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Acetylcholine (ACh) signaling underlies specific aspects of cognitive functions and
behaviors, including attention, learning, memory and motivation. Alterations in ACh
signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In
the central nervous system, ACh transmission is mainly guaranteed by dense innervation
of select cortical and subcortical regions from disperse groups of cholinergic neurons
within the basal forebrain (BF; e.g., diagonal band, medial septal, nucleus basalis) and the
pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic
signaling in the CNS and the long standing knowledge of the organization of cholinergic
circuitry, remarkably little is known about precisely how ACh release modulates cortical
and subcortical neural activity and the behaviors these circuits subserve. Growing interest
in cholinergic signaling in the CNS focuses on the mechanism(s) of action by which
endogenously released ACh regulates cognitive functions, acting as a neuromodulator
and/or as a direct transmitter via nicotinic and muscarinic receptors. The development of
optogenetic techniques has provided a valuable toolbox with which we can address these
questions, as it allows the selective manipulation of the excitability of cholinergic inputs to
the diverse array of cholinergic target fields within cortical and subcortical domains. Here,
we review recent papers that use the light-sensitive opsins in the cholinergic system to
elucidate the role of ACh in circuits related to attention and emotionally salient behaviors.
In particular, we highlight recent optogenetic studies which have tried to disentangle the
precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent
functions.

Keywords: acetylcholine, optogenetics, nicotinic receptors, limbic circuitries, attention

INTRODUCTION
Acetylcholine (ACh) is essential to normal CNS function, mod-
ulating cognitive, emotional and behavioral functions, including
learning and memory (Kilgard and Merzenich, 1998; Hasselmo
and Giocomo, 2006), reward (Leslie et al., 2013), wakefulness
and attention (Klinkenberg et al., 2011; see Picciotto et al., 2012
for a recent review). Appropriate levels of ACh are required to
process relevant sensory information and for encoding environ-
mental cues that drive goal-directed behavior (Sarter et al., 2009).
Disruptions of cholinergic transmission contribute to the patho-
physiology of neuropsychiatric disorders, including Alzheimer’s
disease, schizophrenia and drug addiction (Court et al., 2001;
Dani and Harris, 2005; Martin and Freedman, 2007). To support
its prominent role in the brain, the cholinergic system sends dense
projections from sparse cholinergic nuclei, that include the basal
forebrain (BF), laterodorsal tegmental nucleus (LDTg), peduculo-
pontine tegmentum (PPTg), and medial habenula (MHb; Woolf,
1991; Mesulam, 1995; Zaborszky et al., 1999; Ren et al., 2011). In
addition, there is a small population of choline acetyltransferase
(ChAT) positive interneurons in areas including the striatum

and neocortex (Woolf, 1991; Mesulam, 1995; von Engelhardt
et al., 2007). Cholinergic projections, from the BF, LDTg and
PPTg nuclei extend throughout the main telencephalic and limbic
structures delivering ACh to broad terminal fields. Released ACh
activates via both ionotropic nicotinic and metabotropic mus-
carinic ACh receptors (nAChRs, and mAChRs, respectively) that
vary in terms of cellular localization (pre- and/or postsynaptic),
subunit composition, signaling mechanism(s) and affinity for
ACh (for recent reviews see Wess, 2003; Gotti and Clementi, 2004;
Changeux, 2010; Picciotto et al., 2012).

Although our understanding of the organization of the cholin-
ergic system and its role in modulating certain behaviors is
growing, many questions remain to be answered to understand
the dynamics of ACh action and its involvement in (patho) phys-
iology. The role of ACh in specific behaviors has been addressed
using lesions of cholinergic projections or pharmacological inter-
ventions with ACh receptor activation. Such approaches, though
informative, are confounded by issues of bioavailability, lack of
complete reversibility and the fact that such interventions act on
time scales of unknown relevance for cholinergic driven changes
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in excitability in vivo. Our understanding of how cholinergic
projections innervate and modulate target circuitry remains rudi-
mentary. In fact, it is not even clear whether ACh acts as a
classic synaptic neurotransmitter—on the millisecond to tens of
millisecond time scale—or whether it acts as a neuromodulator
(at the hundreds of milliseconds to seconds time scale) or both
(see Picciotto et al., 2012; Sarter et al., 2014). The latter hypothesis
is supported by several investigations that emphasize the predom-
inant role of ACh in modifying cell excitability and activity of
entire networks of neurons (Wonnacott, 1997; Kawai et al., 2007).
Moreover, a relatively modest specificity of the cholinergic system
exists in terms of connectivity in crucial target regions such as the
cortex (see Sarter et al., 2009, for a review). On the other hand,
the presence of point-to-point sites of ACh release juxtaposed to
cholinergic receptors suggests that the cholinergic system may also
utilize fast synaptic signaling, typical of classic neurotransmitters
(Smiley et al., 1997; Turrini et al., 2001). Indeed, the complexity
of results obtained to date has led to the conclusion that ACh
signaling may occur over a range of different time courses due, in
part, to varied release mechanisms and proximity of release and
receptive sites as well as to the involvement of distinct signaling
cascades downstream of both nicotinic and muscarinic AChRs
(e.g see Arroyo et al., 2014; Jiang et al., 2014). A lack of high-
temporal resolution and accurate detection methods for ACh
release has hampered our understanding of whether endogenous
cholinergic signaling is mediated by rapid, transient release (mil-
lisecond time-scale) and/or by a more diffuse transmission (from
second to minute time-scale).

With the exponential rise in the number and type of opto-
genetic tools developed over the last decade it is now possible
to selectively stimulate or inhibit specific populations of CNS
cholinergic neurons and/or their axonal terminal fields through
the activation of light-sensitive opsins (for reviews see: Deisseroth,
2011; Yizhar et al., 2011; Poorthuis et al., 2014). Here, we review
the recent studies that have used the expression of photo-sensitive
opsins in the cholinergic system to elucidate the role of endoge-
nous ACh signaling in different brain regions related to attention
and emotionally salient/ limbic behaviors.

BASAL FOREBRAIN ACH AND NEOCORTICAL FUNCTION
The mechanisms by which ACh release in the neocortex influ-
ences cognitive functions and behaviors are still poorly under-
stood. While early microdialysis studies in the medial prefrontal
cortex (mPFC) reported a long-lasting ACh increase during
attention-related performance tasks (Passetti et al., 2000), more
recent works with faster, dynamic, electrochemical detection of
choline, have shown that ACh can also be released briefly in
concert with cue detection in a cued appetitive response task
(Parikh et al., 2007; Parikh and Sarter, 2008). Thus, while the
microdialysis assays are consistent with the idea that ACh release
could promote a general state of cortical arousal, due to sustained
levels of ACh over long time-scales, recent and more sensitive elec-
trochemical assays highlight a faster, and more transient release
of ACh. The latter observation modifies the prior view that ACh
only acts through “volume transmission” (Sarter et al., 2009), and
underscores the possibility of faster components of ACh action
in the modulation of specific cholinergic functions. For example,

the phasic release of ACh would support more rapid transitions
of cortical states, consistent with cholinergic regulation of an
animal’s ability to incorporate the detection of a cue into new
goal-directed behaviors (Sarter et al., 2014).

CHOLINERGIC FAST SYNAPTIC TRANSMISSION IN CORTEX
The application of optogenetic tools to the analysis of cen-
tral cholinergic signaling using ChAT-Cre lines in either mice
(Kalmbach et al., 2012; Huang and Zeng, 2013) or rats (Witten
et al., 2011; see Figure 1) allows selective activation and silencing
of cholinergic neurons and axonal projections, both in vitro and
in vivo. Using this approach, several studies have now shown that
ACh signaling occurs through direct, fast synaptic transmission—
as well as over longer time scales consistent with more diffuse
transmission—in the cortex (Letzkus et al., 2011; Arroyo et al.,
2012, 2014; Bennett et al., 2012; Kimura et al., 2014). Activat-
ing channelrhodopsin (ChR2) in fibers from the BF elicited a
barrage of inhibitory synaptic inputs to layer (L) 2/3 pyrami-
dal cells, which depended on nAChR activation (Arroyo et al.,
2012, 2014; Bennett et al., 2012; Kimura et al., 2014). Pyramidal
neurons in L2/3 apparently do not express nAChRs themselves,
but L2/3 interneurons do (Poorthuis et al., 2013). Activation
of BF fibers produced cell type-specific responses in cortical
interneurons. L1 and L2/3 LS neurons exhibited both a fast and
a slow response, while L2/3 ChAT bipolar neurons exhibited
only a slow response. Activation of L2/3 interneurons by ACh
via both nicotinic and muscarinic receptors depressed pyramidal
neuron firing thereby curtailing visual responses (Kimura et al.,
2014). ACh-induced excitatory postsynaptic currents were gen-
erated by a mixed population of nAChRs (Arroyo et al., 2012).
In addition to a slow dihydro-β-erythroidine (DHβE) sensitive
non-α7∗-mediated current, a fast component of excitatory post-
synaptic potentials (EPSCs) was abolished by methyllycaconitine
(MLA) in both L1 and 2/3 interneurons but not in ChAT+ cells.
Comparing the reported time course of the inhibitory barrage
received by L2/3 pyramidal neurons upon light-induced ACh
release with the time course of the two different EPSC compo-
nents, suggested that L2/3 pyramidal neuron inhibition is more
likely dependent on the slow component, rather than the fast
component of cholinergic activation. This was confirmed by bath
application of DhβE, which prevented the inhibitory drive onto
pyramidal cells. In a follow-up study, the same authors found
a large trial-to trial variability of the fast component of the
ACh-induced current components, indicative of direct synaptic
transmission which they propose is mediated by synaptic α7∗-
containing (α7∗) receptors. This was confirmed by lack of effect of
AChE inhibitors on the amplitude or kinetics of this fast current
component (Bennett et al., 2012; Arroyo et al., 2014). The slow
component showed much less trial-to-trial variability and was
sensitive to manipulation of AChE activity. From this, the authors
conclude that the slow, non-α7∗ component involves diffusion of
ACh over some distance, and arises from the effects of ACh on
extra synaptic α4β2∗ nAChRs, while the faster nAChR EPSCs are
mediated by direct transmission via synaptic or peri-synaptic α7∗

AChRs (Arroyo et al., 2012, 2014). These experiments demon-
strate that in superficial layers of the somatosensory, visual and
auditory cortex, L1 and L2/3 interneurons receive both direct and
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FIGURE 1 | Visualizing the cholinergic system in rodents. (A) Viral
construct used to achieve selective expression of functional opsins
(ChR2 or Arch3.0) in ChAT+ cells (Witten et al., 2011). Top panel
shows the construct that is sterotactically injected in the basal
forebrain region of ChAT-cre mice or rats. The portion of the
construct encoding the opsin and fluorophore (Enhanced yellow
fluorescent protein-EYFP) is inverted and flanked by double LoxP
sites (black and white triangles). After virus delivery in the brain, and
in presence of cre-recombinase, the coding fragment is oriented in
the right direction, allowing the expression of functional
light-sensitive opsins in the ChAT+ neurons. (B) Schematic
representation of virus delivery and opsin expression in ChAT-cre
mice/rats. Rodents undergo surgery to infuse the adeno-associated
virus (AAV) construct with the coding information for opsins and/or

fluorophores. After 3 to 6 weeks rodents have sustained expression
of the flourophore and/or excitatory (ChR2, ChIEF etc.) or inhibitory
(halorhodopsin or arch 3.0) in ChAT+ cell soma and fibers. Left inset
is a confocal micrograph of the basal forebrain of a ChAT-cre rat.
Green cells in the top panel express EYFP as result of the
AAV-floxed EYFP injection. Middle panel is a confocal micrograph of
ChAT+ neurons, confirmed by the presence of anti-ChAT antibody
staining. Bottom panel is a confocal micrograph indicating that the
EYFP probe is expressed only in ChAT+ cells. Scale bar is 40 µm
(Luchicchi and Mansvelder, unpublished observations).Bottom inset
confocal micrograph of EYFP+ labeled basal forebrain terminal fields
within the mPFC (∗pia; # white matter). Scale bar is 200 µm
(Luchicchi and Mansvelder, unpublished observations). Figure is
adapted from Jiang et al. (submitted).

diffuse cholinergic inputs, that enable the cholinergic system to
manipulate neocortical processing on a millisecond time scale as
well as on slower time scales (Arroyo et al., 2012, 2014; Kimura
et al., 2014).

On a network level, BF stimulation in anesthetized animals
results in a desynchronized state of field potentials (Goard and
Dan, 2009; Kalmbach et al., 2012; reviewed in Bloem et al., 2014)
and neuronal firing in the BF is correlated with a reduction in
low frequency, and an increase of high frequency, oscillations in
the cortex (Duque et al., 2000; Manns et al., 2000). Since the
frequency band activity is related to the state of arousal and the
extent of cortical activation (Uhlhaas et al., 2008; Wang, 2010;
Deco and Thiele, 2011; Cachope et al., 2012), this supports the
idea that ACh acts as a neuromodulator involved in setting the

state of arousal. Mechanistically, it was shown that ACh activated
mAChRs on cortical pyramidal neurons (Gulledge et al., 2009),
thereby shifting firing modes from bursting to tonic and chang-
ing low frequency high amplitude oscillatory activity to high
frequency low amplitude activity on a network level (Metherate
et al., 1992).

Other studies have looked at the effect of ACh on the direction
of the flow of information in the cortex. Again, these studies
have been performed in sensory areas because in these regions,
neuronal responses could be related to sensory stimulation. In
this regard it is reasonably well established that ACh is directly
involved in the enhancement of feed-forward thalamic input into
the sensory cortical areas (see Bloem et al., 2014, for a review).
In L4 of visual cortex, ACh increases the gain and reliability
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of neuronal responses (Goard and Dan, 2009; Soma et al.,
2012, 2013), an effect that is mediated by heteromeric nAChRs
(Roberts et al., 2005; Disney et al., 2007). A similar effect of ACh
is observed in the barrel cortex (Oldford and Castro-Alamancos,
2003).

In L2/3, the picture is more complex. In general, choliner-
gic modulation reduces firing rate in these layers by increasing
GABAergic inhibition through mAChRs and nAChRs (Disney
et al., 2012; Alitto and Dan, 2013; Soma et al., 2013; Kimura et al.,
2014). The ACh modulation in firing rates was associated with
enhancement of the reliability of encoding and modulation by
stimuli presented (Goard and Dan, 2009; Soma et al., 2013).

The cortical depression associated with whisker trimming is
accompanied by an increase of heteromeric nAChRs on interneu-
rons in L2/3 and blockade of these nAChRs can prevent the
cortical depression. These observations support the contention
that heteromeric nAChRs in L2/3 are required for regulating the
input- dependent responsiveness of the somatosensory cortex
(Brown et al., 2012a).

Intra-cortical projections that connect superficial layers
between different cortical columns are also inhibited by ACh
through activation of mAChRs (Kimura and Baughman, 1997).
Based on this finding and the reduced activity in the superfi-
cial layers, it has been suggested that ACh reduces horizontal
processing through cortico-cortical interactions (Hasselmo and
Giocomo, 2006). Indeed it has been observed in slices, and
in vivo animal experiments as well as in humans, that the spatial
spread of excitation in response to stimuli is reduced in the
presence of elevated levels of ACh (Kimura et al., 1999; Silver
et al., 2008). Such a modulation of excitation could have a
sharpening effect on tuning curves of receptive fields and on
discrimination of sensory stimuli (Roberts et al., 2005; Thiele
et al., 2012). The combined effects of ACh—e.g., reduction of
lateral interactions and increased sensitivity to thalamic inputs,
would be expected to increase network sensitivity to incoming
information and enhance signal to noise. A similar selective
gain-control effect of ACh is observed with enhanced attention
(Briggs et al., 2013) and could be one of the core mechanisms
through which ACh modulates selective attention (Hasselmo and
Giocomo, 2006; Deco and Thiele, 2011; Hasselmo and Sarter,
2011).

The functional impact of ACh on the deeper L5 and 6
is less well understood. It is clear that deep layer pyramidal
and interneurons are modulated by both nAChRs and mAChRs
(Gulledge et al., 2007; Kassam et al., 2008; Poorthuis et al., 2013).
ACh is associated with both response suppression and response
facilitation, although the net effect of endogenous cholinergic
signaling is not clear (Soma et al., 2013). In L1, most (if not all)
interneurons contain α7∗ and /or non-α7∗ nAChRs (Christophe
et al., 2002; Alitto and Dan, 2013). Since these neurons inhibit
both L1-3 interneurons and L2/3 pyramidal cells, the effect
of cholinergic L1 activation appears to be complex with both
net inhibition as well as disinhibition of pyramidal cells in
deeper layers, and it is likely dependent on the source and
extent of ACh release in L1 (Letzkus et al., 2011; Bennett et al.,
2012; Cruikshank et al., 2012; Jiang et al., 2013; Arroyo et al.,
2014).

Thalamic inputs to L5 neurons are strongly regulated by
nicotinic receptor activation (Lambe et al., 2003; Couey et al.,
2007; Poorthuis et al., 2013). Whether these are targeted by direct
cholinergic inputs is not known. However, within the thalamic
reticular nucleus, neurons receive biphasic fast cholinergic inputs
mediated by non-α7∗ nAChRs and mAChRs (Sun et al., 2013).

MANIPULATING THE CORTICAL CHOLINERGIC SYSTEM DURING
BEHAVIOR
Despite new insights as to how rapidly ACh levels may rise and
fall in prefrontal cortex during cue detection (Sarter et al., 2014),
there is still no direct demonstration of the cellular and synaptic
mechanisms by which ACh controls attentional behaviors. Hints
emerge from the optogenetic data on the disinhibitory circuit
mechanisms in superficial layers of sensory areas (Letzkus et al.,
2011; Arroyo et al., 2014), but the architecture of the somatosen-
sory cortex differs substantially from that of prefrontal cortical
regions. Indeed, L4 is absent from rodent medial PFC (Uylings
et al., 2003), and projections from the mediodorsal thalamus
target all layers of mPFC, in contrast to the more discrete seg-
regation of thalamo—cortical input seen in somatosensory areas
(Douglas and Martin, 2004; Constantinople and Bruno, 2013).
Few studies have appeared that manipulate the cholinergic system
using optogenetics during cognitive tasks. In the primary visual
cortex (V1) optogenetic stimulation of BF projections improved
visual discrimination, a hallmark of visual attention, in a go-
no-go task (Pinto et al., 2013). Inhibiting the BF cholinergic
projections to the visual cortex with either halo-rhodopsin
(NpHR) or archaerhodopsin (Arch) impaired mouse perfor-
mance on the same tasks (Pinto et al., 2013; Arroyo et al., 2014
for review).

In a recent report of unpublished observations, Sarter et al.
(2014) optogenetically manipulated the excitability of BF projec-
tions to the PFC in mice performing a sustained attention task
(SAT). This would be the first report of optogenetic manipulation
of ACh release in the PFC and modulation of attention perfor-
mance. Using ChAT-Cre mice expressing ChR2 in the BF, the
authors report that brief blue light stimulation during cue pre-
sentation increases detection of the cue. Optogenetic stimulation
of BF fibers in the absence of a cue, which predict the presentation
of reward, results in a higher number of false-positive responses in
cue detection of ChR2 mice. Inhibition of ACh fibers with NpHR
stimulation reduced cue detection (Sarter et al., 2014). Previous
studies from the same group have identified transient release
of ACh in the mPFC as a modulator of cue-directed attention.
In particular, fast ACh release occurred when the cue trial was
preceded by an actual or perceived non-cue trial (Howe et al.,
2013). Therefore, cholinergic transients may be involved in state-
shifting: i.e., in regulating the shift from generalized monitoring
to one of cue-directed attention (Sarter et al., 2014). In this sense,
the optogenetic increase in false-positive responses, where the
animal responds incorrectly to a non-cue trial, might reveal the
mechanism by which transient release of ACh in the mPFC deter-
mines the transition from cue detection to a behavioral response.
Full appreciation of the data underlying these conclusions awaits
publication of the primary data referred to in the Sarter review
(Sarter et al., 2014).
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OPTOGENETIC CONTROL OF CHOLINERGIC PROJECTIONS TO
HIPPOCAMPUS AND AMYGDALA: SYNAPTIC PLASTICITY
AND OSCILLATIONS
Hippocampal control over specific behaviors, such as learning
and memory, is potently modulated by cholinergic signaling.
Antagonists to both nicotinic and muscarinic AChRs impair per-
formance in hippocampal-dependent memory tasks in rodents
(Levin et al., 2002), as well as the ability to encode spatial informa-
tion (Blokland et al., 1992). The majority of cholinergic inputs to
the hippocampus (up to 90%) come from the medial septum and
diagonal band via the fimbria/fornix, and enter the hippocampus
through the stratum oriens (SO; Frotscher and Léránth, 1985;
Dutar et al., 1995). In addition, sparse cholinergic interneu-
rons have been reported in some regions of the hippocampus,
where they usually impinge on GABAergic interneurons (Griguoli
and Cherubini, 2012). Both nicotinic and muscarinic AChRs
are involved in regulating hippocampal network activity, such
as synchronization of neuronal activity and altering of synaptic
weights, thereby influencing hippocampal support of cognitive
function (Yakel, 2012). Exogenous application of nicotinic ago-
nists in hippocampal slices affects synaptic plasticity in nearly
all hippocampal areas (Tu et al., 2009; Yakel, 2012), and mus-
carinic agonists induce fast network oscillations (Mann et al.,
2005). However, it is still not completely clear how cholinergic
receptors regulate rhythmic and phasic oscillations and synap-
tic plasticity in vivo, during hippocampal-dependent cognitive
functions.

By stimulating septal cholinergic projecting neurons to the
SO using both electrical and optogenetic methods, Gu and
Yakel disentangled the temporal requirements for ACh release
in the cholinergic modulation of synaptic strength of Schaf-
fer’s collateral (SC) to CA1 synapses (Gu and Yakel, 2011).
With precisely timed activation of septal cholinergic neurons
in ChAT-cre mice expressing ChR2, Yakel et al. showed that
when the light-evoked increase of ACh release in the SO pre-
ceded the SC stimulation by 100 ms, long-term potentiation
(LTP) in the CA1 was triggered. This effect was dependent
on the activation of α7∗ nAChRs in postsynaptic neurons. On
the other hand, ChR2 activation of cholinergic terminals only
10 ms before the SC stimulation resulted in hippocampal short-
term depression. In the latter case the effect was due to an α7∗

subunit-dependent inhibition of presynaptic glutamate release.
Even more intriguing, the α7∗ component also altered synaptic
plasticity when light pulses were delivered 10 ms after the SC acti-
vation. In fact, this latter protocol caused LTD in SO neurons by a
mechanism which was attributed to mAChR activation, although
whether the muscarinic component was pre- or postsynaptic is
not clear (Gu and Yakel, 2011).

Muscarinic AChRs also modulate hippocampal activity by
acting on interneurons (Bell et al., 2013). This is in line with the
role of these receptors in orchestrating network oscillation within
the hippocampus (Mann et al., 2005). Interestingly, interneuron
network responses to light-evoked ACh release from the septum
varied according to the level of cholinergic activity. In particular,
low-intensity stimulation of cholinergic inputs was more likely to
inhibit certain classes of interneurons via a mechanism depen-
dent on the M4 type of mAChRs, whereas higher levels of ACh

release triggered depolarization in other interneurons via broader
muscarinic signaling. Cholinergic inputs from BF can also activate
GABAergic interneurons through activation of α4β2∗ nAChRs in
specific layers of the hippocampus (Bell et al., 2011).

Combining optogenetic stimulation of medial
septum/diagonal band of Broca (MS/DBB) projections to
the hippocampus with whole-cell patch clamp recordings and
voltage sensitive dye (VSD) imaging it has been shown that
inhibitory interneurons in the hippocampus receive cholinergic
EPSPs in response to light stimulation of septal cholinergic
fibers that are sensitive to DhβE, but not MLA (Bell et al.,
2011). These light-evoked EPSPs have slow kinetics similar to the
non-α7∗ component seen in interneurons in the somatosensory
cortex (Arroyo et al., 2012). The interneurons that express
α4β2∗ have their somata or dendrites in the SO or stratum
lacunosum-moleculare (SLM) of the hippocampus. Finally,
another recent optogenetic study implicates ACh release from
the MS/DBB in the modulation of synaptic plasticity triggered
by GABAergic interneurons of the stratum oriens lacunosum-
maculare (OLM) in the SC-CA1 (Leão et al., 2012). Taken
together, these data show that ACh inputs from the septum can
influence hippocampal oscillations and plasticity in a highly
specialized manner, resulting in a fine-tuning of hippocampal
network activity in a layer specific manner and with millisecond
timing. We still lack knowledge on the exact timing of activation
of hippocampal cholinergic inputs during behavior. This will
require both optogenetic manipulation of cholinergic projections,
and concurrent visualization of activity of the BF projections in
the hippocampus of awake-behaving animals.

Recently, optogenetic studies have been carried out to study
the influence of other neuromodulatory systems interacting with
cholinergic signaling to modulate hippocampal network activ-
ity. A set of studies conducted by Alger’s group have very ele-
gantly demonstrated that both the endocannabinoid (eCb) and
endogenous opioid systems may participate in the generation of
ACh-dependent modulation of hippocampal oscillatory activity
(Nagode et al., 2011, 2014). With brief stimulation of the MS/DBB
fibers in the CA1, Nagode et al. (2011) reported rhythmic
inhibitory post-synaptic currents (IPSCs) in pyramidal neurons,
accompanied by low frequency oscillation in hippocampal slices.
Interestingly, the IPSCs, which were likely evoked by interneurons
impinging on the pyramidal cells, were abolished by either GABA
or mAChR antagonists. Moreover, the same events were also eCb-
sensitive, supporting the presence of active cannabinoid receptor
(CB-R1) in the presynaptic interneuron terminal. It is widely
known that CB-Rs are expressed in the hippocampus, where
they drive different forms of plasticity and mediate aspects of
neuroprotection (Wilson and Nicoll, 2001). Only cholecystokinin
(CCK) + interneurons in hippocampus have functional CB1-Rs;
CB-Rs are not present on PV+ interneurons (Katona et al., 1999).
For this reason, it is likely that the cholinergic modulation of
low frequency oscillations observed in this study depends solely
on CCK+ cell activity. Optogenetic inhibition of either PV+
interneurons or glutamic-acid decarboxylase-2 (GAD2)+ cells
in the CA1 confirmed that the PV− population of GABAergic
interneurons were required for ACh induction of low frequency
oscillations. Surprisingly the ability of these PV− cells to trigger
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low frequency rhythms in the hippocampus was blocked by a mu-
opioid receptor antagonist, and subsequent induction of IPSCs in
pyramidal neurons by ACh release in ChAT-Cre mice was shown
to be sensitive to both CB1 and mu-receptor blockade (Nagode
et al., 2014). Overall, these studies provide new insights on the
possible cross-communication between the eCb and cholinergic
modulatory systems in the regulation of hippocampal network
activity and perhaps, in memory functions.

The effects of cholinergic input in general, and of nAChRs in
particular, in the basolateral amygdala is also under study with
optogenetic labeling of the neurons and projections of the nucleus
basalis (Role, 2014). These studies have revealed that cholinergic
signaling potently modulates the plasticity of cortical synapses
on basolateral amygdale (BLA) pyramidal neurons, decreasing
the threshold for induction of LTP. Excitatory effects of nucleus
basalis stimulation on BLA firing is confirmed in in vivo recording
and, most striking, the rate of extinction of responses to a cue-
associated fear conditioning paradigm is slowed by brief optoge-
netic activation of the cholinergic terminal fields in BLA during
training (Role, 2014). These findings are consistent with the idea
that cholinergic signaling reinforces amygdala-based memories,
perhaps rendering them less susceptible to subsequent extinction
(Role, 2014).

MODULATION OF STRIATAL CIRCUITS BY ACH
CHOLINERGIC INTERNEURONS MODULATE THE RELEASE OF MULTIPLE
STRIATAL NEUROTRANSMITTERS
In addition to the robust modulatory activities of cholinergic
signaling in cortex and hippocampus ACh is renowned for its
strong regulatory role in subcortical brain regions within the
midbrain and striatum. In particular, the core of the brain reward
circuitry, comprising the ventral tegmental area (VTA) and the
nucleus accumbens (NAc), is strongly modulated by ACh. The
main source of ACh to the VTA neurons in the midbrain arises
from the brainstem structures LDTg and PPTg, which play a role
in acquisition of reward, and reward-related locomotor activity
(Corrigall et al., 2002; Champtiaux et al., 2006). The main source
of ACh for the NAc/ventral striatum, as well as for the dorsal stria-
tum, is the cholinergic interneurons which comprise less than 2–
5% of the total striatal neuron population (Descarries et al., 1997).
Notwithstanding the paucity of striatal cholinergic interneurons,
ACh signaling is directly involved in the modulation of (1) stri-
atal dopamine (DA) release (Rice and Cragg, 2004; Exley and
Cragg, 2008; Wang et al., 2014); (2) local network functionality
(Galarraga et al., 1999; Koós and Tepper, 2002); and (3) striatal-
dependent behaviors related to reward (Joshua et al., 2008).

The release of DA in striatum is crucial for functions such
as motivation, reward and locomotor activity (see Cachope and
Cheer, 2014, for a recent review) and cholinergic transmission
can drive striatal DA release (Exley and Cragg, 2008). A recent
study showed that selective optogenetic activation of accum-
bal cholinergic interneurons is sufficient to trigger DA release
in the same region, and that this effect is independent of the
suprathreshold activation of VTA DA neurons per se (Cachope
et al., 2012; Threlfell et al., 2012; Wang et al., 2014). As such,
the activity of cholinergic interneurons might boost the release
of DA to encode aspects of reward-related events. This proposal

is in line with studies in which photostimulation of cholinergic
interneurons drove striatal DA release via activation of presy-
naptic nAChRs (Threlfell et al., 2012; Wang et al., 2014). On
the other hand, Cachope et al. (2012) reported that the direct
effect of cholinergic interneuron activation on DA release was
only partially mediated by activation of AChRs. Combining opto-
genetic manipulation with in vitro pharmacology, revealed the
collaboration of both nicotinic (β2∗) and muscarinic receptors,
together with the activation of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)-type glutamate receptors in the
enhancement of striatal DA release. Thus, a synergy exists between
ACh and glutamate in modulating the activity of the striatal
network. The source of glutamate may be the striatal cholinergic
interneurons themselves (Gras et al., 2008). Activating ChR2 in
cholinergic striatal interneurons triggers postsynaptic responses
onto medium spiny neurons (MSNs), the most abundant striatal
cell type. Under the stimulation conditions used by Higley et al.,
the direct postsynaptic responses were blocked by glutamate
receptor antagonists alone and were insensitive to AChR blockade
(Higley et al., 2011). This suggests that at low levels of stimulation
direct control of MSN firing by “cholinergic” interneurons may
also rely on fast glutamatergic transmission.

A follow-up of this study was conducted looking at the con-
nections between ACh interneurons and other local interneurons.
including the PV+ interneurons, that also contact MSNs directly
(Koós and Tepper, 1999; Gittis et al., 2010). Activating dorsal
striatal ACh interneurons triggers the co-release of ACh and
glutamate on PV+ interneurons, activating slow non-α7∗ nAChR
currents, and both AMPA and N-methyl-D-aspartate (NMDA)
receptors (Nelson et al., 2014). ACh and glutamate co-release
was dependent on the presence of the vesicular glutamate trans-
porter VGLUT3. This transporter is also involved in enhancing
the vesicular loading of ACh and is important for di-synaptic
inhibition of MSNs after PV+ excitation, a common feature in
striatal information processing (Gras et al., 2008).

Activation of ChR2 in cholinergic interneurons in striatum
also triggered GABA-A receptor-mediated postsynaptic currents
in MSNs both in vivo and in vitro (Witten et al., 2010). Opto-
genetic stimulation of striatal cholinergic interneurons activated
di-synaptic inhibitory responses in MSNs in vitro (Nelson et al.,
2014). This effect was still present when PV+ neurons were
ablated leading the authors to suggest that the di-synaptic inhi-
bition of MSNs might be mediated by GABA release from
DA terminals, that are studded with β2∗ nAChRs and tar-
geted by cholinergic interneuronal projections. Thus, striatal net-
work activity could be orchestrated by cholinergic interneurons
through simultaneous regulation of DA and GABA release in the
same striatal area.

OPTOGENETIC STUDIES OF ROLE OF CHOLINERGIC INTERNEURONS IN
STRIATAL-DEPENDENT BEHAVIORS
Optogenetic studies have helped to define the role of striatal
cholinergic interneurons in multiple aspects of motor control,
associative learning and reward (see Jiang et al., 2014, for review;
Exley and Cragg, 2008). During reward-related events, cholin-
ergic interneurons initially increase their firing activity, and
then pause, after which they start firing in a third phase of
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elevated activity (e.g., Morris et al., 2004). Most likely, these
phasic activity periods support DA release from VTA projec-
tions, with the nAChR mediated component being independent
of VTA action potential firing (e.g., see Wang et al., 2014). By
combining pharmacological, optogenetic and electrophysiolog-
ical techniques, Straub et al. (2014) recently suggested reward
coding resides in the pause in striatal ACh interneuron activity
that results from the direct effect of nigrostriatal DA projections
via D2 dopamine receptors on cholinergic interneurons. The
authors did not identify which neurotransmitter is involved in
the rebound phase. Other studies have suggested that the pause
of ACh interneuron firing may be caused by a GABA component.
Activating VTA GABA neurons that project to the striatum with
ChR2 and recording activity on ACh interneurons resulted in
a pause of ACh interneuron firing (Van Bockstaele and Pickel,
1995; Tan et al., 2012; Van Zessen et al., 2012). Interestingly this
effect was only observed in striatal ACh interneurons, sparing
the other cell population and it was insensitive to DA receptor
blockade. Behavioral studies have confirmed that GABA mediated
inhibition of cholinergic interneurons is a requisite component
of stimulus-outcome association under relevant learning condi-
tions, pinpointing the pivotal role of ACh interneurons in goal
directed behaviors (Brown et al., 2012b). In addition, Witten
et al. (2010) have reported that cholinergic interneuron silencing
by NpHR stimulation reduced cocaine preference in behaving
mice.

Taken together, these findings support the idea that cholinergic
interneurons play a crucial role in the modulation of striatal
activity, and striatal-dependent behavior. Recent anatomical stud-
ies have also underscored the potential importance of direct
projections from the brainstem (PPTg and LDTg) to striatal cells
(Dautan et al., 2014). Hence, it will be interesting to learn how
cooperation between these different elements of the cholinergic
system modulates striatal activity.

SUMMARY AND CONCLUSIONS
The application of optogenetic tools has accelerated the acqui-
sition of precise information about the varied modulatory and
direct synaptic signaling by ACh in an array of brain regions
and behaviors. Selective expression of optogenetic probes in
ChAT+ neurons allows studies of the connectivity, functionality
and anatomy of cholinergic neurons and circuits throughout
the rodent brain (Atasoy et al., 2008; Witten et al., 2011; for
reviews see: Arroyo et al., 2014; Jiang et al., 2014; Poorthuis et al.,
2014). The application of these techniques has unveiled novel
contributions of previously un-identified ChAT-positive neu-
rons to activity-dependent proliferation and neurogenesis (Paez-
Gonzalez et al., 2014) as well as implicating the co-storage—and
perhaps co-release—of ACh and glutamate (e.g., see Higley et al.,
2011). Many important challenges and new areas of exploration
are now accessible to the cholinergic enthusiast. It will be particu-
larly important to establish the precise mechanisms by which ACh
modulates attention and contributes to top down executive con-
trol of directed behaviors. With the increasing number of research
groups that have adopted the optogenetic toolbox, we can expect
to learn more about these exciting topics in the not-so-distant
future.
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