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Since the discovery of nerve growth factor (NGF) more than a half century ago (Levi-Montalcini
and Cohen, 1960), the prototypic neurotrophin family has included brain derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Neurotrophins bind to the
Trk family of receptors, as well as the p75 receptor, to activate multiple intracellular signaling
cascades (reviewed by Reichardt, 2006). BDNF receptor tropomyosin receptor kinase B (TrkB)
signaling has been extensively studied for its roles in the central nervous system (CNS) ranging
from cell survival, axonal and dendritic growth and synapse formation. The pathwaymediates long-
lasting activity-modulated synaptic changes on excitatory and inhibitory neurons and plays critical
roles in circuit development and maintenance. In addition to BDNF, many studies have identified
other “growth” or signaling factors in the CNS that play important roles in the development,
maintenance, and control of synaptic and circuit function. However, details of the intracellular
signaling systems downstream of these events are frequently unexplored. In this Research Topic, we
have collected original studies and review articles that present cellular and molecular mechanisms
concerning activity-dependent synapse formation and their implications for behavior and brain
disorders.

Vadodaria and Jessberger discuss synapse maturation in adult-born dentate granule cells and
the role of BDNF-TrkB and several other signaling pathways that activate Cdc42, Rac1, and RhoA
(Vadodaria and Jessberger, 2013). These small Rho GTPases regulate polymerization of actin and
microtubules, and are consequently involved in aspects of neuronal maturation ranging from cell
migration, to dendritic arborization, spine maturation, and synaptic integration of these newborn
hippocampal neurons.

Kellner et al. show that BDNF is critical for activity-dependent maintenance of mature spines
through F-actin polymerization (Kellner et al., 2014). Integrity of this spine cytoskeleton is also
critical for the vesicular transport, carried out by molecular motor proteins. For example, Myosin
Va is a plus end actin, vesicular motor protein that carries postsynaptic density protein 95 (PSD-
95), Synapse-associated protein 90/postsynaptic density-95-associated protein (SAPAP) and Shank,
an essential glutamate receptor scaffold complex along actin to the postsynaptic membrane at the
tip of dendritic spines (Hammer and Wagner, 2013; Yoshii et al., 2013). Furthermore, BDNF-
TrkB signaling triggers transport of the vesicles containing PSD-95 and its associated complex
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to postsynaptic membranes via activation of PI3-kinase-Akt
pathway (Yoshii and Constantine-Paton, 2007).

BDNF-TrkB signaling pathway also regulate the molecular
assembly of synaptic membrane. Zonta and Miniciello discuss
the emerging role of lipid raft, the detergent resistant lipid
microdomain enriched with cholesterol and sphingolipid, in
synaptic plasticity as a result of neurotrophin signaling (Zonta
and Minichiello, 2013). When BDNF binds to the TrkB receptor,
the ligand-receptor complex shifts to lipid rafts via activation of
tyrosine kinase Fyn (Pereira and Chao, 2007; Suzuki et al., 2007).
Lipid raft is enriched in postsynaptic membrane, and facilitates
localization of palmitoylated proteins such as PSD-95, which is
a critical regulator of synaptic plasticity at excitatory synases.
Palmitoylation of PSD-95 in the cell body is also mediated by
BDNF-TrkB signaling via activation of phospholipase Cγ (PLCγ)
and protein kinase C (PKC). The PKC inhibitors chelerythrine
as well as a synthetic zeta inhibitory peptide (ZIP) designed
to block the brain-specific PKC isoform protein kinase Mζ

(PKMζ) were used to demonstrate this effect (Yoshii et al., 2011).
However, additional studies in the hippocampus began to raise
concerns about the specificity of ZIP (Lee et al., 2013; Volk
et al., 2013). A follow-up study by Yoshii and Constantine-
Paton in this Topic confirmed that, while both chelerythrine
and ZIP could suppress the postsynaptic localization of PSD-95,
PKMζ knock-down with RNA interference did not exhibit this
effect. The result indicates that the ZIP peptide, widely used as a
“specific” PKMζ antagonist, may block another PKC variant that
is the kinase actually involved in PSD-95 palmitoylation in cell
body.

BDNF is critical for mechanisms underlying various
modalities of sensory processing, cognition and behaviors. These
roles have been studied in hippocampal learning and memory
(reviewed by Minichiello, 2009), in maturation and plasticity of
the CNS and also in neurological disease (reviewed by Yoshii
and Constantine-Paton, 2010). It is not surprising that BDNF
is associated with brain disorders such as epilepsy, autism,
depression, and schizophrenia since all of these have chronic
effects on synaptic function. However, Andersen and Sonntag
have studied the effect of juvenile exposure to psychostimulants
on the risk of cocaine addiction in adulthood. They found that
treatment with methylphenidate, frequently used to improve
attention in children, has a long-lasting suppressive effect on
cocaine-induced increases in BNDF expression (Andersen
and Sonntag, 2014). Further studies will hopefully identify the
mechanisms underlying the critical period effect on addiction as
well as long term effect of stimulants.

Neurotrophic factors also affect feeding. Maekawa et al.
have shown that low BDNF expression in the ventromedial
hypothalamus correlates with blood glucose level, increased
leptin secretion and eating, and visceral fat accumulation in
a type 2 diabetic rat line (Maekawa et al., 2013). The results
indicate BDNF and leptin play major roles in central regulation
of energy metabolism and dysregulation of the neurotrophin
signaling result in obesity.

Harvey discusses that leptin regulates synaptic functions
(Harvey, 2013). This dietary hormone activates extracellular-
signal-regulated kinase (ERK) and facilitates GluN2B-mediated
synaptic depression during early postnatal development while it
regulates LTP through PI3-kinase pathway in adult hippocampus
(Moult and Harvey, 2011).

It is now clear that variety of synaptogenic growth factors are
wider than previously thought. Two articles review diversity of
these factors. Williams and Umemori discuss members of the
fibroblast growth factor (FGF) family in the context of synaptic
development (Williams and Umemori, 2014). FGFs have been
shown to organize presynaptic vesicle clustering. Remarkably,
FGF7-null mice exhibit a specific deficit in hippocampal
inhibitory synapse formationwhile FGF22-null mice are deficient
in excitatory synapses (Terauchi et al., 2010). Furthermore,
FGF7-null animals are prone to develop epilepsy after kindling,
while FGF22-null are resistant to this seizure induction.

Poon et al. provide a comprehensive review of Netrin, Wnt,
transforming growth factor-β (TGF-β), tumor necrosis factor-
α (TNF-α), all of which were first identified for their roles
other than synaptogenesis (Poon et al., 2013). For example,
UNC-6/netrin and its receptor UNC-5 were originally described
as axonal guidance molecules. However, UNC-6 and UNC-
5 facilitate localization of presynaptic proteins to axons by
excluding them from dendrites (Poon et al., 2008). Consequently,
these pathway are all involved in regulating axonodendritic
polarity.

The field of neuronal growth factors is continuing to grow,
and new discoveries, some which are highlighted in this volume,
will prompt new questions. For example, do these growth factors
work together, competitively or separately? Is there cell-type
specificity for each factor? Do they play a deterministic or a
modulatory role in synaptic specificity during development ?
Advances in genomics and proteomics will help us understand
not only single cascade but also multiple signaling pathways
as network. Various genetic tools allow spacial and temporal
controls of gene expression and neuronal activities (Boyden
et al., 2005; Arenkiel and Ehlers, 2009; Konermann et al.,
2013). Super-resolution microscopy enables observations of
signaling molecules at synapse and organelles in unprecedented
manner. Multi-photon microscopy has been invaluable to
study a wide range of structures from individual spines to
neuronal circuitry. Applications of these new technologies will
create exciting opportunities to tackle the above and other
questions.
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