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Recurrent networks have been proposed as a model of associative memory. In such
models, memory items are stored in the strength of connections between neurons.
These modifiable connections or synapses constitute a shared resource among all stored
memories, limiting the capacity of the network. Synaptic plasticity at different time scales
can play an important role in optimizing the representation of associative memories, by
keeping them sparse, uncorrelated and non-redundant. Here, we use a model of sequence
memory to illustrate how plasticity allows a recurrent network to self-optimize by gradually
re-encoding the representation of its memory items. A learning rule is used to sparsify
large patterns, i.e., patterns with many active units. As a result, pattern sizes become
more homogeneous, which increases the network’s dynamical stability during sequence
recall and allows more patterns to be stored. Last, we show that the learning rule allows
for online learning in that it keeps the network in a robust dynamical steady state while
storing new memories and overwriting old ones.
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INTRODUCTION
Memories are based on synaptically induced changes of intrinsi-
cally generated brain activity. Examples for such intrinsic activ-
ities are the recurring sequences of neuronal activity patterns
in the hippocampus (Wilson and McNaughton, 1994; Nadasdy
et al., 1999; Lee and Wilson, 2002; Davidson et al., 2009); see
Buhry et al. (2011); Wikenheiser and Redish (2012) for review.
Classically, these sequences were interpreted as replaying previous
activity patterns. Meanwhile they have been found to also pre-
play future behavior (Diba and Buzsaki, 2007) or reverse replay
past behavior (Foster and Wilson, 2006; Diba and Buzsaki, 2007).
More recently, it has been shown that they even predict future
behaviors (Gupta et al., 2010; Dragoi and Tonegawa, 2011, 2013;
Pfeiffer and Foster, 2013). The diversity of these sequences has
generated an equally diverse set of possible functional expla-
nations, ranging from memory consolidation (Nakashiba et al.,
2009; Jadhav et al., 2012) to memory deletion (Hoffman et al.,
2007) and path planning (Azizi et al., 2013; Ponulak and Hopfield,
2013).

In this paper, we will specifically address one variant of the
memory consolidation and deletion hypothesis, viz. whether
these sequences can be used to drive a learning rule that allows for
efficiently re-encoding memories and thereby solve the problem
of catastrophic forgetting. The basic idea of this hypothesis is that
new memories might be encoded by assemblies that are not opti-
mally sparse and thus allow secure retrieval. A retrograde learning
rule that propagates long-term depression (LTD) will be shown
to be able to reduce these assemblies toward a level of sparseness,
which is optimal from the retrieval point of view and, at the same
time, allows the network to operate in a stable regime of online
learning, in which old memories are overwritten by new ones.

This learning rule operates on a time scale that is slower than the
fast time scale of initial imprinting. As a result, new memories
will be represented by a larger number of neurons (and synapses)
than old memories, which are encoded more efficiently and will
eventually be forgotten.

MATERIALS AND METHODS
Here, we investigate memory consolidation and retrieval in
a network which stores sequential associations of binary pat-
terns (Nadal, 1991; Gibson and Robinson, 1992; Hirase and
Recce, 1996; Leibold and Kempter, 2006; Kammerer et al.,
2013). As in these previous papers, the dynamics is for-
mulated in discrete time. The individual time steps can be
biologically interpreted as the cycles of a collective network oscil-
lation (e.g., hippocampal ripple oscillations; Maier et al., 2011).
The employed network model is identical to that described
in Medina and Leibold (2013) and lays particular emphasis on
handling heterogeneous pattern sizes, i.e., the number of active
neurons at any time may be different. Formally, this is expressed
by the vector of coding ratios

φ = {f0, f1, f2, . . . , fP} (1)

where Mk = fk N is the number of active neurons in the k-th
binary pattern ξk ∈ {0, 1}N , N is the number of neurons in
the network, and the indices k = 0, . . . , P represent each of the
P + 1 patterns that are connected by the P pairwise directed
associations. Unless mentioned otherwise, the coding ratios fk
are randomly drawn from a gamma distribution (to avoid neg-
ative patterns sizes) with mean coding ratio φ0 and standard
deviation σφ .
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The associations between the individual patterns of the
sequence ξ0, ξ1, ξ2, . . . are stored in the synaptic weight matrix,
which is chosen according to a clipped Hebbian rule (Willshaw
et al., 1969): a synapse from neuron j to i has weight sij = 0 only
if a spike of neuron i never follows one of neuron j in any of
the P associations, otherwise sij = 1. In addition to this Willshaw
rule, we also allow for a morphological connectivity, i.e., a synapse
from neuron j to neuron i only exists with probability cm (Gibson
and Robinson, 1992; Leibold and Kempter, 2006). This implies
a second set of binary synaptic variables wij, with wij = 1 if the
respective synapse exists and wij = 0 otherwise. For such a learn-
ing rule and heterogeneous pattern sizes, it was shown in Medina
and Leibold (2013) that the probability c of a potentiated synaptic
connection (sij = 1) equals

c = cm

(
1 −

P∏
k = 1

(
1 − fkfk − 1

))
. (2)

In this and related models, the choice of binary synapses facil-
itates the mathematical tractability of the theory, although, in
biology, synaptic weights generally follow long-tailed distribu-
tions (Song et al., 2005). The long tail, however, allows one to
subdivide synapses into weak and strong ones, which could be
considered as being approximated by a noisy binary approach.

SYNAPTIC METAPLASTICITY
According to Willshaw’s learning rule, a synapse is in the potenti-
ated state (sij = 1) if it connects two neurons that fire in sequence
at least once. However, some neuron pairs may fire in sequence
multiple times if they are part of the representation of consecutive
patterns more than once. Although disregarded so far, the num-
ber of times a neuron pair fires in sequence is important since
it tells us how many associations rely on this connection being
potentiated. In order to conserve this information while using
binary synapses, we consider synaptic meta levels with serial state
transitions, a model similar to that proposed in Amit and Fusi
(1994); Leibold and Kempter (2008).

A state diagram of our plasticity model is shown in Figure 1A.
After a synapse has been potentiated once, every further occur-
rence of sequential firing in the sequence activation schedule
increments the meta level by one, leaving the synaptic weight sij

unchanged. Figure 1B shows the distribution of synaptic states in
the network for three different pattern loads P. At higher loads,
synapses are more likely to reach higher meta levels.

NETWORK DYNAMICS
Following Medina and Leibold (2013), neurons are mod-
eled using a simple threshold dynamics that translates the
synaptic matrix Jij = sij wij into an activity sequence: a neu-
ron i fires a spike at cycle t + 1 if its postsynaptic potential
hi(t) = ∑N

j = 1 (wij sij − b) xj(t) at time t exceeds the threshold
θ . Here, xj(t) ∈ {0, 1} represents the binary state of neuron j at
time t and b denotes the strength of a linear instantaneous feed-
back inhibition (Hirase and Recce, 1996; Kammerer et al., 2013).
The negative feedback constant is chosen b = c for all subsequent
simulations (Medina and Leibold, 2013).
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FIGURE 1 | Synaptic metaplasticity. (A) Synaptic meta levels with serial
state transitions. Learning initially potentiates the state (solid lines),
whereas LTD signals decrement it (dotted lines) with probability q. (B)

Distribution of synaptic states after storage of P patterns. The higher the
network load, the more likely synapses are to be in higher meta levels.
Parameters: N = 105, cm = 0.1, φ0 = 0.02, and σφ = 0.1φ0.

To save computational time, most of the upcoming results are
derived in a mean field approximation. To this end, in each time
step, neurons are subdivided into two populations: an On popula-
tion which is supposed to fire according to the sequence schedule
and an Off population which is supposed to be silent (Leibold
and Kempter, 2006). The number of active neurons at time step t
can thus be divided into a number mt of correctly activated
neurons (hits) and a number nt of incorrectly activated neu-
rons (false alarms). Using these conventions yields the mean field
dynamics (Medina and Leibold, 2013)

(mt + 1, nt + 1) = (
TOn (mt, nt) ,TOff (mt, nt)

)
(3)

with

TOn(mt, nt) = Mt + 1�

(
μOn − b (mt + nt) − θ

σOn

)
(4)

TOff(mt, nt) = (N − Mt + 1)�

(
μOff − b (mt + nt) − θ

σOff

)
(5)

and �(z) ≡ [1 + erf(z/
√

2)]/2 denoting the cumulative dis-
tribution function of the normal distribution. Here, the
mean number of synaptic inputs μ ≡ 〈h(t)〉 and the variance
σ 2 ≡ 〈h(t)2〉 − 〈h(t)〉2, for the On population, are

μOn = cmmt + cm ς nt (6)

σ 2
On = cmmt(1 − cm)

+ cm ς nt

(
1 − cm ς + V2

ς cm ς (nt − 1)
)

(7)

with ς = c/cm; see Equation (2). The analog expressions for the
Off population are

μOff = cm ς (mt + nt) (8)

σ 2
Off = cm ς (mt + nt)

(
1 − cm ς + V2

ς cm ς (mt + nt − 1)
)
.(9)
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Finally, the variability coefficient V2
ς used in Equations (7) and (9)

is given by

V2
ς = 1

ς2

(
2 ς − 1 +

P∏
k = 1

(
1 − fk

(
2fk − 1 − f 2

k − 1

)))− 1. (10)

RETROSYNAPTIC LTD
The replay model in Medina and Leibold (2013) assumed the
synaptic matrix Jij to remain constant. Synaptic plasticity may,
however, take place on a slower time scale and change network
dynamics between consecutive replay events. In this paper, we
investigate the idea that replay evokes a retrosynaptic LTD to
achieve a more efficient utilization of synaptic resources, thereby
increasing storage capacity. We therefore assume that the stored
patterns are initially too large and, over time, are reduced by
learning such that the coding ratios fk converge to an optimal
value.

This idea is implemented as shown in Figure 2. During replay
of association ξt → ξt+1 (Figure 2A), active cells that receive
excessive synaptic input send a retrosynaptic LTD signal to all
presynaptic cells which were active in the previous time step. The
emission of such a signal is modeled as a stochastic process in
which the emission probability ψ increases with the number h of
synaptic inputs received by the cell like

ψ(h) =
{

min
(

a(h − h0)2, 1
)
, h ≥ h0,

0, otherwise.
(11)

Here the parameter h0 defines a minimal pattern size M = h0/cm

beyond which plasticity signals can occur. Its choice determines
the optimal memory capacity of the network, as this minimal
pattern size can become a stable fixed point of the dynamics of
pattern sizes.

A B

FIGURE 2 | Retrosynaptic LTD. (A) During sequence replay, excessive
depolarization h at time t + 1 triggers a retrosynaptic LTD signal that is
propagated with probability ψ (h) to all presynaptic cells that were active at
time t (black squares denote hits, gray squares denote false alarms). (B)

Each cell receiving an LTD signal responds with probability q by
decrementing the state of all its input synapses from cells that fired at time
t − 1 and all its output synapses to cells that fired at time t + 1.

To combine this learning rule with the mean field network
dynamics, we have to find an expression for the probability Ps that
a presynaptic cell receives at least one retrosynaptic signal. The
number of inputs received at time t + 1 is on average μOn for an
On cell, and μOff for an Off cell. Thus, for an On cell, we have a
probability

(
1 − ψ(μOn)

)cmmt+1 of receiving no retrograde LTD
signal from any active cell in the On population, and a probability(
1 − ψ(μOff)

)cmnt+1 of receiving no retrograde LTD signal from
the Off population. Similarly, for an Off cell, these probabilities
are

(
1 − ψ(μOn)

)cmmt+1 and
(
1 − ψ(μOff)

)cmnt+1 , and thus

P On
s = 1 −

(
1 − ψ

(
μOn

))cmmt+1
(

1 − ψ
(
μOff

))cmnt+1
(12)

P Off
s = 1 −

(
1 − ψ

(
μOn

))cmmt+1
(

1 − ψ
(
μOff

))cmnt+1
. (13)

As illustrated in Figure 2B, upon receiving one or more LTD sig-
nals, with probability q, the presynaptic cell decrements by one the
meta state of all its input synapses from the mt − 1 + nt − 1 cells
that were active in the previous time step, as well as the meta state
of all its output synapses to the mt + 1 + nt + 1 cells that are active
in the following time step. Each synapse in the subset of decre-
mented synapses therefore takes part in one association less. As
a result, the cell no longer takes part in the neural representation
of pattern ξt , although it might still be spuriously activated dur-
ing replay. On average, the size of pattern ξt is therefore updated
according to

Mt → 	Mt (14)

where	 = 1 − q mt
Mt

P On
s .

ONLINE LEARNING
If associations are stored in the network one after another (online
learning), new memories will overwrite old memories (Nadal
et al., 1986; Amit and Fusi, 1994), which is also known as
palimpsest learning, and thereby the connectivity between On
neurons of old associations is increasingly diluted. The remain-
ing signal strength of an association k depends on the probability
yk = 1 − p(0|k) that a synapse is not in state zero, given that it
participates in association ξk → ξk + 1 (i.e., it connects neurons
that fired in sequence during the storage of that association). To
account for overwriting, the dynamical Equations (6) and (7) are
modified as follows

μOn = cm yt mt + cm ς nt (15)

σ 2
On = cm yt mt(1 − cm yt )

+ cm ς nt

(
1 − cm ς + V2

ς cm ς (nt − 1)
)
. (16)

In our model framework, the synaptic connectivity is changed in
two ways. First, during imprinting of a new association, synapses
increment their meta state level. Second, synaptic states are decre-
mented via retrosynaptic LTD. To capture these changes, we
define the average state distribution ρ(s), which describes the
probability that an arbitrarily chosen synapse is in state s, and thus
c/cm = 1 − ρ(0).

Frontiers in Synaptic Neuroscience www.frontiersin.org June 2014 | Volume 6 | Article 13 | 3

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Medina and Leibold Re-encoding by recurrent plasticity

Effect of synaptic potentiation on state distribution
If a new association is added that links pattern ξk to pattern ξk + 1,
a random synapse increases its state with probability fk fk + 1 and
thus the change in the state distribution is

ρ → ϒ ρ (17)

where

ϒ = 1I + fk fk + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0
1 −1 0
0 1 −1
0 0 1
...

...
...

. . .

−1 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

and 1I is the unit matrix.

Effect of synaptic depression on state distribution.
Conversely, retrograde LTD is described by the matrix multiplica-
tion

ρ → �ρ (19)

where

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 p1 + p′
1 p′

2 0 · · · 0

0 1 − p1 − p′
1 p2 p′

3 0 · · · 0

.

.

. 0 1 − p2 − p′
2 p3 p′

4 0
.
.
.

.

.

. 0 1 − p3 − p′
3 p4 p′

5

.

.

. 0

.

.

.
. . . pP

1 − pP − p′
P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

and ps, p′
s are the probabilities that a replay event decreases the

state s of a random synapse by 1 and 2, respectively.
To obtain ps and p′

s, we define the probability p(s,↓) = ρ(s) ps

that a synapse is in state s and receives the signal to go down one
meta level. Similarly, p(s,↓↓) = ρ(s) p′

s is the probability that a
synapse is in state s and receives the signal to go down two meta
levels.

A depression event ↓ during replay of the association
ξk → ξk + 1 can have two origins: (1) the depression signal ↓(k+)

that is sent by a neuron of pattern ξk to its output synapses,
and (2) the depression signal ↓(k−) the neuron sends to its input
synapses. Since a subpopulation of synapses may be part of both
the inputs and the outputs of pattern ξk, a synapse may be
depressed twice and thus go down two levels. Since the patterns
are statistically independent, both depression events are indepen-
dent and thus the probability that a synapse is in state s and goes
down by two levels upon replay of association ξk → ξk + 1 is given
by

p(s,↓↓) = p
(
↓(k+) |s

)
p
(
↓(k−) |s

)
ρ(s). (21)

Similarly, the probability p(s,−) that a synapse stays in
state s is

p(s,−) =
(

1 − p
(
↓(k+) |s

)) (
1 − p

(
↓(k−) |s

))
ρ(s). (22)

A synapse either stays in state s, it goes down by one state or goes
down by two states, and thus

ρ(s) = p(s,−) + p(s,↓)+ p(s,↓↓) . (23)

This normalization condition then yields the probability
p(s,↓ ) that a synapse is in state s and is decreased by
one, viz.

p(s,↓) = p
(

s,↓(k+)
)

+ p
(

s,↓(k−)
)

− 2 p(s,↓↓) . (24)

The probabilities p(s,↓(k±) ) can be further split up into two
non-overlapping subsets of synapses, one (called k) that connects
the On populations of association k and another one (called k̄)
denoting all other synapses. Therefore we have

p
(

s,↓(k+)
)

= p
(

s,↓(k+), k
)

+ p
(

s,↓(k+), k̄
)

(25)

p
(

s,↓(k−)
)

= p
(

s,↓(k−), k − 1
)

+ p
(

s,↓(k−), k − 1
)
. (26)

Since the LTD signal ↓ is independent of the synapse state s, we
have

p
(

s,↓(k+), k
)

= p(s|k) p
(
↓(k+), k

)
(27)

p
(

s,↓(k+), k̄
)

= p(s|k̄) p
(
↓(k+), k̄

)
(28)

and in analogy for k − 1. The last terms on the right-hand side
are obtained from equations (12) and (13) as follows

p
(
↓(k+), k

)
= qP On

s
mkmk + 1

N2
(29)

p
(
↓(k+), k̄

)
= qP On

s
mknk + 1

N2

+ qP Off
s

nk (mk + 1 + nk + 1)

N2
(30)

and

p
(
↓(k−), k − 1

)
= qP On

s
mkmk − 1

N2
(31)

p
(
↓(k−), k − 1

)
= qP On

s
mknk − 1

N2

+ qP Off
s

nk(mk − 1 + nk − 1)

N2
. (32)

What remains to be obtained in Equations (27) and (28) are
the conditional probabilities p(s|k) and p(s|k̄). From heuristic
considerations, we approximate

p(s|k) = p
(
s − 1|k̄) rk + p

(
s|k̄) (1 − rk) . (33)
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Equation (33) assumes that the presence of association
ξk → ξk + 1 can affect the conditional state distribution p(s|k)
in two ways: either it increases the state by one (p(s − 1|k̄) rk),
or it has no effect on the state (p(s|k̄) (1 − rk)). The con-
stants rk can be interpreted as the fraction of synapses for
which association ξk → ξk + 1 contributes to the next meta level.
We will refer to them as the remaining memory strength of
association k.

Combining equation (33) with

ρ(s) = p(s|k) p(k) + p
(
s|k̄) p

(
k̄
)

(34)

we can recursively compute

p(s|k̄) = ρ(s) − p
(
s − 1|k̄) rk fk fk + 1

1 − rk fk fk + 1
(35)

and in particular provide a connection between rk and yk via

ρ(0)

1 − rk fk fk + 1
= p(0|k̄) = ρ(0) − fk fk + 1(1 − yk)

1 − fk fk + 1
. (36)

Effect of synaptic depression on signal connectivity
In addition to changes in the state distribution ρ that describes
the noise connectivity during associations, retrosynaptic LTD
also specifically influences the synapses between the On popula-
tions according to yl = 1 − p(0|l). For more recent associations
yl will be large, whereas for older associations yl will be small.
The change in yl that results from retrosynaptic LTD while
replaying association ξk → ξk + 1 is computed from the change
in p(0|l),

p(0|l) → p(0|l) + (
p(↓ |1, l)+ p(↓↓ |1, l)

)
p(1|l)

+ p(↓↓ |2, l) p(2|l). (37)

For associations l /∈ {k − 1, k} the conditional probabilities of
depression are independent of the association l, i.e., p(↓ |s, l) =
p(↓ |s) = ps and p(↓↓ |s, l) = p′

s. The conditional state occu-
pancies are obtained via the r-factors from Equation (36) as
p(s|l) = p(s − 1|l̄) rl + p(s|l̄) (1 − rl).

For associations k − 1 and k, synapses can only experience by-
chance LTD from one of the two signals (association k − 1 from
↓(k+) and association k from ↓(k−)), since LTD from the other sig-
nal would result in a decrease of the pattern size (with undiluted
connectivity). Likewise there is no double decrement for these
associations. As a result, the update rules for these associations
are

p(0|k − 1) → p(0|k − 1) + p
(
↓(k+) |1, k − 1

)
p(1|k − 1)

= p(0|k − 1) + p
(
↓(k+), 1|k − 1

)
= p(0|k − 1) + p

(
↓(k+), 1, k|k − 1

)
+ p

(
↓(k+), 1, k̄|k − 1

)

= p(0|k − 1) + p
(
↓(k+), k|k − 1

)
p(1|k, k − 1)

+ p
(
↓(k+), k̄|k − 1

)
p(1|k̄, k − 1)

= p(0|k − 1) + p
(
↓(k+), k

)
p(1|k, k − 1)

+ p
(
↓(k+), k̄

)
p(1|k̄, k − 1) (38)

and, replacing k − 1 by k,

p(0|k) → p(0|k) + p
(
↓(k−) |1, k

)
p(1|k)

= p(0|k) + p
(
↓(k−), k − 1

)
p(1|k, k − 1)

+ p
(
↓(k−), k − 1

)
p(1|k, k − 1). (39)

The probabilities p(1|k, k − 1), p(1|k̄, k − 1) and p(1|k, k − 1) in
Equations (38) and (39) can be obtained in analogy to

p(1|k, k − 1) = p(1, k, k − 1)

p(k, k − 1)
= p(k|1) p(k − 1|1) ρ(1)

p(k, k − 1)

= p(1|k) p(1|k − 1)

ρ(1)
(40)

due to statistical independence of the patterns.

Effect of synaptic depression on subthreshold variance
The dynamics of sequence replay not only depends on the
mean connectivities c and cm yk but also on the second
moment of the connectivity matrix as captured by V2

ς from
Equation (10). Retrosynaptic LTD will also affect this sec-
ond moment. As an approximation, we again use the r-factors
from Equation (36), which are an estimate of the fraction of
presynaptic On neurons that contribute to the meta level of
association k. Thus, we can replace the coding ratio fk − 1 in
Equations (2) and (10) by the diluted coding ratio rk − 1 fk − 1 and
obtain

V2
ς = 1

ς2

(
2 ς − 1

+
P∏

k = 1

(
1 − rk − 1 fk − 1 fk

(
2 − rk − 1 fk − 1

)))− 1. (41)

Since the definition of the r-factors in Equation (33) implements
only an approximation, the two ways of computing the mean
connectivities via c/cm = 1 − ρ(0) and c/cm = 1 −∏P

k = 1 (1 −
fkfk − 1rk − 1) are slightly different. To achieve numerical robust-
ness we obtain ρ(0) by applying Newton’s method to solve the
implicit Equation

ρ(0) =
P∏

k = 1

(
1 − fkfk − 1

ρ(0) − (1 − yk)

ρ(0) − fk fk + 1 (1 − yk)

)
(42)

Frontiers in Synaptic Neuroscience www.frontiersin.org June 2014 | Volume 6 | Article 13 | 5

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Medina and Leibold Re-encoding by recurrent plasticity

for ρ(0) in which the r-factors have been expressed via
Equation (36).

RESULTS
RETROSYNAPTIC LTD DURING SEQUENCE REPLAY SPARSIFIES LARGE
PATTERNS
The mean field description for the pattern size changes from
Equation (14) can be interpreted as a dynamical system itself,
since it constitutes a discrete-time iterated map on the pattern
sizes. The time scale of this dynamics is slower than the time
scale of sequence replay since, during the replay of a sequence,

the pattern sizes change only by a small amount. Figures 3A,B
show the temporal evolution of the sizes of some example patterns
and of the full distribution of pattern sizes for q = 0.1 that results
from the mean field Equation (14). The simulations show that the
pattern sizes converge to a common fixed point and, as a result,
the pattern size distribution becomes delta-like. For such homo-
geneous pattern sizes the memory capacity is maximized (Medina
and Leibold, 2013).

To more systematically analyze plasticity on the slow time
scale, we revisit dynamical Equation (14) and interpret it as a
one-dimensional iterated map Mt → 	 Mt . Figure 3C visualizes

A B

C D

E F

FIGURE 3 | Retrosynaptic LTD signals sparsify and homogenize the

pattern size distribution. (A) Evolution of the sizes of a few sample
patterns for q = 0.1. (B) Evolution of the full pattern size distribution.
Initially (blue), sizes are very inhomogeneous (σφ/φ0 = 10%). After 5
iterations (green) of plasticity, patterns are encoded more sparsely and the
sequence becomes more homogeneous. After 10 iterations (red ), the
sequence is essentially homogeneous. (C) The plasticity map given by
(14), showing how a pattern size Mt is sparsified as a function of q. The
curves shown were obtained with parameters a = 2.5 · 10−5 and h0 = 100

in (11) and setting mt + 1 = φ0N and nt + 1 = 0 in (12). For too high q
values (q � 0.2), the fixed point of the dynamics of pattern sizes at
M = h0/cm = 1000 is surpassed. (D) Connectivity decreases as a result of
plasticity sparsifying stored patterns (P = 2500). The rate of decrease
increases with q. (E) Minimal value of cm 	M as a function of q for
different values of cm and constant h0. At the critical value of q the curves
bend down in a non-differentiable way. (F) Critical LTD probability qc as a
function of cm for constant h0. Other parameters: N = 105, φ0 = 0.02, and
cm = 0.1 unless mentioned otherwise.
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the iteration function 	 M for different values of q. For small q,
the fixed-point Equation M = 	 M has a solution for a maximal
pattern size M = h0/cm, which serves as an attractor of the dis-
crete dynamics for all starting values M > h0/cm. If q is too high,
the iteration function bends down for M > h0/cm and there is no
longer a single fixed point for all initial pattern sizes M > h0/cm.
The critical value of q is thus determined by the condition

minM>h0/cm (	 M) ≤ h0/cm (43)

which means that the minimum of the iteration function 	 M
for M > h0/cm is smaller or equal h0/cm. The critical value qc is
the smallest value of q for which condition (43) is fulfilled and is
indicated by the kink of the graphs in Figure 3E. For larger q the
iterated map can produce pattern sizes below h0/cm, which are
then marginally stable fix points but the resulting pattern sizes
may be too small for successful replay. The critical qc is not uni-
versal and depends on parameters. Most importantly, it decreases
with cm and a (Figure 3F). The critical value remained above a few
percent for a wide range of parameters. Specifically, in sparsely
connected networks (cm � 1), the choice q ≈ 0.05 is generally
subcritical and thus allows for an optimal storage capacity.

The dynamics of pattern sizes is paralleled by a dynamics of
the mean network connectivity from Equation (2); Figure 3D. A
reduction of the pattern sizes leads to a corresponding decrease in
connectivity. The rate of this decrease is higher for higher values
of q. For subcritical values of q (0 < q ≤ qc) the average con-
nectivity converges to a fixed point that is independent of q. For
supercritical q (1 > q > qc) the connectivity converges to a lower
fixed-point connectivity, indicating a substantial fraction of too
small pattern sizes. In the extreme case q = 1 all synapses are
depotentiated and the connectivity converges to 0.

PLASTICITY DURING SEQUENCE REPLAY INCREASES DYNAMIC
STABILITY
The changes in connectivity due to retrosynaptic LTD are paral-
leled by changes of fast dynamics of sequence replay according to
Equations (3) as exemplarily illustrated for three different plastic-
ity stages (initial, after 5 and 10 iterations) and firing thresholds in
Figure 4. As plasticity proceeds and the pattern size distribution
in the sequence becomes more homogeneous, the activity fluc-
tuations during replay are reduced and, eventually, allow for the
whole sequence to be retrieved successfully.

In the example of Figure 4, learning extends the range of
thresholds under which the network successfully replays the
full sequence if the network was perfectly initialized (m0 = M0,
n0 = 0). For a large threshold (e.g., θ = 55), learning allows for
the emergence of ongoing sequence replay in a regime where ini-
tially no self-sustained network activity was possible. Before any
plasticity takes place, the pattern sizes are highly inhomogeneous
and the network falls silent almost immediately. After 5 plastic-
ity iterations, fluctuations are reduced and the network is able
to successfully retrieve more items in the sequence. Near per-
fect pattern retrieval (mt/Mt = 1 and nt/(N − Mt) = 0) is made
possible after 10 iterations. Similarly, for low thresholds (e.g.,
θ = 25), replay initially drives the network into an epileptic state
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FIGURE 4 | Plasticity of pattern sizes increases the dynamic stability

during sequence replay. In all graphs, we show the fraction mt/Mt of hits
(blue) at time step t and the fraction nt/(N − Mt ) of false alarms (red )
during the replay of a sequence (only the first 100 time steps are shown),
using the mean field model of Equations (3) and following. Left to right:
increasing plasticity iterations. Bottom to top: increasing firing thresholds θ .
The initial pattern size distribution had parameters φ0 = 0.02 and
σφ/φ0 = 10%. Other parameters were N = 105, cm = 0.1 and P = 2500.

(mt/Mt ≈ nt/(N − Mt) ≈ 0.5). The reduction of pattern sizes
due to learning, again, allows for ongoing sequence replay.

Defining the retrieval quality (Leibold and Kempter, 2006)


t ≡ mt/Mt − nt/(N − Mt) (44)

as the relative difference between hit ratio and false alarm ratio,
allows a better comparison of the replay performance for a large
set of parameter choices. Formally this is done via the replay suc-
cess rate, which is the fraction of runs for which at time t the replay
quality 
t is above 0.5 (Medina and Leibold, 2013).

Figure 5A shows the evolution of replay success rates for three
plasticity stages and three different memory loads P. Initially, the
pattern sizes are large and inhomogeneous, and ongoing sequence
replay is not possible. Only for small loads (P = 2500) and for
a small firing threshold range (θ ≈ 45), can the first items be
retrieved with high probability. As plasticity reduces inhomo-
geneity and sparsifies the patterns, the range of firing thresholds
θ for which the full sequence can be retrieved expands. This is
made possible by a decrease in the noise connectivity c, shown in
Figure 5B and verified through cellular simulations. In a modified
model without synaptic meta states there was no improvement by
applying repeated learning steps, since synapses were switched to
an inactive state too quickly (Figure 5C).

ONLINE LEARNING
So far, the initial distribution of pattern sizes was centered at
mean values far above the fixed point M = h0/cm. However, once
the pattern size distribution has reached this optimal value, ret-
rosynaptic LTD will only take place if a new association with an
oversized pattern is added into the synaptic matrix. In our model,
this can be simulated as a homogeneous sequence with one pat-
tern of size larger than M = h0/cm, as illustrated in Figure 6: for
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FIGURE 5 | (A) Replay success rate over time for different firing
thresholds θ and a sequence of length Q = 100. These plots were
obtained using the mean field model, and were verified using cellular
simulations. Left to right: increasing plasticity iterations. Top to bottom:
increasing pattern load P. The initial pattern size distribution had
parameters φ0 = 0.02 and σφ/φ0 = 10%. Other parameters were:
N = 105, cm = 0.1. (B) Connectivity decreases as the network sparsifies
its stored associations. This plot was obtained by simulating the actual
neural network with three different pattern loads P and a randomly

generated coding ratio vector φ. The connectivity was calculated both
using the mean field equation (2) (blue) and counting the actual
number of potentiated synapses (red dots), showing a perfect match.
(C) Advantage of metaplasticity (left) over simple binary synapses (right)
during retrosynaptic LTD. Blue and red traces indicate hits and false
alarms (as in Figure 4) for 0, 5 and 10 learning steps. The bottom row
depicts the replay quality of the 100th pattern in the sequence as a
function of the number of learning steps. Only with metaplasticity the
replay remains stable for many learning steps.

low firing thresholds (θ = 26), the excess synaptic drive gener-
ated by an oversized pattern initially leads to sequence termina-
tion by setting the network into an epileptic state. Plasticity via
retrosynaptic signals gradually reduces the size of the problem-
atic pattern, eventually allowing for successful replay of the full
sequence. This shows that retrosynaptic LTD in principle makes
it possible to integrate new associations into the network, and

therefore provides a possible basis for online learning, i.e., the
ongoing storage of new memories.

Of course, adding new associations (increasing P) will conse-
quently also increase the mean connectivity c, up to a point at
which classically memories can no longer be retrieved (Willshaw
et al., 1969; Nadal, 1991; Kammerer et al., 2013). For these large
connectivities c the false alarms add considerable synaptic inputs
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FIGURE 6 | (A) Homogeneous sequence with a double-sized pattern at
t = 50. (B) Evolution of oversized pattern with plasticity (q = 0.1). (C)

Initially, sequence replay fails at t = 50 because of the excessive synaptic
drive generated by the oversized pattern, which leads the network to an

epileptic state (top). After 5 iterations, the network explosion is slower but
still present (middle). Successful replay of the full sequence is possible
after 10 iterations (bottom). Parameters: N = 105, cm = 0.1, c = 5%,
φ0 = 0.01, θ = 26.

such that a neuron is no longer always able to correctly decide
whether it should fire or not. Using our present model of retro-
grade LTD, however, neurons could detect such over-excitation
and may subsequently depress synapses.

To investigate whether this mechanism allows for self-
organized sequence replay in a steady state, we set up a simulation
in which we add sequences of 7 new patterns before each plasticity
episode and monitor the retrieval quality as well as the mean con-
nectivity. The dynamics of the connectivity c and cm yk is thereby
simulated according to Section 2.4.

The result of one such simulation is summarized in Figure 7.
The simulation starts with an empty network, i.e., all synapses
are in state 0. Each time after storing a new sequence, the newest
60 sequences (if already available) are replayed starting with per-
fect initialization of the first pattern, m = M and n = 0. These
replays induce retrosynaptic LTD. Before the network has reached
a steady state, replay is generally successful for all sequences
(Figure 7A) and is worse for the last recalled patterns in younger
sequences, because there the pattern sizes have not yet converged
to their optimum h0/cm = 1000. This is because oversized pat-
terns tend to evoke dynamical instabilities that lead to many false
alarms and bad replay quality. After the network has reached a
steady state, the first of the 60 replays generally fail, whereas the
younger sequences can be replayed at high quality (Figure 7B).
Interestingly, the mean connectivity c converges to its steady state
more quickly than the replay dynamics (Figure 7C). The pattern
sizes are slightly above their optimum h0/cm (Figure 7D; note
that each 7th pattern is the final pattern of each sequence and does
not shrink according to the learning rule. These final patterns stay
at their initial size). Only for the newest patterns the sizes reflect
the initial distribution (here a uniform distribution between 1000
and 2000).

The r values that measure the remaining memory strength of
an association (see Methods), provide an additional view on the

memory capacity of the network; Figure 7E. Their convergence to
zero for old memories reflects the memory time scale of the net-
work. Additionally, the approach to the steady state is made visible
if one monitors the r value of the oldest memory (r1) over time
(Figure 7F). The convergence of r is much slower than the conver-
gence of the mean connectivity c (Figure 7C), explaining why the
replay dynamics further changes long after the mean connectivity
has reached its steady state.

DISCUSSION
Fast hippocampal activity sequences have been hypothesized to
underlie memory consolidation (Ego-Stengel and Wilson, 2010;
Mölle and Born, 2011; Jadhav et al., 2012). On the cellular level,
the associated re-encoding of episodic memories can either occur
at the synapses between hippocampus and neocortex (Buzsaki,
1996; Frankland and Bontempi, 2005) or within the hippocampus
itself. So far, hypotheses for hippocampus-intrinsic consolidation
were mainly focusing on synaptic mechanisms (Frey and Morris,
1997; Milekic and Alberini, 2002; Päpper et al., 2011). The present
paper provides a mechanistic model of memory re-encoding on
the circuit level whereby associations between assemblies of neu-
rons are not strengthened over time, but assemblies are reduced
in size to utilize the hippocampal resources more efficiently.

Retroaxonal learning affecting both input and output synapses
of a neuron has been suggested to aid stabilization of recent mem-
ories previously (Harris, 2008), although only in the context of
synaptic potentiation. There, neurotrophins have been hypoth-
esized to constitute a plausible underlying biochemical pathway.
Here, we suggest a specific functional role for a retroaxonal spread
of depression and have shown that it may allow a network to
operate in an online mode where old memories are overwritten
by new memories. Moreover, the suggested retrograde LTD pre-
dicts that depression in output synapses should be correlated with
depression in input synapses.
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FIGURE 7 | Online learning. (A) Replay of the 60 most recent
sequences before the network has reached a steady state. Blue and red
lines depict hits and false alarms, respectively, black line indicates the
retrieval quality 
. (B) Same as A after the network has reached its
steady state. (C) Mean connectivity c as a function of time. (D) Pattern
sizes. Blue dots indicate the sizes of the last (7th) pattern of each

sequence. (E) The remaining memory strength r of all associations at
the end of the simulation (500 sequences; 3500 patterns). (F) The
memory strength of the oldest association as a function of simulation
time. Parameters of the simulation were N = 4 · 104, cm = 0.1, b = 0.03,
θ = 30, h0 = 100, a = 10−5. The simulation was terminated after having
stored 500 sequences of length 7.

A different mechanism suggested to reduce the overall excita-
tory drive in a network is synaptic scaling, whereby all synapses
of an overexcited neuron undergo LTD (Turrigiano et al., 1998;
Watt et al., 2000; Turrigiano, 2008; Savin et al., 2009). Retroaxonal
learning is a more content-specific mechanism than synaptic scal-
ing since it only affects synapses that have been active in the recent
past and thus generally accounts for longer retention times.

Previous models of online learning (Amit and Fusi, 1994;
Fusi et al., 2005; Ben Dayan Rubin and Fusi, 2007; Leibold and
Kempter, 2008; Amit and Huang, 2010; Huang and Amit, 2011)
usually do not explicitly take into account the network dynam-
ics underlying the induction of plasticity. This paper presents a
hypothesis of how LTD can be derived from network dynamics.
The initial imprinting of the memories by LTP is still ad-hoc since
we assume it to be occurring via extra-hippocampal signals.

Several other theoretical explanations for sequence replay and
the sharp-wave ripple state have been suggested. (1) Sequences
can be seen as avalanche-like activity patterns that are ampli-
fied by dendritic non-linearities (Memmesheimer, 2010; Jahnke
et al., 2012, 2013). (2) CA1 pyramidal cell spike patterns may be

triggered by strong feedforward excitation from CA3 inputs that
are temporally coordinated by fast recurrent inhibition (Ylinen
et al., 1995; Geisler et al., 2005; Taxidis et al., 2012). (3) The rip-
ple oscillation may result from a network of gap-junction coupled
axons (Traub et al., 1999; Traub and Bibbig, 2000; Vladimirov
et al., 2013). (4) Sequences may result from a few overlapping
attractor states in a recurrent network of neurons (Azizi et al.,
2013). So far, these models are hardly evaluated with respect to
their memory capacity (although coding capacity was probed in
Azizi et al., 2013).

High memory capacities have been found in classical models
of memory networks, developed independently of the hippocam-
pal physiology, that suppose neuronal sequences to result from
attractor networks with asymmetrically biased synaptic matri-
ces (Dehaene et al., 1987; Buhmann and Schulten, 1988) in dis-
crete time. One major drawback of these classical theories as well
as the model presented here is their formulation in discrete time,
which makes them hard to connect to cell-physiological proper-
ties of pyramidal cells. On the cellular level, sequence replay is
most likely associated with the presence of huge precisely timed
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excitatory and inhibitory synaptic conductances (Maier et al.,
2011). Whether and how under such conditions a neuron can fire
and, more specifically, can select to fire at one specific oscillation
cycle during a ripple, remains to be shown.

Sparsification of the hippocampal code may be an impor-
tant intermediate step to prepare consolidation of memories in
the hippocampal-neocortical loop, since generally storage capac-
ity increases with sparseness (Nadal, 1991; Leibold and Kempter,
2006) and associating large hippocampal assemblies with neocor-
tical states might be too costly. On the other hand, initially large
assemblies might have the advantage that new associations can be
retrieved more robustly. Optimal sparseness cannot be obtained
by translating from one brain area to another via a random con-
nectivity matrix, since then associations get lost as they may fall
in the lower tail of the statistical distribution of the number of
synaptic connections and thus do not give rise to sufficient excita-
tion in the downstream brain area. Optimally sparse codes, hence,
always require additional plasticity rules that carve out the sub-
set of neurons that can fire reliably. The activity-driven increase
in sparseness could also explain the prevalence of a few dominant
preplay sequences (Dragoi and Tonegawa, 2013) that may provide
an easily addressable substrate for future associations. Our model
predicts that, once these sequences are connected with a memory
item, the internal representation becomes more sparse and the
sequences are no longer spontaneously visible. However, they are
nevertheless stored within the hippocampal synaptic matrix and
can be retrieved upon presentation of appropriate cue patterns.
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