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A hallmark of synaptic specializations is their dependence on highly organized complexes

of proteins that interact with each other. The loss or modification of key synaptic proteins

directly affects the properties of such networks, ultimately impacting synaptic function.

SNAP-25 is a component of the SNARE complex, which is central to synaptic

vesicle exocytosis, and, by directly interacting with different calcium channels subunits,

it negatively modulates neuronal voltage-gated calcium channels, thus regulating

intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct

brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia

and bipolar disorder, indicating that the protein may act as a shared biological

substrate among different “synaptopathies”. The mechanisms by which alterations

in SNAP-25 may concur to these psychiatric diseases are still undefined, although

alterations in neurotransmitter release have been indicated as potential causative

processes. This review summarizes recent work showing that SNAP-25 not only controls

exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic

receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility

that SNAP-25 defects may contribute to psychiatric diseases by impacting not only

presynaptic but also postsynaptic functions.

Keywords: SNAP-25, synaptopathies, presynaptic role, postsynaptic role, brain diseases

SNAP-25 is a component of the SNARE protein complex, which is involved in the exocytotic
release of neurotransmitters during synaptic transmission. Through the coiled-coil assembly with
syntaxin-1 and synaptobrevin, SNAP-25 mediates synaptic vesicle apposition to the presynaptic
membrane permitting their Ca2+ triggered fusion. Consistently, the genetic ablation of this protein
results in a complete block of synaptic transmission. SNAP-25 is present in two isoforms, a and
b, resulting from alternative splicing of the exon 5 of the Snap-25 gene, which are differentially
expressed during development. SNAP-25a is expressed at the embryonic stage, while SNAP-25b
becomes the major isoform during postnatal life (Bark, 1993; Bark and Wilson, 1994; Bark et al.,
1995), a developmental trend which has been confirmed in humans (Prescott and Chamberlain,
2011).

In line with its central role in neuronal function, the Snap-25 gene has been associated
with several human neurological syndromes, including attention-deficit/hyperactivity disorder
(ADHD), schizophrenia (Barr et al., 2000; Brophy et al., 2002; Kustanovich et al., 2003), and bipolar
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disorder (Etain et al., 2010). The protein appears therefore to
represent a shared biological element among different psychiatric
diseases.

Recently, several groups started to investigate the cellular and
molecular mechanisms underpinning the SNAP-25 contribution
to the onset of such pathologies, or, more likely, to the
manifestations of specific traits typical of these diseases. A

TABLE 1 | (A) Functions of SNAP-25 protein, (B) Snap-25 polymorphisms discussed along the text.

(A) SNAP-25 known function In vitro Ex vivo In vivo Human References

Neurotransmitter release • • • • Oyler et al., 1989; Söllner et al., 1993a,b; Chapman et al., 1994; Poirier

et al., 1998; Raciborska et al., 1998; Sutton et al., 1998; Washbourne

et al., 2002; Sørensen et al., 2003; Jeans et al., 2007; Mohrmann et al.,

2010; Shen et al., 2014

Modulation of VGCCs • • Bennett et al., 1992; Yoshida et al., 1992; Lévêque et al., 1994;

Martin-Moutot et al., 1996; Rettig et al., 1996; Zhong et al., 1999; Jarvis

and Zamponi, 2001; Verderio et al., 2004; Pozzi et al., 2008; Condliffe

et al., 2010; Condliffe and Matteoli, 2011; Weiss et al., 2012

Slow, clathrin-dependent endocytosis • Okamoto et al., 1999; Xu et al., 2013; Zhang et al., 2013

Postsynaptic receptor trafficking • • Selak et al., 2009; Lau et al., 2010; Jurado et al., 2013

Short term plasticity • • Pozzi et al., 2008; Antonucci et al., 2013

Long term plasticity • • Jurado et al., 2013; Fossati et al., 2015

Dendritic spine morphogenesis • • Tomasoni et al., 2013; Fossati et al., 2015

Cognitive ability, learning, and memory • • Gosso et al., 2006, 2008; Corradini et al., 2014; Braida et al., 2015

Network excitability and epileptiform activity • • • • Hess et al., 1992, 1995; Zhang et al., 2004; Rohena et al., 2013;

Corradini et al., 2014; Shen et al., 2014

(B) Polymorphysm Position in

the gene

Traits Effects on mRNA/protein References

rs6039769 Promoter Early onset bipolar disorder Higher SNAP-25 levels in

homozygous “CC” individuals

Etain et al., 2010

rs363039 Intron 1 Association with variation in IQ in normal population;

verbal performances in women; working memory

capacity; cognitive traits in autistic children

Transcription binding site Gosso et al., 2006; Cagliani

et al., 2012; Söderqvist et al.,

2010; Braida et al., 2015

rs363050 Intron 1 Association with variation in IQ in normal population;

association with intellectual disabilities; association

with Alzheimer’s disease and mild cognitive

impairment; cognitive traits in autistic children

Transcription binding site; reduced

protein expression

Gosso et al., 2006; Rizzi et al.,

2012; Guerini et al., 2014;

Braida et al., 2015

rs363043 Intron 1 Association with variation in IQ in normal population;

hyperactivity in autistic children; association with

Alzheimer’s disease and mild cognitive impairment;

Transcription binding site Gosso et al., 2008; Guerini

et al., 2011, 2014

rs353016 Intron 1 Association with variation in IQ in normal population Transcription binding site Gosso et al., 2008

rs6108461 Intron 3 ADHD—regulation of attention and inhibition Decreased expression of SNAP-25 Hawi et al., 2013

rs362549 Intron 4 ADHD—inattentive trait, hyperactivity trait Zhang et al., 2011

rs362990 Intron 4 ADHD—regulation of attention and inhibition Decreased expression of SNAP-25 Hawi et al., 2013

rs363006 Intron 7 Early onset bipolar disorder; ADHD N/D Etain et al., 2010; Zhang et al.,

2011

rs3746544 3′untranslated ADHD traits, especially when associated to

norepinephrine transporter NET1 (rs2242447);

increased risk of schizophrenia and major

depressive disorder

N/D Carroll et al., 2009;

Pazvantoğlu et al., 2013; Dai

et al., 2014; Wang et al., 2015

rs1051312 3′untranslated ADHD; cognitive dysfunction in schizophrenia;

impultivity trait in healthy population when in

haplotype with rs3746544

N/D Brophy et al., 2002; Spellmann

et al., 2008; Németh et al.,

2013

Only a selection of papers describing the role of SNAP-25 in the control of neurotransmitter release is reported owing to space limitations (see text for details). The position in the gene,

traits associated with the genetic variant and effect on mRNA or protein levels are listed.

challenging scenario is now emerging, i.e., that some of the
defects in diseases involving SNAP-25 might not exclusively
result from the presynaptic role of the protein. Indeed, initially
recognized as a presynaptic SNARE protein, the protein has
been later shown to play additional non-SNARE roles and, very
recently, even postsynaptic functions. The results of these lines of
research are summarized in this review (see Table 1A).
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ROLE OF SNAP25 AT THE PRESYNAPSE:
SYNAPTIC VESICLES EXOCYTOSIS AND
SHORT TERM PLASTICITY

SNAP-25 (synaptosomal-associated protein of 25 kDa) is a
soluble N-ethylmaleimide sensitive factor attachment protein
receptor (SNARE) protein that participates together with
syntaxin-1 and synaptobrevin/VAMP (Jahn et al., 2003; Sudhof,
2004; Montecucco et al., 2005) in the regulation of synaptic
vesicle exocytosis (Washbourne et al., 2002; reviewed in
Milovanovic and Jahn, 2015). In the absence of SNAP-25,
vesicle docking at the presynaptic active zones persists, but
the pool of vesicles primed for release is empty, and fast
calcium-triggered exocytosis is abolished (Sørensen et al.,
2003). Furthermore, by calcium-dependent interaction with
synaptotagmin, SNAP25 has a role in vesicle docking and
priming as well as in triggering fast exocytosis (Mohrmann et al.,
2010). Indeed the proteolytic cleavage of SNAP-25 by botulinum
neurotoxins (BoNTs, serotypes A, C, and E) blocks exocytosis
and neurotransmitter release (Schiavo et al., 2000; Ahnert-Hilger
et al., 2013; Pantano and Montecucco, 2014), leading to the
neuroparalysis characteristic of botulism (Aoki and Guyer, 2001).

Besides its well characterized role in exocytosis, SNAP-25
also modulates various voltage-gated calcium channels (VGCCs)
(Atlas et al., 2001; Zamponi, 2003; Catterall and Few, 2008),
by interacting with N-type (Sheng et al., 1996), P/Q-type
(Martin-Moutot et al., 1996; Rettig et al., 1996), L-type (Wiser
et al., 1999), and T-type channels (Weiss et al., 2012). SNAP-
25 has been shown to negatively control neuronal calcium
responsiveness to depolarization (Verderio et al., 2004) through
voltage-gated calcium channel inhibition (Pozzi et al., 2008).
Consistently, silencing endogenous SNAP-25 in glutamatergic
neurons results in increasedVGCC activity (Condliffe et al., 2010;
Condliffe and Matteoli, 2011; see Figure 1).

SNAP-25 also participates in slow, clathrin-dependent
endocytosis at hippocampal synapses, possibly contributing to
the coupling between exocytosis and endocytosis (Zhang et al.,
2013). Given that SNARE proteins mediate exocytosis at all
nerve terminals, their dual role in exo- and endocytosis is likely
a general principle. Although how exactly SNARE proteins are
involved in endocytosis remains unclear, the following binding
studies provide some indications. Synaptobrevin/VAMP2
binds to the AP180 N-terminal homology (ANTH) domain of
endocytic adaptors AP180 and Clathrin Assembly Lymphoid
Myeloid leukemia (CALM) protein (Koo et al., 2011; Miller
et al., 2011); also, stonin 2, facilitates clathrin/AP-2-dependent
internalization of synaptotagmin and targets it to a recycling
vesicle pool in living neurons (Diril et al., 2006).

SNAP-25 binds to the endocytic protein intersectin (Okamoto
et al., 1999); syntaxin binds to dynamin (Galas et al., 2000).
Based on these evidence it was proposed that the exocytosis
machinery, including SNARE proteins (synaptobrevin, SNAP-25,
and syntaxin), is needed in the initiating step of endocytosis and
likely controls the amount of endocytosis (for a review see Wu
et al., 2014).

Therefore, SNAP-25 represents a multifunctional protein
involved in the control of secretion by multiple interactions. In

line with the multiple roles of the protein, different neuronal
processes are affected, in an unexpected way, in conditions
characterized by SNAP-25 reduction. Indeed halved SNAP-
25 levels in 13–14 DIV neuronal cultures not only failed
to impair synaptic transmission, as expected by the SNARE
role of SNAP-25, but instead enhanced evoked glutamatergic
neurotransmission (Antonucci et al., 2013). This effect was
dependent on presynaptic voltage-gated calcium channel activity
and was not accompanied by changes in spontaneous quantal
events or in the pool of readily releasable synaptic vesicles
(Antonucci et al., 2013). Notably, synapses of 13–14 DIV
neurons with reduced SNAP-25 expression showed paired-pulse
depression as opposed to paired-pulse facilitation occurring in
their wild-type counterparts (Antonucci et al., 2013). These data
suggest that the more sensitive phenotype for reduced SNAP-25
levels may be the regulation of calcium channels, not the role of
SNAP-25 in transmitter release. Based on these results, a dual
role of SNAP-25 not only as a carrier but also as a “guardian
of synaptic transmission” was proposed: in particular, reduced
SNAP-25 expression, although sufficient to sustain SNARE-
mediated synaptic vesicle fusion, partially releases VGCCs from
SNAP-25-mediated inhibition, thus resulting in elevated calcium
influx and facilitated neurotransmission (Kochlamazashvili and
Haucke, 2013).

AN UNEXPECTED ROLE OF SNAP-25 AT
THE POST-SYNAPSE: SPINE
MORPHOGENESIS AND PLASTICITY

In the last years, different evidence indicated an unexpected
postsynaptic role for SNAP-25 (see Figure 1). The protein was
indeed shown to control NMDA and kainate-type receptors
trafficking (Selak et al., 2009; Lau et al., 2010). In particular
the interaction of SNAP-25 with the GluK5 subunit of KARs
and PICK1 reduces the GluK5 stability on the membrane,
thus favoring KAR internalization (Selak et al., 2009), whereas
the PKC-mediated phosphorylation of SNAP-25 on serine 187,
promotes NMDAR delivery to the cell surface via SNARE-
dependent exocytosis (Lau et al., 2010). In the latter study
the authors elegantly demonstrated that introduction of the
constitutively active form of PKC via the recording pipette to
neurons rapidly potentiated NMDA currents in cells treated
with inactive BoNT/A whereas treatment of neurons with
active BoNT/A abolished PKC potentiation of NMDA currents
without altering basal NMDA currents, thus unveiling SNAP-
25 involvement in the potentiation of the synapse. Given that
LTP-inducing protocols can induce SNAP-25 phosphorylation
(Genoud et al., 1999), high frequency stimulation protocols may
act via phosphorylation of SNAP-25 to promote insertion of
NMDARs and elicit LTP. Indeed acute SNAP-25 downregulation
resulted in LTP impairment (Jurado et al., 2013). These data
opened the possibility that, besides a presynaptic impact,
reductions of SNAP-25 levels may affect the structure, and/or
the function of the postsynaptic compartment, which would
provide a logical frame for the protein involvement in psychiatric
diseases, such as schizophrenia or intellectual disability, which
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FIGURE 1 | Cartoon depicting presynaptic and postsynaptic roles of SNAP-25. (A) Effect of presynaptic SNAP-25 on VGCCs. Calcium influx in the nerve

terminal is negatively regulated by the complex formation between SNAP-25 and VGCCs; removal of the clamping role of SNAP-25, occurring upon reduction of the

protein expression, results in elevated calcium influx through VGCCs (adapted from Kochlamazashvili and Haucke, 2013). (B) Involvement of SNAP-25 in the

molecular machinery mediating Ca2+-triggered vesicle fusion. A docked synaptic vesicle is shown on the left. The core fusion machine is composed of

synaptobrevin/VAMP2, syntaxin-1, and SNAP-25 (adapted from Kochlamazashvili and Haucke, 2013). The diagram in the box depicts a partially assembled SNARE

complex including, besides synaptobrevin/VAMP2, syntaxin-1, and SNAP-25, complexins and MUNC18. The calcium sensor, synaptotagmin, is also depicted

(adapted from Sudhof, 2012). (C) Role of SNAP-25 in slow clathrin-mediated synaptic vesicle endocytosis. SNAP-25 binds to the endocytic protein intersectin, while

syntaxin binds dynamin, a GTPase mediating vesicle fission. The interactions between Synaptobrevin/VAMP2 and the ANTH domain of endocytic adaptors AP180

and CALM have been omitted for clarity. (D) Role of SNAP-25 in the organization of the postsynaptic density protein network. SNAP-25 interacts with p140Cap, which

in turn forms a complex with PSD95, cortactin, Arp2,3, and F-actin (filamentous actin). NMDA receptors are depicted as interacting with PSD95 (adapted from Fossati

et al., 2015). (E) Phosphorylation of SNAP-25 by PKC promotes the insertion of NMDA channels at the cell surface through the delivery of postsynaptic vesicles and

their fusion with the plasma membrane, possibly via the formation of a SNARE complex (adapted from Lau et al., 2010). (F) Role of SNAP-25 in the removal of

GluK5-contaning kainate receptors (KAR). KARs associate with SNAP-25 and the PKC-interacting protein PICK1. The PKC phosphorylation of the GluK5-C terminus

may induce a conformational change facilitating the association with SNAP-25 and simultaneously decreasing GRIP binding affinity (adapted from Selak et al., 2009).

are known to be also characterized by defects at the postsynaptic
compartment (Fernández et al., 2009; Penzes et al., 2011).

Despite the evidence pointing to a postsynaptic role of SNAP-
25, a clear demonstration of whether SNAP-25 localizes in the
dendritic spines of the postsynaptic neuron is still lacking. Some
recent studies attempted to locate SNAP-25 in the postsynaptic
terminal either by immunofluorescence (Selak et al., 2009), or
ground state depletion (GSD) microscopy, which allows protein
localization with a precision up to 20 nm (Tomasoni et al.,
2013). Also by coimmunoprecipitation, bimolecular fluorescence
complementation (BiFC) and biochemical fractionation, a
molecular complex of SNAP-25 with postsynaptic proteins was
detected (Selak et al., 2009; Tomasoni et al., 2013; Fossati et al.,
2015). Nevertheless this is still a controversial topic, since other
studies showed an exclusively presynaptic location of SNAP-25
through immunogold labeling of synaptic boutons (Holderith
et al., 2012; Kerti et al., 2012). Certainly, the SNAP-25 expression
levels in the postsynaptic compartment are quantitatively much
lower than at the presynaptic one (Tao-Cheng et al., 2000; Sharma
et al., 2012) and this could account for its difficult detection in
dendritic spines.

In recent years, the postsynaptic role of SNAP-25 has been
supported by evidence showing a structural modification of
the postsynaptic compartment upon SNAP-25 reduction. In
particular, acute reduction of SNAP-25 expression in primary
hippocampal cultures led to an immature phenotype of dendritic
spines, while overexpression of the protein resulted in an increase
in the density of mature, PSD-95-positive spines (Tomasoni
et al., 2013). The effect was shown to be truly postsynaptic, and
not secondary to altered presynaptic function as demonstrated
by co-culturing of SNAP25 heterozygous and GFP-expressing
wild type neurons. SNAP-25 reductions were also shown to
affect the localization of PSD95, with acute downregulation of
SNAP-25 resulting in a significant reduction of PSD95-positive
puncta (Fossati et al., 2015). Correspondingly, acute down-
regulation of SNAP-25 in CA1 hippocampal region by lentiviral
expression reduced spine density and resulted in immature spine
morphology, thus recapitulating in vivo the spine abnormalities
observed in cultures upon acute SNAP-25 silencing (Fossati et al.,
2015).

Which could be the mechanism by which SNAP-25 controls
dendritic spine morphology and PSD95 mobility? The cleavage
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of SNAP-25 by BoNT/E, which prevents the protein to enter the
fusion complex, did not reduce spine density or PSD95 size, thus
excluding that SNAP-25 controls PSD95 recruitment through its
SNARE function and suggesting instead a protein scaffolding
role at the spine level (Fossati et al., 2015). This hypothesis
was supported by the finding that p140Cap, a scaffold protein
located into dendritic spines with a crucial role in regulating actin
cytoskeleton, spine formation (Jaworski et al., 2009), and learning
processes (Repetto et al., 2014), is a key member of the molecular
complex which includes SNAP-25 and PSD95 (Tomasoni et al.,
2013; Fossati et al., 2015).

The correct formation of this molecular complex preserves
the proper organization of the dendritic spine. Maintaining
spine integrity could further facilitate the formation of the
protein complexes which contain also SNAP-25 and that regulate
receptor trafficking (Selak et al., 2009; Lau et al., 2010). Based on
these results, it is conceivable that postsynaptic SNAP-25 may
be important for orchestrating a dynamic equilibrium among
the glutamate receptors at a given synapse, thereby regulating
synapse efficacy also at the postsynaptic side.

SNAP-25, A SHARED BIOLOGICAL
PATHWAY AMONG DIFFERENT
PSYCHIATRIC DISEASES

The defective formation of the SNARE complex for vesicle fusion
and the aberrant regulation of voltage-gated calcium channels
are the processes generally taken into account to explain the
involvement of the protein in those psychiatric diseases which
have been linked to the Snap-25 gene. However, the recent data
indicating a postsynaptic role for the protein raise the possibility
that SNAP-25 defects may contribute, in these disorders, also
through alterations of postsynaptic receptors trafficking or spine
morphogenesis.

Several reports have shown the presence of polymorphisms in
the Snap-25 gene, which have been associated with ADHD (Barr
et al., 2000; Faraone et al., 2005; Zhang et al., 2011; Hawi et al.,
2013; Pazvantoğlu et al., 2013), schizophrenia (Thompson et al.,
2003), and early-onset bipolar disorders (Etain et al., 2010; see
Table 1B). Notably, some of these polymorphisms were found to
control not only specific traits of the disease, but even behavioral
tracts in healthy individuals. As an example, several single
nucleotide polymorphisms (i.e., rs363043, rs353016, rs363039,
rs363050) of the Snap-25 gene have been associated with
Intelligence Quotient (IQ) phenotypes in healthy individuals
(Gosso et al., 2006, 2008). Also, although autism spectrum
disorder (ASD) has not been directly linked to the Snap-25 gene,
polymorphisms analyzed in a cohort of children affected by ASD
revealed a significant association between Snap-25 SNP rs363043
and hyperactivity traits (Guerini et al., 2011), while rs363050 and
rs363039 polymorphisms were shown to correlate with cognitive
deficits in ASD children (Braida et al., 2015). Notably, a first
analysis of transcriptional activity through luciferase reporter
gene revealed that SNP rs363050, which is localized in the intron
1 of the Snap-25 gene, leads to reduced protein expression (Braida

et al., 2015). Therefore, the possibility that reduced SNAP-
25 levels may contribute to specific behavioral traits, such as
hyperactivity or cognitive performances in healthy individuals
or in different psychiatric diseases, including those to which the
gene has not been directly associated, like in the case of ASD,
remains a challenging possibility to be tested in the future.

Notably, even in schizophrenia, where the SNAP-25 levels
are significantly lower in the hippocampus (Young et al., 1998;
Fatemi et al., 2001; Thompson et al., 2003) and in the frontal
lobe Broadman’s area 10 (Thompson et al., 1998), an association
between the rs1051312 polymorphism of the Snap-25 gene
and cognitive dysfunctions was reported (Spellmann et al.,
2008). Furthermore, and consistent with the observations already
reported in SNAP-25 heterozigous mice (Antonucci et al., 2013),
even in schizophrenic patients the reduction of SNAP-25 levels
does not seem to correlate with an impairment in the SNARE
complex formation (Ramos-Miguel et al., 2015). Of interest, and
in line with the possible relevance of SNAP-25 expression levels
in different psychiatric diseases, a SNAP-25 variant located in
the promoter region (rs6039769) and associated with early-onset
bipolar disorder was found to correlate with a significantly higher
SNAP-25b expression in prefrontal cortex (Etain et al., 2010).
Higher levels of the SNARE in dorsolateral prefrontal cortex of
patients affected by bipolar disorder were already reported by
Scarr et al. (2006).

As a support to the functional impact of the protein levels
in cognitive or motor functions, genetic mice models showed
that the chronic reduction of SNAP-25 affects mouse behavior.
The coloboma mouse model, characterized by halved SNAP-25
levels (Hess et al., 1992), displays indeed a hyperactive phenotype
(Hess et al., 1992), associated with abnormal thalamic spike-wave
discharges (Hess et al., 1995; Zhang et al., 2004; Faraone et al.,
2005; Russell, 2007). Similarly, juvenile SNAP-25 heterozygous
mice displays a moderate hyperactivity, which disappears in the
adult animals, and impaired associative learning and memory,
which persist instead in the adults. Electroencephalographic
recordings revealed the occurrence of frequent spikes, suggesting
a diffuse network hyperexcitability, accompanied by a higher
susceptibility to kainate-induced seizures, and degeneration of
hilar neurons. Notably, both EEG alterations and cognitive
defects were improved by antiepileptic drugs, in particular
valproic acid (Corradini et al., 2014; Braida et al., 2015). A
defective negative control of voltage gated calcium channels
resulting from the reduced SNAP-25 levels could be at the
origin of the network hyperexcitability (Corradini et al., 2014).
Although, the demonstration of a direct causal link between
altered SNAP-25 expression and psychiatric diseases is still
lacking, evidences obtained in the coloboma mouse suggest
that reduction of SNAP-25 expression may be directly involved
in some psychiatric traits, rather than simply represent an
epiphenomenon; indeed, when a transgene expressing SNAP-
25 was bred into the coloboma strain in order to complement
Snap-25 depletion, the hyperactivity displayed by the mutant
mice was rescued (Hess et al., 1995 J Neurosci).

Recently a de novo variant was identified in the Snap-25 exon
4 (Phe48Val), in a 15-years-old girl with intractable epilepsy
and severe encephalopathy, but no neuromuscular symptoms
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(Rohena et al., 2013). Later on, exome sequencing identified
a de novo dominant mutation of a conserved residue in exon
5 of Snap-25b in an 11-years-old patient displaying congenital
myasthenia, cortical hyperexcitability, cerebellar ataxia, and
intellectual disability (Shen et al., 2014). The Ile67Asn variant
was reported to be pathogenic because, by disrupting the
hydrophobic alpha-helical coiled-coil structure of the SNARE
complex, it inhibits synaptic vesicle exocytosis (Shen et al., 2014).
Of note, a heterozygous Ile67Thr missense mutation in Snap-25b
gene was observed in the so-called blind-drunk (1/Bdr) mouse,
which shows a mild ataxic gait around age 4 weeks, impaired
sensorimotor gating and increased anxiety (Jeans et al., 2007;
Oliver and Davies, 2009). This mutation is located in a highly
conserved codon and parallels Ile67Asn mutation observed
in the 11 years-old patient (Shen et al., 2014). In the case
of the Ile67Asn mutation, Shen and colleagues propose that
the substitution of a hydrophobic residue with a hydrophilic
one destabilizes the coiled-coil SNARE complex structure, thus
hindering vesicle fusion (Shen et al., 2014); however, it is also
possible that the Ile67Asn mutation causes a distortion of the
coiled coil structure in such a way as to affect the interaction
of the SNARE complex with its protein partners. This appears
to be the case in the blind-drunk mutation which results in the
enhancement of the affinity of SNAP-25 for its binding partners
and is therefore likely to cause an increase in association of the
SNARE complex (Jeans et al., 2007). No information about the
impact of Val48Phe variant on SNAP-25 structure and function is
still available.

Additional genetic mouse models underlined the role of
Snap-25 mutations in specific traits of psychiatric diseases.
Single nucleotide substitution resulting in a missense Ser187Ala
mutation at the site of phosphorylation of SNAP-25 by PKC has
been associated with increased anxiety, decreased dopamine and
serotonine release (Kataoka et al., 2011), impaired PPI of the
startle response, a typical parameter of schizophrenia, deficits
in working memory, immature features of dentate granule cells
(Ohira et al., 2013), and epileptic seizures (Watanabe et al.,
2015). Interestingly, Ser187 phosphorylation of SNAP-25 is

development- and activity-dependent both in vitro and in vivo
(Kataoka et al., 2006; Pozzi et al., 2008); it is associated with
synaptic vesicles availability (Nagy et al., 2002; Houeland et al.,
2007) and it is necessary for the negative control of voltage-gated
calcium channels (Pozzi et al., 2008).

CONCLUSIONS

The recent discovery of SNAP-25 role in the control of
receptor trafficking and spine morphogenesis, which points to
the protein role as a postsynaptic structural hub, opens new
avenues for the comprehension of the physiological role of
the protein at the synapse and offers new mechanistic insights
as to SNAP-25 involvement in synaptopathies that go beyond
the protein’s established roles in presynaptic function. The
finding that the activity-driven spine remodeling is defective in
neuronal networks constitutively developing in the presence of
reduced levels of SNAP-25, makes a provocative link to human
pathologies, such as schizophrenia, where both a reduction of

SNAP-25 expression and a decrease in dendritic spine density
have been described.
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