
MINI REVIEW
published: 12 May 2016

doi: 10.3389/fnsyn.2016.00011

Inhibition Controls Asynchronous
States of Neuronal Networks
Mario Treviño*

Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico

Edited by:
Martín Cammarota,

Federal University of Rio Grande do
Norte, Brazil

Reviewed by:
M. Gustavo Murer,

Universidad de Buenos Aires,
Argentina

Adriano B. L. Tort,
Federal University of Rio Grande do

Norte, Brazil

*Correspondence:
Mario Treviño

mariomtv@hotmail.com

Received: 09 March 2016
Accepted: 29 April 2016
Published: 12 May 2016

Citation:
Treviño M (2016) Inhibition Controls
Asynchronous States of Neuronal

Networks.
Front. Synaptic Neurosci. 8:11.
doi: 10.3389/fnsyn.2016.00011

Computations in cortical circuits require action potentials from excitatory and inhibitory
neurons. In this mini-review, I first provide a quick overview of findings that indicate
that GABAergic neurons play a fundamental role in coordinating spikes and generating
synchronized network activity. Next, I argue that these observations helped popularize
the notion that network oscillations require a high degree of spike correlations among
interneurons which, in turn, produce synchronous inhibition of the local microcircuit.
The aim of this text is to discuss some recent experimental and computational findings
that support a complementary view: one in which interneurons participate actively in
producing asynchronous states in cortical networks. This requires a proper mixture of
shared excitation and inhibition leading to asynchronous activity between neighboring
cells. Such contribution from interneurons would be extremely important because it
would tend to reduce the spike correlation between neighboring pyramidal cells, a
drop in redundancy that could enhance the information-processing capacity of neural
networks.
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INTRODUCTION

Glutamatergic (excitatory) and GABAergic (inhibitory) neurons can be classified on the basis of
their morphology and electrophysiological properties, as well as on the neuromodulatory receptors
expressed on their membranes. Pyramidal neurons (PyrCs) are the principal type of excitatory
cells in cortex. Each one receives approximately 104 synaptic inputs, of which approximately 75%
are excitatory and 25% inhibitory (Amaral and Witter, 1989; Ishizuka et al., 1995). The excitatory
synapses on PyrCs are distributed along their dendrites, whereas the inhibitory synapses are located
throughout their dendritic tree, the soma, and the initial axon segment. Thus, in PyrCs, excitatory
and inhibitory inputs co-exist on the peripheral dendritic tree, while the proximal segments receive
only inhibition (Pouille et al., 2013).

Although far less numerous, the GABAergic interneurons (INTs) are exceptionally diverse
in terms of their biochemical, biophysical and morphological properties, as well as in their
connectivity with other neurons (Freund and Buzsáki, 1996; Kawaguchi and Kubota, 1997;
Somogyi and Klausberger, 2005). Probably due to the high metabolic costs involved in building and
maintaining long-range axonal projections, the wiring of most INTs is local. An apparent inverse
relationship between potential synaptic contacts from interneurons and the distance of their axonal
projection supports this idea (Gupta et al., 2000; Buzsáki et al., 2004; Ferreira et al., 2014). One
effect of this arrangement is that neighboring PyrCs and INTs share some of their synaptic inputs
and process similar information.

Neurons in the brain receive concurrent excitatory and inhibitory inputs. Depending on the
driving force, a synaptic response can produce either a depolarization, a hyperpolarization or simply

Frontiers in Synaptic Neuroscience | www.frontiersin.org 1 May 2016 | Volume 8 | Article 11

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org/Synaptic_Neuroscience/editorialboard
http://www.frontiersin.org/Synaptic_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnsyn.2016.00011
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsyn.2016.00011&domain=pdf&date_stamp=2016-05-12
http://journal.frontiersin.org/article/10.3389/fnsyn.2016.00011/abstract
http://journal.frontiersin.org/article/10.3389/fnsyn.2016.00011/abstract
http://loop.frontiersin.org/people/164822/overview
https://creativecommons.org/licenses/by/4.0/
mailto:mariomtv@hotmail.com
http://dx.doi.org/10.3389/fnsyn.2016.00011
http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Treviño Inhibition Desynchronizes Networks

no change in the membrane potential of the postsynaptic
cell. Increasing the net synaptic conductance lowers the input
resistance (due to more simultaneous inputs), reducing the
voltage gradient generated by additional currents and the
membrane time constant of the cell. In consequence, synaptic
inhibition can decrease the amount of membrane depolarization
in two complementary ways: by producing a hyperpolarizing
current (i.e., a ‘‘subtractive’’ effect), or by increasing the global
conductance of the cell by acting in such a way as to divide
all the synaptic currents (i.e., ‘‘shunting inhibition’’, also known
as ‘‘silent inhibition’’; Koch et al., 1990; Borg-Graham et al.,
1998; Treviño and Gutiérrez, 2005; Silver, 2010; Treviño et al.,
2011). Theoretical work supports this notion and predicts that
inhibition will have a ‘‘divisive’’ effect on the postsynaptic
potentials if conductance change is large and located close to
the soma, but will produce a ‘‘subtractive’’ effect if the changes
in input conductance are small and spatially-distributed (Silver,
2010). For all these reasons, INTs are key players in controlling
the dynamics of recurrent excitatory circuits at various spatial
and temporal scales. Perisomatic inhibition tightly regulates the
spike timing of postsynaptic cells and is able to synchronize
entire neural ensembles (Freund and Buzsáki, 1996; Glickfeld
and Scanziani, 2006; Mann and Paulsen, 2007; Silberberg and
Markram, 2007).

BUILDING PRINCIPLES OF CORTICAL
CIRCUITS

The complex patterns of excitatory and inhibitory connections
in the brain provide the structural basis for a rich repertoire
of network activities. Cortical INTs can perform both feed-
forward and feed-back inhibitory actions based on their input
activity and their sensitivity to neuromodulators (Salgado
et al., 2012, 2016). In feed-forward inhibition (FFI), an
INT outputs its inhibitory signal to a PyrC that receives
shared excitation (Figure 1A). Typical in vitro recordings
performed from PyrCs responding to stimulation of afferent
fibers show a compound synaptic response that consists
of an excitatory postsynaptic potential (EPSP) followed by
an inhibitory postsynaptic potential (IPSP) mediated by the
activation of GABAA and, sometimes, GABAB receptors
(Figure 1B). This built-in structural inequality sharpens the
EPSP by narrowing the temporal ‘‘window of opportunity’’
for action potential generation, while also reducing the
overall number of action potentials and limiting the temporal
summation of EPSPs in the PyrCs (McCormick, 1992; Pouille
and Scanziani, 2001; Maccaferri and Dingledine, 2002; Lawrence
and McBain, 2003; Gabernet et al., 2005; Higley and Contreras,
2006; Ferrante et al., 2009; Torborg et al., 2010). The nature
and strength of inhibition regulate the propagation speed of
excitatory activity through cortical circuits (Trevelyan et al., 2007;
Moldakarimov et al., 2015).

The generation of an action potential in cortical neurons
is the result of complex spatio-temporal interactions between
simultaneous synaptic inputs (Treviño et al., 2011). The precise
relationship between synaptic excitation and inhibition (i.e.,
the E/I ratio) determines fundamental cortical operations

FIGURE 1 | Feed-forward inhibitory circuits and the input/output
function of cortical pyramidal cells. (A) Diagram of a minimal circuit with
feed-forward inhibition (FFI). The circuit consists of an excitatory projection (in
black) that drives an interneuron (INT) and a pyramidal cell (PyrC). The INT
makes a synaptic contact with the PyrC. (B) The lower panel displays a
cartoon of a prototypical intracellular recording from the PyrC in control
conditions (black trace). For example, in the hippocampus and cortex,
activation of the excitatory projection generally produces a monosynaptic
excitatory postsynaptic potential (EPSP), followed by a di-synaptic fast
inhibitory postsynaptic potential (IPSP; GABAA-receptor-dependent) and a
slow IPSP (GABAB-receptor-dependent). In these conditions, the addition of
ionotropic glutamate receptor antagonists (NBQX+APV) blocks all synaptic
responses, revealing the polysynaptic nature of FFI in these circuits (red trace;
McCormick, 1992; Treviño and Gutiérrez, 2005; Treviño et al., 2007, 2011).

such as feature selectivity and gain (Haider and McCormick,
2009; Isaacson and Scanziani, 2011). Interestingly, despite
fluctuating network activity levels, PyrCs in the cortex show
quite stable averaged E/I ratios over time. This cortical ‘‘E/I
balance’’ is achieved because inhibition increases proportionally
with excitation, mainly through an enhanced recruitment
of INTs (Anderson et al., 2000; Shu et al., 2003; Haider
et al., 2006; Okun and Lampl, 2008; Xue et al., 2014). Yet,
to complete this concept: some short-term plastic changes in
the strength of synaptic transmission can also lead to small
but progressive changes in the E/I balance. In the cerebral
cortex, for example, both excitation and inhibition on PyrCs
undergo short-term depression during repetitive electrical
stimulation, but inhibition has a greater depressive effect,
increasing the E/I ratio. This, in turn, leads to a progressively
longer temporal window for EPSP summation and a decrease
in spike-timing precision. Similarly, in the hippocampus,
a single action potential in a dentate granule cell evokes
a net inhibitory potential in CA3 PyrCs (Figure 1B), but
this input signal can lead to an excitatory output if the
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stimulation frequency is increased (Gabernet et al., 2005;
Treviño et al., 2007, 2011). The process responsible for
this switch involves the facilitation of excitatory responses
coupled with a rapid depression of inhibitory transmission
(Mori et al., 2004; Szabadics and Soltesz, 2009). A last
example: in hippocampal CA1, feed-forward excitatory
synaptic strength onto fast-spiking basket cells remains
quite constant, whereas monosynaptic connections between
fast-spiking basket cells and PyrCs are depressed during
repetitive stimulation, resulting in an overall depression
of the inhibitory drive onto PyrCs. Thus, the E/I balance
can be regulated in a frequency-dependent manner by
short-term changes in synaptic transmission (Galarreta and
Hestrin, 1998; Gabernet et al., 2005; Glickfeld and Scanziani,
2006).

THE INPUT-OUTPUT TRANSFER
FUNCTION OF CORTICAL NEURONS

The probability that a neuron will fire an action potential in
response to afferent stimuli is described by its input-output
(I/O) function. The I/O function depends on the passive
and active electrical properties of the cell, but also on the
dendritic morphology and on the E/I balance. Mathematically,
this function can be represented by a logistic curve: the neuron
is nearly silent at low input rates, but increases its firing output
with a given slope (also referred to as the ‘‘gain control’’) before
finally reaching a plateau at saturation input rates (Llinás, 1988;
Bartesaghi et al., 2006; Campanac and Debanne, 2008; Pouille
et al., 2013).

Typically, the all-or-none properties of axonal spiking,
together with the presence of active dendritic properties, yield a
steep I/O sigmoid with a very limited operative range for input
stimuli. However, because neurons are regularly subjected to
an intense ongoing synaptic bombardment in vivo, this leads
to an actual I/O function with a smaller gain. In other words,
the combination of variable ‘‘background’’ synaptic noise with
the intrinsic properties of the cells renders an I/O relationship
with a broader dynamic range (for input signals), mixing single-
spike and burst responses at multiple membrane potentials
(Borg-Graham et al., 1998; Paré et al., 1998; Wolfart et al.,
2005; Monier et al., 2008). Mechanistically, transformations of
the I/O relationship can occur because the voltage fluctuations
allow synaptic inputs to cross the action potential threshold
more frequently, even when the average membrane potential
is well below the spike threshold. Interestingly, such high
levels of voltage noise fluctuations can only be achieved
during uncorrelated (asynchronous) inputs, when excitatory
and inhibitory synaptic conductances are, on average, well-
balanced (Okun and Lampl, 2008; Petersen and Crochet,
2013).

INHIBITION CONTROLS ASYNCHRONOUS
STATES OF NEURONAL NETWORKS

Evidence from in vitro and in vivo recordings indicates
that the activity of INTs plays a major role in coordinating

spikes and generating oscillatory network activity (Freund
and Buzsáki, 1996; Bartos et al., 2007; Treviño et al., 2007).
By counterbalancing excitatory inputs in a temporally
precise way, correlated inhibition can orchestrate action
potential timing in multiple postsynaptic neurons. This is
crucial for general cortical functioning and also for inducing
synaptic plasticity (Kwag and Paulsen, 2009). Contrary to
this view, however, recent experimental evidence reveals that
neural networks, both in vitro and in vivo, generally display
asynchronous states with low spiking correlations among
cortical neurons including INTs (Okun and Lampl, 2008;
Petersen and Crochet, 2013; Sippy and Yuste, 2013). One
candidate mechanism to explain the low correlated spiking
output is that presynaptic excitatory and inhibitory (phasic)
inputs are themselves correlated, shunting the membranes
of postsynaptic cells. Some authors have interpreted the
high correlations in IPSCs observed in neighboring PyrCs
as an indication of a high correlation in the spiking activity
of presynaptic INTs (Hasenstaub et al., 2005). However,
recent experiments indicate that correlations in IPSCs can
be easily explained by the fact that nearby cells share some
of their inhibitory input (Figure 2A). In other words, this
means that inhibition can indeed be locally coherent, but
not due to synchrony among INTs, but simply because
PyrCs share common presynaptic inputs from INTs. Here,
importantly, inhibition is globally no more correlated
than excitation (Okun and Lampl, 2008; Sippy and Yuste,
2013).

In their theoretical model of de-correlated networks, Renart
et al. (2010) proposed that shared excitatory and inhibitory
input correlations could indeed explain the low levels of
spiking (output) correlation between pairs of PyrCs, as
observed in dozens of in vivo experiments (Figure 2A). To
test this model, Sippy and Yuste (2013) performed dual
voltage-clamp recordings in PyrCs from brain slices during
thalamically-triggered UP states at different holding potentials.
This strategy changed the driving force of inhibition and
excitation (at least in the perisomatic region) and provided
control of their relative synaptic efficacy. In agreement with
the model, the intracellular recordings revealed a V-shaped
relationship between the correlation of membrane currents of
nearby PyrCs and their membrane potential (Figure 2B). That
is, the correlation between synaptic currents was highest at
−70 mV and +0 mV, where excitation and inhibition are
relatively isolated, whereas at intermediate potentials, the net
effect of the synchronous excitatory and inhibitory currents
lead to a lower output correlation between the membranes
of nearby PyrCs (Sippy and Yuste, 2013; see also Hasenstaub
et al., 2005). Thus, a proper mixture of excitation and
inhibition leads to a state of relative asynchrony between
neighboring cells (Figures 2A,B). Certainly, in this explanatory
framework, inhibition and excitation must be correlated in
postsynaptic membranes (Renart et al., 2010; Sippy and Yuste,
2013).

Further support to these ideas: in vivo experiments by
Okun and Lampl (2008) have shown that, during spontaneous
and sensory-evoked activities, neighboring cortical cells display
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FIGURE 2 | Correlated inhibition and excitation cancel each other out to create asynchronous network states. (A) Diagram of a minimal cortical circuit
depicting how shared excitation and inhibition can produce correlated excitatory and inhibitory responses in two neighboring pyramidal cells. (B) Schematic outline of
the output correlation of synaptic currents (and also output spikes) between neighboring cells observed under different strengths of excitation and inhibition (v.gr.
using different membrane potentials, represented in the x-axis). This V-shaped relationship, predicted theoretically (Renart et al., 2010) and confirmed experimentally
(Sippy and Yuste, 2013) suggests that excitatory and inhibitory inputs into neighboring PyrCs are indeed correlated. The resulting membrane currents and spike
output become less correlated at physiological membrane potentials by mutual cancellation. (C) Intracellular recordings from neighboring PyrCs near the reversal
potential of inhibition (−75 mV, top). In the panel below, one cell is injected with a small positive current to reveal the inhibitory potentials (with QX-314 added to the
pipette to prevent firing). Positive deflections of the membrane potential in the upper panel reflect mostly excitatory synaptic currents, whereas the negative
deflections in the depolarized trace (green trace) reflect inhibitory currents. Note how the excitatory and inhibitory inputs are highly-correlated in neighboring PyrCs.
(D) Computer simulations show that inhibition (lower panel) decreases the correlation observed in networks based on excitatory cells only (upper panel). Scalebars
(15 mV, 50 ms). Panels (B–D) modified, with permission, from Okun and Lampl (2008) and Renart et al. (2010).

highly-correlated: (i) EPSPs/EPSPs (Figure 2C, upper panel);
(ii) IPSPs/IPSPs; and (iii) EPSPs/IPSPs (Figure 2C, lower panel).
Moreover, the cross-correlations of the EPSPs and IPSPs from
neighboring cells peaked at a positive delay of ∼3 ms. This
indicates that, on average, inhibition lags behind excitation

by several milliseconds. Such tight coupling is consistent
with the hypothesis that inhibition controls the integration
time window of excitation, enabling neurons to operate as
coincidence detectors. In other words, because nearby cortical
neurons receive highly-similar excitatory inputs, FFI might
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indeed constitute a robust mechanism for de-correlating network
activity (Figure 2D).

Assuming that FFI accounts for the strong correlations
between excitatory and inhibitory inputs into PyrCs, it would be
natural to ask whether the correlation state of a network could be
sensitive to (or manipulated by) changes in the inhibitory ‘‘tone’’
in cortical networks. This has been confirmed experimentally:
substantial increases in network synchrony occur both in vitro
and in vivo when using pharmacological agonists that reduce
the probability of GABA release, and also with antagonists
that block GABAergic conductances (Cohen and Miles, 2000;
Treviño et al., 2007; Petersen and Crochet, 2013). Similarly,
a partial blockage of GABAergic receptors can produce an
increase in pair-wise correlations of EPSCs between PyrCs,
confirming that IPSCs participate in de-correlating output spikes
(Sippy and Yuste, 2013). Therefore, reducing the GABA function
increases network synchrony in vitro, whereas adding INTs into
simulated networks in silico decreases their output correlation
(Figure 2D).

POSSIBLE COMPUTATIONAL BENEFIT
FROM ASYNCHRONOUS ACTIVITY

Neural activity can represent information as a firing rate, as
correlations in spike-timing, or as a complex combination
of both (Silver, 2010; Luczak et al., 2015). Many researchers
believe that networks can display a rich repertoire of
synchronous and asynchronous states and that they can
switch between them by adjusting the E/I balance. Experimental
measurements in vivo corroborate this view, and theoretical
studies suggest that networks can self-organize to reach
such balanced states in which different neurons emit action
potentials asynchronously (van Vreeswijk and Sompolinsky,
1996; Brunel, 2000; Renart et al., 2010). Two fundamentally
different types of asynchronous activity have been distinguished
(Ostojic, 2014). When synaptic couplings between neurons
are weak, the network at rest can operate in an ‘‘homogenous
asynchronous state’’, a regime well-suited for transmitting
information about the firing rate of external inputs. This
is because neurons in the network will change their mean
firing rate in proportion to the input. In contrast, for
strong couplings, a network at rest displays rich internal
dynamics, in which the firing rates of individual neurons
fluctuate strongly, both in time and across neurons. In
this scenario, the internal state of the network is such that
repeated presentations of the same external stimulus leads
to very different responses (i.e., the input is dynamically
transformed). Certainly, this variability in the population
degrades the transmission of information but provides a rich
substrate for a nonlinear processing of the stimuli (Ostojic,
2014).

Neuronal responses are typically variable in the sense that
the number and timing of the spikes in response to the
same stimulus is never identical among trials (Lee et al.,
1998; Kilgard and Merzenich, 1999; Ringach et al., 2002;
Chelaru and Dragoi, 2008; Moreno-Bote et al., 2014). The
responses of nearby neurons located within the same ‘‘functional

column’’ in the cortex, which are thought to encode the ‘‘same
stimulus property’’, exhibit a high degree of heterogeneity. Yet,
interestingly, the trial-by-trial variability in neuronal responses
is not independent, but exhibits correlations (Zohary et al.,
1994; Lee et al., 1998; Ringach et al., 2002; Chelaru and
Dragoi, 2008). One possibility could be that population coding
depends not only on the response properties of the cells
but also on the distribution of neuronal correlations across
the network (Abbott and Dayan, 1999; Pouget et al., 2000;
Sompolinsky et al., 2001; Luczak et al., 2015). And in this
respect, the high variability of intrinsic response properties
of individual cells may change the structure of neuronal
correlations thereby improving the information encoded in the
population activity (Chelaru and Dragoi, 2008). This proposal
predicts that the most energy-efficient codes for representing
information would be sparse, as observed in multiple in vivo
preparations (Petersen and Crochet, 2013). Under a sparse
coding regime, a neuron could act as a coincidence detector
of temporally-correlated inputs. Furthermore, computational
strategies used by the brain should depend on the amount
of information that can be stored in population activity. In
vivo, noise correlations tend to be positive and proportional
to the similarity in tuning properties, and are thought to
limit information. It would be thus natural to think that de-
correlating neuronal activity could increase the information
capacity of the network (Abbott and Dayan, 1999; Pouget
et al., 2000; Sompolinsky et al., 2001; Seriès et al., 2004).
In other words, because information usually decreases as
correlations increase, it could be advantageous if the brain were
to possess a mechanism to de-correlate neural activity, either
through a passive process such as balancing or synchronizing
excitation and inhibition, or an active one such as attention
(Cohen and Maunsell, 2009; Mitchell et al., 2009; Renart et al.,
2010).

CONCLUDING REMARKS

Inhibition is generally conceptualized as a mechanism that
restricts the probability of action potential generation
by reorganizing spikes in multiple cells and promoting
network oscillations (Bartos et al., 2007). Here, I have
discussed how inhibition can also promote and control
the generation of asynchronous states. A proposal is that
depending on the spatiotemporal dynamics of synaptic inputs,
inhibition could act as a correlating or de-correlating agent
that controls network synchrony. Signal integration of
postsynaptic cells is transformed through shared inhibition,
affecting their I/O transfer function and de-correlating
spikes in neighboring cells which might increase the
network’s storage-capacity (but see Moreno-Bote et al.,
2014).

Spontaneous spiking by most cortical neurons in vivo
and in vitro is generally asynchronous and infrequent
(usually <1 Hz; Renart et al., 2010; Petersen and Crochet,
2013) but, intuitively, such sporadic activity should
eventually reach a point of complete inactivity because
it cannot sufficiently depolarize postsynaptic neurons to
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reach their spike threshold. How cortical networks are
able to maintain asynchronous and infrequent activity is
unclear. Maybe spikes result from cell-intrinsic—i.e., non-
synaptically driven—processes: some studies suggest that
certain brain areas can generate discharges in the absence
of (sensory) evoked synaptic inputs (e.g., Cohen and Miles,
2000). Different levels of neuromodulators, or different
attentional or arousal levels could also regulate the intrinsic
conductances and the firing and excitability of neurons
as well as their transition into desynchronized UP states
in vivo (Destexhe et al., 2003; Wladyka and Kunze, 2006;
Constantinople and Bruno, 2011). Perhaps both intrinsic
cellular properties and shared synaptic interactions contribute
to the asynchronous state of cortical networks. If so, fine-
tuning of the ‘‘E/I balance’’ may be a key mechanism for
modulating spike output correlations and transitions among
brain states.
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