability (LTP-IE) (Cudmore and Turrigiano,
2004). This interpretation allows us to replicate experiments
from cortical neurons that suggested these factors could underlie
graded persistent changes in firing levels (Egorov et al., 2002).

Increased efforts have focused on identifying the interplay
of multiple synaptic (Keck et al., 2012) and even nonsynaptic
(Habenschuss et al., 2012; Nessler et al., 2013; Savin et al., 2014)
empirically grounded phenomena that could be relevant for
learning and inference. In spike-based BCPNN, the use of evolv-
ing traces that coalesce to estimate probabilistic quantities com-
plements these approaches by offering a conceivable way in which
molecular events, which are known to span across different plas-
ticity modalities (Daoudal and Debanne, 2003) and time scales
(Tetzlaff et al., 2012), could be interconnected through latent
probabilistic operations. The proposed model yields insights
into how local and global computations, viewed through the
lens of Bayes’ rule, could accommodate a complex mixture of
dynamics thought to be relevant for information processing in
neocortex.

MATERIALS AND METHODS

DERIVATION OF A PROBABILISTIC LEARNING RULE

Theoretical underpinnings described in this section are not
intended to be a novel contribution, but are briefly included
for completeness (Lansner and Ekeberg, 1989; Lansner and
Holst, 1996). Consider a paradigm in which learning and recall
are probabilistically grounded, associative memory mechanisms.
According to BCPNN, computational units representing stochas-
tic events have an associated activation state reflected by a real

value between 0 and 1. This corresponds to the probability of
that event, given observed events, which are represented by other
active units. In spike-based BCPNN, units are viewed as local
populations of 30 spiking neurons (Peters and Yilmaz, 1993), i.e.,
minicolumns, that have similar receptive fields and are highly
connected and coactive (Mountcastle, 1997; Yoshimura et al.,
2005; Bathellier et al.,, 2012). Corresponding levels of activa-
tion for these minicolumns are represented by their average
spike rate.

Starting from Bayes’ rule for relating the conditional probabil-
ities of two random variables, observed firing rates collected from
n presynaptic minicolumns x;_,, i.e., the evidence P(x;._,), can
better inform the firing probabilities of neurons in the postsynap-
tic minicolumn yj, i.e., the prior P(y;):

P(x1..alyj)

1
P(x1..n) M

P(yjlxi..n) = P(yj)
The described learning approach is tantamount to a naive Bayes
classifier that attempts to estimate the posterior probability dis-
tribution P(y;|x1...,) over a class (e.g., y; = “animal”) realized by
its observed attributes (e.g., x, = “shape,” “color,” or “size”). By
assuming conditional and unconditional independence between
X1..n» Bayes’ rule can be extended by:

P(xaly;) P(xaly;)
P(x1)  P(x2)

P(xuly;)

P(xy) @)

Pyjlx1..u) = P(y))
The assumption of independent marginals above is insignifi-
cant considering that the denominator of Equation 2 is iden-
tical for each y;. Thus, relative probabilistic ordering of classes
remains intact, and probabilities can be recovered by normalizing
P(yj|x1...n) to sum to 1. If we define each attribute x;, as a discrete
coded or as an interval coded continuous variable (e.g., x;; =

“blue,” “yellow,” or “pink” for x;, = “color”), a modular network
topology follows:
P(xh I}’
P(yjlx1..n) = P(y)) 1"[ Z ’ J (3)

in which nj, minicolumns are distributed into each of H hyper-
columns (Figure 1A). Here, 7y, represents relative activity or
uncertainty of the attribute value xp;, and my, = 1 indicates
that attribute value xj;; was observed with maximal certainty.
Equation 3 may instead be equivalently expressed as a sum of

logarithms by:
L P(xily;)
S T | (4
[; P(xy)

Equation 4 states that contributions via connections from mini-
columns in the same hypercolumn need to be summed before tak-
ing the logarithm, then summed again. Such an operation might
be performed dendritically. More generally, the sum inside the
logarithm can be approximated by one term through the elimina-
tion of index A, since there are significantly more hypercolumns

H
log P(yjlx1...) = log P(y;) + ) _ log
h=1
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FIGURE 1 | Reconciling neuronal and probabilistic spaces using the
spike-based BCPNN architecture for a postsynaptic minicolumn with
activity y;. (A) A cartoon of the derived network incorporates H = 5
hypercolumns each containing ny, = 4 minicolumns that laterally inhibit each
other (red lines) to perform a WTA operation via local inhibitory
interneurons (red circles). The dotted gray area is represented by B in detail.
(B) Weighted input rates x;__y are summed and passed through a transfer
function to determine the amount of output activation. Connections Wiy,
can be viewed as synaptic strengths (black lines, semicircles) or inverted
directed acyclic graph edges representing the underlying generative model
of a naive Bayes classifier.

than incoming synapses per neuron in mammalian neocortical
networks. Considering the asymptotically large size and sparse
connectivity of these networks, it is statistically unlikely that a
specific hypercolumn would receive more than one incoming
connection from any other hypercolumn.

Each hypercolumn is regarded as having normalized activity
27’;1 7y, = 1, and such canonical connectivity schemes along
with the winner-take-all (WTA) operations they imply are preva-
lent throughout neocortex (Douglas and Martin, 2004). Hence
in analogy to neural transduction, a support value s; = §; +
SN Wayy; can be calculated by iterating over the set of possi-
ble conditioning attribute values N = Hnj, for y; with weight wy,y,
and bias B; update equations (Figure 1B):

P(xily;) o P(xi, y)
P(x) CP(x)P(y)

Bj = log P(y)) Wyy; = log (5)

Activity statistics are gathered during learning and their rela-
tive importance is evaluated and expressed as weights and biases.
After Bayesian updating, probabilities are recovered by normaliz-
ing P(yj|x1...n) to sum to 1 over each y; by using an exponential
transfer function since s; = log P(yjlx1...n):

e’
7 (6)

P(yjlx1..n) = S
i=1

It is important to note that from this point onward, we refer to w
and B as models of the incoming synaptic strength and excitability
of a neuron. In the case where multiple synaptic boutons from a
pre- to postsynaptic target neuron exist, they are represented here
as a single synapse.

PROBABILISTIC INFERENCE PERFORMED WITH LOCAL SYNAPTIC
TRACES
Spike-based BCPNN is based on memory traces implemented
as exponentially weighted moving averages (EWMAs) (Roberts,
1959) of spikes, which were used to estimate P;, Pj, and P;; as
defined above (Equation 5). Temporal smoothing corresponds to
integration of neural activity by molecular processes and enables
manipulation of these traces; it is a technique commonly imple-
mented in synapse (Kempter et al., 1999) and neuron (Gerstner,
1995) models. EWMAs can ensure newly presented evidence
is prioritized over previously learned patterns because as old
memories decay, they are gradually replaced by more recent ones.

The dynamics governing the differential equations of the
learning rule with two input spike trains, S; from presynaptic
neuron i and S; from postsynaptic neuron j, are illustrated in
Figure 2A. A three-stage EWMA procedure (Figures 2B-D) was
adopted, the time constants of which were chosen to have a phe-
nomenological mapping to key plasticity-relevant changes within
signal transduction pathways that occur during learning.

The Z; and Z; traces had the fastest dynamics (Figure 2B), and
were defined as

dz; Si

7+ az; Sj
T,—=—"-—"-2i+¢
“ dt fmax Lspike 1

od= T 74 (7)
g dt fmax Lspike !

which filtered pre- and postsynaptic activity with time constants
Tz Tz ~ 5-100 ms to match rapid Ca’* influx via NMDA recep-
tors or voltage-gated Ca?* channels (Lisman, 1989; Bliss and
Collingridge, 1993). These events initiate synaptic plasticity and
can determine the time scale of the coincidence detection window
for LTP induction (Markram et al., 1997).

We assumed that each neuron could maximally fire at fi.x Hz
and minimally at € Hz, which represented absolute certainty and
doubt about the evidential context of the input. Relative uncer-
tainty was represented by firing levels between these bounds.
Since every spike event had duration £, ms, normalizing each
spike by fmax tspike Meant that it contributed an appropriate pro-
portion of overall probability in a given unit of time by making
the underlying Z trace ~1. This established a linear transforma-
tion between probability space € {€, 1} and neuronal spike rate
€ {€, fmax}. Placing upper and lower bounds on firing rates was
reasonable given physiologically relevant firing rates of cortical
pyramidal neurons (Abeles, 1991).

The Z traces were passed on to the E or eligibility traces (Klopf,
1972), which evolved according to (Figure 2C):

fe—l :Zi_Ei Teij =7 —E; feJ :ZIZ_EI (8)

At this stage of the EWMAS, a separate equation was introduced to
track coincident activity from the Z traces. Eligibility traces have
been used extensively to simulate delayed reward paradigms in
previous models (Florian, 2007; Izhikevich, 2007), and are viewed
as a potential neural mechanism underlying reinforcement learn-
ing (Pawlak et al., 2010). They enabled simultaneous pre-post
spiking to trigger a buildup of activity in the E traces, which could
then be eligible for externally driven neuromodulatory interven-
tion. The time constant 7, ~ 100-1000 ms was assumed to
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FIGURE 2 | Schematic flow of BCPNN update equations reformulated update. (B) Z traces low pass filter input spike trains with 7, = 7. (C) E
as spike-based plasticity. (A) The S; pre- (A-D, red) and S; postsynaptic traces compute a low pass filtered representation of the Z traces at time
(A-D, blue) neuron spike trains are presented as arbitrary example input scale to. Co-activity now enters in a mutual trace (C,D, black). (D) E traces
patterns. Each subsequent row (B-D) corresponds to a single stage in the  feed into P traces that have the slowest plasticity and longest memory,
EWMA estimate of the terms used in the incremental Bayesian weight which is established by .

represent one of the downstream cellular processes that could
interact with increased intracellular Ca?T concentrations, such as
CaMKII activation (Fukunaga et al., 1993). Creation of a decaying
tag for each pre-post activated synapse for delivery of a spe-
cific marker that can be targeted for future plasticity-associated
protein trafficking (Frey and Morris, 1997) has also been hypoth-
esized to provide an intermediary step in the transition from early

to late phase LTP.

E traces were subsequently passed on to the P traces
(Figure 2D). Gene expression, protein synthesis and protein cap-
ture are cellular processes that mediate LTP maintenance and
long-term memory formation (Nguyen et al., 1994; Frey and
Morris, 1997). They tend to be activated in late phase LTP by ele-

vated levels of Ca>* dependent protein kinases, akin to activation
in the P trace dynamics originating from sustained activation in
the E traces:

dp;
— =«(Ei — P)

I Pij) (9)

de ClP,j
Tp pr :K(E]—PJ) fPW:K(Ei]’—

Since these processes tend to exhibit highly variable timescales
lasting anywhere from several seconds up to potentially days or
months (Abraham, 2003), we simply imposed 7, T < Te < Tp
but typically used 7, ~ 105 for the sake of conciseness in simula-
tions. Directly regulating the learning rate, parameter « € [0, o0]
represented the action of an endogenous neuromodulator, e.g.,
dopamine (Schultz et al., 1997), that signaled the relevance of
recent synaptic events. The P trace is considered a versatile process
tied closely to the nature of the task at hand by a globally applied

k (Schultz et al., 1997). Recently stored correlations were prop-
agated when « # 0 and no weight changes take place when k =
0. Although we show through simulations how delayed reward
could be implemented with E traces, they are not required for
inference, and having 7, approach 0 would not undermine any
of the results presented here.

Probabilities were ultimately fed into the final learning rule
update equations (Equation 5) used to compute 8; and w;:

P;
P;P;

(10)

Bj = log(P)) wjj = log

To illustrate this process, a learning scheme involving delayed
rewards is depicted with a pair of connected neurons (Figure 3A).
In this example, a reward was delivered 1-2s after coincident
activity (Waelti et al., 2001) for 500 ms (Gonon, 1997) to rein-
force deserving stimuli. If 7, was too small or positive reward «
arrived after the E trace had decayed to baseline (Figure 3B), no
signal was propagated to the P traces. As a result, the correspond-
ing Pj trace and weight remained unchanged. However, if the E
trace was sufficiently large such that there was an overlap with
K, the strength of the synapse grew and associative learning tran-
spired (Figure 3C). Although only one connection wj; is depicted
in this example, ¥ would be modulated in the same way for all
synapses in the network context, typical of dopaminergic neuron
release characteristics (Waelti et al., 2001).
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FIGURE 3 | Delayed reward learning using E traces. (A) A pair of propagated to the mutual eligibility trace Ej. (B) A reward (pink
neurons fire randomly and elicit changes in the pre- (red) and rectangular function, not to scale) is delivered as external supervision.
postsynaptic (blue) Z traces of a BCPNN synapse connecting them. Resulting E traces are indicated (gray line, t¢ = 100ms and black line,
Sometimes by chance (pre before post*, synchronous*, post before te = 1000ms). (C) Behavior of color corresponding P; traces and
pre), the neurons fire coincidentally and the degree of overlap of their  weights (inset) depends on whether or not the reward reached the
Z traces (inset, light blue), regardless of their order of firing, is synapses in ample time.

LEAKY INTEGRATE-AND-FIRE NEURON MODEL

Model spikes are generated using NEST version 2 (Gewaltig and
Deismann, 2007). An IAF neuron with alpha function-shaped
postsynaptic conductance, NEST model “iaf_cond_alpha” (Kuhn
etal., 2004), is amended to account for the bias term  (Equation
10). It enters the sub-threshold voltage V,, equation of the post-
synaptic neuron according to:

av, ‘
=G = (Vi = E) + ) gex, iV = Eex, )
i=1

+ngh, i(Vin — Einn, i) + ¢l (11)

i=1

When threshold Vy, is reached (V,,, > Vy,) a spike is generated
and V,, is held to the reset potential Vi for t,; ms represent-
ing the absolute refractory period. The total current flow across
the membrane is determined by the membrane capacitance C,,,
the leak reversal potential Ey, excitatory E. and inhibitory Ej,j
reversal potentials, the leak conductance g, excitatory g, and
inhibitory g, synaptic conductances, and Ig that is scaled to rep-
resent an activity-dependent current quantity by ¢. Postsynaptic
conductances g, and gj,;, are modified by the occurrence of an
excitatory or inhibitory input event from one of the n presynaptic
neurons at time f; by:

t—t;—d 1=(t=ts—d)
— P
Gex|inh,i(t) = SmaxWij——————e€ exlinh
ex|inh

(12)

This enables g,y or g, to rise with finite duration 7,y or Tj,, to its
peak conductance gmax at time ¢ — t; — d = T,y OT Tjyp, where d is
the transmission delay.

IAF neurons offer an analytically convenient form for describ-
ing rate of firing dependent upon quantifiable measures of V.
We will show in the Results that the input-output relationship

in a background driven regime is particularly suited for Bayesian
computations (Equation 6). If we consider an IAF neuron as it
receives excitatory synaptic drive Aey = HexfexWexTexe from ngy
Poisson processes spiking at f,, Hz with weights. Wex = Z?Zl Wi,
its mean firing rate r can be formulated according to Kuhn et al.

(2004):
1 Vih — m
r(lm, Om) = 2, |:1 erf( O‘m\fZ )]

where 1, = C,,,/(gL + Aex) is the effective membrane time con-
stant, erf is the error function, and the steady state mean ., and
standard deviation oy, of its V,,, are estimated by (Figure S1):

(13)

_ ELGL + EexAex

Eex — fm) 2
o = (Eex — m) eme:| (14)
GL + Aex

om = \/nexfex(zrm + Tex) [ 20T+ 7o)
In numerical simulations, neurons were stimulated by Poisson
spike trains or correlated spike trains, the latter of which were
generated using the Multiple Interaction Process (Kuhn et al.,
2003) defined in NEST (“mip_generator”). For simulations where
background activity was present, 30 input Poisson sources stim-
ulated each neuron to control their background spike rate. The
values of all synaptic and neuronal parameters used in numerical
simulations are listed in Table 1.

RESULTS

We found that dynamical phenomena emerging from this map-
ping resembled processes that are thought to underlie learning
and memory in cortical microcircuits. We first identify the synap-
tic and nonsynaptic correlates of this extension by studying ensu-
ing spike dynamics accompanying the individual assumptions of
the derivation, and then the functionally distinct computations
are considered together in a network setting where we demon-
strate a simple Bayesian inference task performed by spiking
neurons.
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Table 1 | When parameters are not explicity listed in the text, they are
interleaved below, following (Nordlie et al., 2009).

(A) MODEL SUMMARY

Neuron model Leaky IAF

Synapse model Conductance-based with a-shaped PSCs,

plastic BCPNN synapses

Channel model K+ channel

Input model Fixed-rate Poisson spike trains

Measured quantities Spike activity, connection strengths, biases,
voltages

(B) NEURON MODEL
Leaky IAF dynamics Subthreshold membrane potential V;,, of
neuron j with ninputs:

—Cm% =9.(Vm—Ep) + 27:1 Fex,i(Vm —
Eex,) + 27:1 Ginh, iVm — Einn, ) + ¢lp
Spiking: If V;, > V4, spike generated and Vi,

held at Vjes for ter ms

Parameters Cm = 250 pF membrane capacitance

g, = 16.67nS leak conductance

E;, = —70mV leak reversal potential

Eex = OmV excitatory reversal potential
Einn = —=75mV inhibitory reversal potential
¢ = B0 pA current scaling factor Figures 8-10,
0 pA otherwise

Vi = =65 mV membrane voltage threshold
Vies = —60 mV membrane reset potential
tef = 2 ms refractory period

dt = 0.1 ms time resolution

(C) CHANNEL MODEL

Activity-dependent K*+/CAN current of neuron j, /g; pA:
- dP,
hyperpolarizing 0 &l = k(E - P)
lgj = #B; = ¢ 10g(P)
See Equation 8 for calculation of £;
Parameters 7; = 10ms Z trace time constant

e = 100 ms E trace time constant
7, = 10000 ms P trace time constant
S; = 1if spike, 0 if no spike

fmax = 20 Hz, highest firing rate

€ = 1/(fmaxtp) Hz, lowest firing rate
tspike = 0.1 ms spike duration

(D) SYNAPSE MODEL

a-shape PSC Excitatory gex and inhibitory gjpn conductance
dynamics changes for postsynaptic neuron j with spike
at time ts by one of the n presynaptic neurons:
1-(t—ts—d)
Gexjinh, i(t) = Gmax Wi f;eis";hd e Texinh

BCPNN synapse Synaptic strength between i and j, wj; nS:
P P,
1% = k(Ej— P). gt =k (E— P). 1o G =
K(E,'j — P,'/')
Pi
wji = log (F’/’]’/
See Equation 8 for calculation of £ E; and Ej;.

Parameters 7,; = 10 ms Z trace time constant

e = 100 ms E trace time constant

(Continued)

Table 1 | Continued

7p = 10000 ms P trace time constant
gmax = 2.0nS peak conductance
tex = 0.2 ms « rise time for excitatory input
Tinh = 2 Ms a rise time for inhibitory input
d = 0.1 ms transmission delay
« = 1.0, 0.0 to freeze plasticity (Figure 10)
(E) INPUT
Poisson generator nex = 30 processes, independent per neuron
Wex = 10.75 nS per process
rex rate, 0 < rex < frax
(F) MEASUREMENTS
r spike rate (spikes/second)
wj synaptic weight between neurons j and j (nS)
Vm membrane voltage of neuron j (mV)
Igbias current magnitude (pA)

VALIDATING SPIKE-BASED BCPNN WITH PREVIOUS
IMPLEMENTATIONS

As a proof of concept, we first sought to validate whether using
EWMAs with input Poisson trains in spike-based BCPNN could
reliably estimate learning outcomes of an abstract BCPNN where
units had simple, exponentially smoothed binary activation pat-
terns (Equation 5) (Sandberg et al., 2002). To demonstrate con-
sistency, five patterns between two units (binary activations of 1
or 0) and two neurons (Poisson spike trains firing at fy,.x or € Hz)
were instantiated in ten consecutive 200 ms trials. In this setup, we
set T, = 1000 ms by design to be less than this 2000 ms presented
pattern duration.

By simultaneously presenting proportional unit activity and
spiking patterns to the pre- (Figure4A) and postsynaptic
(Figure 4B) binary output units of abstract BCPNN and IAF
neurons of spike-based BCPNN, a close correspondence between
their resulting weight and bias trajectories was confirmed
(Figure 4C). Five separate cases were tested in order to robustly
sample statistical relationships among a diverse set of patterns.
Correlated patterns meant both units/neurons were maximally
or minimally active/firing in each trial, independent patterns
denoted uniform sampling of active and inactive patterns for
both neurons in each trial, anti-correlated patterns meant one
was active and the other was inactive or vice-versa in each
trial, both muted meant both were inactive in all trials, and
post muted meant activity of the presynaptic neuron was uni-
formly sampled and the postsynaptic one was inactive in all
trials.

We found some notable differences between spike-based
BCPNN and other correlation-based learning rules. Instances in
which neuron i was highly active and neuron j weakly active (and
vice versa) led to a decay of wyj, which eventually turned neg-
ative. When i and j were both either highly or weakly active,
w;j increased because correspondingly active or correspondingly
inactive patterns are indistinguishable from a probabilistic view-
point. The increase of w;; when 7 and j were both weakly active
was linearly dependent upon the three exponentially decaying P
traces (Equation 9), since they tended to decay toward ¢ in the
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FIGURE 4 | Spike-based BCPNN estimates abstract BCPNN for different
input patterns. (A) Pre- and (B) postsynaptic input spike trains. Activation
patterns (shaded rectangles) of abstract BCPNN units and corresponding
Poisson spike trains (vertical bars) firing at fmax Hz elicited in IAF neurons
are differentiated by color. (C) Weight and bias (inset) development under
different protocol for the abstract (dotted) and spike-based (solid) versions
of the learning rule. Spiking simulations were repeated 100 times and
averaged, with standard deviations illustrated by the shaded regions.

absence of any input. When i and j were both highly active, learn-
ing was virtually instantaneous, or one-shot, since 7, was short
compared with the stimulus duration. Steady state trace dynamics
were responsible for the eventual decay of positive weights over
time, similar to the multiplicative enforcement of constraints pre-
viously proposed on theoretical grounds (Miller and Mackay,
1994). Importantly, this built-in compensatory mechanism was
much slower than weight increases, otherwise its regulatory
effects would have dampened any transient activity fluctuations
that could have been relevant for information processing and
memory.

PLASTICITY DYNAMICS OF SPIKE-BASED BCPNN

The spiking setup allowed us to consider more detailed tempo-
ral aspects of plasticity beyond simple rate-modulated Poisson
processes. First, we investigated how the temporal relationship
between pre- and postsynaptic activity influenced expression of
plasticity in our model. To evaluate the STDP properties of spike-
based BCPNN, a canonical experimental protocol was simulated
(Markram et al., 1997; Bi and Poo, 1998) by inducing pre- (t;)
and postsynaptic (¢) spiking in IAF neurons shortly before or
after one another 60 times at 1 Hz frequency without background
activity (Figure 5A).

o
o
ol

50 -50 0 50
spike latency At [ms]

FIGURE 5 | STDP function curves are shaped by the Z trace time
constants. (A) Schematic representation of the STDP conditioning
protocol. Each pre (blue)—post (green) pairing is repeated for each time
difference At = t; — t; illustrated in (C-E). (B) Weight dependence for
positive (At = 0ms, solid line) and negative (At = 50 ms, dashed line) spike
timings. Compare to Figure 5 of Bi and Poo (1998). (C) Relative change in
peak synaptic amplitude using 7,; = 5ms, 7;; = 5ms, 7e = 100ms, and

7, = 10000 ms. This curve is reproduced in (D-F) using dotted lines as a
reference. (D) The width of the LTP window is determined by the
magnitude of the Z trace time constants. When t; is changed to 2ms, the
coincident learning window shifts right. (E) Instead when t,; is changed to
2mes, it shifts left. Note that a decrease in t; is thus qualitatively consistent
with the canonical STDP kernel. (F) Changing the P trace time constant
influences the amount of LTD. When 1, is doubled to 20,000 ms, the
learned correlations tend to decay at a slower rate.

The strength of the weight changes were bidirectional and
weight-dependent (Figure 5B), generally exhibiting LTP for
tight values of At =t; —t and LTD for wider values of At
(Figure 5C). The shape of the learning window was dependent
upon the parameters 7, T, and 7, defining the duration of
the different memory traces in the model (see Materials and
Methods). Manipulation of the Z trace time constants changed
the width of the STDP window, and therefore 7,; and z; effec-
tively regulated sensitivity to spike coincidence. Having ,; # 7
generated an asymmetric weight structure that allowed for pri-
oritization of pre-post timing (+Af) over post-pre timing (—At,
Figure 5D) and vice versa (Figure 5E). The LTD area shrank for
a constant STDP window width when 7, was increased because
it induced a longer decay time for the P traces (Figure 5F),
emphasizing a slowness in learning. Temporally symmetrical
Hebbian learning was due to an increase of Pj; as a result
of the amount of overlap between P; and P; (see Figure 2D).
A similar form of LTP based on pre- and postsynaptic spike
train overlap (Figure S2) has been shown for synapses in slices
(Kobayashi and Poo, 2004).
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AN EMERGENT APPROACH TO THE STABILITY vs. COMPETITION
DILEMMA

Long-term stability can be problematic for correlative learning
rules (e.g., Figure5C), since bounded Hebbian synapses
destabilize plastic networks by maximally potentiating or depress-
ing synapses. Additional mechanisms such as weight-dependent
weight changes (van Rossum et al., 2000) or fine tuning of
window parameters (Kempter and Gerstner, 2001; Babadi and
Abbott, 2010) have been shown to be able to keep weights
in check. In contrast, owing to its plasticity dynamics during
on-line probability estimation, spike-based BCPNN naturally
demonstrated weight dependence (Figure 5B) along with a sta-
ble unimodal equilibrium weight distribution when exposed to
prolonged uncorrelated stimulation.

We conducted equilibrium experiments (Figures 6, 7) using
spike-based BCPNN synapses in which each of their mean sta-
tionary weight distributions were shifted upwards by the lowest
possible allowed weight. This subtrahend was calculated from
Equation 10, log(ez/O.Sz) = 10g(4£2), or the log minimum
P = €% (no co-activity) divided by maximum P;P; = 0.52 (both
pre- and post-neurons are active half of the time) trace values.
Although this normalization would not occur biologically, it was
necessary for displaying true equilibrium weight values because
the average weight distribution ~ 0 after 7, ms due to P trace
decay, and zero-valued average weights would have mitigated any
postsynaptic response in the absence of background input. To
demonstrate stability, a postsynaptic neuron is shown steadily fir-
ing at an average of 7 Hz when innervated by 1000 presynaptic
input neurons each producing 5Hz Poisson spike trains due to
background activity (Figure 6A). Given this setup (Figure 6B),
the evolution of the renormalized synaptic weights during this
period settled around 0 (Figure 6C).

This behavior can be understood by investigating the P traces.
Initially, both P; and P; increased as presynaptic input elicited
postsynaptic spiking, growing the value of the denominator from
Equation 10. In the numerator, the mutual trace P;; built up as
well, and there was an eventual convergence in the P traces to
P;P; = \/PT] after an elapsed time 7,. Because both neurons fired
together, the learning rule initially enhanced their connection
strength, creating an initial transient output rate excursion. But
as input persisted such that pre- and postsynaptic neurons con-
tinued firing at constant rates, correlations were eventually lost
due to P trace decay. Statistically speaking, the signals emitted
by the two neurons were indistinguishable over long timescales.
The steady state of the weights ended up approximately Gaussian
distributed around the quotient log(1) ~ 0 (Figure 6D), inde-
pendent of the approximate rates for the pre- and postsynaptic
neurons. This stability was robust to the choice of time constants,
given relatively constant pre- and postsynaptic firing rates.

But presence of a unimodal equilibrium weight distribu-
tion alone does not guarantee competition amongst constituent
weights. More functionally relevant is a situation where weight
enhancement in one group of inputs causes a corresponding
weight reduction among others (Gilson and Fukai, 2011). To
illustrate competition within the spike-based BCPNN weight
structure, we selectively introduced pairwise correlation into
the spike timings of 100 presynaptic cells. The correlated and
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FIGURE 6 | The BCPNN learning rule exhibits a stable equilibrium
weight distribution. (A) Progression of averaged rates of firing (3 s bins)
for the presynaptic (blue) and postsynaptic (black) neurons in the network.
(B) Setup involves 1000 Poisson-firing presynaptic neurons that drive one
postsynaptic cell. (C) The BCPNN synaptic strengths recorded every

100 ms (blue, dotted white line is their instantaneous mean) has an initial
transient but then remains steady throughout the entire simulation despite
deviation amongst individual weights within the equilibrium distribution. (D)
BCPNN weight histogram plotted for the final time epoch is unimodal and
approximately normally distributed (blue line, uo = 0.0 and og = 0.38).

uncorrelated input groups were stimulated to fire at the same
rate (Figure 7A), so that the only difference in signal between
neurons of the feedforward network (Figure7B) was on the
spike-timing level. Evolution of the weights was recorded for each
connection (Figure 7C), and a specialized weight structure devel-
oped dependent upon the correlation coefficient C (Figure 7D).
The difference between the distributions was calculated as the
discriminability (Willshaw and Dayan, 1990):

d = M4+ — Ko
00

(15)

The variable 14 represented the mean of the correlated distribu-
tion, wo the mean of the uncorrelated distribution, and o4 ~ oy
the standard deviation shared by the two distributions. The equi-
librium weight distribution shifted proportionally for differing
amounts of C (Figure 7E). As expected from a competitive mech-
anism, correlated neurons remained more potentiated beyond 7,
despite underlying long-term stabilizing pressures (see Figure 6).
To assess the level of competition, we summed the synaptic
weights for both the correlated and uncorrelated subpopulations
for increasing C. As the weights stemming from the correlated
population increased with C, the weights in the uncorrelated
population decreased in response, while total weight values were
kept relatively steady (Figure 7F). Furthermore, competition was
reduced by increasing t,; and 7, which decreased the standard
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FIGURE 7 | A shift in the weight distribution of correlated neurons
arises from structured input. (A) Progression of averaged rates of firing
(3 s bins) for the externally stimulated uncorrelated (blue) and correlated
(pictured C = 0.2, red) presynaptic neurons, along with the postsynaptic
(black) neuron they drive in the network. (B) Setup involves 900
uncorrelated and 100 correlated presynaptic neurons that drive one
postsynaptic cell. (C) Synaptic strengths recorded every 100 ms from the
correlated group gradually specialize over time vs. their uncorrelated
counterparts, resulting in a change in the mean distribution of weights
(white dotted lines for each, here C = 0.2). (D) Weight histograms plotted
for the final time epoch are unimodal and approximately normally
distributed (C = 0.2, up = —0.03, uo = 0.34 and op ~ o = 0.18). (E) The
separation between these distributions is expressed as d', which increases
as a function of the input correlation coefficient. (F) Summed weights for
the correlated (red), uncorrelated (blue), and combined (black) in the final
epoch as a function of C. (G) Same as in (F) but with z,; and ; increased
by a factor of 2. In both instances, the combined weights remain relatively
constant around wj; = 0, although lower time constants induce more
substantial differences between the correlated and uncorrelated weights.
Error bars depict the standard deviation gathered from 50 repeated trials.

deviation of the terminal weight distribution and reduced the
importance of each individual spike (Figure 7G).

INTRINSIC GENERATION OF GRADED PERSISTENT ACTIVITY AS A
FUNCTIONAL CONSEQUENCE OF 8

In spike-based BCPNN, output firing rates represent the poste-
rior probability of observing a presented pattern. Although it is
calculated by exponentiating the support activity (Equation 6),
exponential input-output curves are rarely measured in experi-
ments despite the apparent computational benefits of non-linear

input transformation at the level of single neurons (Koch, 2004).
To account for these biological constraints, an alternative sce-
nario is considered in which a neuron is stimulated by excitatory
Poisson background input such that the mean voltage of its
membrane potential is subthreshold (Figure 8A) and it fires up
to intermediate levels. This background-driven regime enables
spike production due to fluctuations in subthreshold membrane
voltage, and is thought to approximate in vivo conditions dur-
ing which cortical neurons are bombarded by ongoing synaptic
background activity (Destexhe et al., 2001).

We found that linearly increasing the level of presynaptic
drive in the presence of background activity caused an expansive
non-linearity in the IAF input-output curve within a physio-
logically relevant <1 up to 20Hz range of firing, which has
been reported previously for conductance-based IAF neurons
(Fourcaud-Trocmé et al., 2003) and cortical neurons (Rauch et al.,
2003). The time-averaged firing rate was well-approximated by
an exponential function (Figure 8B). Relating back to Figure 1,
information deemed relevant in the form of increased activity
by a subset of presynaptic sources can cause the postsynaptic
neuron to ascend its activation function. Inhibitory drive could
dominate if other active presynaptic neurons signaled counter-
evidence. Although they are excluded here, such interactions
would not elicit a qualitative deviation in the input-output curve
from Figure 8B.

Although functional synaptic aspects have been emphasized
up until this point, a distinct role for intrinsic plasticity was
not precluded. The neural input-output relationship is controlled
by the abundance, kinetics, and biochemical properties of ion
channels present in the postsynaptic cell membrane. This is rep-
resented in spike-based BCPNN by the variable B;, which is
a function of the prior probability of postsynaptic activity P;
(Equation 9, see Figure 8C), and quantifies a general level of
excitability and spiking for the postsynaptic neuron. Because
B; — log(e) for minimal and B; — log(1) = 0 for maximal post-
synaptic firing rates, B; essentially lowered the probability for
neurons that were seldom active previously to be driven passed
threshold in the future. With regards to the statistical inference
process, this excitability represents an a priori estimate of postsy-
naptic activation. The intuition is if an event is experienced for the
first time, it will still be highly unexpected. To account for these
effects neurally, B; was treated as a hyperpolarizing current, Ig;,
that was continuously injected into the IAF neuron according to
Equation 11.

The outcome of this type of dynamic modification is illus-
trated in Figure 8D. The input-output curve was shifted depend-
ing on B;, and the same synaptic input caused differing output
levels. Similarly, LTP-IE provides a priming mechanism that can
sensitively tune membrane properties of a neuron in response
to altered levels of incoming synaptic input (Cudmore and
Turrigiano, 2004). The A-type K™ channel gates the outward flow
of current in an activity-dependent manner prescribed by a loga-
rithmic transformation of P; (Hoffman et al., 1997; Daoudal and
Debanne, 2003; Jung and Hoffman, 2009). The decay of a Ca?t-
activated non-specific cationic (CAN) current mediated by acti-
vation of transient receptor potential (TRP) channels (Petersson
etal., 2011) is another candidate that is thought to play a role in
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FIGURE 8 | Exponential activation function of a lowly firing IAF
neuron is shifted by an injection of a hyperpolarizing current
proportional to B;. (A) Voltage trace and resulting long tail distribution
of a membrane potential histogram from an IAF neuron approaching
firing threshold of —55mV (bin size = 0.15mV). (B) The input-output
curve of an IAF neuron with 30 inputs each firing at values listed along
the abscissa (black, simulated; blue, see Materials and Methods for
theoretical IAF rate). For low firing frequencies at or below 20Hz, the
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y = 0.48e0-29x=7.18) _ . 47). (C) The bias term shows logarithmically
increasing firing rate values of the neuron for which it is computed. (D)
When hyperpolarizing current proportional to g; is applied, neurons that
have previously been highly active will be more easily excitable (e.g.,
yellow curve) compared to neurons that have had little recent history of
firing (e.g., blue curve). Error bars depict the standard deviation
gathered from 50 repeated experiments.

these graded changes (Fransén et al., 2006). Mirroring the cascad-
ing trace levels that collectively compute 8, multiple time scales
of TRP current decay rate have been identified including a fast
decay of 10 ms (Faber et al., 2006), a medium decay of 200-300 ms
(Wyart et al., 2005) and a slow decay of 2-3 s (Sidiropoulou et al.,
2009).

Intrinsic excitability has been conjectured to serve as a mem-
ory substrate via locally stored information in the form of a
neuron’s activity history. Despite the lack of temporal specificity
that exists for synapses, intrinsic effects provide an alternative
computational device that is presumably beneficial for learn-
ing and memory. We therefore asked how g; could account for
functional aspects associated with the modulation of intrinsic
excitability.

Specifically, we sought to model the rapid changes in intrinsic
excitability found in slice preparations of layer V neurons from
entorhinal cortex in rat (Egorov et al., 2002). In this study, initially
silent neurons were repeatedly depolarized leading to a graded
increases in their persistent firing levels. It was also shown that
persistent activity states were deactivated by applying hyperpolar-
izing steps until quiescence. Figure 9A summarizes this stimulus
protocol, which was applied to an Igj-modulated IAF neuron in
the presence of background excitation. Duration and magnitude
of the transient events were parameterized according to Egorov

et al. (2002), using depolarizing steps of 0.3 nA for 4s each and
hyperpolarizing steps of 0.4 nA for 6 s each. The resulting activity
of the neuron is illustrated by Figure 9B. Stable periods of ele-
vated and suppressed firing rates were associated with increases
and decreases in Ig;, respectively. To achieve quantitatively similar
graded persistent firing levels as was shown in Egorov et al. a 7, of
60 s was used, similar to induction time courses observed for LTP-
IE in neurons from visual cortex (Cudmore and Turrigiano, 2004)
and cerebellar deep nuclear neurons (Aizenman and Linden,
2000). The sustained levels of activation were noisier than the
in vitro preparation of Egorov et al., presumably due to the
presence of excitatory synaptic background activity in the model.

Importantly, the increased rate of firing caused by each depo-
larizing stimulus application period led to a continuum of levels
up 10 fmax Hz, rather than discretely coded activity levels (Fransén
etal., 2006). The number of levels was arbitrary and depended on
both the magnitude and duration of the pulse, displaying peak
frequencies (<20 Hz) similar to those that were assumed for fpax.
To test this, ten depolarizing 2 s current steps were induced, pro-
ducing a continuum of levels that was approximately linear with
a regression coefficient of 1.33 (Figure 9B inset, red dotted line).
Discharges were sustained by changes in the P; trace (Figure 9C).
Each depolarizing step led to the generation of spikes which tran-
siently increased P; and made f; less negative. Conversely, each
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FIGURE 9 | The bias term reproduces the graded persistent elicited discharge. Red bars indicate the time averaged activity of
activity found in entorhinal cortical neurons. (A) Stimulation each 1min post-stimulus interval. Time averaged activity of 1min
protocol. Repetitive depolarizing followed by hyperpolarizing current post-stimulus intervals using 0.3nA depolarizing steps each lasting 2s
injections (switch occurs at black arrow) of the IAF neuron (stars, red-dotted line: linear fit). (C) Underlying P; trace evolution
including B;. (B) Peristimulus time histogram (2s bin width) of the during the simulation.

hyperpolarizing step tended to silence output activity, decreasing
B; and making it more difficult for the neuron to reach thresh-
old. A bidirectional effect of B; was apparent here, as excitability
decreased when the neuron was depotentiated (Daoudal et al.,
2002).

DEMONSTRATING PROBABILISTIC INFERENCE USING A SIMPLE
NETWORK

Up to this point, wj; and §; have been treated independently, but
by virtue of a shared Pj, this is not always the case in terms of
network dynamics. A low excitability g; for a historically inac-
tive neuron would not necessarily detract from the informative
content of the neuron per se, rather it must be considered in con-
junction with its incoming weights w;;. It is entirely plausible that
w;; would be very high. In terms of the inference task, this would
amount to neurons representing one specific class. To recapitulate
previous examples, the feature “pink” might only signal the class
“animal” if a flamingo was part of the training set, since such a
distinctive feature is statistically rare yet easily classifiable.

Since neither weights w;; nor biases f; alone were able to reli-
ably predict the outcome of learning, we introduced a simple
network model (Figure 10A) to show how interwoven synap-
tic and nonsynaptic computations could perform a Bayesian
inference task. Input layer minicolumns (X, Y) were all-to-all
connected to the output layer (X', Y'), each consisting of 30 neu-
rons. In order to implement WTA, output layer neurons were
recurrently connected amongst themselves (connection proba-
bility = 0.2), and reciprocally to an inhibitory population of
10 neurons (connection probability = 0.5). Ten seconds of
alternating, orthogonal Poisson stimulation patterns (i.e., fmax

or € Hz) were applied to input layer groups and identically to
their corresponding output groups. Over the course of training,
specialized weights w;; developed (Figure 10C) in which con-
nections between X (Y) and X’ (Y’) increased in strength since
they were coactive during training, and connections between
X (Y) and Y (X') decreased in strength since their activa-
tions were temporally disjoint. Since both X’ and Y’ were active
for half of the training, their P; traces saturated at 0.5 (not
shown). A simulation paradigm was employed in which weights
were disabled during training (gmax = 0) and frozen after learn-
ing (k =0) for the sake of simplicity and since such effects
have been hypothesized to mimic neuromodulatory interactions
(Hasselmo, 1993).

The neurons weighed all available evidence and fired accord-
ing to their inferred Bayesian weights and biases, and levels of
uncertainty in these patterns were represented by neuronal fir-
ing rates during recall (Figure 10B). Recall could be performed
irrespective of the stimulus duration, which was simply chosen
to match 7, here. For the trivial cases in which output neurons
were presented with the exact input stimulus pattern received
during training (X&—Y, X&—Y), certainty was exhibited by firing
rates approaching fmax = 20 Hz. The reciprocal readout neurons
in these scenarios had a lower level of belief in the incoming pat-
terns due to the inhibition that developed between both sets of
anti-correlated groups during training. In more interesting sce-
narios, output layer neurons displayed intermediate firing rates
when both input populations were active (X&Y) due to inhibi-
tion of the novel pattern, and responded with uncertainty without
any input pattern (—X&—Y), as their activity was dominated by
B; in the absence of presynaptic input. WTA ensured that either
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FIGURE 10 | Spiking BCPNN performs a simple Bayesian inference. (A)
Network architecture with excitatory (black) and inhibitory (gray)
connections between local minicolumns. Input neurons of groups X and Y
each project to the output layer X’ (green) and Y’ (blue), which mutually
inhibit each other via an inhibitory WTA population (gray). (B) Posterior
probability distributions are reflected by the output rates of postsynaptic
neuron pools X" and Y’ (colors corresponding to A) in 1's bins during recall.
(C) Evolution of the mean weight matrix during training, where each cell
represents the averaged activity for all 900 connections. Three snapshots
were taken during learning: one at the beginning, one a tenth of the way
through, and one at the end of the simulation. Weights that were
developed in alternating 200 ms intervals were initially volatile, but
eventually settled into a symmetrical terminal weight structure.

group X' or Y’ temporarily won, or fired at fma.x Hz while their
counterpart was silent. This meant in both cases (X&Y) and

fmax . .
(—X&=Y), neurons tended to fire on average at "3" Hz in this
simple example.

DISCUSSION

That the brain could encode probabilistic models is a radi-
cal departure from classical approaches in neuroscience, which
assume a bottom—up mechanistic view of computational units
as input filters. Nevertheless, given that both human behavior
in psychophysical tasks (Wolpert and Kording, 2004; Knill, 2005;
Tassinari et al., 2006) and recorded neural activity in different
brain areas (Carpenter and Williams, 1995; Rao and Ballard,
1999; Yang and Shadlen, 2007; Summerfield and Koechlin, 2008;
Berkes et al., 2011; D’Acremont et al., 2013) have been shown
to be able to carry out probabilistic operations, it has been
suggested that a Bayesian coding hypothesis may be a generic
property of neural computation. Models have been devised to
show how Bayesian inference could be carried out by neurons
and/or their networks, demonstrating various levels of neurobi-
ological realism and capturing several general properties thought
to be relevant for information processing. Here, we have recon-
ciled several of these properties by showing that the extension
of BCPNN to the domain of spiking neurons enables a rich col-
lection of dynamics that collectively approximate probabilistic
inference.

INTERPRETATION OF POSITIVE AND NEGATIVE SYNAPTIC WEIGHTS IN
THE MODEL

Weights in the proposed model can switch between positive and
negative values, such that an excitatory synapse may become
inhibitory and vice-versa. A monosynaptic excitatory connec-
tion with conductance determined by the positive component of
wjj could exist in parallel with a disynaptic inhibitory connec-
tion set by the negative component. Evidence for this putative
feedforward inhibitory microcircuit has been shown to be associ-
ated with postsynaptic spike rate (Mathews and Diamond, 2003;
Mori et al., 2004) or interneuron bypassing (Ren et al., 2007).
Upon observing evidence that does not support the a priori belief
level, the efficacy of synaptic transmission to excitatory sources
via inhibitory interneurons neurons would increase, indirectly
creating a net inhibitory drive. A direct channel would be pre-
ferred when the neuron is highly certain regarding the statistics
of its input, so that the net effect would instead be excitatory.
Since plastic weights turn negative, our model also implicitly
assumes the presence of inhibitory plasticity (Kullmann et al,,
2012), which has been previously investigated in the context of
this disynaptic feedforward configuration (Vogels et al., 2011).

BIOLOGICAL CORRELATES

Plastic changes within biological memory systems are temporally
dynamic phenomena, and arise as a result of biochemical cascades
that are hierarchically coupled together at the molecular level.
Despite this, and not least for reasons of computational conve-
nience, phenomenological models of plasticity implicitly neglect
both the contribution of the underlying biochemical pathways
to the overarching computation along with their wide rang-
ing timescales of operation. Furthermore, there is typically no
explicit representation of memory age, thus rendering it impos-
sible to take into account the relative familiarity of young or
old memories. In contrast, our model explicitly implements the
palimpsest property: three simple first order linear ordinary dif-
ferential equations acting as temporally heterogeneous memory
traces jointly serve the roles of assessing the novelty of the pre-
sented pattern on-line and estimating the relative probabilities
used to perform inference (Sandberg et al., 2002).

The functional outcome of cascading memory traces at the
synaptic level was a correlative Hebbian learning window with
shape and relative width determined by 7,; and z;;. Preference for
a left- or right-shifted temporal window has been shown in dif-
ferent experimental preparations (Froemke and Dan, 2002; Testa-
Silva et al., 2010), and it is thought that temporal asymmetry may
be attributable to the differential induction of NMDA-mediated
LTP (Abbott and Blum, 1996). Strong connections could develop
between pools of neurons in a directionally specific manner
(Abeles, 1991) during a training period of externally applied
input (Sompolinsky and Kanter, 1986). Stored patterns could
then be sequentially recalled forwards or backwards through time
depending on whether 7,; > 7, or 7,; < 7.

Associative learning typically leads to runaway excitation or
quiescence in the network context. There are modifications of
learning rules that maintain stability, such as STDP models
with multiplicative dependence of the change in weight on the
strength of the synapse (van Rossum et al., 2000), which produce
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experimentally motivated unimodal equilibrium weight distribu-
tions (Song et al., 2005). Competition between synapses can be
achieved using terms that account for activity dependent scaling
(van Rossum et al., 2000), intermediate STDP rule parameteri-
zations (Giitig et al., 2003), or a tuned STDP rule to fit a long-
tailed weight distribution (Gilson and Fukai, 2011). Spike-based
BCPNN demonstrates coexisting competition and stability that
emerge from the statistical assumptions accompanying Bayesian
weight updating. Such alternatives are relevant given increasing
questions surrounding the ubiquity (Abbott and Nelson, 2000),
fidelity (Lisman and Spruston, 2010) and precision (Kempter and
Gerstner, 2001; Babadi and Abbott, 2010) of asymmetrical STDP
as a generic biological learning rule.

One hypothesis for how stability can be achieved by neural cir-
cuits is that Ca®* sensor pathways homeostatically regulate recep-
tor trafficking to keep neuronal firing rates within a preferred
regime (Rutherford et al., 1998; Turrigiano et al., 1998). Although
spike-based BCPNN exhibited Hebbian synaptic plasticity, a reg-
ulatory mechanism arose that was able to both stabilize network
activity and preserve existing memories. Activity could remain
stable despite correlation-based changes in synaptic strength, and
weights could be scaled down in a competitive manner when
subsets of neurons were potentiated (Figures 6, 7). Thus, rela-
tive differences in synaptic efficacies could be preserved, similar
to what is to be expected from synaptic scaling. This activity-
dependent homeostatic mechanism is not unique to excitatory
synapses. In spike-based BCPNN, negative w;; increased when
pre- and postsynaptic neurons were weakly active (Figure 4),
which was justified from a probabilistic point of view. Given the
interpretation of negative weights (see Interpretation of Positive
and Negative Synaptic Weights in the Model), similar behavior
would be expected due to an antagonistic upregulation of activity
as a result of inhibitory synaptic scaling targeting pyramidal cells
(Kilman et al., 2002).

Shared synaptic and nonsynaptic P traces in spike-based
BCPNN suggest a novel probabilistic role for the integration of
neural activity arising from molecular processes. Since the P; trace
appears in the computation of both 8; and wj;, the model predicts
coexpression of LTP/LTD and LTP-IE due to shared intracellu-
lar postsynaptic Ca®" signaling cascades (Tsubokawa et al., 2000;
Zhang and Linden, 2003). Indeed, LTP-IE is thought to share
many common induction and expression pathways with LTP/LTD
(Daoudal and Debanne, 2003), and experimental protocols used
to study synaptic plasticity have often been shown to incidentally
give rise to LTP-IE (Bliss and Lomo, 1973; Aizenman and Linden,
2000; Daoudal et al., 2002). As in LTP/LTD, LTP-IE is rapidly
induced and long-lasting (Aizenman and Linden, 2000; Cudmore
and Turrigiano, 2004), consistent with the notion of .

RELATED WORK

Several previous approaches have represented probabilities
explicitly or intermediately using measures of neural activity.
Compelling models have been proposed based on probabilis-
tic population coding (Ma et al., 2006), where the variability
within a population response encodes uncertainty in the stimu-
lus, and belief propagation (Rao, 2005; Litvak and Ullman, 2009;
Steimer et al., 2009), in which relevant states are estimated using

internodal communication of messages that are alternatingly
summed and multiplied over factor graphs. Linking a proba-
bilistic modeling approach with multiple synergistic biological
processes has recently been emphasized. Coupled synaptic plas-
ticity and synaptic scaling (Keck et al., 2012) along with coupled
STDP and homeostatic intrinsic excitability (Nessler et al., 2013)
have been proposed in the context of the expectation maxi-
mization algorithm, whereas a model with coupled synaptic and
intrinsic plasticity has been implemented using Gibbs sampling
(Savin et al., 2014). This approach adopts a different machine
learning-inspired algorithm, namely the naive Bayes classifier.
Despite its underlying independence assumptions, Naive Bayes
is known to perform surprisingly well in machine learning tasks
compared with other advanced methods (Langley et al., 1992),
and it is a subject of future work to develop biologically moti-
vated benchmarks for these approaches in the domain of spiking
neuronal networks.

Spike-based BCPNN was not intended to phenomenologically
describe neurophysiological results. Rather, these similarities arise
naturally from theoretically and biologically constrained assump-
tions. Learning in our model is based on three consecutively-fed
traces that were temporally compatible with the signaling cas-
cades of cellular processes underlying the induction of LTP and
LTP-IE, and allowed each one to play a unique computational
role during the online estimation of probabilities. Including mul-
tiple time scales in an attempt to more accurately capture the wide
variety of molecular processes involved in memory has also been
argued for in previous models (Fusi et al., 2005; Clopath et al.,
2008). Another model hypothesized a memory scheme whereby
LTP and LTP-IE could interact (Janowitz and van Rossum, 2006),
but updates were asynchronous, which is difficult to recon-
cile with the coordinated interdependence known from biology
(Daoudal and Debanne, 2003) and shown here for spike-based
BCPNN.

Bayesian learning rules typically introduce rather specific
assumptions about the makeup of activity or connectivity in
the underlying neural circuit, and the one presented here intro-
duces topological structure in the form of a WTA hypercol-
umn microcircuit. As for our model, this has previously been
achieved by lateral inhibition (Nessler et al., 2013). In others, sim-
ilar conditions were fulfilled by homeostatic intrinsic excitability
(Habenschuss et al., 2012) and feedforward inhibition (Keck et al.,
2012). Here, WTA normalizes outputs based on Equation 6 so
that approximated posterior probabilities never exceed 1 within
a hypercolumn. In biology, this normalization could be medi-
ated by basket cell inhibition between local neural populations,
a generic motif thought to be fundamental to cortical network
organization (Douglas and Martin, 2004).

In spike-based BCPNN, such local neural populations, i.e.,
minicolumns, represent stochastic computational units. The
probability of an event is reflected by the probability that its cor-
responding neurons spike during a given time step. Such consid-
erations are advantageous from the perspective of neuromorphic
hardware, in which Poisson-like noise and trial-to-trial variability
physically manifest themselves as electronic phenomena. In the
same vein, neural sampling (Buesing et al., 2011; Pecevski et al.,
2011) has been proposed in which relevant computational units
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are not ensembles or columns of neurons but rather the stochas-
tically firing neurons themselves. In both of these approaches,
each spike carries a semantic interpretation. Several other mod-
els also take this viewpoint for spikes, and moreover utilize these
input spikes for learning (Deneve, 2008b; Nessler et al., 2013).
In our model, the presence of a spike during a given time step
signified an increase in confidence that the participating neurons
are part of the presented pattern. The conductance-based neuron
model we used is relatively detailed considering its alternatively
proposed interpretation in terms of latent probabilistic opera-
tions, although IAF dynamics have been exploited elsewhere in
this context (Deneve, 2008a).

Care was taken to ensure that extension of spike-based BCPNN
did not deviate from previous abstract implementations (Lansner
and Ekeberg, 1989; Lansner and Holst, 1996). In doing so, the
model here provides a direct way of exploring the spiking dynam-
ics of systems in which BCPNN has been implicated, including
neocortex (Sandberg et al., 2003; Johansson and Lansner, 2007;
Lansner et al., 2013) and basal ganglia (Berthet et al., 2012).
Such a step is necessary toward the goal of linking detailed neu-
ral mechanisms with complex probabilistic computations. Our
approach can naturally be extended to the recurrent setting using
the attractor memory paradigm, considered one of the most pow-
erful tools for describing non-linear network dynamics (Lansner,
2009) yet notably absent thus far in the context of spiking models
that incorporate probabilistic learning and inference.

In summary, we have described how a simple microcir-
cuit comprised of intrinsically excitable conductance-based IAF
neurons, interconnected by synapses endowed with correla-
tive weight-dependent Hebbian-Bayesian plasticity, could readily
approximate Bayesian computation. Spike-based BCPNN pro-
poses a novel way of linking biochemical processes at the sub-
cellular level and Poisson-like variability at the neuron level with
complex probabilistic computations at the microcircuit level.
It implies that the presence of a spike, or lack thereof, not
only enacts measurable changes in the biochemical makeup of
synapses and cells, but moreover contributes to an underlying,
ongoing inference process.
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