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The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step
journey with the final goal of ensuring the proper synaptic strength under changing
environmental conditions. The SV cycle is a precisely regulated membrane traffic
event in cells and, because of this, a plethora of membrane-bound and cytosolic
proteins are devoted to assist SVs in each step of the journey. The cycling fate of
endocytosed SVs determines both the availability for subsequent rounds of release
and the lifetime of SVs in the terminal and is therefore crucial for synaptic function
and plasticity. Molecular players that determine the destiny of SVs in nerve terminals
after a round of exo-endocytosis are largely unknown. Here we review the functional
role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small
GTPases acting on membrane trafficking at the synapse, as they are emerging as
key molecules in determining the recycling route of SVs within the nerve terminal.
In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin
(CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the
Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV
in their nerve terminal cycle. These regulatory proteins together with their synaptic
regulators and effectors, are molecular nanomachines mediating homeostatic responses
in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic
transmission.
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INTRODUCTION

The synaptic vesicle (SV) cycle is the most highly regulated membrane traffic event in cells and the
proteins involved, as well as the arrays of protein-protein interactions that guarantee the fidelity of
the process, are getting increasingly clear.

Kinases and phosphatases, as well as small GTPases and their effectors, are emerging as
molecular machines acting at the synapse to regulate synaptic function and plasticity by rapidly
modulating several synaptic targets and adapting the synapse to the needs of the network.

The high tunability of synaptic strength is obtained presynaptically from changes in quantal
size, SV availability for release and number of active synapses, and all these parameters are directly
or indirectly controlled by the cycling fate of SVs.

Here we provide an update on two molecular machines recently reported to act on the fate
of recycling SVs in the nerve terminal: the cyclin-dependent kinase 5 (cdk5)/calcineurin (CN)
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systemwith its multiple synaptic substrates and the small GTPase
Rab and ADP ribosylation factor (Arf) systems with their relative
regulators and effectors.

THE cdk5/CN SYSTEM

Kinases and phosphatases post-translationally regulate the
function of a plethora of proteins and play a major role
in regulating cellular functions. Phosphoproteins are highly
expressed at the synaptic terminal together with dedicated
kinases and phosphatases, and their activity regulates many
aspects of SV cycling. The role of phosphoproteins in SV
cycling has been extensively reviewed elsewhere (Valtorta and
Benfenati, 1994). We here focus on one of the presynaptically
expressed kinases, cdk5, and the cognate phosphatase, CN,
as they act as key molecules in regulating the strength of
neurotransmission by acting on SVs availability for release
and endocytic recovery of SV at the plasma membrane after
exocytosis.

The first evidence for a central role of the cdk5/CN system
at the presynapse derives from the observation that several
proteins involved in various steps of the SV cycle are specific
substrates for cdk5/CN, namely munc18-1, septin5, Pictaire,
synapsin, amphiphysin, dynamin and synaptojanin (reviewed in
Su and Tsai, 2011). From a functional point of view, it is possible
to distinguish between effects on exocytosis and endocytosis,
keeping in mind that the two processes are intimately connected
and both regulated by calcium waves in the terminal (Wu
et al., 2014; Leitz and Kavalali, 2015). SV exocytosis is regulated
by cdk5 phosphorylation of Munc18 that allows syntaxin1 to
participate in the SNARE complex and SV fusion to occur
(Shuang et al., 1998; Fletcher et al., 1999). A similar effect
has been described for the phosphorylation of the cytoskeletal
protein septin5 by cdk5, which decreases binding of septin5 to
the SNARE protein syntaxin1 and regulates neurotransmitter
release (Taniguchi et al., 2007; Amin et al., 2008). The cdk5
substrate Pictaire has also been proposed to regulate exocytosis
by phosphorylating N-Ethylmaleimide-Sensitive Factor (NSF)
and regulating the ability of NSF to oligomerize (Liu et al.,
2006). Additional roles for cdk5/CN in the process of exocytosis
came from the observation, made both in vitro and in vivo,
that N-type calcium channels (Cav2.2) are substrates for the
two enzymes (Su et al., 2012; Kim and Ryan, 2013). Although
the impact of phosphorylation on the properties of the Cav2.2
channel is still controversial, it has been nicely demonstrated
that the cdk5/CN balance regulates the final steps of exocytosis
by potently controlling the action potential-driven calcium
influx and therefore the probability of release (Kim and Ryan,
2013).

On the endocytosis side, an array of CN substrates involved
in the SV retrieval process are known among the main
molecular actors of SV cycling (Marks and McMahon, 1998).
These proteins have been collectively named dephosphins,
as their dephosphorylation is induced by calcium increase
during stimulation (Cousin and Robinson, 2001). Both their
dephosphorylation and subsequent phosphorylation by cdk5
is required for SV retrieval in central nerve terminals

(Clayton et al., 2007). Different mechanisms of SV endocytosis
operate at central synapses, namely fast endocytosis, clathrin-
dependent endocytosis and bulk endocytosis (Kononenko and
Haucke, 2015). However, how the various modes of endocytosis
are interconnected and differently regulated is still a matter of
investigation. The cdk5/CN activity on dephosphins has been
reported to selectively regulate slow, activity-dependent bulk
endocytosis, with no effect on fast endocytosis. The slow form
of endocytosis predominantly occurs during sustained activity,
requires traffic of SVs via the endosomal compartment and
repopulates the recycling pool, which is only released during
intense stimulation after the complete depletion of the readily
releasable pool (Evans and Cousin, 2007; Cheung and Cousin,
2013). Interestingly, cdk5/CN activities concomitantly control
which fraction of SVs partitions into the recycling or the release-
reluctant resting pool (Kim and Ryan, 2010; Marra et al.,
2012) and the SV protein Synapsin I has been identified as
the main cdk5/CN substrate in mediating this effect (Verstegen
et al., 2014). In particular, cdk5-phopshorylated Synapsin I
sequesters recycling SVs in the release-reluctant resting pool
by clustering SVs and increasing their association with actin
filaments. The dual effect on bulk endocytosis and SV pool
partitioning suggests that the system is involved in determining
the fate of endocytosed SVs; in particular, it seems that during
sustained activity bulk endocytosis proceeds via sequential
CN/cdk5 activation, resulting in endosomal recycling of SVs and
in the capture of the newly formed SVs into the release-reluctant
pool (Figure 1). Moreover, the balance of cdk5/CN activities
broadly varies between synapses, setting both the tone of N-type
calcium channels and the ratio of recycling vs. reluctant SVs
and resulting in synapse heterogeneity from silent to strongly
active synapses (Kim and Ryan, 2010, 2013; Verstegen et al.,
2014).

As a result of the multiple targets at the presynapse, the
cdk5/CN nanomachine represents a master regulator of synaptic
homeostasis and participates in the scaling of synaptic strength
to compensate for the effects of sustained hypo- or hyperactivity
(Seeburg et al., 2008; Kim and Ryan, 2010; Mitra et al., 2011; Peng
et al., 2013). Chronic silencing of firing strongly downregulates
nerve terminal cdk5 with the result of recruiting release reluctant
SVs to the recycling pool. This process, which appears to be
mediated by changes in the phosphorylation state of Synapsin I,
can activate previously silent synapses and change the release
potential of already active synapses (Kim and Ryan, 2010;
Verstegen et al., 2014). Alterations of cdk5 activity are associated
with a broad range of neurological disorders (see for reviews
Cheung and Ip, 2012; McLinden et al., 2012) and in particular the
cdk5-mediated homeostatic synaptic response has been recently
involved in early Alzheimer’s like synaptic pathology (Sheng
et al., 2015).

Rab AND Arf SYSTEMS

Rab and Arf family proteins are master regulators of membrane
trafficking and are involved in all steps of vesicular transport.
As all GTPases, these proteins function as molecular switches
by cycling between active guanosine triphosphate (GTP)-bound
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FIGURE 1 | Picture showing the multiple roles of cyclin-dependent kinase 5 (cdk5)/calcineurin (CN) and Rab/ADP-ribosylation factor (Arf) system in
defining the route for endocytosed SVs. Dashed arrows in light blue represent synaptic vesicle (SV) routes: (1) partitioning into pools; (2) degradation; (3)
post-endosomal trafficking; (4) endosomal sorting after bulk endocytosis; (5) endosomal trafficking; and (6) direct recycling. In red, the GTPase activating proteins
(GAPs) with the described functions in controlling the SV fate.

and inactive guanosine diphosphate (GDP)-bound states. Their
cycling is regulated by two families of regulatory proteins,
namely guanine nucleotide exchange factors (GEFs) and GTPase
activating proteins (GAPs). GEFs function as activators by
facilitating the conversion from a GDP-bound form to a
GTP bound form, whereas GAPs function as repressors by
enhancing GTP hydrolysis. The vast number of Rab and Arf
proteins and the multiple GAPs and GEFs for each isoform
make the small GTPase family an ideal spatial and temporal
regulator of virtually every aspect of membrane trafficking
(Stenmark, 2009). As SV cycling is the prototype of an
intensely regulatedmembrane traffic event, Rab andArf proteins,
together with their regulators and effectors, are emerging
as molecular nanomachines regulating specific steps of the
cycle.

More than 30 distinct Rabs were indeed identified by
proteomic analysis in highly purified SV fractions (Takamori
et al., 2006) and the three more abundant Rabs (Rab3, 7
and 5) were quantified in isolated terminals and found to
represent 0.776, 0.135 and 0.025% of total synaptic protein,
a percentage comparable with other fundamental protein for
presynaptic physiology such as, for example, the calcium sensor

synaptotagmin1 (Wilhelm et al., 2014). The role of the Rabs
involved in exocytosis, such as the secretory Rabs Rab3a/3b/3c
and Rab27b, and the role of some of the Rabs involved in SV
recycling, such as Rab4, 5, 10, 11b and 14, has been reviewed and
recently commented elsewhere (Sudhof, 2004; Pavlos et al., 2010;
Pavlos and Jahn, 2011; Giorgini and Steinert, 2013; Rizzoli, 2014).
Here we focus on additional small GTPases recently described to
participate in SV cycling, particularly in the steps defining fate of
SVs after recovery.

Rab35
A role for Rab35 in SV cycling originated from the identification
of TBC1D24, an epilepsy gene involved in neuronal development
and protein partner of the small GTPase Arf6 (Corbett et al.,
2010; Falace et al., 2010, 2014). Studying the Drosophilamutants
for TBC1D24/Skywalker, Uytterhoeven et al. (2011) revealed a
strong presynaptic phenotype with a larger readily releasable pool
of SVs and a dramatic increase in basal neurotransmitter release
at neuromuscular junction (NMJ) synapses. They reported
TBC1D24 to act as a GAP for Rab35 and proposed that active
GTP-bound Rab35 favors endosomal sorting of SV proteins
and replacement of dysfunctional SV components. Rab5 and
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TABLE 1 | Small GTPases playing a role at the presynaptic terminal.

Small GTPases Presynaptic role Presynaptic GAP and GEF Reference

Rab3a,b,c Docking/priming RAb3GAP, Rab3GEP. . . Geppert et al. (1994, 1997), Yamaguchi et al. (2002), Giovedì et al.
(2004a,b), Schlüter et al. (2004), Sakane et al. (2006), Pavlos et al. (2010),
and Pavlos and Jahn (2011)

Rab4 SV recycling/sorting To be determined Pavlos and Jahn (2011)

Rab5a,b SV recycling/sorting To be determined de Hoop et al. (1994), Fischer von Mollard et al. (1994), Shimizu et al.
(2003), Wucherpfennig et al. (2003), Star et al. (2005), Hoopmann et al.
(2010), Pavlos and Jahn (2011), and Uytterhoeven et al. (2011)

Rab7 SV recycling/sorting To be determined Pavlos and Jahn (2011) and Uytterhoeven et al. (2011)

Rab10 SV recycling/sorting To be determined Pavlos and Jahn (2011)

Rab11b SV recycling/sorting To be determined Pavlos and Jahn (2011), Steinert et al. (2012), and Giorgini and Steinert
(2013)

Rab14 SV recycling/sorting To be determined Pavlos and Jahn (2011)

Rab23 SV recycling/sorting To be determined Uytterhoeven et al. (2011)

Rab26 SV degradation To be determined Binotti et al. (2015)

Rab27b Docking/priming To be determined Pavlos et al. (2010) and Pavlos and Jahn (2011)

Rab35 SV recycling/sorting TBC1D24, Connecden1. . . Allaire et al. (2006) and Uytterhoeven et al. (2011)

Arf1 SV budding Arf1GAP. . . Faúndez et al. (1997)

Arf6 SV recycling/sorting GIT, Centaurin. . . Ashery et al. (1999), Krauss et al. (2003), Homma et al. (2014), Podufall
et al. (2014), Montesinos et al. (2015), and Tagliatti et al. (2016)

Arl8 SV component transport To be determined Klassen et al. (2010) and Wu et al. (2013)

Rab23 were also described to exert similar effects on endosomal
trafficking of SVs, although TBC1D24 seems to act as a selective
GAP for Rab35. This is the first description of a synaptic
machinery dedicated to the control of the quality of proteins
in SV cycling (Figure 1, Uytterhoeven et al., 2011). Moreover,
using a functional screen to assess the impact of a battery
of constitutively active Rabs on SV cycling, the same authors
identified Rab7 and Rab11 as putative regulators of post-
endosomal trafficking of SVs (Figure 1, Uytterhoeven et al.,
2011).Whether a similarmechanism also operates at mammalian
central synapses remains to be investigated.

Rab26
By investigating the molecular mechanisms leading to synapse
elimination, Binotti et al. (2015) recently described a role
for the small GTPase Rab26 in directing SVs into pre-
autophagosomal structures, thus proposing a novel pathway for
the degradation of SVs. The small GTPase was found in a subset
of presynaptic terminals associated with marked clustering of
SVs and is believed to promote SV clustering via a still unknown
mechanism. Rab26, in its active GTP-bound state, was also
reported to recruit Atg16L1 as an effector, representing a link
between SV cycling and autophagy (Figure 1, Binotti et al.,
2015).

Arf
The Arf proteins are a family of six small, ubiquitously expressed
GTP-binding proteins (Donaldson and Jackson, 2011) that can
be divided into three classes, based on sequence identity. Class I

Arf proteins (Arf1, Arf2 and Arf3) regulate the assembly of
various types of ‘‘coat’’ complexes onto budding vesicles along
the secretory pathway and activate lipid-modifying enzymes
(Bonifacino, 2004); Class II Arf proteins (Arf4 and Arf5),
whose function is still unclear; and Arf6, which is the sole
member of class III Arf proteins known to regulate endosomal
membrane traffic and structural organization at the cell surface
(D’Souza-Schorey and Chavrier, 2006). Other proteins that
structurally resemble Arf proteins are the Arf-like (Arl) proteins,
the Ras-related protein-1 (SAR1p) and the Arf-related protein
ARFRP1.

Although Arf proteins are less abundant in purified SVs or
isolated nerve terminals as compared to other small GTPases, the
Arf analogs Arl10b and Arl10c and the Arf-interacting protein
arfaptin 2 have been identified as components of purified SVs
(Takamori et al., 2006). Some of the Arf proteins have been
described to play a role in the definition of SV fate at the
synapse.

The class III Arf protein Arf6, involved in constitutive
trafficking between the plasma membrane and early endosomes
and actin dynamics, has been reported to increase basal synaptic
transmission at the Xenopus NMJ (Ashery et al., 1999), to
regulate the assembly of the clathrin-coat complex during
SV endocytosis (Krauss et al., 2003) and to play a role in
the SV recycling pathway (Tagliatti et al., 2016). Knockdown
of Arf6 in rat hippocampal neurons results in a strong
presynaptic phenotype, with decreased SV density, accumulation
of endosomal structures in the terminal and increased functional
releasable SVs docked to the plasma membrane. Arf6 appears
to act as a molecular determinant in the formation of the
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readily releasable pool of SVs and in the sorting of endocytosed
SVs to direct recycling, rather than through the endosomal
compartment (Tagliatti et al., 2016, Figure 1). Interestingly,
the observed Arf6-knockdown phenotype is reminiscent of the
synaptic phenotype for the constitutively active Rab35 at the
Drosophila NMJ (Uytterhoeven et al., 2011), suggestive of a
functional interplay of the two small GTPases at the presynaptic
compartment, as reported in different cellular systems (Allaire
et al., 2013; Miyamoto et al., 2014). Although no precise synaptic
role for Arf1 has been proposed, the protein in its active
GTP-bound form has been described to regulate vesicle budding
in PC12 cells (Faúndez et al., 1997), suggesting that also the
prototype class I Arf may act in SV cycling pathway.

In support for a presynaptic role for Arf proteins, the Arf-like
small G protein, Arl-8, has been identified as a critical regulator
of presynaptic patterning and axonal transport in C. elegans
(Klassen et al., 2010) and active GTP-bound Arl-8 were reported
to act as an effector of the anterograde motor UNC-104/KIF1A
(Wu et al., 2013). The Arl-8 GTP/GDP cycle is therefore
proposed as a switch to control the association/dissociation of
SV precursors from microtubule motor proteins, thus ensuring
the proper delivery of novel presynaptic components at nerve
terminals (Wu et al., 2013).

GAPs and GEFs
Considering the prominent roles of Rab and Arf proteins
at the synaptic terminal, it is noteworthy the lack of data
on synaptic GAPs and GEFs that dynamically regulate their
activity and potentially represent targets to finely modulate
neurotransmission in both homeostatic and hebbian plasticity
(Table 1). In addition to the above mentioned role for the Rab35-
GAP TBC1D24 (Uytterhoeven et al., 2011), the specific GAP for
Arf6, G-protein coupled receptor kinase 2 interacting protein
(GIT) has been involved in the organization of the cytomatrix
of the active zone (Kim et al., 2003) and recently reported to play
multiple roles at the presynapse (Podufall et al., 2014;Montesinos
et al., 2015). Podufall et al. (2014) analyzed the localization of GIT
at hippocampal glutamatergic synapses and at the Drosophila
NMJ by employing SD-dSTORM high-resolution microscopy
and revealed that the protein localizes at the periphery of the
active zone. Indeed, GIT interacts with the endocytic adaptor
stoninB and regulates the localization and function of stoninB
at the presynaptic site. A Drosophila GIT mutant showed
accumulation of endosomal structures and vacuoles and marked
defects in post-stimulus SV endocytosis and/or re-acidification
(Podufall et al., 2014). Although confirming a clear presynaptic
function for the GAP of Arf6, studies in mammalian synapses
revealed different roles for GIT1 and the other mammalian
isoform GIT2. GIT1 and GIT1/GIT2 knocked out calyx of Held
synapses showed a markedly increased initial release probability
that was not associated with changes in the size of the readily
releasable pool or in voltage-dependent calcium channel activity.
Although some discrepancies in the reported results exist, and
the precise mechanisms of the synaptic actions of GIT are still
to be clarified (Montesinos et al., 2015), the small GTPase Arf6
and the two Arf6 regulators, TBC1D24 and GIT, are emerging as

synaptic nanomachines operating at the presynaptic site to define
both release probability and SV recycling pathways.

The ArfGAP1, acting as a GAP for Arf1, has been found
to interact and regulate the activity of Leucine-rich repeat
kinase 2 (LRRK2, Xiong et al., 2012), whose gene is mutated
in Parkinson’s disease patients, and known to play multiple
roles in the presynaptic compartment (see for a review
Belluzzi et al., 2012). LRRK2 kinase activity was also recently
described to function as a Rab5b GAP, negatively regulating
Rab5b signaling (Yun et al., 2015). In addition to LRRK2,
huntingtin protein, dysfunctional in Huntigton’s disease, has
been proposed to function as a Rab regulator. Indeed, huntingtin
was found in a complex acting as a GEF for Rab11 (Li
et al., 2008), and Rab11 overexpression rescued the synaptic
dysfunction associated with both huntingtin and synuclein
mutations in Drosophila (Steinert et al., 2012; Breda et al.,
2015).

CONCLUDING REMARKS

The cdk5/CN system is a master regulator of synaptic strength
and synaptic functional heterogeneity by modulating calcium
signaling and SV distribution in the nerve terminal. The system is
highly regulated by homeostatic plasticity and represents a target
for research on the molecular markers of synaptic dysfunctions
and on the design of novel drugs (Shah and Lahiri, 2014; Sheng
et al., 2015).

For the Rab/Arf system, we expect that additional GAP
and GEF functions at the synapse will be clarified in
the near future, together with the role of specific GTPase
effectors in synaptic function. The synaptic targeting and/or
the activity modulation of GAP and GEF will emerge as
main factors in synaptic plasticity processes and in the
pathogenesis of synaptic dysfunctions. Interestingly, several
mutations in genes encoding proteins belonging to the
Rab and Arf small GTPases families, or proteins regulating
their GTP-binding cycle, have been recently described as
causative for inherited neurological diseases (Falace et al., 2010;
Shoubridge et al., 2010; Rauch et al., 2012; Seixas et al.,
2013; D’Adamo et al., 2014; Fine et al., 2015; Kalscheuer
et al., 2016), making the exploitation of their function at the
synapse a prerequisite for the design of effective therapeutic
strategies.
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